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1. Introduction

Data availability has increased immensely in the past years, and so has the
need for data analysis techniques. A key point of interest is often to use pro-
cess data to detect changes in the underlying process. This applies to numer-
ous environments, ranging from standard manufacturing processes to intel-
ligence agencies using complex network data to detect possible terrorist cells,
or even our own body. Even though many processes may appear constant at
first glance, the corresponding process data will vary over time. If we look
at our own body for example, our heart rate, blood glucose, and many other
characteristics are not constant values. Certain variation in these values is in-
herent to the process under consideration, and pinpointing the exact cause of
these differences is often very difficult, if not impossible.

However, special events or disturbances can change the underlying pro-
cess, bringing a different source of variation. For example, one can think of
machine wear or defects in a manufacturing environment, or a virus or disease
affecting ourselves, each influencing certain processes and the correspond-
ing data. If no corrective actions are taken, this may lead to undesirable and
potentially harmful consequences, depending on the circumstances. More-
over, detection of these changes and the underlying causes may provide valu-
able information that can be used for process improvement. This is common
practice in many improvement methodologies, such as Lean Six Sigma. The
field of statistical process monitoring (SPM) provides tools to detect process
changes by monitoring data streams.

This dissertation revolves around the design of one of such tools, namely
the Shewhart control chart. In this chapter, an overview is given of the con-
cepts and motivation for this dissertation. In particular, Section 1.1 provides
the general concept and applications of SPM, after which the Shewhart control
chart is discussed in Section 1.2. Next, in Section 1.3, the effect of parameter
estimation on control chart performance is discussed and illustrated. Section
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INTRODUCTION

1.4 provides some details on the directions and tradeoffs to be made to take
this effect into account. Finally, Section 1.5 contains the outline of this disser-
tation.

1.1 Statistical Process Monitoring

In SPM, statistical techniques are applied to monitor processes for the pur-
poses of process control as well as improvement. The origins of SPM date
from the early 1920s, when Walter A. Shewhart worked at Bell Laboratories.
Shewhart recognized the importance of reducing variation in manufactur-
ing processes, and pointed out that variation actually increased when pro-
cess adjustments were made based on the number of non-conforming prod-
ucts. While every process shows variation, he made a distinction between
two sources of variation, non-assignable (chance cause) and assignable cause
variation. Nowadays, these are mostly referred to as common cause and special
cause variation, respectively.

Common cause variation is inherent to the process under consideration.
This variation is often a combination of many small influences, where it is
nearly impossible to determine and control all the exact causes. Examples of
common cause variation are the outcomes of a regular dice roll, or a roulette
wheel at the casino. Many factors influence these outcomes, such as the start-
ing position and strength of the roll or spin. Yet, even when we feel like we
are repeating the same actions, we (or at least most of us) are not able to pro-
duce the same outcome every time. It is an aggregation of minor factors, con-
stantly active within the process, of which the outcome is probabilistically
predictable. In statistics, this variation is often referred to as noise. A pro-
cess that displays only common cause variation is addressed in SPM as being
statistically in control, henceforth in-control.

Special cause variation is variation induced by a specific, assignable cause.
This variation can be observed in different forms, such as trends, drifts, shifts,
or outliers, and indicates some change(s) or disturbances in the process. A
process that incorporates this type of variation is referred to as statistically out
of control, henceforth out-of-control. For example, in a manufacturing process
one can think of defects, changes in operator(s), machines, or software, but
also of changes that may not be as visible at first glance, such as machine
wear leading to a slow deterioration of output, or problems with input mate-
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1.1 STATISTICAL PROCESS MONITORING

rials. These changes can have substantial consequences for the process under
consideration, and it is therefore important to detect them so that adequate
counter measures can be taken. Even when such changes do not immediately
impact the process output or performance, detecting this form of variability
yields valuable information as they indicate influence factors of the outcome
variable under consideration.

To this end, Shewhart introduced a statistical tool, the control chart, to mon-
itor process data. The control chart is a commonly used tool in quality control,
and is designed to provide a signal when it suspects an out-of-control situa-
tion. The foundation for the control chart, and for statistical quality control
in general, was laid down by Shewhart in his earlier works, Shewhart (1926)
and Shewhart (1931). Originally, control charts were mainly applied in man-
ufacturing processes. As an example, consider a factory that fills bottles with
liquid. Due to common causes of variation, different bottles will not contain
exactly the same volume of the corresponding liquid. If the volume is too low,
this may result in rework because the bottle has to be processed again. If the
volume is too high, this may be favorable to the customer, but actually means
a waste of the liquid for the selling company. For this company, it is there-
fore of major importance to control the contents of the bottles. If any of the
influence factors for the process output changes (e.g. the operator, input ma-
terial, machine settings, etc.), the distribution of the output data will change.
If these changes can be detected before they actually lead to non-conforming
products, corrective actions can be taken in a timely manner to prevent rework
or waste of products.

SPM provides the statistical tools and properties for monitoring data streams.
The entire control loop, from monitoring to acting upon out-of-control sig-
nals, is generally referred to as statistical process control (SPC). While origi-
nally mainly used for quality control in manufacturing processes, the (poten-
tial) areas of application of SPM and SPC have increased in recent times. In
health care, a well known example is Google Flu Trends, which was designed
to detect, or even predict, outbreaks of flu by monitoring search queries of
Google users. Using this information can aid in early detection of such out-
breaks, allowing for a quick response that may limit their impact. The un-
derlying principle of detecting changes from data streams is not limited to
specific environments. With the rapid increase in data availability in general,
the tools to turn these data into information become more and more important

3



INTRODUCTION

in many fields.

1.2 Shewhart Control Charts

As described in the previous section, the goal of SPM is to detect changes in
the underlying process. In order to detect these changes, a distinction between
common and special causes of variation has to be made. Generally, it is un-
known in advance which variation is common. To this end, various statistical
techniques have been developed, including the control chart. A control chart
consists of a plotting statistic, also referred to as monitoring statistic or charting
statistic, as well as control limits. The plotting statistic is some variable of inter-
est of the process under consideration, while the control limits determine for
which values of this variable an out-of-control signal is produced. These con-
trol limits are determined based on the statistical properties of the underlying
process data.

The most common control chart is the Shewhart control chart, which uses
an upper control limit (UCL) and a lower control limit (LCL). These limits are
based on the process mean (µ0) and standard deviation (σ0) when in-control,
and are originally of the simple form

UCL = µ0 + 3σ0

LCL = µ0 − 3σ0.
(1.1)

Under the assumption of normally distributed data, this set of control limits
yields a 0.27% chance of a signal for each plotting statistic when the process is
actually in-control. The likeliness of producing a signal when no assignable
causes are present is referred to as the false alarm rate (FAR), and is denoted by
α0 in general. As an illustration, Figure 1.1 shows the UCL and LCL in rela-
tion to the normal distribution. Because the monitoring of a plotting statistic
with these control limits is an ongoing process, an interesting property of the
control chart is the run length, which is the number of plotting statistics until
a signal is obtained. When the process is in-control, every plotting statistic
has a probability of α0 of producing a signal. The run length of the control
chart then follows a geometric distribution with parameter α0. Consequently,
the in-control average run length (ARL) of the control chart equals 1/α0 in
general, so in this case 370.4. The FAR and ARL are the most commonly used
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1.2 SHEWHART CONTROL CHARTS

Figure 1.1: Shewhart control chart and the normal distribution

characteristics to evaluate the performance of a control chart.
Although the control chart is designed to detect out-of-control situations,

the in-control performance should not be overlooked. The in-control and out-
of-control performance are related in a similar way as the type I and type II
error are in statistical hypothesis tests. One could increase the out-of-control
detection rate by narrowing down the control limits, and thus increasing the
probability of a signal, but this increases the FAR. On the other hand, low-
ering the FAR by widening the control limits leads to worse detection rates.
A high FAR can lead to a waste of time and resources looking for assignable
causes that aren’t present. Note that when a process is out-of-control, the ac-
tual probability of a signal (which is no longer a false signal), is dependent on
the type and size of the change in the underlying process, and can therefore
not be determined without further prior information on the change. For this
reason, control chart performance is generally evaluated in terms of in-control
properties, such as the FAR and in-control ARL.

In practice, the in-control parameters µ0 and σ0 are generally unknown,
and have to be estimated. Therefore, SPM distinguishes between two phases,
Phase I and Phase II. In Phase I the aim is to determine the in-control behavior
of the data, including the required process parameters. This involves a Phase
I reference sample, consisting of m subgroups of size n each. Here n = 1
means that data are collected as individual observations, while n > 1 means
that multiple observations are collected at each time instance. Because the
estimation in Phase I affects the control chart performance in Phase II, a thor-
ough investigation of possible out-of-control situations or data contamination
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is required for the obtained sample. Details on robust estimation methods to
deal with this problem can be found in Schoonhoven (2011). Phase II is the
monitoring phase, where the plotting statistic is prospectively monitored us-
ing the control limits obtained in Phase I.

1.3 The Effect of Parameter Estimation

Although robust and efficient estimation is an important first step, this alone
does not solve all of the problems associated with parameter estimation in
Phase I. An influential paper in the field of SPM to this end is Quesenberry
(1993), who pointed out the dependency between consecutive false alarm prob-
abilities for plotting statistics when parameters are estimated. This means
that, in contrast to the known parameters case, the run length distribution is
not geometric. He suggests the use of at least 400/(n− 1) Phase I subgroups
in order for the control charts to behave like the known parameters situation
when n > 1, and around 300 observations when n = 1. In Jensen et al. (2006),
these and other findings are discussed in an overview paper on the effects of
parameter estimation in SPM.

However, Quesenberry (1993) neglected an important effect of parame-
ter estimation, namely the practitioner-to-practitioner variation. This represents
the fact that, even when different practitioners sample from the same distri-
bution, they will obtain different samples and therefore different parameter
estimates. Consequently, their estimated control limits and the corresponding
control chart performance will differ as well. As an illustration, we have simu-
lated 1,000 Phase I samples from a standard normal distribution, consisting of
50 subgroups of size 5 each. For each of these samples, we have constructed
the control limits using estimated parameters. Since the actual distribution
of the underlying process is known, it is possible to calculate the FAR and
the ARL for each chart, conditionally on the corresponding estimates. Figure
1.2 shows a histogram of the 1,000 obtained conditional ARL values. As can
be seen, the differences between these values are substantial, and the values
may be very different from the design (nominal) value of 370.4. Note that
the variation becomes smaller as more data are collected, as this increases the
estimation accuracy. A detailed paper on the effect of parameter estimation
for Shewhart X̄ control charts is Saleh et al. (2015b). They illustrate the con-
ditional performance of Shewhart X̄ control charts and show that the earlier
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Figure 1.2: Effect of parameter estimation

sample size requirements proposed by Quesenberry (1993) are not sufficient.

1.4 Design of Control Charts

In many occasions the required sample sizes for a sufficient control chart per-
formance are not available, which should be taken into consideration in the
design and evaluation of control charts. In order to compensate or correct
for the effect of parameter estimation, a solution is to adjust the control limits
such that a certain performance criterion is matched. Although many specific
criteria are thinkable, there are two general directions, namely unconditional
and conditional performance. Albers and Kallenberg (2004a,b, 2005) denote
the criteria corresponding to these directions as the bias criterion and the ex-
ceedance probability criterion respectively.

Originally, performance measures to evaluate control chart performance
consisted of unconditional performance measures such as the unconditional
FAR or the unconditional ARL. These are the expected values of the FAR and
ARL. When adjusting the control limits to match a certain unconditional per-
formance, the most logical choice is to provide a specified nominal perfor-
mance in expectation. The performance measure is generally some function
g(α0) of the nominal FAR value α0, see also Albers and Kallenberg (2004b).
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Relating to Figure 1.2, the function under consideration is the ARL (e.g. g(α0) =
1/α0), such that the expectation of g(α0) can be thought of as the average of all
the conditional ARL values. In that case, using the bias criterion means that
control limits should be derived such that the expectation of the ARL (EARL)
equals a specified nominal value EARL0 = 1/α0. In Chapter 2 we elaborate
further on the bias criterion and the required adjustments to the control limits
to satisfy it.

When focusing on the expected performance, there may still be a large pro-
portion of the practitioners with an unsatisfactory control chart performance.
The second option is then to focus on conditional performance by means of the
exceedance probability criterion. The idea is to guarantee a minimum condi-
tional in-control control chart performance (often in terms of FAR or ARL) to
practitioners with a pre-specified probability. In Chapters 3 to 5 we elaborate
further on this criterion.

Another aspect to consider in the design of control limits is their func-
tional form, and the corresponding underlying distributional assumptions.
The limits described in (1.1) are derived for normally distributed data, and
it is obvious that this form of control limits will not work as well for other
distributions. Especially for skewed data, the symmetrical character of these
control limits will cause issues with control chart performance. A first way
to overcome this is by introducing probability limits, as is done for example
for control charts for dispersion when the data itself are normally distributed
(e.g. Montgomery, 2013). These limits are based on the true distribution of the
characteristic of interest. Such parametric control limits can also be derived
for other distributions in combination with the bias or the exceedance proba-
bility criterion. However, although these parametric control limits provide a
solution for various data distributions, in practice the problem is that the true
distribution is generally unknown, and has to be estimated along with its pa-
rameters. This leads to an extra source of estimation error, and introduces an
extra tradeoff in the design of control charts.

As mentioned also in Albers et al. (2004), the total estimation error can be
split up in two different distinct errors, the model error (ME) and the stochastic
error (SE). The first is caused by incorrect assumptions on the distributional
form, while the latter is the error resulting from parameter estimation. In
order to reduce the reliance on distributional assumptions, one can consider
the use of nonparametric methods. In that case, the ME will vanish and the

8



1.5 OUTLINE AND SCIENTIFIC CONTRIBUTION

variation will be caused by the SE only. While the first is dependent on the
distribution under consideration, the latter can be reduced by collecting larger
samples.

These tradeoffs and adjustments for the design of Shewhart control charts
when parameters are estimated are the topic of this dissertation. However, the
findings of this dissertation are more generally applicable, as the tradeoffs are
also relevant in many other statistical applications.

1.5 Outline and Scientific Contribution

In this dissertation we elaborate on the Shewhart control chart, and provide
various new designs to account for the effect of parameter estimation.

In Chapter 2 control limits for Shewhart control charts for location are derived
that provide a specified control chart performance in expectation, following
the bias criterion. In this chapter the main focus is placed on the ARL, but the
results can be generalized to other characteristics easily, because the deriva-
tions contain a general function for performance measures. The chapter also
contains a practical application as an illustration.

This chapter has been published under the title “Correction Factors for
Shewhart X and X̄ Control Charts to Achieve Desired Unconditional ARL”
in the International Journal of Production Research. This paper, Goedhart et al.
(2016), was combined work with dr. M. Schoonhoven and prof. dr. R.J.M.M.
Does, in which I took the lead regarding the mathematical derivations, M.
Schoonhoven took the lead in writing, and R.J.M.M. Does provided supervi-
sion.

In Chapter 3, control limits for Shewhart control charts for location are de-
rived following the exceedance probability criterion. Moreover, a compari-
son of these limits with other existing methods based on a similar criterion is
provided. Among these methods are self-starting control charts, a bootstrap
procedure, and tolerance intervals.

This chapter is based on two papers, Goedhart et al. (2017b) and Goed-
hart et al. (2018a), both published in the Journal of Quality Technology. The
first paper, entitled “Guaranteed In-Control Performance for the Shewhart X
and X̄ Control Charts”, lies at the basis of this chapter. The second paper
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INTRODUCTION

is a follow-up of this paper, and is titled accordingly as “On Guaranteed In-
Control Performance for the ShewhartX and X̄ Control Charts”. Both papers
are combined work with dr. M. Schoonhoven and prof. dr. R.J.M.M. Does in
which I took the lead.

Chapter 4 provides adjusted control charts for monitoring process dispersion,
following the exceedance probability criterion. The results are made quite
general, so that they can be applied to many different estimators of disper-
sion and their corresponding control charts.

This chapter is based on the paper “Shewhart Control Charts for Disper-
sion Adjusted for Parameter Estimation”, published in IISE Transactions. This
paper, Goedhart et al. (2017a), is a combined work with ms. M.M. da Silva,
dr. M. Schoonhoven, dr. E.K. Epprecht, prof. dr. S. Chakraborti, prof. dr.
R.J.M.M. Does and dr. A. Veiga. Originally, it started as a combined work
with M. Schoonhoven and R.J.M.M. Does in which I took the lead, after which
it turned out that another group of researchers was working on a similar pa-
per. We then decided to merge our results into a single paper, which became
a combined effort consisting primarily of matching notation and terminology.
The most important part of my personal contribution is the general derivation
of the control limit coefficients, which makes the proposed limits applicable
for many different estimators.

In Chapter 5 the use of nonparametric control limits is described and eval-
uated. The performance of these limits is compared with other general meth-
ods that aim to relax the model assumptions in Phase I, or limit the impact
of model errors, such as a general bootstrap procedure and transformations
to normality. Moreover, the tradeoffs between more general models and the
data demands accompanying them are discussed in this chapter.

This chapter is based on the paper “Tolerance Intervals in Statistical Pro-
cess Monitoring”, which is submitted for publication. This paper, Goedhart
et al. (2018b), is combined work with dr. M. Schoonhoven and prof. dr. R.J.M.M.
Does, in which I took the lead.

Finally, in Chapter 6, a summary of this dissertation is provided along with
some concluding remarks.
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2. Bias Criterion for Control Charts for
Location

In this chapter we derive correction factors for Shewhart control charts that
guarantee a certain unconditional in-control ARL. In practice, the distribution
parameters of the process characteristic of interest are unknown and have to
be estimated, which may impact the control chart’s performance (see Section
1.3). A well-known performance measure within SPM is the expectation of
the ARL. A practitioner may want to design a control chart such that, in the
in-control situation, it has a certain expected ARL. We use approximations to
derive the required factors and show their accuracy and performance in out-
of-control situations. We also evaluate the variation between the ARLs of the
individually estimated control charts. This chapter is based on Goedhart et al.
(2016).

2.1 Introduction

ShewhartX and X̄ control charts are common tools to monitor process means.
For the X control chart, individual observations are used as plotting statistic
in Phase II, while the X̄ control chart uses subgroup averages instead. In prac-
tice, the true process parameters are often unknown, and need to be estimated
using a Phase I reference sample. However, since different practitioners have
different Phase I data, the estimates of the process parameters will vary across
practitioners. Because of this the estimated control limits, and consequently
the control chart performance, are actually random variables. This variation
in control chart performance has been addressed by several researchers, and
is of great interest in current SPC literature. An overview of this literature is
given by Jensen et al. (2006) and Psarakis et al. (2014).

11



BIAS CRITERION FOR CONTROL CHARTS FOR LOCATION

The performance of a control chart is generally measured in terms of the
FAR or the ARL. However, as shown by for example Quesenberry (1993) and
Chen (1997), the amount of Phase I data required for the control chart to per-
form properly is substantially larger than initially thought. Although increas-
ing the amount of Phase I data generally improves the accuracy of the pa-
rameter estimates, the required amounts are not always feasible in practice.
Therefore, another solution is to apply corrections to the control chart limits
to take parameter estimation into account. For example, Hillier (1969), Does
and Schriever (1992) and Schoonhoven et al. (2009) provide corrections lead-
ing to a desired value of the FAR in expectation. Next to that, more recent
works, for example Albers and Kallenberg (2004b, 2005), Chakraborti (2006),
Faraz et al. (2015) and Saleh et al. (2015b), also consider other performance
measures such as the ARL.

Performance of control charts based on estimated parameters can be eval-
uated for a given set of parameter values (known as conditional performance),
or in expectation (known as unconditional performance). In this chapter we
derive new corrections for the Shewhart X and X̄ control charts to achieve a
desired unconditional ARL. Although Albers and Kallenberg (2005) derived
correction factors for the same objective function, they have only considered
the individuals chart. Therefore, we extend their approach for the Shewhart
X̄ control chart. In addition, we derive new correction factors and compare
their performance. It will be shown that our newly proposed correction fac-
tors outperform those of Albers and Kallenberg (2005).

This chapter is organized as follows. The next section discusses the con-
sidered model and notation. In Section 2.3, the performance of the correction
factors of Albers and Kallenberg (2005) is assessed. Next, in Section 2.4 we
describe the derivation of the newly proposed correction factors, and com-
pare their performance. In Section 2.5 we discuss the implications of using
the proposed corrections in in-control and out-of-control situations. In Sec-
tion 2.6 the implementation of the control chart is illustrated with a real life
example. Finally, in Section 2.7 we provide concluding remarks.

12



2.2 MODEL AND APPROACH

2.2 Model and Approach

The Shewhart control chart for monitoring the mean with known parameters
has control limits

UCL = µ0 +K
σ0√
n

LCL = µ0 −K
σ0√
n

(2.1)

whereµ0 and σ0 are the in-control mean and standard deviation of the process
characteristic of interest, respectively, and where K is the constant used to
achieve the desired probability of a false signal (α0). Let Yij denote the j-th
observation in Phase II subgroup i (i = 1, 2, ... and j = 1, 2, ..., n) and let Yij be
i.i.d. N(µ0 + δσ0/

√
n, σ0) random variables, where δ = 0 corresponds to the

in-control situation, and where the process is considered out-of-control for
δ 6= 0. Then, K = Φ−1(1−α0/2) with Φ−1 the inverse of the standard normal
cumulative distribution function Φ. The run length (RL), i.e. the number of
Phase II subgroups before the control chart gives a signal, has a geometric
distribution with parameterα0. As a consequence, the in-control ARL is given
by 1/α0.

In practice, µ0 and σ0 are not known and therefore have to be estimated.
To this end, m subgroups of n measurements on the process characteristic
are collected when the process is considered to be in-control. Let Xij (the
j-th observation in the i-th subgroup in Phase I) be i.i.d. N(µ0, σ0) random
variables (i = 1, 2, ...,m and j = 1, 2, ..., n). Note that the Xij ’s correspond to
Phase I, and the Yij ’s correspond to Phase II.

For the subgroup control chart, µ0 is usually estimated by the grand sam-
ple mean

¯̄X = 1
m

m∑
i=1

( 1
n

n∑
j=1

Xij

)
, (2.2)

and σ0 is usually estimated by the pooled standard deviation

Spooled =
( 1
m

m∑
i=1

S2
i

)1/2
, (2.3)

13
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where Si is the i-th subgroup standard deviation defined by

Si =
( 1
n− 1

n∑
j=1

(Xij − X̄i)2
)1/2

.

An unbiased estimator ofσ0 isSpooled/c4(m(n−1)+1), see for example Schoonhoven
and Does (2012) or Saleh et al. (2015b), where c4(k) is defined by

c4(k) =
( 2
k − 1

)1/2 Γ(k/2)
Γ((k − 1)/2) .

For the individuals chart (n = 1), µ0 is usually estimated by the sample aver-
age

X̄ = 1
m

m∑
i=1

Xi, (2.4)

where Xi is the i-th observation (i = 1, 2, ...,m). When n = 1, σ0 is usually
estimated by the average moving range

MR = 1
m− 1

m−1∑
i=1
|Xi+1 −Xi| . (2.5)

An unbiased estimator of σ0 is MR/d2(2) where d2(2) = 2√
π
. Hence we use

the most common estimators of σ0 in both situations. However, it is possible
to use any other desired estimator in our approach.

The performance of a control chart design based on estimated parameters
can be evaluated for a given set of parameter values, known as conditional
performance, or in expectation, known as unconditional performance. The
conditional ARL (henceforth denoted as CARL) of a control chart with esti-
mated parameters can be determined as follows. We define Ei (i = 1, 2, ...) as
the event that Ȳi falls outside the control limits. Then

P (Ei|µ̂0, σ̂0) = P (Ȳi < L̂CL) + P (Ȳi > ÛCL), (2.6)

where L̂CL and ÛCL are the control limits as defined in (2.1) but with µ0
and σ0 replaced by their unbiased estimates µ̂0 and σ̂0, respectively. Given a
pair of control limits, the eventsEi are independent so that the conditional RL
is geometrically distributed with parameter P (Ei|µ̂0, σ̂0). The CARL is then

14
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given by 1/P (Ei|µ̂0, σ̂0) and the unconditional ARL (henceforth denoted as
EARL) by E(1/P (Ei|µ̂0, σ̂0)). The unconditional probability of a signal can
be determined by E(P (Ei|µ̂0, σ̂0)).

For the Shewhart X and X̄ control charts with estimated parameters, we
derive control limits of the form

ÛCL = µ̂0 + K̃
σ̂0√
n

L̂CL = µ̂0 − K̃
σ̂0√
n

(2.7)

with ÛCL and L̂CL the respective upper and lower control chart limits based
on the unbiased estimators µ̂0 and σ̂0 of µ0 and σ0, respectively, and K̃ = K+c
the factor used to achieve a desired in-control EARL, which is denoted by
EARL0.

2.3 Albers and Kallenberg’s Correction Factors

In this section, we assess the performance of the correction factors derived by
Albers and Kallenberg (2005). First, we extend their work to subgroup control
charts and then, based on simulations, we assess the accuracy of the proposed
correction factors. The final subsection gives an overview of the accuracy of
the correction factors.

2.3.1 Derivation of the Correction Factors

Albers and Kallenberg (2005) derived correction factors for the individuals
X chart in a multiplicative form of K(1 + c̃) rather than the additive form
K + c that we use. However, their corrections can easily be transformed into
a comparable form since K(1 + c̃) = K + Kc̃ = K + cAK . Hence, we can
simply multiply their proposed corrections c byK to make a comparison. For
the individuals X chart with n = 1, their proposed correction cAK is equal to

cAK = −K +K3τ2

2m , (2.8)

where τ2 = limm→∞
[
mvar

(
σ̂0
Eσ̂0

)]
. Although Albers and Kallenberg (2005)

considered estimators ofσ0 based on grouped observations (such as the pooled
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standard deviation), they did not derive corrections for the Shewhart X̄ chart
when n > 1. However, following their derivations (see Appendix 2.8) we
arrive at the following corrections for the X̄ control chart

cAK = −nK +K3τ2

2mn (2.9)

where τ2 = limmn→∞
[
mnvar

(
σ̂0
Eσ̂0

)]
. Note that this more general correction

is equal to their proposed correction for n = 1. The resulting correction fac-
tors are given in Table 2.1.

EARL0 = 1000 EARL0 = 370 EARL0 = 200 EARL0 = 100
α0 = 0.001 α0 = 0.0027 α0 = 0.005 α0 = 0.01

n m (K = 3.29) (K = 3.00) (K = 2.81) (K = 2.58)
1 20 -0.8180 -0.6325 -0.5269 -0.4173

30 -0.5453 -0.4217 -0.3513 -0.2782
40 -0.4090 -0.3163 -0.2635 -0.2087
50 -0.3272 -0.2530 -0.2108 -0.1669
75 -0.2181 -0.1687 -0.1405 -0.1113
100 -0.1636 -0.1265 -0.1054 -0.0835

3 20 -0.3049 -0.2437 -0.2084 -0.1712
30 -0.2033 -0.1625 -0.1389 -0.1141
40 -0.1525 -0.1219 -0.1042 -0.0856
50 -0.1220 -0.0975 -0.0834 -0.0685
75 -0.0813 -0.0650 -0.0556 -0.0457
100 -0.0610 -0.0487 -0.0417 -0.0342

5 20 -0.1936 -0.1594 -0.1393 -0.1178
30 -0.1291 -0.1062 -0.0929 -0.0785
40 -0.0968 -0.0797 -0.0696 -0.0589
50 -0.0774 -0.0637 -0.0557 -0.0471
75 -0.0516 -0.0425 -0.0371 -0.0314
100 -0.0387 -0.0319 -0.0279 -0.0236

7 20 -0.1565 -0.1312 -0.1163 -0.1000
30 -0.1043 -0.0875 -0.0775 -0.0667
40 -0.0782 -0.0656 -0.0581 -0.0500
50 -0.0626 -0.0525 -0.0465 -0.0400
75 -0.0417 -0.0350 -0.0310 -0.0267
100 -0.0313 -0.0262 -0.0233 -0.0200

Table 2.1: Correction factors cAK for various values of α0, m and n
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2.3.2 Simulation Procedure

The accuracy of the correction factor cAK is assessed for several combinations
of parameter values, namely n ∈ {1, 3, 5, 7}, m ∈ {20, 30, 40, 50, 75, 100} and
α0 ∈ {0.001, 0.0027, 0.005, 0.01}.

For each combination of parameter values, we calculate the EARL as fol-
lows. Without loss of generality, we generate numerous Phase I datasets (at
least 1,000,000 datasets consisting of m subgroups of size n) from a N(0, 1)
distribution in order to obtain the CARL values. For each Phase I dataset,
we determine the control limits ÛCL and L̂CL according to (2.7). Recall that
P (Ei|µ̂0, σ̂0) is defined as the probability that subgroup i generates a signal
conditional on µ̂0 and σ̂0, i.e.

P (Ei|µ̂0, σ̂0) = P (Ȳi < L̂CL) + P (Ȳi > ÛCL).

Then, conditional on µ̂0 and σ̂0, the distribution of the run length is geometric
with parameter P (Ei|µ̂0, σ̂0). Hence, the CARL is given by

CARL = E(RL|µ̂0, σ̂0) = 1
P (Ei|µ̂0, σ̂0) . (2.10)

When we take the expectation over all Phase I samples, we obtain the EARL

EARL = E

( 1
P (Ei|µ̂0, σ̂0)

)
.

This expectation is obtained by simulation: for each Phase I dataset,E(RL|µ̂0, σ̂0)
is computed. The number of Phase I datasets was at least 1,000,000 for each
parameter combination. For a few combinations, additional datasets are gen-
erated so that the maximum relative standard error of the EARL is below 5%
for n = 1, and below 1% for n > 1 for all cases.
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EARL0 = 1000 EARL0 = 370 EARL0 = 200 EARL0 = 100
α0 = 0.001 α0 = 0.0027 α0 = 0.005 α0 = 0.01

n m (K = 3.29) (K = 3.00) (K = 2.81) (K = 2.58)
1 20 554 (1151800) 269 (191160) 160 (7858) 85 (968)

30 807 (45575) 321 (3632) 178 (1079) 91 (326)
40 878 (11698) 337 (1828) 185 (589) 94 (210)
50 914 (5458) 346 (1084) 188 (442) 95 (173)
75 948 (2532) 355 (699) 192 (320) 97 (139)
100 963 (1945) 359 (581) 194 (280) 98 (128)

3 20 616 (2378) 251 (648) 142 (301) 75 (134)
30 734 (1693) 287 (520) 160 (259) 83 (117)
40 796 (1444) 306 (472) 169 (238) 87 (112)
50 835 (1335) 318 (447) 175 (231) 89 (110)
75 887 (1201) 335 (415) 183 (219) 93 (106)
100 913 (1148) 343 (405) 187 (213) 94 (105)

5 20 624 (1328) 249 (433) 141 (224) 74 (106)
30 727 (1184) 283 (406) 158 (214) 81 (103)
40 786 (1127) 302 (391) 167 (209) 86 (101)
50 822 (1095) 314 (389) 173 (204) 88 (101)
75 876 (1053) 331 (384) 181 (202) 92 (100)
100 898 (1036) 338 (377) 184 (201) 93 (100)

7 20 624 (1102) 248 (387) 140 (200) 74 (98)
30 724 (1055) 282 (379) 157 (199) 81 (98)
40 781 (1038) 300 (374) 166 (200) 85 (98)
50 819 (1018) 312 (371) 172 (199) 88 (99)
75 867 (1005) 328 (369) 180 (197) 91 (99)
100 897 (1004) 338 (370) 184 (199) 93 (98)

Table 2.2: EARL of corrected (based on cAK) and, between brackets, uncorrected control
charts
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2.3.3 Accuracy of Correction Factors

For a wide range of parameter values, the realized values of the EARL are
given in Table 2.2. It can be observed that these values are still quite different
from the desired valuesEARL0, especially for small sample sizes. This differ-
ence appears to be larger for larger values of EARL0. For larger sample sizes,
the uncorrected control limits even perform better than the corrected control
limits, as the EARL of the uncorrected chart are then closer to the desired
value. It is clear that the proposed correction factors by Albers and Kallen-
berg (2005) are not sufficient: the EARL still deviates heavily from its desired
value. For this reason, we derive new correction factors in the next section.

2.4 New Correction Factors

In this section, we derive new correction factors, give a numerical example
and present the accuracy of the proposed correction factors.

2.4.1 Derivation of New Correction Factor

The idea behind the derivation of the factor is as follows. We want to de-
rive a correction factor c such that the EARL equals a desired value, namely
EARL0 = 1/α0. In order to do this, we solve c from the equationE(1/P (Ei|µ̂0, σ̂0)) =
1/α0. Note that the conditional probability of signaling (P (Ei|µ̂0, σ̂0)) is given
by

P (Ei|µ̂0, σ̂0) = 1− P (L̂CL < Ȳi < ÛCL)

= 1−
[
P

(
Ȳi − µ0
σ0/
√
n
<
µ̂0 − µ0
σ0/
√
n

+ K̃
σ̂0
σ0

)
− P

(
Ȳi − µ0
σ0/
√
n
<
µ̂0 − µ0
σ0/
√
n
− K̃ σ̂0

σ0

)]

= 1−
[
Φ
(
µ̂0 − µ0
σ0/
√
n

+ K̃
σ̂0
σ0

)
− Φ

(
µ̂0 − µ0
σ0/
√
n
− K̃ σ̂0

σ0

)]
= [1− Φ(K̃ + ∆1(K̃))] + [1− Φ(K̃ + ∆2(K̃))]
= Φ̄(K̃ + ∆1(K̃)) + Φ̄(K̃ + ∆2(K̃))

(2.11)
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with K̃ = K + c, Φ̄(x) = 1− Φ(x) and

∆1(K̃) = µ̂0 − µ0
σ0/
√
n

+ K̃

(
σ̂0
σ0
− 1

)

and
∆2(K̃) = − µ̂0 − µ0

σ0/
√
n

+ K̃

(
σ̂0
σ0
− 1

)
.

This notation is similar to that of Albers and Kallenberg (2004b), who derived
corrections for the one-sided individuals control chart. From (2.11), we can
write for any function g of P (Ei|µ̂0, σ̂0)

g(P (Ei|µ̂0, σ̂0)) = h(K̃ + ∆1(K̃), K̃ + ∆2(K̃)) = h(x, y).

where we use h(x, y) as general notation, which is required for the next steps
in the derivation. Thus, for a specific value of K̃ we can writeh(K̃+∆1(K̃), K̃+
∆2(K̃)) = h(x0 + ∆x, y0 + ∆y) where (x0, y0) = (K̃, K̃) and (∆x,∆y) =
(∆1(K̃),∆2(K̃)). Next, we approximate the probability P (Ei|µ̂, σ̂) by using
a two-step Taylor expansion of h(x, y) = h(K̃ + ∆1(K̃), K̃ + ∆2(K̃)) around
(x0, y0) = (K̃,K̃).

h(K̃ + ∆1(K̃), K̃ + ∆2(K̃))
≈ h(K̃, K̃) + hx(K̃, K̃)∆1(K̃) + hy(K̃, K̃)∆2(K̃)

+ 1
2[hxx(K̃, K̃)∆2

1(K̃, K̃) + 2hxy(K̃, K̃)∆1(K̃)∆2(K̃) + hyy(K̃, K̃)∆2
2(K̃)],

(2.12)

wherehx(x, y) denotes the first-order partial derivative with respect tox, hxx(x, y)
denotes the second-order partial derivative with respect to x (and likewise for
y) and hxy(x, y) denotes the cross-partial derivative with respect to x and y.

When parameters are estimated, Eg(P (Ei|µ̂0, σ̂0)) 6= g(α0). Note that in
(2.12) we have hx(K̃, K̃) = hy(K̃, K̃) and hxx(K̃, K̃) = hyy(K̃, K̃). To ensure
that Eg(P (Ei|µ̂0, σ̂0)) = g(α0), we want to find a correction factor c such that
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Point h hx hxx hxy

(x, y) 1
Φ̄(x) + Φ̄(y)

φ(x)(
Φ̄(x) + Φ̄(y)

)2
2φ2(x)(

Φ̄(x) + Φ̄(y)
)3 −

xφ(x)(
Φ̄(x) + Φ̄(y)

)2
2φ(x)φ(y)(

Φ̄(x) + Φ̄(y)
)3

(K,K) 1
2Φ̄(K)

φ(K)
4Φ̄2(K)

φ2(K)
4Φ̄3(K)

− Kφ(K)
4Φ̄2(K)

φ2(K)
4Φ̄3(K)

Table 2.3: Derivatives of the function h, general at point (x, y) or specifically at point
(K,K) for g(α0) = 1/α0

for K̃ = K + c the following holds (cf. (2.12)):

Eg(P (Ei|µ̂0, σ̂0)) =Eh(K̃ + ∆1(K̃), K̃ + ∆2(K̃))

≈ h(K̃, K̃) + hx(K̃, K̃)
[
E∆1(K̃) + E∆2(K̃)

]
+ 1

2hxx(K̃, K̃)
[
E∆2

1(K̃) + E∆2
2(K̃)

]
+ hxy(K̃, K̃)E

[
∆1(K̃)∆2(K̃)

]
= g(α0) = h(K,K).

(2.13)

In Appendix 2.9 we show that, for unbiased estimators µ̂0 and σ̂0, we can
rewrite this formula as

c = −hxx(K,K)E∆2
1(K) + hxy(K,K)E [∆1(K)∆2(K)]

2hx(K,K) . (2.14)

The functions h(x, y), hx(x, y), hxx(x, y) and hxy(x, y) depend on the function
g(α0) that is being considered. For the ARL, g(α0) = 1/α0. The derivatives for
this function at point (K,K) are given in Table 2.3. Note that the approach can
easily be adapted for any other function g(α0) by adapting the corresponding
derivatives. Commonly considered functions, apart from the ARL, are the
false alarm rate (g(α0) = α0) and the probability that the run length is at most
a specified value j (g(α0) = 1− (1− α0)j), see e.g. Tsai et al. (2005).

The derivations given in (2.11)-(2.14) are still in general form with regards
to the used estimators. For µ̂0 = ¯̄X and σ̂0 = Spooled/c4(m(n−1) + 1) (cf. (2.2)
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and (2.3)) we have (see Appendix 2.10)

E [∆1(K)∆2(K)] ≈ K2

2(m(n− 1) + 1) −
1
m

(2.15)

and
E∆2

1(K) = E∆2
2(K) ≈ K2

2(m(n− 1) + 1) + 1
m
. (2.16)

Besides the application to the Shewhart X̄ control chart it can also be applied
to the individuals control chart. Since a different estimator for the standard
deviation is used in this case, namely MR/d2(2), the explicit calculation of
E [∆1(K)∆2(K)], E∆2

1(K) and E∆2
2(K) will be different here. In Appendix

2.11 we show that in this case

E [∆1(K)∆2(K)] ≈ K2
[0.8264m− 1.082

(m− 1)2

]
− 1
m

(2.17)

and
E∆2

1(K) = E∆2
2(K) ≈ K2

[0.8264m− 1.082
(m− 1)2

]
+ 1
m
. (2.18)

2.4.2 Examples of Computation of the Correction Factors

In this section, we demonstrate how to calculate the correction factor for both
a subgroup control chart and an individuals control chart. In addition, we
give an overview of correction factors for different values of α0, n, and m.

First, we give an example of the calculation of a correction factor for a
subgroup control chart with α0 = 0.0027, n = 5 and m = 50. In this case,
K = Φ−1(1−α0/2) = 3. We need to find the correction factor c in K̃ = K + c.
For the subgroup control chart, c is given by formula (2.14). To calculate c, we
need to find hxx(K,K), hxy(K,K), hx(K,K), E∆2

1(K) and E [∆1(K)∆2(K)].
These are as follows.

hx(K,K) = φ(3)
4Φ̄2(3)

= 608.03,
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hxx(K,K) = φ2(3)
4Φ̄3(3)

− 3φ(3)
4Φ̄2(3)

= 172.13,

hxy(K,K) = φ2(3)
4Φ̄3(3)

= 1996.2,

E∆2
1(K) = 32

2(50(5− 1) + 1) + 1
50 = 0.042,

E [∆1(K)∆2(K)] = 32

2(50(5− 1) + 1) −
1
50 = 0.0024.

From this, we can derive c as

c = −172.13 · 0.042 + 1996.2 · 0.0024
2 · 608.03 = −0.0099.

Next, we give an example of the calculation of a correction factor for an indi-
viduals control chart with α0 = 0.005, n = 1 and m = 100. Note that in this
case σ0 is estimated by MR/d2(2). We now have K = Φ−1(1 − α0/2) = 2.81.
Again, we need to find the correction factor c in K̃ = K + c using (2.14). To
calculate c, we need to find hxx(K,K), hxy(K,K), hx(K,K), E∆2

1(K,K) and
E [∆1(K)∆2(K)]. These are as follows.

hx(K,K) = φ(2.81)
4Φ̄2(2.81)

= 310.44,

hxx(K,K) = φ2(2.81)
4Φ̄3(2.81)

− 3φ(2.81)
4Φ̄2(2.81)

= 92.30,

hxy(K,K) = φ2(2.81)
4Φ̄3(2.81)

= 963.70,

E∆2
1(K) = 2.812

[0.8264 · 100− 1.082
(100− 1)2

]
+ 1

100 = 0.076,
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E [∆1(K)∆2(K)] = 2.812
[0.8264 · 100− 1.082

(100− 1)2

]
− 1

100 = 0.056.

The desired value of c is now given by

c = −92.30 · 0.076 + 963.70 · 0.076
2 · 310.44 = −0.098.

In Table 2.4, we present the correction factors for α0 = 0.001, α = 0.0027,
α0 = 0.005 and α0 = 0.01 for various values of n and m. As can be seen from
the table, a smaller n andm result in a larger correction. Similarly, the smaller
the value of α0, the larger the correction needed. Finally, smaller values of α0
and n result in a negative correction factor. The reason is that there is a larger
probability of extreme limits resulting in high CARLs. These high CARLs
have an impact on the EARL - calculated as the average of the CARLs - so that
the correction factor has to be negative. This is not the case for higher values
of n and m or higher values of α0.

2.4.3 Accuracy of Correction Factors

In this section, we assess the accuracy of the correction factors. In order to
do so, we simulate the performance of control charts with these correction
factors. The simulation procedure is described in Section 2.3.2.

The in-control EARL values are presented in Table 2.5. For comparison
purposes, the in-control EARLs of the uncorrected charts are presented in
brackets. The EARLs of the uncorrected charts deviate from the desired value
EARL0. The smaller the value of α0 and the smaller the values of m and n,
the larger this deviation is. As we can conclude from Table 2.5, the correction
factor performs relatively well: for sample sizes greater than n = 1 and m =
40, the correction factor leads to an EARL close to the desired value. As we
will see in the next section, this leads to better out-of-control performance as
well: when the in-control ARL is exceptionally high, the control chart is not
able to detect changes in the mean very quickly.
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2.5 Implications of Proposed Corrected Charts

In this section we discuss the implications of using the proposed correct con-
trol charts. First, we discuss the out-of-control performance compared to un-
corrected charts. Afterwards, we evaluate the variation between CARLs in
both the in-control and out-of-control situation.

2.5.1 Out-of-Control Performance of Corrected Charts

To evaluate the out-of-control performance of the charts with the new correc-
tion factors, we determine the EARLs for two out-of-control situations. We
use the same simulation procedure as described earlier but with the adjust-
ment that the process mean has changed, i.e. Yij ∼ N(µ0 + δσ0/

√
n, σ0) with

δ 6= 0. Again, without loss of generality we set µ0 = 0 and σ0 = 1 in the
simulations.

Table 2.6 shows the results for δ = 0.5 and Table 2.7 for δ = 1. We can
conclude from the tables that the corrected control charts are more powerful
in detecting shifts in the process mean than the uncorrected charts, the reason
being the high in-control CARLs of some uncorrected charts. The positive ef-
fect of the correction factor shows up mainly for small sample sizes: for the
individuals control chart and n = 3 for the subgroup control chart. In con-
clusion, for small sample sizes the corrected control charts lead to more stable
in-control as well as out-of-control performance compared to the uncorrected
control charts.

2.5.2 Variation in CARLs

We have derived correction factors that lead to the desired value of the in-
control EARL. Note that a given correction factor leads only to a desired av-
erage value: the CARL values will vary across the conditional control charts
used by each individual practitioner. To illustrate this, we have drawn box-
plots for the CARL values obtained in the simulations. For each simulation
run, we can calculate E(RL|µ̂0, σ̂0) from (2.10) and we can calculate the per-
centiles of the CARLs obtained by the simulations runs.
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Figures 2.1a and 2.1b show the 10th, 25th, 50th, 75th and 90th percentiles
of the in-control CARLs when α0 = 0.0027, for n = 3,m = 50 and n = 1,m =
100 respectively. As the figures show, both the corrected and the uncorrected
control charts display quite some variation within the CARL values. However,
this variation is much less for the corrected charts than for the uncorrected
charts. The same results are found in the out-of-control situation, as can be
seen in Figures 2.2a and 2.2b. These figures show the 10th, 25th, 50th, 75th
and 90th percentiles of the out-of-control (δ = 0.5) CARLs when α0 = 0.0027,
for n = 3,m = 50 and n = 1,m = 100 respectively.
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EARL0 = 1000 EARL0 = 370 EARL0 = 200 EARL0 = 100
α0 = 0.001 α0 = 0.0027 α0 = 0.005 α0 = 0.01

n m (K = 3.29) (K = 3.00) (K = 2.81) (K = 2.58)
1 20 -0.8022 -0.6116 -0.5032 -0.3910

30 -0.5279 -0.4024 -0.3310 -0.2571
40 -0.3934 -0.2998 -0.2466 -0.1915
50 -0.3135 -0.2389 -0.1965 -0.1526
75 -0.2079 -0.1585 -0.1303 -0.1012
100 -0.1556 -0.1185 -0.0975 -0.0757

3 20 -0.1698 -0.1207 -0.0933 -0.0654
30 -0.1146 -0.0815 -0.0631 -0.0443
40 -0.0865 -0.0616 -0.0476 -0.0335
50 -0.0694 -0.0494 -0.0383 -0.0269
75 -0.0465 -0.0331 -0.0257 -0.0181
100 -0.0350 -0.0249 -0.0193 -0.0136

5 20 -0.0453 -0.0241 -0.0126 -0.0013
30 -0.0306 -0.0163 -0.0086 -0.0010
40 -0.0231 -0.0123 -0.0065 -0.00084
50 -0.0185 -0.0099 -0.0053 -0.00072
75 -0.0124 -0.0067 -0.0035 -0.00051
100 -0.0093 -0.0050 -0.0027 -0.00039

7 20 -0.0032 0.0087 0.0148 0.0204
30 -0.0023 0.0057 0.0098 0.0135
40 -0.0018 0.0042 0.0073 0.0101
50 -0.0014 0.0033 0.0058 0.0081
75 -0.00098 0.0022 0.0039 0.0054
100 -0.00074 0.0016 0.0029 0.0040

Table 2.4: Correction factors c for various values of α0, n and m
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EARL0 = 1000 EARL0 = 370 EARL0 = 200 EARL0 = 100
α0 = 0.001 α0 = 0.0027 α0 = 0.005 α0 = 0.01

n m (K = 3.29) (K = 3.00) (K = 2.81) (K = 2.58)
1 20 534 (1151800) 307 (191160) 179 (7858) 96 (968)

30 864 (45575) 337 (3632) 192 (1079) 101 (326)
40 962 (11698) 375 (1828) 197 (589) 100 (210)
50 993 (5458) 367 (1084) 198 (442) 99 (173)
75 986 (2532) 369 (699) 198 (320) 99 (139)
100 1002 (1945) 370 (581) 199 (280) 100 (128)

3 20 1090 (2378) 398 (648) 212 (301) 107 (134)
30 1046 (1693) 383 (520) 208 (259) 102 (117)
40 1022 (1444) 378 (472) 203 (238) 101 (112)
50 1017 (1335) 375 (447) 204 (231) 101 (110)
75 1008 (1201) 371 (415) 202 (219) 101 (106)
100 1008 (1148) 372 (405) 200 (213) 101 (105)

5 20 1111 (1328) 397 (433) 214 (224) 106 (106)
30 1053 (1184) 383 (406) 208 (214) 103 (103)
40 1034 (1127) 374 (391) 204 (209) 101 (101)
50 1022 (1095) 376 (389) 201 (204) 101 (101)
75 1007 (1053) 371 (384) 200 (202) 100 (100)
100 1002 (1036) 370 (377) 199 (201) 100 (100)

7 20 1089 (1102) 399 (387) 210 (200) 105 (98)
30 1047 (1055) 387 (379) 205 (199) 102 (98)
40 1031 (1038) 379 (374) 205 (200) 101 (98)
50 1013 (1018) 375 (371) 203 (199) 101 (99)
75 1002 (1005) 370 (369) 200 (197) 100 (99)
100 1001 (1004) 372 (370) 201 (199) 100 (98)

Table 2.5: EARL of corrected and, between brackets, uncorrected control charts
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α0 = 0.001 α0 = 0.0027 α0 = 0.005 α0 = 0.01
n m (K = 3.29) (K = 3.00) (K = 2.81) (K = 2.58)
1 20 276 (1759500) 138 (16449) 97 (7172) 52 (441)

30 339 (11595) 157 (1301) 97 (474) 53 (145)
40 373 (3091) 160 (589) 95 (250) 52 (100)
50 379 (1636) 162 (460) 95 (193) 52 (85)
75 379 (871) 159 (276) 93 (142) 52 (70)
100 377 (672) 160 (237) 93 (125) 51 (63)

3 20 511 (1112) 208 (326) 117 (161) 61 (75)
30 473 (734) 191 (252) 107 (131) 57 (65)
40 444 (608) 178 (217) 104 (120) 55 (60)
50 428 (546) 175 (204) 101 (113) 55 (59)
75 405 (474) 168 (186) 99 (106) 53 (55)
100 399 (448) 165 (178) 96 (101) 52 (54)

5 20 546 (646) 210 (227) 119 (124) 62 (62)
30 491 (547) 190 (201) 110 (113) 59 (59)
40 452 (489) 184 (191) 104 (106) 56 (56)
50 427 (454) 176 (182) 101 (103) 55 (55)
75 412 (429) 169 (173) 98 (99) 53 (53)
100 401 (413) 165 (167) 95 (96) 52 (52)

7 20 544 (550) 215 (209) 119 (114) 62 (59)
30 486 (490) 191 (188) 111 (108) 58 (56)
40 453 (455) 184 (181) 105 (103) 56 (55)
50 431 (433) 178 (176) 103 (101) 55 (54)
75 410 (412) 169 (168) 98 (97) 53 (52)
100 410 (402) 165 (164) 96 (96) 52 (52)

Table 2.6: Corrected and, between brackets, uncorrected out-of-control EARL for δ = 0.5
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α0 = 0.001 α0 = 0.0027 α0 = 0.005 α0 = 0.01
n m (K = 3.29) (K = 3.00) (K = 2.81) (K = 2.58)
1 20 60 (122320) 35 (2451) 25 (307) 17 (94)

30 74 (12232) 40 (204) 27 (97) 17 (38)
40 80 (410) 42 (121) 27 (58) 17 (29)
50 84 (281) 42 (90) 28 (49) 17 (25)
75 87 (171) 43 (68) 28 (39) 17 (22)
100 89 (145) 43 (60) 28 (36) 17 (21)

3 20 122 (224) 57 (84) 35 (46) 21 (25)
30 110 (158) 52 (66) 33 (39) 19 (21)
40 105 (136) 50 (59) 31 (35) 19 (20)
50 102 (125) 48 (54) 31 (34) 19 (20)
75 97 (110) 47 (51) 30 (32) 18 (19)
100 96 (106) 47 (50) 30 (31) 18 (19)

5 20 131 (151) 59 (63) 37 (38) 22 (22)
30 115 (126) 53 (56) 34 (34) 20 (20)
40 110 (117) 51 (53) 32 (33) 19 (19)
50 105 (110) 49 (51) 31 (32) 19 (19)
75 99 (103) 48 (48) 30 (30) 18 (18)
100 96 (99) 46 (47) 29 (30) 18 (18)

7 20 135 (137) 62 (60) 37 (36) 22 (21)
30 118 (119) 54 (53) 34 (33) 20 (20)
40 110 (110) 51 (51) 33 (32) 19 (19)
50 105 (106) 50 (49) 32 (31) 19 (19)
75 100 (100) 48 (48) 30 (30) 18 (18)
100 98 (98) 46 (46) 30 (30) 18 (18)

Table 2.7: Corrected and, between brackets, uncorrected out-of-control EARL for δ = 1
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100 200 300 400 500 600 700 800 900

Uncorrected

Corrected

(a) n = 3,m = 50 and α0 = 0.0027

200 400 600 800 1000 1200

Uncorrected

Corrected

(b) n = 1,m = 100 and α0 = 0.0027

Figure 2.1: 10th, 25th, 50th, 75th and 90th percentiles of the in-control CARLs for different
parameter combinations.
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(a) n = 3,m = 50 and α0 = 0.0027

0 50 100 150 200 250 300 350 400 450 500

Uncorrected

Corrected

(b) n = 1,m = 100 and α0 = 0.0027

Figure 2.2: 10th, 25th, 50th, 75th and 90th percentiles of the out-of-control (δ = 0.5)
CARLs for different parameter combinations.
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2.6 Application of the Proposed Control Chart

In this section we demonstrate the application of the proposed control chart
through a real life example. Data is collected of the torque of Torque-to-Yield
bolts that are used as fasteners in engines at a subsidiary of Paccar. The bolts
are tightened at several different positions of the engines using a specific fas-
tening procedure. At the end of this procedure, the torque is measured (in
Newton-meter) for bolts at two specific positions. The measurements are per-
formed by a process engineer for the purpose of process monitoring. Clearly,
detecting trends or anomalies in the applied torque is very important, as this
indicates problems with either the bolt(s) or the fastening procedure. For ex-
ample, the performance of the used wrenches can deteriorate over time, which
can result in fasteners being too tight or too loose. It is thus of major impor-
tance to detect such out-of-control situations.

An initial Phase I dataset of 40 observations, consisting of m = 20 sub-
groups of size n = 2, is collected by the process engineer to construct the
control limits (see Table 2.8). First, we have checked our data for normality.
We found no reason to reject the normality assumption from the Shapiro-Wilk
test for normality. Afterwards, the control limits are constructed and used to
monitor the process mean. The Phase II dataset consists of 31 subgroups of
size 2 (see also Table 2.8). The control limits are obtained using the following
steps:

1. First, we determine our parameters. We havem = 20, n = 2 and choose
α0 = 0.0027. The latter is conventional for Shewhart control charts, and
means that we have K = 3. As estimators of µ0 and σ0 we use µ̂0 = ¯̄X
and σ̂0 = Spooled/c4(m(n− 1) + 1) respectively. As parameter estimates
we find µ̂0 = 164.08 and σ̂0 = 0.0508 from our Phase I dataset.

2. Next, we calculate the required correction c. This requires the calcula-
tions of hxx(K,K), hxy(K,K), hx(K,K),E∆2

1(K) andE [∆1(K)∆2(K)].
These are the same as calculated in Section 2.4.2, except for

E∆2
1(K) = 32

2(20(2− 1) + 1) + 1
20 = 0.2643,
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E [∆1(K)∆2(K)] = 32

2(20(2− 1) + 1) −
1
20 = 0.1643.

From this we can calculate c as

c = −172.13 · 0.2643 + 1996.21 · 0.1643
2 · 608.03 = −0.3071.

3. Finally, we calculate the control limits using µ̂0, σ̂0 and K̃ = 3−0.3071 =
2.6929, such that:

ÛCL = 164.08 + 2.6929 · 0.0508/
√

2 = 164.1767,

L̂CL = 164.08− 2.6929 · 0.0508/
√

2 = 163.9833.

The Phase II data is now monitored using these control limits, as is illustrated
in Figure 2.3. Note that the width of the control limits is quite small. As can
be observed, an out-of-control signal is given by observation 7 in the dataset.
Usually, when a signal is given, the wrenches should be recalibrated. How-
ever, after further investigation no action was required in this case, because
the out-of-control signal turned out to be caused by a measurement error.
The control chart is used in practice to detect substantial anomalies and clear
trends.
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Subgroup Xi1 Xi2 Yi1 Yi2
1 164.06 163.98 164.13 164.19
2 164.11 164.05 164.18 164.02
3 164.03 164.09 164.17 164.02
4 164.10 164.13 164.10 164.07
5 164.04 164.15 163.95 164.04
6 164.06 164.22 164.15 164.03
7 163.98 164.11 163.92 164.02
8 164.06 164.09 164.08 164.15
9 164.10 164.08 164.06 163.96
10 164.03 164.03 163.97 164.05
11 164.12 164.09 164.11 164.15
12 164.13 164.04 164.10 164.15
13 164.03 164.10 163.98 164.02
14 164.17 164.05 164.08 164.08
15 164.00 164.06 164.02 164.16
16 164.15 163.98 164.02 164.18
17 163.96 164.02 164.11 164.03
18 164.02 164.08 164.03 164.05
19 164.17 164.23 163.98 164.00
20 164.05 164.07 164.09 163.99
21 - - 164.14 164.04
22 - - 163.94 164.03
23 - - 164.12 164.02
24 - - 164.03 164.12
25 - - 164.15 164.18
26 - - 164.13 164.11
27 - - 164.00 164.05
28 - - 164.10 164.15
29 - - 164.15 164.16
30 - - 164.33 164.02
31 - - 164.07 164.28

Table 2.8: Phase I (Xij ’s) and Phase II (Yij ’s) data of torque values
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0 5 10 15 20 25 30

LCL = 163.98

Average = 164.08

UCL = 164.18

Figure 2.3: Control chart of the monitoring of torque values with the proposed control
limits. The monitored Phase II sample consists of m = 31 subgroups of size n = 2 each.

2.7 Concluding Remarks

The ARL is a well-known metric to evaluate control chart performance. How-
ever, when the parameters of the process characteristic are estimated from a
limited amount of data, the expected value of the in-control ARL differs sub-
stantially from the desired value.

In this chapter, we have derived correction factors for the ShewhartX and
X̄ control charts that can be used to obtain the desired value of the in-control
ARL in expectation. As is shown, the correction factor is accurate: it leads
to the desired value of the in-control EARL for a broad range of parameter
values (α0, n and m). The added value of the correction factor shows up pre-
dominantly when sample sizes are small, namely the individuals chart (n = 1)
and the subgroup control chart when n = 3 or 5 and m = 20. Control limit
adjustments for control charts for dispersion based on the bias criterion can
be found in Diko et al. (2017).
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2.8 Appendix: Albers and Kallenberg Correction

Although Albers and Kallenberg (2005) derived corrections for the individu-
als X chart only, it is possible to apply their approach to the X̄ chart as well.
First note that they derive correction factors c̃ in the formK(1+ c̃) rather than
K + c as we do. Their approach for the individuals chart states that in the
one-sided case, the bias is best removed when

c̃ = 1
2

(
V ar

(
X̄

σ0

)
+K2V ar

(
σ̂0
σ0

))
. (2.19)

Next, note that X̄ can essentially be treated as a N(µ0, σ0/
√
n) variable. Con-

sequently, replacing σ0 and σ̂0 in (2.19) by σ0/
√
n and σ̂0/

√
n respectively

leads to the required corrections for the X̄ chart. This gives us

c̃ = 1
2

(
V ar

( ¯̄X
σ0/
√
n

)
+K2V ar

(
σ̂0
σ0

))
= 1

2

(
1
m

+ K2τ2

mn

)
= n+K2τ2

2mn .

In order to obtain the required correction for the two-sided case, Albers and
Kallenberg (2005) instruct to add a minus sign in front of the obtained correc-
tion, and to adjust the value of K from Φ−1(1−α0) to Φ−1(1−α0/2). Finally,
since their correction is in the form ofK(1+ c̃) = K+Kc̃ = K+cAK , we then
construct cAK = −nK+K3τ2

2mn to make our correction factors comparable. Note
that for n = 1 this result corresponds with the original proposal of Albers and
Kallenberg (2005).
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2.9 Appendix: Correction Factor

Here, we show how to derive (2.14) from (2.13). As given in (2.13), we want
to have

Eh(K̃ + ∆1(K̃), K̃ + ∆2(K̃)) ≈ h(K̃, K̃) + hx(K̃, K̃)
[
E∆1(K̃) + E∆2(K̃)

]
+ 1

2hxx(K̃, K̃)
[
E∆2

1(K̃) + E∆2
2(K̃)

]
+ hxy(K̃, K̃)E

[
∆1(K̃)∆2(K̃)

]
= h(K,K).

Next, we apply a two-step Taylor approximation aroundK to the middle part
and ignore relatively small factors such as c2, cE∆1(K) and cE∆2(K). This
essentially boils down to approximating h(K̃, K̃) by h(K,K) + c[hx(K,K) +
hy(K,K)] and replacing K̃ by K in the remaining parts. We then find that
this equation is approximately equal to

Eh(K̃ + ∆1(K̃), K̃ + ∆2(K̃)) ≈
h(K,K) + c [hx(K,K) + hy(K,K)] + hx(K,K) [E∆1(K) + E∆2(K)]

+ 1
2hxx(K,K)

[
E∆2

1(K) + E∆2
2(K)

]
+ hxy(K,K)E [∆1(K)∆2(K)] = h(K,K).

Note that hx(K,K) = hy(K,K), and that for unbiased estimators µ̂ and σ̂

there holds E∆1(K) = E∆2(K) = 0 and E∆2
1(K) = E∆2

2(K). Then, solving
this equation to c leads to

c = −hxx(K,K)E∆2
1(K) + hxy(K,K)E [∆1(K)∆2(K)]

2hx(K,K) .
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2.10 Appendix: Subgroup Control Chart

For E [∆1(K)∆2(K)], we have

E [∆1(K)∆2(K)] = −E
(
µ̂0 − µ0
σ0/
√
n

)2
+K2E

(
σ̂0
σ0
− 1

)2
,

where for µ̂0 = ¯̄X and σ̂0 = Spooled/c4(m(n − 1) + 1) (cf. (2.2) and (2.3)) we
have

−E
(
µ̂0 − µ0
σ0/
√
n

)2
= − 1

m
,

and

E

(
σ̂0
σ0
− 1

)2

= 1
c2

4(m(n− 1) + 1)
E

(
S2
pooled

σ2
0

)
− 1

≈ 1
2(m(n− 1) + 1) ,

so that
E [∆1(K)∆2(K)] ≈ K2

2(m(n− 1) + 1) −
1
m

and
E∆2

1(K) = E∆2
2(K) ≈ K2

2(m(n− 1) + 1) + 1
m
.
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2.11 Appendix: Individuals Control Chart

For the individuals control chart, the calculation ofE [∆1(K)∆2(K)],E∆2
1(K)

and E∆2
2(K) is different. For E [∆1(K)∆2(K)], we have

E [∆1(K)∆2(K)] = −E
(
µ̂0 − µ0
σ0

)2
+K2E

(
σ̂0
σ0
− 1

)2

≈ − 1
m

+K2var
(
σ̂0
σ0

)
.

Cryer and Ryan (1990) showed that

Var(MR/σ0) ≈ d2
2(2)

[0.8264m− 1.082
(m− 1)2

]

and thus
Var

(
σ̂0
σ0

)
≈
[0.8264m− 1.082

(m− 1)2

]
.

Hence,
E [∆1(K)∆2(K)] = − 1

m
+K2

[0.8264m− 1.082
(m− 1)2

]
and

E∆2
1(K) = E∆2

2(K) = 1
m

+K2
[0.8264m− 1.082

(m− 1)2

]
.
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3. Exceedance Probability Criterion for

Control Charts for Location

To prevent low in-control ARLs, new corrections for Shewhart X and X̄ con-
trol charts are given in this chapter that guarantee a minimum in-control per-
formance with a specified probability. To balance the tradeoff between in-
control and out-of-control performance, the minimum performance threshold
and specified probability can be adjusted as desired. Furthermore, a compar-
ison is made with tolerance intervals, self-starting control charts, and boot-
strap. This chapter is based on Goedhart et al. (2017b) and Goedhart et al.
(2018a).

3.1 Introduction

In the previous chapter we have derived corrections for the Shewhart X and
X̄ control charts based on the bias criterion. This provides a specified con-
trol chart performance in expectation. However, as discussed in Section 1.4,
there may still be a large proportion of practitioners with unsatisfactory con-
trol chart performance when this criterion is used. To this end, the exceedance
probability criterion, which has been of great interest in current SPM litera-
ture, provides an alternative design criterion. While Albers and Kallenberg
(2005) give relatively simple closed form correction terms for different per-
formance measures, a bootstrap approach to obtain more accurate correction
factors is becoming more common, see for example Jones and Steiner (2012),
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Gandy and Kvaløy (2013) and Saleh et al. (2015a,b).
In this chapter we determine an analytical correction term for the She-

whart X and X̄ control charts under normal theory in a general setup. This
term is applicable to both one- and two-sided control charts, and can make
use of different estimators for location and spread. Also, the specifications
of the correction can be adjusted by specifying the parameters. This gives
the freedom to adapt the correction to the circumstances as is desired by the
practitioner. It turns out that our corrections perform better than the correc-
tion terms of Albers and Kallenberg (2005). Next to that, since our correction
terms are analytical expressions, the computation time is negligible.

Furthermore, we compare our approach with the construction of two-
sided tolerance intervals for normal populations. This problem has a long his-
tory of academic interest, see for example Wald and Wolfowitz (1946), Weiss-
berg and Beatty (1960), Gardiner and Hull (1966), Howe (1969) and Krish-
namoorthy and Mathew (2009). In those publications various approximations
and practical guidelines were developed along with rigorous justification for
the guarantee of tolerance probability. Finally, we compare our limits with
self-starting control charts introduced by Hawkins (1987) and Quesenberry
(1991), which also guarantee the conditional and unconditional in-control per-
formance in an exact way. In all comparisons we show that our corrections
perform better and/or are more general than the existing ones.

This chapter is organized as follows. In the next section we present our
model and approach. In Section 3.3 we derive the required correction term,
illustrate its performance and compare the results with the case of uncorrected
limits. In Section 3.4 we address the out-of-control performance of the pro-
posed method. In Section 3.5 we illustrate the performance and consequences
of the proposed correction terms, compared to existing methods. Concluding
remarks and recommendations are given in Section 3.7.

3.2 Model and Approach

Similarly as in the previous chapter, we consider estimated control limits as
described in (2.7), where K̃ again represents an adjusted control limit factor,
this time based on the exceedance probability criterion. Recall from Section
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2.2 that the true probability of a false alarm is a function of the estimated con-
trol limits, and is thus dependent on K̃,m, n, µ̂0 and σ̂0. Given the estimators
µ̂0 and σ̂0 it is possible to calculate the FAR conditional on these estimators.
Consider Yi to be the Phase II observations as in Section 2.2, and consider the
case that the process is in-control (i.e. δ = 0). The conditional FAR (CFAR), in
the derivations in this chapter denoted as Pmn(K̃; µ̂0, σ̂0) following Goedhart
et al. (2017b), can then be written as

Pmn(K̃; µ̂0, σ̂0) = 1− P
(
L̂CL < Ȳi < ÛCL

)
= 1− P

(
Ȳi < µ̂0 + K̃

σ̂0√
n

)
+ P

(
Ȳi < µ̂0 − K̃

σ̂0√
n

)
= 1− Φ

(
µ̂0 − µ0
σ0/
√
n

+ K̃
σ̂0
σ0

)
+ Φ

(
µ̂0 − µ0
σ0/
√
n
− K̃ σ̂0

σ0

) (3.1)

which can in turn be rewritten as

Pmn(K̃;Z,W ) = 1− Φ
(
Z√
m

+ K̃W

)
+ Φ

(
Z√
m
− K̃W

)
(3.2)

where Z = (µ̂0 − µ0)/(σ0/
√
mn) and W = σ̂0/σ0. Note that Z and W are

random variables, whose distributions depend on the estimators µ̂0 and σ̂0
respectively. Consequently, the unconditional FAR (i.e. before µ̂0 and σ̂0 are
obtained) is a random variable as well. Because practitioners use different
Phase I samples, their estimations will vary, resulting in a different CFAR for
their control charts. This variation is known as practitioner-to-practitioner
variability, as described in Section 1.3.

If the distribution of µ̂0 is symmetric (such as is the case for µ̂0 = ¯̄X),
the corrections for one-sided control charts with either a UCL or an LCL are
identical. However, one can not simply apply these corrections separately to
two-sided control charts. For the equivalence of the one-sided corrections,
note that the CFAR when using only a UCL is equal to the first part of (3.2),
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and can be written as

1− Φ
(
Z√
m

+ K̃W

)
= Φ

(
− Z√

m
− K̃W

)
. (3.3)

If µ̂0 follows a symmetric distribution around µ0, consequently this also holds
for Z around 0. That means that the distribution of (3.3) is in that case equal
to that of Φ

(
Z√
m
− K̃W

)
, which is the CFAR for a control chart using an LCL

only. Therefore, both one-sided charts require the same correction. How-
ever, applying this one-sided correction to both sides of a two-sided chart is
essentially the same as correcting for twice the CFAR of one side, which is
distributed as

2Φ
(
Z√
m
− K̃W

)
= 1− Φ

(
− Z√

m
+ K̃W

)
+ Φ

(
Z√
m
− K̃W

)
(3.4)

Note that the expression in (3.4) is different from the actual two-sided CFAR
as defined in (3.2). The intuition behind it is that in the two-sided case an
underestimation of the mean increases P

(
Ȳi > ÛCL

)
, but at the same time

decreases P
(
Ȳi < L̂CL

)
(and vice versa for an overestimation of the mean).

This effect is not taken into account when one simply applies one-sided cor-
rections to a two-sided control chart. For this reason, one-sided and two-sided
control charts should be treated separately.

As mentioned, in this chapter we derive a correction term that is based on
the exceedance probability criterion. This approach aims to correct the control
chart limits such that at least a specified minimum in-control performance is
obtained with a specified probability. More specifically, when considering the
FAR as performance measure, the correction term aims to obtain a CFAR that
is equal to (1+ε)α0 or smaller with a probability of 1−p. Here εdetermines our
minimum threshold, proportional to the nominal level, while p represents the
probability of obtaining a control chart performance lower than the specified
minimum. In our view, p should be small (e.g. 0.05 or 0.10) and ε may be
slightly larger (e.g. 0.2 to 0.5). This is because 1− p represents the probability
for the practitioners with which the minimum performance is satisfied, while
ε determines our minimum performance threshold. Our choices of p and ε
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are the same as in recent research, see for example Albers and Kallenberg
(2005), and for ε = 0 also Saleh et al. (2015a). Hence, for the FAR we derive a
correction term such that

P
(
Pmn(K̃;Z,W ) < (1 + ε)α0

)
= 1− p. (3.5)

Note that for the ARL in the in-control situation large CARLs are preferred.
The criterion would then be

P

(
1

Pmn(K̃;Z,W )
> (1− ε) 1

α0

)
= 1− p. (3.6)

The required correction term for the ARL can be obtained through solving the
term for the FAR, whilst replacing ε by ε̃ = ε

1−ε . This is because the left hand
side of (3.6) is equivalent to

P

(
Pmn(K̃;Z,W ) < 1

1− εα0

)
= P

(
Pmn(K̃;Z,W ) <

(
1 + ε

1− ε

)
α0

)
= P

(
Pmn(K̃;Z,W ) < (1 + ε̃)α0

)

Because of this equivalence, our further derivations in this chapter are based
on the FAR as performance measure.

In order to determine the correction term c, we require information on
the distribution of Pmn(K̃;Z,W ), as we need to find the value c for which the
1−p percentile of the distribution ofPmn(K̃;Z,W ) equals (1+ε)α0. Although
the exact distribution of Pmn(K̃;Z,W ) for an arbitrary K̃ is unknown, it is
possible to calculate its moments using integrals, similar to Chen (1997). The
first and second moment can be calculated by

E
(
Pmn(K̃;Z,W )

)
=
∫ ∞
−∞

∫ ∞
0

Pmn(K̃; z, w)f(z)f(w)dwdz (3.7)

45



EXCEEDANCE PROBABILITY CRITERION FOR CONTROL CHARTS FOR
LOCATION

and
E(P 2

mn(K̃;Z,W )) =
∫ ∞
−∞

∫ ∞
0

P 2
mn(K̃; z, w)f(z)f(w)dwdz (3.8)

respectively. Here f(z) equals the probability density ofZ = (µ̂0−µ0)/(σ0/
√
mn),

and f(w) is the probability density ofW = σ̂0/σ0. The variance ofPmn(K̃;Z,W )
can be calculated through

V ar(Pmn(K̃;Z,W )) = E(P 2
mn(K̃;Z,W ))− E2(Pmn(K̃;Z,W )) (3.9)

Using these moments, we approximate the distribution of Pmn(K̃;Z,W ) by
a Aχ2

B/B distribution (for a detailed motivation we refer to Appendix 3.8).

Since E
(
Aχ2

B
B

)
= A and V ar

(
Aχ2

B
B

)
= 2A2

B , we have

A = E(Pmn(K̃;Z,W )) (3.10)

and
B = 2A2

V ar(Pmn(K̃;Z,W ))
= 2E2(Pmn(K̃;Z,W ))
V ar(Pmn(K̃;Z,W ))

(3.11)

Note that both the expectation and variance depend on K̃ = K + c.

3.3 Correction Terms

3.3.1 Two-sided Control Limits

As mentioned in the previous section, both A and B as in (3.10) and (3.11)
depend on K̃. This means that changingK to K̃ = K+ c changes theAχ2

B/B

distribution as well. The correction factor c has to be determined such that for
K̃ = K + c, the (1− p)’th percentile of this distribution lies at (1 + ε)α0.

If we denote the expectation and variance of Pmn(K̃;Z,W ) in (3.7) and
(3.9), evaluated at K, by E and V respectively, and their derivatives with re-
spect to K̃, evaluated at K, by dE

dK and dV
dK respectively, then the correction
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term can be expressed by

c = Φ−1(1− p)− Y (K)
Y ′(K) (3.12)

where
Y (K) = 3

√
(1 + ε)α0

3E2/3
√
V
− 3E√

V
+
√
V

3E (3.13)

Y ′(K) = 3
√

(1 + ε)α0
2E−1/3√V dE

dK −
3E2/3

2
√
V

dV
dK

V
−

3 dEdK
√
V − 3E

2
√
V
dV
dK

V

+
3E

2
√
V
dV
dK − 3 dEdK

√
V

9E2

(3.14)

and where

dE

dK
=
∫ ∞
−∞

∫ ∞
0

dPmn(K; z, w)
dK̃

f(z)f(w)dwdz

=
∫ ∞
−∞

∫ ∞
0
−w

[
φ

(
z√
m

+Kw

)
+ φ

(
z√
m
−Kw

)]
f(z)f(w)dwdz

(3.15)

dV

dK
= d(E2)

dK
− 2E dE

dK
(3.16)

with

d(E2)
dK

=
∫ ∞
−∞

∫ ∞
0

dP 2
mn(K; z, w)
dK̃

f(z)f(w)dwdz

= −2
∫ ∞
−∞

∫ ∞
0

wPmn(K; z, w)
[
φ

(
z√
m

+Kw

)
+ φ

(
z√
m
−Kw

)]
f(z)f(w)dwdz

(3.17)

For a detailed derivation of the correction term we refer to Appendix 3.9.
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Note that, instead of a minimum performance threshold that is relative (through
ε) to α0 (or 1/α0), one could also chose to specify an absolute minimum per-
formance threshold. This can be done by setting α0 = CFAR0 = 1/CARL0
and ε = 0, whereCFAR0 andCARL0 are the desired threshold values for the
CFAR or CARL respectively. However, in order to make a better comparison
between the corrected and uncorrected charts, we consider relative thresh-
olds. The same approach has been used by other authors (e.g. Albers and
Kallenberg, 2005).

We use simulation to evaluate the performance of the proposed correction
term. In order to do this we need to define our estimators, and determine the
corresponding distributions f(z) and f(w) of Z = (µ̂0 − µ0)/(σ0/

√
mn) and

W = σ̂0/σ0 respectively. We consider µ̂0 = ¯̄X as the estimator for location,
in which case f(z) equals the standard normal probability density. For the
spread we consider two estimators. The first estimator, which we use in the
case that n > 1 (groups), is based on the pooled standard deviation (Spooled),
and is equal to

σ̂1 = Spooled
c4(m(n− 1) + 1) (3.18)

where c4(m(n− 1) + 1) is such that σ̂1 is an unbiased estimator of σ0. For this
estimator W = σ̂1/σ0 is distributed as τχν/

√
ν with τ = 1/c4(m(n − 1) + 1)

and ν = m(n− 1). The probability density of τχν/
√
ν equals

f(w; τ, ν) =
(2
τ

) (ν/2)ν/2

Γ(ν/2)

(
w

τ

)ν−1
exp

(
−ν2

(
w

τ

)2
)

(3.19)

(see also Chen, 1997). The second estimator, which is used in the case n = 1
(individuals), is based on the average moving range MR and is equal to

σ̂2 = MR

d2(2) (3.20)

where d2(2) = 2√
π

which yields that σ̂2 is an unbiased estimator of σ0. Al-
though the exact distribution of MR is not easy to obtain, the distribution of
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W = σ̂2/σ0 can be approximated by βχγ/
√
γ, where

β =
√
V ar (W ) + 1

γ = 1
2

(
1 + 1

V ar (W )

)
.

(3.21)

See for example Roes et al. (1993) for this approximation, or Patnaik (1950) for
a similar one. The variance of W = σ̂2/σ0 is investigated by Cryer and Ryan
(1990) and can be approximated by

V ar

(
σ̂2
σ0

)
=
[0.8264m− 1.082

(m− 1)2

]
(3.22)

Note that it is possible to use any other estimator for location and spread, by
applying their corresponding probability functions f(z) and f(w). In Table
3.1 and Table 3.2 several estimators for µ0 and σ0 respectively are listed. For
the estimators of µ0 the (approximated) probability density function f(z) is
tabulated. For the mean we have an exact distribution and for the median
the distribution has been approximated (cf. Johnson and Kotz, 1970). For
estimators of σ0, the distribution ofW = σ̂0/σ0 is either exact or approximated
by a ζχλ/

√
λ distribution, so that f(w) is given by (3.19). The approximation

is similar to that of MR, by determining the corresponding values of ζ and
λ. The required values of ζ and λ for the considered estimators are listed in
Table 3.2. We refer to Roes et al. (1993) for the approximations, and to Albers
and Kallenberg (2005) for explicit expressions of the listed estimators of σ0.

As the ARL is the most commonly used performance measure of control
charts, we evaluate the performance of our proposed correction terms based
on that. The corresponding criterion function is given in (3.6). To calculate
the required correction terms, we use the model as described in the previous
section, thus with replacing ε by ε̃ = ε

1−ε in the correction terms for the FAR.
We have calculated the correction terms and simulated their performance for
a wide range of parameter values. For each combination of parameter values
1,000,000 simulation runs are performed. The relative standard errors of all
reported EARL values in Tables 3.3-3.8 are less than 1%. Table 3.3 and Table

49



EXCEEDANCE PROBABILITY CRITERION FOR CONTROL CHARTS FOR
LOCATION

3.4 illustrate, for multiple combinations of n and m, the correction term and
its performance compared to an uncorrected chart, each for a different set of
p, ε and α0. The performance is measured by the exceedance probability as in
(3.6), while for the comparisons the EARLs are also given.

The results illustrate that after implementing our suggested correction term,
the exceedance probability is very close to the desired level. Especially for
small sample sizes the differences between the corrected and the uncorrected
chart are large. Note that this is in agreement with the sample size recommen-
dations by for example Quesenberry (1993), which states that about 400/(n−
1) subgroups of size n are required in Phase I for the X̄ chart to behave prop-
erly on average. Furthermore, Saleh et al. (2015b) show that far larger amounts
of Phase I data are required when also taking the practitioner-to-practitioner
variability into account. As more data is available in Phase I, the required
correction becomes smaller. At some point the exceedance probability of the
uncorrected chart is already below the desired level, meaning that the correc-
tion term becomes negative to increase the exceedance probability. The use
of a negative correction term in this case is questionable, as it will decrease
the in-control performance in that situation. However, the out-of-control per-
formance improves, whilst keeping the in-control performance at a desired
level.

As mentioned earlier, this correction term is applicable for any estimator.
Previously we have shown the results for the X̄ chart using an estimator for σ0
based on the pooled standard deviation (see Equation (3.18)). In this section
we also show the results for the X chart, by using an unbiased version of the
average moving range as estimator of σ, as in (3.20). Similarly as for the X̄
chart, Table 3.5 and Table 3.6 indicate the correction term and its performance
compared to the uncorrected chart, for multiple values ofm (and n = 1), each
for a different set of p, ε and α0. Even though we use an approximation of
the density of σ̂2, the correction term still performs well, with the exceedance
probabilities close to the desired level.
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Estimator f(z)
Average ( ¯̄X) 1√

2πexp
(
−1

2z
2
)

Median (X̃) 1
πexp

(
− z2

π

)
Table 3.1: Estimators for location, including the (approximated) probability density
function f(z) of Z = (µ̂0 − µ0)/(σ0/

√
mn).

Estimator ζ and λ var(W)
Individuals (n = 1)
Average moving range, ζ =

√
V ar(W ) + 1 , 0.8264m−1.082

(m−1)2
σ̂0 = MR(X)

d2(2) λ = 1
2

(
1 + 1

V ar(W )

)
Interquartile range ζ =

√
V ar(W ) + 1 , 2.46

1.820mσ̂0 = IQR(X)
1.349 λ = 1

2

(
1 + 1

V ar(W )

)
Sample standard deviation ζ = 1/c4(m) , 1−c2

4(m)
c2

4(m)σ̂0 = s
c4(m) λ = m− 1

Groups (n > 1)
Average standard deviation ζ =

√
V ar(W ) + 1 , 1−c2

4(n)
mc2

4(n)σ̂0 = s̄
c4(n) λ = 1

2

(
1 + 1

V ar(W )

)
Pooled standard deviation ζ = 1/c4(m(n− 1) + 1) , 1−c2

4(m(n−1)+1)
c2

4(m(n−1)+1)σ̂0 = Spooled
c4(m(n−1+1)) λ = m(n− 1)

Table 3.2: Estimators for spread, including the (approximated) probability density function
f(w) of W = σ̂0/σ0.
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m n Correction c Exc. Pr. (cor) Exc. Pr. (unc) EARL (cor) EARL (unc)

25
3 0.5687 0.0516 0.4836 7261 569
5 0.3970 0.0478 0.4715 1890 418
9 0.2822 0.0473 0.4534 984 364

50
3 0.3532 0.0483 0.4275 1721 449
5 0.2311 0.0494 0.3956 879 389
9 0.1541 0.0501 0.3595 610 362

75
3 0.2615 0.0495 0.3908 1078 418
5 0.1651 0.0507 0.3451 674 382
9 0.1034 0.0512 0.2922 514 364

100
3 0.2097 0.0501 0.3617 850 405
5 0.1302 0.0511 0.3132 585 376
9 0.0756 0.0519 0.2434 469 365

150
3 0.1540 0.0504 0.3239 662 389
5 0.0884 0.0521 0.2555 503 374
9 0.0447 0.0519 0.1752 425 366

200
3 0.1202 0.0512 0.2893 579 384
5 0.0647 0.0520 0.2120 463 373
9 0.0274 0.0522 0.1289 402 367

250
3 0.0980 0.0516 0.2600 531 381
5 0.0491 0.0521 0.1792 438 372
9 0.0160 0.0523 0.0971 388 368

Table 3.3: Correction terms c for the X̄ chart, including the corresponding exceedance
probability and EARL for the corrected (cor) and uncorrected (unc) control limits.
Parameter values are α0 = 0.0027, p = 0.05 and ε = 0.2.
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m n c Exc. Pr. (cor) Exc. Pr. (unc) EARL (cor) EARL (unc)

25
3 0.2325 0.0975 0.3049 275 123
5 0.1216 0.0967 0.2352 151 104
9 0.0507 0.0946 0.1615 111 96

50
3 0.0875 0.0975 0.1956 144 110
5 0.0124 0.0987 0.1150 105 101
9 -0.0349 0.0988 0.0518 88 97

75
3 0.0289 0.0991 0.1347 116 106
5 -0.0305 0.0994 0.0601 92 101
9 -0.0688 0.1004 0.0172 80 98

100
3 -0.0040 0.0996 0.0946 103 104
5 -0.0529 0.1005 0.0337 86 100
9 -0.0875 0.1017 0.0059 77 98

150
3 -0.0390 0.1005 0.0511 91 102
5 -0.0802 0.1008 0.0103 79 100
9 -0.1081 0.1027 0.0007 73 99

200
3 -0.0606 0.1005 0.0272 85 102
5 -0.0957 0.1016 0.0033 76 100
9 -0.1197 0.1032 0.0001 71 99

250
3 -0.0749 0.1012 0.0152 82 101
5 -0.1060 0.1020 0.0011 74 100
9 -0.1273 0.1035 0.0000 69 99

Table 3.4: Correction terms c for the X̄ chart, including the corresponding exceedance
probability and EARL for the corrected (cor) and uncorrected (unc) control limits.
Parameter values are α0 = 0.01, p = 0.1 and ε = 0.4.
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m c Exc. Pr. (cor) Exc. Pr. (unc) EARL (cor) EARL (unc)
50 0.6930 0.0563 0.4723 78131 1086
75 0.5510 0.0492 0.4492 9902 697
100 0.4596 0.0471 0.4308 4156 580
150 0.3495 0.0470 0.4041 1916 491
200 0.2852 0.0475 0.3819 1317 455
250 0.2425 0.0483 0.3633 1053 436
500 0.1419 0.0502 0.2979 655 401
1000 0.0760 0.0516 0.2191 498 385

Table 3.5: Correction terms c for the individuals X chart, with the corresponding
exceedance probability and EARL for the corrected (cor) and uncorrected (unc) control
limits. Parameter values are α0 = 0.0027, p = 0.05 and ε = 0.2.

m c Exc. Pr. (cor) Exc. Pr. (unc) EARL (cor) EARL (unc)
50 0.3176 0.0979 0.3279 658 174
75 0.2127 0.0959 0.2773 301 140
100 0.1512 0.0959 0.2393 212 127
150 0.0808 0.0966 0.1837 151 117
200 0.0407 0.0970 0.1440 127 112
250 0.0142 0.0984 0.1156 114 109
500 -0.0483 0.0993 0.0409 91 105
1000 -0.0898 0.1011 0.0066 79 102

Table 3.6: Correction terms c for the individuals X chart, with the corresponding
exceedance probability and EARL for the corrected (cor) and uncorrected (unc) control
limits. Parameter values are α0 = 0.01, p = 0.1 and ε = 0.4.
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3.3.2 One-sided Control Limits

A fairly straightforward change in the previous derivations leads to the re-
quired correction term in case we are dealing with either a UCL or LCL only
(one-sided). As the correction term for the UCL and LCL is the same, we
consider the case of the UCL. The main difference lies in the change of (3.2) to

Pmn(K̃;Z,W ) = 1− Φ
(

z√
m

+ K̃w

)
(3.23)

whereK in K̃ = K+ c is now equal to Φ−1(1−α0). Then this formula should
be used to calculate the expectation and variance of Pmn(K̃;Z,W ) in (3.7) and
(3.9). The expressions in (3.15) and (3.17) will change in

dE

dK
=
∫ ∞
−∞

∫ ∞
0

dPmn(K; z, w)
dK̃

f(z)f(w)dwdz

=
∫ ∞
−∞

∫ ∞
0
−wφ

(
z√
m

+Kw

)
f(z)f(w)dwdz

(3.24)

d(E2)
dK

=
∫ ∞
−∞

∫ ∞
0

dP 2
mn(K; z, w)
dK̃

f(z)f(w)dwdz

= −2
∫ ∞
−∞

∫ ∞
0

wPmn(K; z, w)φ
(

z√
m

+Kw

)
f(z)f(w)dwdz

(3.25)

which can be used to obtain the corresponding expression in (3.16):

dV

dK
= d(E2)

dK
− 2E dE

dK
(3.26)

The corresponding correction term c in (3.12) for the one-sided control limit
can be obtained by implementing the resulting expressions in (3.13) and (3.14).
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3.4 Out-of-Control Performance

Correcting the control chart limits in order to guarantee a minimum perfor-
mance clearly has an advantage in the in-control situation. However, this in-
evitably leads to a deterioration of the out-of-control performance. In the pre-
vious section, more specifically in Tables 3.3, 3.4, 3.5 and 3.6, the EARLs of the
corrected and uncorrected charts are given. It can already be seen that there
is a large difference between the corrected and uncorrected control limits for
small sample sizes. As more information becomes available, and as a conse-
quence the correction term becomes smaller, this difference becomes smaller.
For the out-of-control situation, this behavior is very similar. To illustrate this
we have simulated the EARL of the corrected and uncorrected X̄ charts for
different sizes of shifts. We consider p = 0.05, ε = 0.2 and α0 = 0.0027, and have
again simulated for a wide range of values form and n. For the out-of-control
situation we consider a shift in the mean, such that the Phase II subgroup av-
erage Ȳi comes from a N(µ0 + δσ0/

√
n, σ0/

√
n) distribution, with δ equal to

0.5, 1, or 2. The results are listed in Table 3.7.
We find that in this situation, for small sample sizes, the differences in

EARLs between the corrected and uncorrected charts are substantial. Note
that we have chosen a rather strict set of parameters, as we guarantee an in-
control CARL of at least 296 with a probability of 90%. The out-of-control
performance becomes better as α0, ε and p increase. More specifically, in-
creasing the value of ε and/or α0 results in a lower minimum in-control per-
formance threshold, and consequently in a lower EARL. On the other hand,
a larger value of p means that we allow a larger proportion of the in-control
CARLs to be below the minimum performance threshold. This has the conse-
quence that the EARL will be smaller. Thus, increasing any of the parameters
α0, ε and/or p leads to lower EARL values, which is beneficial for the out-
of-control situation, but of course not for the in-control situation. This trade-
off between in-control and out-of-control performance is inherent to control
charts. The advantage of our proposed method is that the parameters can
be easily adjusted, in order to balance the performance of the chart as is de-
sired by the practitioner. As addition, Table 3.8 illustrates the corrections,
exceedance probabilities and EARL values of the corrected and uncorrected
charts for various combinations ofm and n, for α0 = 0.01, ε = 0.2 and p = 0.1.
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δ
0.5 1 2

EARL EARL EARL EARL EARL EARL
m n (cor) (unc) (cor) (unc) (cor) (unc)

25
3 2906 278 509 72 28 8
5 856 213 190 59 15 7
9 473 189 117 54 12 7

50
3 685 205 151 55 13 7
5 379 182 93 51 10 7
9 274 172 72 48 9 7

75
3 431 186 102 51 11 7
5 287 173 74 48 9 7
9 226 166 61 47 8 7

100
3 342 178 85 49 9 7
5 248 168 65 47 8 7
9 204 163 55 46 7 6

150
3 269 169 69 47 8 7
5 212 163 57 46 7 6
9 183 161 51 45 7 6

200
3 236 165 62 46 8 6
5 195 161 53 45 7 6
9 172 159 48 45 7 6

250
3 218 163 58 46 8 6
5 185 160 51 45 7 6
9 166 158 46 45 7 6

Table 3.7: Out-of-control performance of the X̄ chart for shifts in the mean of size δ√
n

, for
both the corrected (cor) and uncorrected (unc) control limits. Parameter values are
α0 = 0.0027, p = 0.05 and ε = 0.2.

57



EXCEEDANCE PROBABILITY CRITERION FOR CONTROL CHARTS FOR
LOCATION

δ
0.5 1 2

EARL EARL EARL EARL EARL EARL
m n (cor) (unc) (cor) (unc) (cor) (unc)

25
3 143 69 42 23 6 4
5 84 60 27 21 5 4
9 64 56 22 20 4 4

50
3 74 58 24 20 4 4
5 57 55 19 19 4 4
9 48 53 17 18 3 4

75
3 60 56 20 19 4 4
5 49 53 17 18 4 4
9 44 52 16 18 3 4

100
3 53 54 18 19 4 4
5 46 52 16 18 3 4
9 41 52 15 18 3 4

150
3 47 52 17 18 3 4
5 42 51 15 18 3 4
9 39 51 14 18 3 4

200
3 44 52 16 18 3 4
5 40 51 15 18 3 4
9 38 51 14 18 3 4

250
3 43 51 15 18 3 4
5 39 51 14 18 3 4
9 37 51 14 18 3 4

Table 3.8: Out-of-control performance of the X̄ chart for shifts in the mean of size δ√
n

, for
both the corrected (cor) and uncorrected (unc) control limits. Parameter values are
α0 = 0.01, p = 0.1 and ε = 0.4.
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3.5 Comparison with Existing Methods

In order to illustrate the performance of the proposed correction term, a com-
parison is made with the existing methods. First, we make a comparison with
the methods of Albers and Kallenberg (2005) and Gandy and Kvaløy (2013).
Next, we compare the proposed control chart with the self-starting Q chart of
Quesenberry (1993). Finally, we compare the proposedX chart with tolerance
intervals for a normal distribution, since these use an equivalent criterion for
n = 1.

3.5.1 Comparison of Shewhart X and X̄ Control Charts

We consider the two-sided case, with µ̂ = ¯̄X and σ̂0 as in (3.18) for n > 1,
and (3.20) for n = 1. For this situation Albers and Kallenberg (2005) proposed
control limits of the form

ÛCLAK = ¯̄X +K
σ̂0√
n

(1 + cAK)

L̂CLAK = ¯̄X −K σ̂0√
n

(1 + cAK)
(3.27)

where
cAK = Φ−1(1− p)θ√

mn
− ε

K2 (3.28)

and where θ2 = limmn→∞
[
mnvar

(
σ̂0
Eσ̂0

)]
. For the estimators σ̂0 as in (3.18)

and (3.20) the value of θ2 equals n
2(n−1) and 0.826 respectively. Note that their

proposed correction (cAK) only depends on the initial Phase I sample through
its size (m and n). This is in line with our correction. For the bootstrap ap-
proach of Gandy and Kvaløy (2013) this is different, as the actual correction
depends on the sample estimates. Therefore, in the comparison only the real-
ized exceedance probabilities are shown. For the explicit bootstrapping pro-
cedure we refer to Saleh et al. (2015a), who provide a simplification of the
computations in Gandy and Kvaløy (2013) approach for the Shewhart control
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m Proposed AK Bootstrap
25 0.0916 0.1822 0.1046
50 0.0934 0.1580 0.0993
75 0.0957 0.1462 0.0989
100 0.0947 0.1440 0.1010
150 0.0967 0.1350 0.1054
200 0.0989 0.1318 0.0983
250 0.0998 0.1263 0.1021

(a) n = 5, α0 = 0.0027, p = 0.1 and ε = 0.

m Proposed AK Bootstrap
25 0.0921 0.1918 0.1044
50 0.0936 0.1739 0.0992
75 0.0973 0.1649 0.0989
100 0.0982 0.1673 0.1010
150 0.1008 0.1665 0.1054
200 0.0999 0.1662 0.0983
250 0.1004 0.1708 0.1022

(b) n = 5, α0 = 0.0027, p = 0.1 and ε = 0.2.

Table 3.9: Exceedance probabilities of the proposed correction, Albers and Kallenberg (2005)
(AK) correction and Gandy and Kvaløy (2013) (bootstrap) method for different values of m.

chart. We performed the bootstrap procedure (based on 1001 bootstraps) for
10,000 simulated Phase I samples, in order to calculate the exceedance prob-
ability. The results of the simulations are listed in Table 3.9a for p = 0.1, α0 =
0.0027, and ε = 0, and in 3.9b for p = 0.1, α0 = 0.0027, and ε = 0.2, each for differ-
ent values of m, and n = 5. Results for other values of n are similar. It is clear
that our correction performs much better than the correction of Albers and
Kallenberg (2005), as it is closer to the desired level of p = 0.1. The bootstrap
procedure of Gandy and Kvaløy (2013) also has a good performance. There
is no real difference with our method in the sense of performance. Also, the
performance of our method and the bootstrap method appears to be less sen-
sitive to the value of ε, as becomes clear when changing its value. This is
shown in Table 3.9b, which indicates the performance of the three methods
when implementing ε = 0.2, whilst leaving the other parameters as in Table
3.9a.

To illustrate the performance and consequences of the proposed methods
graphically, the distributions of the CARLs of the different methods in the in-
control (δ = 0) and out-of-control situation (δ = 1) are shown in Figures 3.1
and 3.2, respectively, for m = 50, n = 5, p = 0.1, ε = 0.2 and α0 = 0.0027.
The vertical line represents the desired threshold of the 100p’th (in this case
10th) percentile of the in-control CARL distribution. The desired threshold
with α0 = 0.0027 and ε = 0.2 is equal to 296. As could also be seen in Table
3.9b our proposed correction and the bootstrap method perform best, with
the 10th percentile close to the desired level. It is gratifying to note that with
our correction term no extensive bootstrapping is needed for the Shewhart

60
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control charts for location.
The tradeoff between in-control and out-of-control performance of the con-

trol chart also becomes clear from these figures, if we compare the proposed
methods with the uncorrected chart. The corrected charts correspond with
better in-control performance, but have a slower detection in the out-of-control
situation.

3.5.2 Self-Starting Control Charts

There are also other control chart designs that lead to a desirable in-control
performance. In particular, for normally distributed data, self-starting control
charts by Hawkins (1987) and Quesenberry (1991) can guarantee a good in-
control performance in the long run as well. However, the major drawback
is that, because of the continuous updating of the control chart limits, there
is a risk that out-of-control data influences the in-control process estimates.
A small change in the process mean can therefore slowly change the control
limits, making the out-of-control situations harder to detect. This can result
in larger out-of-control CARLs. To illustrate this, we have simulated CARLs
for both the self-starting Q chart in Quesenberry (1991) and our corrections,
for both the in-control and out-of-control situation (with δ = 1). As can be
observed in Figure 3.3, the self-starting Q chart indeed leads to large out-of-
control CARLs, much larger than CARLs of the proposed corrections. Next
to that, although the in-control performance of the Q chart is very stable, our
proposed correction yields much larger in-control CARLs, which is highly
beneficial for the practitioners.
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0 296 500 750 1000 1250 1500 1750

Uncorrected

Proposed

Bootstrap

Albers and Kallenberg

Figure 3.1: In-control (δ = 0) CARL distributions for m = 50, n = 5, α0 = 0.0027,
p = 0.1 and ε = 0.2. The boxplots indicate the 5th, 10th, 25th, 50th, 75th, 90th and 95th
percentiles of the distributions. The vertical line represents the desired threshold level of the
CARL (296).

0 25 50 75 100 125 150 175 200

Uncorrected

Proposed

Bootstrap

Albers and Kallenberg

Figure 3.2: Out-of-control (δ = 1) CARL distributions for m = 50, n = 5, α0 = 0.0027,
p = 0.1 and ε = 0.2. The boxplots indicate the 5th, 10th, 25th, 50th, 75th, 90th and 95th
percentiles of the distributions.
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0 250 500 750 1000 1250 1500 1750

Quesenberry Out-of-Control

Quesenberry In-Control

Proposed Out-of-Control

Proposed In-Control

Figure 3.3: In-control (δ = 0) and out-of-control (δ = 1) CARL distribution of the
self-starting Q chart in Quesenberry (1991) and our proposed correction when m = 50,
n = 5, α0 = 0.0027, p = 0.1 and ε = 0. The boxplots indicate the 5th, 10th, 25th, 50th,
75th, 90th and 95th percentiles of the distributions.
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3.5.3 Tolerance Intervals

The literature of tolerance intervals considers a criterion that is closely re-
lated to the proposed corrections in this chapter. From Krishnamoorthy and
Mathew (2009) we cite “a tolerance interval is expected to capture a certain
proportion or more of the population, with a given confidence”. The toler-
ance intervals are based on the sample average (X̄) and the sample standard
deviation (S), and are in the form of X̄ ± k2S, where k2 is determined such
that

P
(
P
(
X̄ − k2S ≤ X ≤ X̄ + k2S|X̄, S

)
≥ 1− α0

)
= 1− p (3.29)

Using the tolerance limits as control limits guarantees an in-control CFAR
(CARL) that is smaller (larger) than α0 (1/α0) with probability 1 − p. Thus,
k2 is equivalent to our K̃ in the case that ε = 0 and n = 1, when using X̄

and S as Phase I estimators. Note that one can also incorporate ε by replacing
α0 by αtol = (1 + ε)α0 in Equation (3.29). Note also that the tolerance limit
approach can be applied when n > 1, by treating X̄ as an individual vari-
able. However, this would mean that standard deviation of X̄ should be used
to estimate σ0, rather than the standard deviation of X . This means that the
within-subgroup variation is ignored in the estimation. The performance of
the tolerance interval approach is then equal to the performance when n = 1.
Because our approach does consider the within subgroup-variation, it has
less uncertainty in parameter estimation, leading to less variation in ARLs for
n > 1. However, it is possible to extend their underlying derivations in order
to make it applicable for n > 1. We elaborate further on this in Section 3.6.

Because of the arguments mentioned above, we have compared our pro-
posed corrections with the approximated tolerance factors as in Krishnamoor-
thy and Mathew (2009) for the case n = 1. Although they provide tolerance
factors KKM instead of corrections cKM , we can determine their ‘correction’
by subtracting K from KKM . We consider X̄ as estimator of µ0 and S as esti-
mator of σ0. Their proposed correction cKM then equals

cKM =
(

(n− 1)χ2
1;1−α0(1/n)

χ2
n−1;p

) 1
2

−K, (3.30)
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where χ2
d;q represents the q-quantile of a chi-square distribution with d de-

grees of freedom, and χ2
d;q(θ) represents the q-quantile of a noncentral chi-

square distribution with d degrees of freedom and noncentrality parameter
θ.

For different combinations of α0 and p we have calculated the corrections
and their performance. The results are shown in Table 3.10a for α0 = 0.0027
and p = 0.05, and in Table 3.10b for α0 = 0.01 and p = 0.1. As can be seen,
there appears to be no significant difference in performance, since the result-
ing exceedance probabilities are close to the desired value p for both approx-
imations.

Exc. Pr. Exc. Pr.
m c (c) cKM (cKM )
50 0.6286 0.0507 0.6403 0.0484
75 0.4990 0.0514 0.4966 0.0521
100 0.4215 0.0503 0.4174 0.0519
150 0.3322 0.0473 0.3293 0.0486
200 0.2812 0.0458 0.2794 0.0469
250 0.2475 0.0505 0.2465 0.0514
500 0.1683 0.0515 0.1686 0.0512
1000 0.1159 0.0529 0.1165 0.0523

(a) α0 = 0.0027, p = 0.05 and ε = 0.

Exc. Pr. Exc. Pr.
m c (c) cKM (cKM )
50 0.4130 0.1013 0.4249 0.0957
75 0.3257 0.1071 0.3304 0.1032
100 0.2753 0.1026 0.2781 0.1006
150 0.2179 0.0997 0.2196 0.0984
200 0.1851 0.1010 0.1865 0.0982
250 0.1634 0.1067 0.1646 0.1044
500 0.1118 0.1000 0.1127 0.0981
1000 0.0773 0.0996 0.0779 0.0979

(b) α0 = 0.01, p = 0.1 and ε = 0.

Table 3.10: Corrections and exceedance probabilities of the proposed correction and the
approximated tolerance factors from Krishnamoorthy and Mathew (2009) for different
parameter combinations, different values of m, and n = 1 (individuals).
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3.6 Extension of Tolerance Interval Theory

Although tolerance intervals are intended for use on individual observations,
their theory can be extended to also be applicable to the X̄ chart. From equa-
tion (3.1) we know that the probability of not obtaining a signal when the
process is in-control can be written as

Φ
(
µ̂0 − µ0
σ0/
√
n

+ K̃
σ̂0
σ0

)
− Φ

(
µ̂0 − µ0
σ0/
√
n
− K̃ σ̂0

σ0

)
(3.31)

Consider a general unbiased estimator for location that follows, either ex-
actly or approximately, a normal distribution when the data are normally dis-
tributed, such as the grand sample average or the grand sample median. In
that case, we have µ̂0 ∼ N(µ0, σµ̂0). This means that Z̃ = µ̂0−µ0

σ0/
√
n
∼ N(0, σµ̂0

σ0/
√
n

).
Also, consider an estimator σ̂0 such that W = σ̂0

σ0
∼ aχb√

b
, either exactly or

approximately, with a and b some constants whose values depend on the es-
timator σ̂0. Then we can rewrite equation (3.31) as

Φ
(
Z̃ + K̃W

)
− Φ

(
Z̃ − K̃W

)
. (3.32)

The goal is to determine the value K̃ that provides an in-control conditional
CFAR of at most αtol = (1+ε)α0 with probability 1−p, which is in turn equiv-
alent to having a probability of no signal of at least 1 − αtol with probability
1− p. Mathematically, this can be written as

PZ̃,W

(
Φ
(
Z̃ + K̃W

)
− Φ

(
Z̃ − K̃W

)
≥ 1− αtol

)
= 1− p. (3.33)

Result 1.2.1 in Krishnamoorthy and Mathew (2009) states that for some Z̃ ∼
N(0, σZ̃) independently of Q ∼ χ2

ν
ν , where χ2

ν denotes a chi-square random
variable with degrees of freedom ν, an approximate solution for the value k2
such that
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PZ̃,Q

(
Φ(Z̃ + k2

√
Q)− Φ(Z̃ − k2

√
Q) ≥ 1− αtol

)
= 1− p (3.34)

is given by

k2 =
(
νχ2

1;1−αtol(σZ̃)
χ2
ν;p

)1/2

(3.35)

where χ2
d;q(θ) again denotes the q-quantile of a noncentral chi-square distri-

bution with d degrees of freedom and noncentrality parameter θ, and where
χ2
d;q again denotes the q-quantile of a chi-square distribution with d degrees

of freedom. To this end, we can write (3.33) as

PZ̃,W

(
Φ
(
Z̃ + K̃a

W

a

)
− Φ

(
Z̃ − K̃aW

a

)
≥ 1− αtol

)
= 1− p (3.36)

Next, since W
a ∼

χb√
b
, we use the result derived by Krishnamoorthy and Mathew

(2009) to find the desired value K̃, namely

K̃ =
(
bχ2

1;1−αtol(σ
2
Z̃

)
a2χ2

b;p

)1/2

(3.37)

where σZ̃ = σµ̂0
σ0/
√
n
.

As an example, consider µ̂0 = ¯̄X and σ̂0 = Spooled. This means that we have
σZ̃ = σµ̂

σ0/
√
n

= σ0/
√
mn

σ0/
√
n

= 1/
√
m, a = 1, and b = m(n − 1). We then find the

desired control charting constant to be

K̃ ¯̄X,Spooled
=
(
m(n− 1)χ2

1;1−αtol(1/m)
χ2
m(n−1);p

)1/2

. (3.38)

Note that the required quantiles, and consequently this formula, can easily
be calculated in common statistical software programs such as R or Matlab.
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Note also that similar expressions for K̃ can easily be obtained for different
estimators. The only restrictions are that the estimator for location (approx-
imately) follows a normal distribution and that the estimator for dispersion
(approximately) follows a scaled chi distribution, and that these estimators
are independent. This holds for many other commonly used estimators, such
as the grand sample median for location, and the average sample standard de-
viation, the average sample range and the grand sample standard deviation
for dispersion.

Control Limit Performance

In Tables 3.11a and 3.11b we illustrate the adjusted control limit factors and
their resulting exceedance probability (the fraction of the control charts with
a conditional in-control ARL below the pre-specified threshold ARL0) for
two different sets of parameters. All exceedance probabilities are determined
based on 100,000 simulated Phase I samples. Note that the values should by
design be close to p. As can be observed from the tables, both approximations
provide good results. We obtain similar performances for other parameter
values and common standard deviation estimators.

m K̃G EPG K̃KM EPKM
25 3.3827 0.0969 3.3687 0.1060
50 3.2473 0.0966 3.2399 0.1042
100 3.1640 0.0962 3.1595 0.1030
150 3.1291 0.0985 3.1266 0.1030
200 3.1094 0.0974 3.1077 0.1009
300 3.0870 0.0986 3.0862 0.1006
500 3.0657 0.0995 3.0654 0.1007
1000 3.0454 0.0993 3.0453 0.1000

(a) αtol = 0.0027, p = 0.1, n = 5

m K̃G EPG K̃KM EPKM
25 2.9665 0.0607 2.9743 0.0568
50 2.8315 0.0575 2.8357 0.0547
100 2.7478 0.0547 2.7492 0.0535
150 2.7124 0.0539 2.7137 0.0526
200 2.6922 0.0543 2.6933 0.0525
300 2.6691 0.0537 2.6700 0.0519
500 2.6468 0.0505 2.6474 0.0489
1000 2.6251 0.0509 2.6255 0.0497

(b) αtol = 0.01, p = 0.05, n = 5

Table 3.11: Adjusted control limit factors K̃ and exceedance probabilities (EP) for the
correction terms of Section 3.3 (subscript G) and this section (subscript KM) for different
parameter combinations and various values of m indicated in the table.
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3.7 Concluding Remarks

In this chapter we derived new correction terms for the Shewhart X and X̄

control charts in order to account for the effect of parameter estimation. The
newly proposed correction terms are in line with the idea introduced by Al-
bers and Kallenberg (2004a), which corrects the control limits to guarantee a
specified minimum performance of the control chart with a specified proba-
bility. The correction terms are shown to be very accurate in achieving this.
The performance of the proposed method is much better than Albers and
Kallenberg (2005), and similar to the bootstrap method of Gandy and Kvaløy
(2013). However, no bootstrapping is required, as the proposed correction
only depends on the initial Phase I sample through its size, rather than its pa-
rameter estimates. Moreover, we made a comparison with tolerance intervals
and self-starting control charts. The conclusions are that our corrections be-
have very well for the individuals Shewhart X control chart and outperform
the self-starting control chart in both in-control and out-of-control situations.

Because of the guarantee of minimum performance, the corrected chart
performs better than an uncorrected chart in the in-control situation. This in-
evitably leads to a deterioration of the out-of-control performance. However,
the strictness of the correction can be easily adapted by changingα0, ε and p as
desired. The choice of parameters should be based on the context. As costs of
a false alarm and costs of running a process out-of-control are very dependent
on the application, it is recommended to take this into account when making
the tradeoff between in-control and out-of-control performance.
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3.8 Appendix A

First note that Pmn(K̃;Z,W ) can be written according to (3.2). This can be
rewritten as

Pmn(K̃; µ̂0, σ̂0) = Φ̄(K̃ + ∆1(K̃)) + Φ̄(K̃ + ∆2(K̃)) (3.39)

with Φ̄(x) = 1− Φ(x) and

∆1(K̃) = µ̂0 − µ0
σ0/
√
n

+ K̃

(
σ̂0
σ0
− 1

)
(3.40)

and
∆2(K̃) = − µ̂0 − µ0

σ0/
√
n

+ K̃

(
σ̂0
σ0
− 1

)
(3.41)

Hence, for any function g(α0) we can write

g(Pmn(K̃; µ̂0, σ̂0)) = h(K̃ + ∆1(K̃), K̃ + ∆2(K̃)) = h(x, y) (3.42)

Using a two-step Taylor expansion, and abbreviating Pmn(K̃;Z,W ) as Pmn,
this is approximately equal to

g(Pmn) = h(K̃ + ∆1(K̃), K̃ + ∆2(K̃))
≈ h(K̃, K̃) + hx(K̃, K̃)∆1(K̃) + hy(K̃, K̃)∆2(K̃)

+ 1
2[hxx(K̃, K̃)∆2

1(K̃) + 2hxy(K̃, K̃)∆1(K̃)∆2(K̃) + hyy(K̃, K̃)∆2
2(K̃)]

(3.43)

where hx(x, y) and hy(x, y) are the first order partial derivatives of h(x, y) with
respect to x and y respectively, hxx(x, y) and hyy(x, y) are the second order
partial derivatives of h(x, y) with respect to x and y respectively, and hxy(x, y)
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equals the cross partial derivative of h(x, y) with respect to x and y. Note that
hx(K̃, K̃) = hy(K̃, K̃) and hxx(K̃, K̃) = hyy(K̃, K̃). Taking this into account,
we can simplify (3.43) into

g(Pmn) ≈ h(K̃, K̃) + hx(K̃, K̃)
[
∆1(K̃) + ∆2(K̃)

]
+ 1

2hxx(K̃, K̃)
[
∆2

1(K̃) + ∆2
2(K̃)

]
+ hxy(K̃, K̃)∆1(K̃)∆2(K̃)

(3.44)

Using (3.40) and (3.41) we can rewrite this into

g(Pmn) ≈ h(K̃, K̃) + hx(K̃, K̃)2K̃
(
σ̂0
σ0
− 1

)
+ (hxx(K̃, K̃)− hxy(K̃, K̃))

(
µ̂0 − µ0
σ0/
√
n

)2

+ (hxx(K̃, K̃) + hxy(K̃, K̃))K̃2
(
σ̂0
σ0
− 1

)2

(3.45)

For Xij i.i.d. N(µ0, σ0)-distributed random variables and µ̂0 = ¯̄X , we know
that

(
µ̂0−µ0
σ0/
√
mn

)2
follows a chi-square distribution. Common estimators of the

standard deviation, such as the (pooled) sample standard deviation, follow
a scaled chi distribution, while even the distribution of the average moving
range can be approximated as such (see e.g. Roes et al., 1993). This means
that σ̂0/σ0 and σ̂0

2/σ2
0 generally follow a scaled chi and scaled chi-square dis-

tribution respectively. Hence, we may conclude that Pmn(K̃;Z,W ) is approx-
imately a combination of scaled chi and chi-square distributed random vari-
ables. Note that the distribution of Pmn(K̃;Z,W ) should be approximated
such that it not only gives an accurate description, but also such that it is pos-
sible to obtain the required correction term. The difficulty in obtaining this
correction term lies in the sense that the correction term c not only changes
the expectation, but also the variance of the distribution. As the currently
obtained approximation is still of rather complicated form, and because the
scaled chi-square part appears to be dominant, we approximate the distribu-
tion of Pmn(K̃;Z,W ) by a Aχ2

B/B distribution, where we use the first two
central moments of Pmn(K̃;Z,W ) to identify A and B.
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3.9 Appendix B

In order to obtain the required correction term we use the Wilson-Hilferty
transformation (Wilson and Hilferty, 1931), which states that for X ∼ χ2

B we
have 3

√
X
B

approx∼ N(1 − 2/(9B),
√

2/(9B)). This transformation is quite accu-
rate, which was shown recently by Inglot (2010). Henceforth we abbreviate
Pmn(K̃;Z,W ) as Pmn. Then in our case, when Pmn

approx∼ Aχ2
B

B or similarly
B
APmn

approx∼ χ2
B , we obtain

3

√
Pmn
A

approx∼ N(1− 2/(9B),
√

2/(9B)).

This is equivalent to

3
√

Pmn
A − 1 + 2

9B√
2

9B

approx∼ N(0, 1).

We want to have P (Pmn < (1 + ε)α0) = 1− p (cf. (3.5)). This is equivalent to

P (Pmn < (1 + ε)α0) = P

 3
√

Pmn
A − 1 + 2

9B√
2

9B

<

3
√

(1+ε)α0
A − 1 + 2

9B√
2

9B


≈ Φ

 3
√

(1+ε)α0
A − 1 + 2

9B√
2

9B

 = 1− p

(3.46)

which in turn, by using the inverse of the standard normal cdf (denoted Φ−1),
leads to the following equation that needs to be solved

3
√

(1+ε)α0
A − 1 + 2

9B√
2

9B

= Φ−1(1− p) (3.47)
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Note again that both A and B are functions of K̃. Given the values of m, n,
α0 and ε, the left-hand side of (3.47) is a function of K̃ only, say Y (K̃). Using
(3.10) and (3.11) we can write Y (K̃) as

Y (K̃) = 3
√

(1 + ε)α0
3E(Pmn)2/3√
V ar(Pmn)

− 3E(Pmn)√
V ar(Pmn)

+
√
V ar(Pmn)
3E(Pmn) (3.48)

In order to solve (3.47) we need to find c such that for K̃ = K + c there holds
Y (K̃) = Φ−1(1 − p). This value of c is found by a linear approximation of
Y (K̃) as Y (K̃) ≈ Y (K) + cdY (K)

dK̃
.

If we denote the derivatives ofE(Pmn) andV (Pmn) with respect to K̃, eval-
uated at K, by dE

dK and dV
dK respectively, and E(Pmn) and V (Pmn), evaluated

at K, by E and V respectively, we have

Y ′(K) = dY (K)
dK̃

=
2E−1/3√V dE

dK −
3E2/3

2
√
V

dV
dK

V
−

3 dEdK
√
V − 3E

2
√
V
dV
dK

V

+
3E

2
√
V
dV
dK − 3 dEdK

√
V

9E2

(3.49)

The values of dEdK and dV
dK can be calculated (as can be seen from (3.7), (3.9) and

(3.8)) as

dE

dK
=
∫ ∞
−∞

∫ ∞
0

dPmn(z, w)
dK̃

f(z)f(w)dwdz

=
∫ ∞
−∞

∫ ∞
0
−w

[
φ

(
z√
m

+Kw

)
+ φ

(
z√
m
−Kw

)]
f(z)f(w)dwdz

(3.50)

and
dV

dK
= d(E2)

dK
− 2E dE

dK
(3.51)
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where

d(E2)
dK

=
∫ ∞
−∞

∫ ∞
0

dP 2
mn(K; z, w)
dK̃

f(z)f(w)dwdz

= −2
∫ ∞
−∞

∫ ∞
0

wPmn(K; z, w)
[
φ

(
z√
m

+Kw

)
+ φ

(
z√
m
−Kw

)]
f(z)f(w)dwdz

(3.52)

Getting back to the approximation Y (K̃) ≈ Y (K)+cdY (K)
dK̃

= Y (K)+cY ′(K),
we thus obtain

c = Φ−1(1− p)− Y (K)
Y ′(K) (3.53)
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4. Control Charts for Dispersion

In this chapter, we derive adjusted control limits for control charts for disper-
sion, using the exceedance probability criterion. The adjustments are given in
a quite general form, so that they can be used with a wide range of estimators
for dispersion. This chapter is based on Goedhart et al. (2017a).

4.1 Introduction

In the previous chapters we have focused on the Shewhart X and X̄ control
charts. However, control charts for monitoring dispersion suffer from similar
estimation issues as the previously discussed control charts. Epprecht et al.
(2015), for the case of theS chart, evaluated the effects of parameter estimation
on the in-control conditional run length distribution. Because the conditional
run length distribution is geometric, it can be characterized by the probabil-
ity of success, the conditional false alarm rate (CFAR), or its reciprocal, the
in-control conditional average run length (CARL). Since the CFAR (CARL) is
a random variable, Epprecht et al. (2015) proposed a prediction bound for-
mulation to determine the number of Phase I subgroups required such that
a minimum in-control performance based on the CFAR or CARL of the one-
sided S chart is guaranteed with a pre-specified probability. Note that this is
equivalent to the exceedance probability criterion. However, it was seen that
according to this approach, the number of subgroups required to guarantee
practically attractive in-control chart performance is often in the order of sev-
eral thousands, depending on the choice of the parameters. These numbers
are substantially higher than the values recommended by based on the un-
conditional in-control ARL. These findings are similar to the findings for the
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X and X̄ control charts in Saleh et al. (2015b).
To this end, we derive adjusted control limits for control charts for dis-

persion in this chapter. Since an increase in the process dispersion is deemed
more important to detect than a decrease (as it indicates process degradation),
we consider the one-sided σ̂ chart with an UCL only (where σ̂ is the sample
charting statistic of dispersion), equivalent to Epprecht et al. (2015), and de-
rive the corresponding adjusted upper control limits. These adjusted limits
guarantee that the CFAR exceeds a pre-specified tolerated bound with only
a small probability, for a given number of Phase I samples of a given size.
This adjusted control limit coefficient is obtained analytically, as opposed to
using the bootstrap approach as in Faraz et al. (2015), and its efficacy depends
also on the type of estimator used to estimate the in-control process disper-
sion from the given Phase I data. Our formulation and derivations allow the
use of different estimators for the process dispersion. Note further that the
adjusted control limit can also be obtained for control charts based on mono-
tone increasing functions of the process dispersion σ̂, such as σ̂2 or log (σ̂), by
taking the corresponding monotone increasing function of the adjusted limit
for the σ̂ chart. Furthermore, our framework is also applicable for the range
charts. See also the tutorial on estimating the standard deviation written by
Vardeman (1999).

In this chapter, we provide an analytical solution that enables a straightfor-
ward calculation of the adjusted control limit for any combination of param-
eters, which include the number of available Phase I subgroups m, subgroup
size n, the desired performance threshold (e.g. αtol) and a specified proba-
bility p of this threshold being exceeded. We give tables of the adjustment
coefficients for a wide range of these parameter values. Also, we provide a
formula for computing the out-of-control CARL of the resulting chart for any
increase in the process dispersion. This is compared with the out-of-control
CARL for the chart with the unadjusted limits in order to assess the impact
of the adjustment on the out-of-control performance. A practitioner has to
balance two things: controlling the in-control performance versus the deteri-
oration in the out-of-control situation. We provide some guidelines on how a
practitioner can balance this tradeoff. Our derivations are based on Shewhart
type control charts for dispersion.

This chapter is structured as follows. We present the analytical deriva-
tions of the adjusted limits in Section 4.2 and of the resulting chart power (the
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probability that the chart gives a true signal in case of an increase in process
dispersion) in Section 4.3. Then in Section 4.4, the adjusted limits as well as
the resulting power and the out-of-control ARL of the resulting chart are tab-
ulated for a comprehensive spectrum of cases and the results are discussed. In
Section 4.5 we present and discuss a practical example as illustration. Finally,
the general conclusions are summarized in Section 4.6.

4.2 Determination of the Adjusted Control Limit

Assume that in Phase I a reference sample from a N(µ0, σ0) distribution is
available, and that Phase II observations come from a N(µ0, σ) distribution,
where parameters are assumed unknown. In Phase II, a monitoring statistic
σ̂i is obtained each time period i. Note that σ may differ from the in-control
value σ0. Our methodology works for all monitoring statistics σ̂i that have a
distribution either exactly or approximately proportional to a chi distribution
(where the approximation is based on Patnaik, 1950). For example, we can
take σ̂i (i.e., the i-th Phase II sample standard deviation) and since it is well-
known that (n − 1)S2

i /σ
2
i ∼ χ2

n−1 exactly, it follows that Si ∼ σχn−1/
√
n− 1

exactly, under the normal distribution. On the other hand, if we consider
σ̂i = Ri/d2(n) then we approximate the distribution of σ̂i/σ by aχb

√
b based

on the Patnaik (1950) approach. We elaborate on this point later, in Section
4.2.4.

4.2.1 Unadjusted Control Limit

Consider a monitoring statistic σ̂i such that σ̂i/σ ∼ aχb/
√
b for suitable values

a > 0 and b > 0. Obviously, the UCL for the X and X̄ control chart as in
(2.1) will not work in this case, as it is designed for a normally distributed
plotting statistic. Therefore, probability limits are generally used in control
charts for dispersion (see e.g. Montgomery, 2013). We discuss the traditional
(unadjusted) α0-probability limits for Phase II control charts for dispersion in
this section.

Given a desired nominal false alarm rate α0, the traditional estimated up-
per control limit of the chart is set at
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ÛCL = Lσ̂0 (4.1)

with

L =
√
a2χ2

b;1−α0
/b (4.2)

where χ2
v;p denotes the 100p-percentile of a chi-square distribution with v de-

grees of freedom and σ̂0 is the estimator of σ0. Note that, for the specific case
that σ̂ is equal to the sample standard deviation S we know that a = 1 and
b = n−1, so that Equation (4.2) corresponds to Montgomery (2013), page 267.
This standard control limit does not account for either parameter estimation
or practitioner-to-practitioner variability and is referred to as the unadjusted
control limit in this chapter.

Note that, as mentioned before, one can consider various estimators for σ̂0
that have a distribution proportional to the chi distribution. In order to find
an expression for the probability of signal, define the standard deviation ratio
as

γ = σ/σ0 (4.3)

where σ is the current (Phase II) process standard deviation. Note that when
the process is in control, σ = σ0, so that γ = 1. When special causes result
in an increase of the process standard deviation, σ > σ0 and consequently
γ > 1. Similarly, with a reduction in the process standard deviation we have
γ < 1. However, we don’t consider this latter case here, because the mean-
ing and usefulness of detecting decreases in the process dispersion are totally
different. Of course, one may consider a lower control limit using the same
methodology as in our approach to study this behavior. Next, define the error
factor of the estimate σ̂0 as the ratio:

W = σ̂0/σ0. (4.4)

Since it is assumed in this chapter that the data come from a normal distri-
bution, it is easy to see (Epprecht et al., 2015) that in Phase II, the conditional
probability of an alarm (denoted CPA in this chapter) of the upper one-sided
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σ̂ chart is given by

CPA(γ, L) = P
(
σ̂i > ÛCL

)
= P

(
bσ̂2
i

a2σ2 >
W 2

γ2
bL2

a2

)

= P

(
bσ̂2
i

σ2 >
W 2

γ2 χ
2
b;1−α0

)
= 1− Fχ2

b

(
W 2

γ2 χ
2
b;1−α0

) (4.5)

since bL2 = χ2
b;1−α0

from (4.2) and where Fχ2
b

denotes the cdf of the chi-square
distribution with b degrees of freedom. Note that expression (4.5) holds for
both the in-control case (γ = 1), in which case it corresponds to the conditional
false alarm rate (denoted CFAR), and in the out-of-control case (γ > 1), where
it represents the conditional probability of an alarm (CPA) of the chart, both
in Phase II. Thus,

CFAR = CPA(1, L) = 1− Fχ2
b

(
W 2χ2

b;1−α0

)
(4.6)

Note that the CPA of the σ̂ chart in Equation (4.5) is also the CPA of the σ̂2

chart with ÛCL equal to the square of the σ̂ chart’s ÛCL in (4.1). These two
charts are equivalent: one will signal if and only if the other will signal. In
this chapter we use the σ̂ chart for illustration, but all the analyses, numerical
results and conclusions apply to the σ̂2 chart as well. In fact, these observa-
tions hold for any monotone increasing function of σ̂ such as log(σ̂) which is
sometimes used in practice. In summary, for any monotone increasing func-
tion g(σ̂) of σ̂, P

(
σ̂ > ÛCL

)
is equivalent toP

(
g(σ̂) > g

(
ÛCL

))
. Therefore,

the adjusted limits proposed for the σ̂ chart can be applied to any monotone
increasing function g(σ̂) of σ̂ by applying the same transformation g

(
ÛCL

)
to the ÛCL obtained for the σ̂ chart.

The CFAR shown in Equation (4.6) is a function of the error factor of the
estimate W and, as a result, is also a random variable. Thus, the value of the
CFAR will be different for different values of W , corresponding to different
values of the estimator, from different Phase I samples obtained by practi-
tioners. This is true unless W = 1, which is the case for consistent estima-
tors when the number of reference samples tends to infinity, which implies
the known parameter case. The finite sample distribution of W depends on
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the distribution of the estimator σ̂0 used for σ0. In the case of normally dis-
tributed data, the most common estimators of the process standard deviation
available in the literature follow, either exactly or approximately, a scaled chi
distribution. Thus, in a general formulation, we consider estimators σ̂ such
that σ̂/σ ∼ aχb/

√
b either exactly or approximately, for suitable a and b. To

distinguish between Phase I and Phase II estimators, we use a0 and b0 for
Phase I and a and b for Phase II. This formulation allows a more general and
comprehensive treatment of Phase II monitoring of σ, covering most common
estimators of standard deviation used (i) in the Phase I control limit and (ii)
as a plotting statistic in Phase II.

For example, a commonly used estimator of σ0 in the Phase I control limit
is the square root of pooled variances (also recommended by Mahmoud et al.,
2010), as given in (2.3). Since it is well-known thatm(n−1)S2

pooled/σ
2
0 follows a

chi-square distribution withm(n−1) degrees of freedom, it follows thatW =
Spooled/σ0 ∼ a0χb0/

√
b0 exactly, where a0 = 1 and b0 = m(n−1). The plotting

statistic for the Phase II S chart is the sample standard deviation Si, and since
it is well-known that ((n − 1)S2

i )/σ2 ∼ χ2
n−1, it follows that Si/σ ∼ aχb/

√
b

exactly where a = 1 and b = n−1. Other Phase I estimators of σ0 such as S̄/c4,
where S̄ =

∑
Si/m and c4 is an unbiasing constant (see Montgomery, 2013)

can be considered, but we don’t pursue this here and use the estimator Spooled
for illustration throughout. Note further that other monitoring statistics and
charts, such as the R chart, can also be considered under this framework. We
make some comments about these points in Section 4.2.3.

As in Epprecht et al. (2015), the cdf of the CFAR (denoted as FCFAR) of the
upper one-sided σ̂ chart with the traditional ÛCL as in Equations (4.1) and
(4.2), set for a nominal false alarm rate α0, can be shown to be equal to:

FCFAR(t;L) = P
(
1− Fχ2

b

(
W 2χ2

b;1−α0

)
≤ t
)

= P

(
W 2 >

χ2
b;1−t

χ2
b;1−α0

)
(4.7)

for 0 < t < 1. Epprecht et al. (2015) showed that this CFAR has a non-
negligible probability of being much larger than the specified nominal value
α0, unless the number of Phase I samples is prohibitively high. Motivated by
this with a practical point of view, we derive the adjusted control limit based
on the exceedance probability criterion, for given values of m and n.
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4.2.2 Adjusted Control Limits

We are interested in finding an adjustment to the traditional UCL in Equation
(4.1) such that the probability that CFAR exceeds a tolerated upper bound
(e.g. αtol) is controlled at a small value p. Formally, we want to determine an
adjusted coefficient L∗ to be used to calculate the Phase I upper control limit
ÛCL

∗
= L∗σ̂0 such that

1− FCFAR (αtol;L∗) = p (4.8)

where αtol = (1 + ε)α0 as before. Note that Equation (4.8) can be rewritten as
P (CFAR(t, L∗) ≤ αtol) = FCFAR(αtol;L∗) = 1−p, so that the interval [0, αtol]
can be interpreted as a 100(1−p)% prediction interval for the CFAR. Note also
that when the process is in-control, Equation (4.8) is equivalent to writing
P (CARL < 1/αtol) = p. Thus, solving (4.8) is equivalent to finding L∗ that
guarantees a minimum in-control CARL equal to CARLtol = 1/αtol with a
specified probability 1−p. Because of this equivalence, our further derivations
are based on CFAR. Note that the interval [1/αtol,∞) can be interpreted as a
100(1− p)% prediction interval for the in control CARL.

In order to determine L∗ from (4.8) we need the cdf of CFAR. Similar to
Equation (4.5) we can write the CFAR when using the adjusted limits as

CFAR(L∗) = CPA(1, L∗) = P

(
bσ̂2
i

a2σ2
0
> W 2 bL

∗2

a2

)
= 1− Fχ2

b

(
W 2 bL

∗2

a2

)
(4.9)

Thus, similar to Equation (4.7), the cdf is obtained as

FCFAR(t;L∗) = P

(
1− Fχ2

b

(
W 2 bL

∗2

a2

)
≤ t
)

= P

(
W 2 >

a2χ2
b;1−t

bL∗2

)

= P

(
b0
a2

0
W 2 >

b0
a2

0

a2χ2
b;1−t

bL∗2

)
= 1− Fχ2

b0

(
b0
a2

0

a2χ2
b;1−t

bL∗2

) (4.10)

for 0 < t < 1, since we assume that W ∼ a0χb0/
√
b0 so that b0W 2/a2

0 ∼ χ2
b0

.
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Now, L∗ is determined such that

FCFAR(αtol;L∗) = 1− p. (4.11)

Hence, using Equation (4.10), we obtain

χ2
b0;p = b0

a2
0

a2χ2
b;1−αtol
bL∗2

(4.12)

which leads to the general solution

L∗ =

√√√√b0
b

a2

a2
0

χ2
b;1−αtol
χ2
b0;p

(4.13)

We emphasize that Equation (4.13) is a general expression for the adjusted
control limit coefficient that can be applied with any Phase I estimator σ̂0 for
whichW = σ̂0/σ0 ∼ a0χb0/

√
b0 and for which the Phase II monitoring statistic

satisfies σ̂/σ ∼ aχb/
√
b. Note that, if one would be interested in the equivalent

correction for the L̂CL
∗
, the only changes required are to substitute αtol for

1− αtol and 1− p for p in equation (4.13).

4.2.3 Use of Different Estimators in Phase II

Until now we have considered general Phase I and Phase II estimators. How-
ever, it is possible to use a wide range of estimators in both Phase I and Phase
II. Consider for example the use of the pooled standard deviation σ̂0 = Spooled
in Phase I and the standard deviation σ̂ = S in Phase II. We then have a0 = 1,
b0 = m(n − 1), a = 1 and b = n − 1. Implementing these values in Equation
(4.13) then gives us the required control limit for this special case as

L∗ =

√√√√mχ2
n−1;1−αtol
χ2
m(n−1);p

(4.14)

Note that this special case is equal to the result of Tietjen and Johnson (1979),
who determine tolerance intervals for this specific example. However, our
approach is more generally applicable as we allow a wide range of estimators
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in both Phase I and Phase II. For more information on estimators of dispersion
we refer to Vardeman (1999).

To illustrate the application and the consequences of implementing the
adjusted control limits, Figures 4.1 and 4.2 show boxplots of 1,000 simulated
CARL values for the in-control (γ = 1) and an out-of-control (γ = 1.5) sit-
uation, respectively, with m = 50, n = 5, α0 = 0.005, ε = 0.1 and p = 0.1,
so that αtol = 0.0055. We have used Spooled as estimator of Phase I standard
deviation, and S as estimator in Phase II. In the in-control situation (Figure
4.1), CARLtol = 1/αtol = 1/0.0055 = 182. For comparison purposes, the
boxplots also show the results of using the bootstrap method of Gandy and
Kvaløy (2013) and Faraz et al. (2015), and of the chart with unadjusted limits.
The minimum tolerated CARL of 182 is indicated with a vertical dashed line,
and the p-quantile of the CARL distribution is indicated in each boxplot with
an added short vertical line. As can be seen, the p-quantile coincides with
CARLtol = 182 for the adjusted control limits. Note that the difference be-
tween the proposed method and the bootstrap approach is negligible. How-
ever, the proposed control limits are analytical expressions that are easier to
implement, and the required adjustments are found more directly through
the statistical distribution theory. For additional insight into the effect of the
choices of ε and p, Figures 4.3 and 4.4 illustrate, equivalent to Figures 4.1 and
4.2 respectively, this effect for ε = 0 and p = 0.05. There the p-quantile coin-
cides with CARLtol = 200.

4.2.4 Distributions of Different Estimators of Standard Deviation

We have noted that in general we can consider any estimator σ̂0 such that
W = σ̂0/σ0 ∼ a0χb0/

√
b0 either exactly or approximately. We make a few

comments here in this direction. First, the estimator used in Phase I usually
dictates the chart to be used in Phase II. So if σ̂0 is estimated by a function
of the Phase I sample standard deviations, we use an S chart in Phase II for
consistency, whereas if σ̂0 is estimated by a function of the Phase I sample
ranges, we use an R chart in Phase II for monitoring the standard deviation.
For some estimators such as Spooled, as shown above, this distribution theory
is exact but that is not the case for all estimators that have been proposed in
the literature for the standard deviation of a normal distribution. However,
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for many of the available estimators, their distribution can be approximated.
One common approach to do this is by equating the first two moments of W
with those of a0χb0/

√
b0 (see for example Patnaik, 1950). We consider such an

approximation based on Patnaik (1950), as used in Roes et al. (1993). For an
estimator σ̂0 such that E[W ] = 1, so that σ̂0 is an unbiased estimator of σ0,
Roes et al. (1993) showed that the required values of a0 and b0 must equal

a0 =
√
V [W ] + 1

b0 = 1
2

(
1 + 1

V [W ]

) (4.15)

where V [W ] denotes the variance of W . Recognizing the fact that practition-
ers might use other estimators of the standard deviation, we summarize three
popular estimators of the Phase I standard deviation σ0 along with the corre-
sponding values of a0 and b0 in Table 4.1. Of course, the same approach can
be used for the Phase II estimators. Note that we have also indicated the cor-
responding Phase II plotting statistic and its corresponding values of a and b
in Table 4.1. Note also that the constants c4(n), d2(n), and d3(n) indicated in
this table can be found in Appendix VI in Montgomery (2013).

Figure 4.1: Boxplots of 1,000 simulated values of in-control (γ = 1) CARL. Parameter
values are m = 50, n = 5, α0 = 0.005, ε = 0.1 and p = 0.1. The dashed vertical line
indicates CARLtol = 1/αtol = 182, and the p-quantiles are indicated with an added
vertical line in the boxplots.
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Figure 4.2: Boxplots of 1,000 simulated values of out-of-control (γ = 1.5) CARL.
Parameter values are m = 50, n = 5, α0 = 0.005, ε = 0.1 and p = 0.1.

Figure 4.3: Boxplots of 1,000 simulated values of in-control (γ = 1) CARL. Parameter
values are m = 50, n = 5, α0 = 0.005, ε = 0 and p = 0.05. The dashed vertical line
indicates CARLtol = 1/αtol = 200, and the p-quantiles are indicated with an added
vertical line in the boxplots.
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Figure 4.4: Boxplots of 1,000 simulated values of out-of-control (γ = 1.5) CARL.
Parameter values are m = 50, n = 5, α0 = 0.005, ε = 0 and p = 0.05.

Phase II Values of Phase I Values of V[W]
plotting a and b estimator a0 and b0
statistic
σ̂i = Si a = 1, Pooled a0 = 1, 1−

b = 1 std. dev. b0 = m(n− 1) c2
4(m(n− 1) + 1)

σ̂0 = Spooled
σ̂i = Si a = 1, Average a0 =

√
V [W ] + 1,

1−c2
4(n)

mc2
4(n)b = 1 std. dev. b0 = 1

2

(
1 + 1

V [W ]

)
σ̂0 = S̄/c4(n)

σ̂i = Ri/d2(n) a =
√
mV [W ] + 1, Average a0 =

√
V [W ] + 1,

d2
3(n)

md2
2(n)b = 1

2

(
1 + 1

mV [W ]

)
range b0 = 1

2

(
1 + 1

V [W ]

)
σ̂0 = R̄/d2(n)

Table 4.1: Required values of a and b (and a0 and b0) for different estimators used in the
calculation of the adjusted control limit.
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4.2.5 Deviations from the Proposed Model

The derivations as shown in this section are based on one-sided control charts
for dispersion under normality. In the case that the normality assumption is
violated, the adjustments are less accurate in terms of providing a specified
in-control performance. However, a suitable alternative is to apply a Box-
Cox transformation (see Box and Cox, 1964) or a Johnson type transforma-
tion (see Chou et al., 1998) to the data first, and determine the control limits
afterwards using this transformed data. Of course, the Phase II data needs
to be transformed in the same way during the monitoring stage. Another
way to investigate deviations from normality is to use robust estimators, in
order to deal with contaminations. However, this means an investigation as
in Schoonhoven and Does (2012) is required, which may be the subject of a
future study.

Whereas the problem with deviations from normality can be addressed in
practice by applying a Box-Cox transformation, the proposed adjustments for
the one-sided charts cannot be generalized directly to the two-sided control
charts for dispersion. A common first guess when implementing the two-
sided control chart is to calculate the upper and lower control limits using
α0/2 instead of α0. However, in that case the guaranteed in-control perfor-
mance results provided for the one-sided charts will no longer hold (see also
Chapter 3), so the two-sided case need to be analyzed separately. However,
note that in practice, it is most important to detect increases in process dis-
persion. By focusing on control charts with an upper control limit only, we
provide control limits that are more sensitive to detecting these increases.
Two-sided control charts would require a different approach, and their ability
to detect increases would suffer from the addition of the lower control limit,
while the benefits (detecting decreases in variation) are of minor importance
in practice.
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4.3 Out-of-Control Performance

In analogy with the power of a hypothesis test, the power of a control chart
can be defined to be the probability that the chart gives a true signal. Since the
conditional run length distribution of the chart is geometric, the reciprocal of
the conditional probability of a true signal, the CPA (or the conditional power)
is the conditional out-of-control ARL, denoted CARL. As with the CFAR, the
power (and the reciprocal of this power, the out-of-control CARL) of the σ̂
chart with the adjusted limit, depends on the realization (w) of the (unknown)
error factor of the estimate, the random variable W . Note that the same is
also true for the σ̂ (or some other similar) chart with the unadjusted limit (see
Equation 4.5). The power of the chart in the unknown parameter case will be
larger (smaller) than the power for the known parameter case if w < 1, that
is when σ0 is under-estimated (or if w > 1, that is, when σ0 is overestimated).
The gain or loss in the out-of-control performance of the chart due to the use
of the adjusted limit (relative to that of the chart using the unadjusted limit)
will thus vary according to the realization ofW . That is, the gain/loss of out-
of-control performance is also a random variable. See Zwetsloot (2016) for a
more detailed comparison of the effect of estimation error in control charts for
dispersion.

In order to examine the implications of using the adjusted limits on the
out-of-control performance (power) of the chart, we evaluate the chart per-
formance for the case when the estimation error is zero (w = 1; the known
parameter case), and for increases of 50% and 100% in the standard deviation
σ (γ = 1.5 and γ = 2, respectively). This is because the conditional probabil-
ity of an alarm depends only on the ratio between w and γ, and not on their
absolute values (as can be seen from Equation (4.5)).

To calculate the out-of-control CARL, recall from Equation (4.5) that the
conditional probability of an alarm (CPA) with the adjusted limit is given by

CPA(γ, L∗) = P

(
bσ̂i

2

a2σ2 >
W 2

γ2
bL∗2

a2

)
(4.16)

which, for the estimators σ̂0 = Spooled and σ̂ = S equals, using Equation (4.14),
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CPA(γ, L∗) = P

(
(n− 1)S2

i

σ2 >
Q̃

γ2
χ2
n−1;1−αtol
χ2
m(n−1);p

)

= 1− Fχ2
n−1

(
Q̃

γ2
χ2
n−1;1−αtol
χ2
m(n−1);p

) (4.17)

where Q̃ = m(n − 1)S2
pooled/σ

2
0 ∼ χ2

m(n−1). The out-of-control (γ 6= 1) CARL
is the reciprocal of CPA(γ, L∗) in Equation (4.16) in general, and of Equation
(4.17) in particular for the estimators σ̂0 = Spooled and σ̂ = S. The probability
in Equation (4.16) can be calculated for various values (quantiles) from the
distribution of Y and the out-of-control performance can be examined. Thus,
from equation (4.16) it is also possible to determine the distribution of the CPA
for given values of γ and L∗.

Tables 4.2 and 4.3 show, for several values of m and n, the values of the
adjusted control limit coefficient L∗ for the estimator Spooled, for a nominal
false-alarm rate of α0 = 0.005, and the combinations of two values of ε (0.10
and 0.20) and two values of p (0.05 and 0.10). Table 4.2 corresponds to ε = 0.10
and 4.3 corresponds to ε = 0.20. For each value of n, the first row gives the
values ofL∗ and the second row gives in italics the adjustment factor, which is
the ratio between these values and the unadjusted control limit coefficient L.
Other estimators of σ0 can be considered in a similar manner. As it can be seen
and as it might be expected, the adjusted limit converges to the unadjusted
limit when n or m (or both) increase. This happens since the variance of the
estimators decreases with the increase in the number of observations. Also,
keeping m and n fixed, the adjusted limit decreases (becoming closer to the
unadjusted limit) with increases in ε and p, which mean greater tolerance to
CFAR values larger (or to CARL values smaller) than the nominal.

Tables 4.4 and 4.5 give the out-of-control CARLs of the charts for γ = 1.5
and γ = 2.0, respectively. They correspond, as mentioned earlier, to the case
w = 1. In these tables, the column “Unadjusted” gives the out-of-control
CARL of the chart with the unadjusted control limit. The values indicate
that, with the traditionally recommended numbers of preliminary samples
(m between 25 and 75 samples) and the usual sample sizes (less than 10 ob-
servations), the adjustment made for the guaranteed in-control performance
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entails substantial deterioration of the out-of-control performance. For exam-
ple, with less than 50 Phase I subgroups each with a sample size of 5, the
out-of-control CARLs of the chart with adjusted limits are 40% to 100% larger
than the ones of the chart with unadjusted limits. Even with m = 100, the
out-of-control CARLs for γ = 1.5 and n = 3 are 30% to 50% larger than the
ones for the chart with the unadjusted control limit. However, if the increase
in the process standard deviation that is relevant to detect quickly is a little
bigger, γ = 2.0, the increases in the out-of-control CARLs due to the adjust-
ment become less substantial, except for the smaller values of n (3 and 5) and
m (25 and 50) (see Table 4.5). With larger sample sizes, the CARL values are
already close to 1 with or without the adjustment. However, if the user consid-
ers for example 100 or 200 Phase I subgroups (a number much smaller and far
more practical than the several hundreds to thousands found to be required in
Epprecht et al. (2015)), the increase in the CARL (relative to the chart with un-
adjusted limits) is of the order of 25% or less; that is, the adjustment yields in
this case a good compromise between the guaranteed in-control performance,
the out-of-control performance and the number of Phase I subgroups.

Note that Faraz et al. (2015) concluded that “adjusting the S2 control limit
did not have too much an effect on the out-of-control performance of the
chart.” By contrast, as we have seen, this effect can be significant for small
values of m and n. Clearly, the user should seek a combination of a number
of preliminary samples, m, and a level of adjustment (through the specifi-
cation of the values of αtol and p) that result in an appropriate compromise
between the risk of a large false-alarm rate and a poor out-of-control perfor-
mance. The ideal compromise depends on the particular situation. The tables
in this chapter provide guidance to the user’s decision, and the formulae in
Section 4.2 and this section enable the calculation of the adjusted control limit
and the out-of-control CARL for any particular situation (i.e., for specified
values of m, n, ε, p and α0, and for known γ).
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L∗

p n L L∗/L
m = 25 50 100 200 500

3 2.302 2.736 2.584 2.487 2.422 2.368
1.188 1.123 1.080 1.052 1.029

5 1.927 2.167 2.086 2.032 1.996 1.965
1.125 1.082 1.054 1.035 1.019

10 1.619 1.746 1.704 1.675 1.655 1.638
1.079 1.052 1.035 1.023 1.012

0.05 15 1.496 1.588 1.557 1.537 1.522 1.510
1.062 1.041 1.027 1.018 1.009

20 1.425 1.499 1.475 1.458 1.446 1.436
1.052 1.035 1.023 1.015 1.008

25 1.378 1.441 1.420 1.406 1.396 1.387
1.046 1.031 1.020 1.013 1.007

30 1.343 1.399 1.381 1.368 1.359 1.352
1.042 1.028 1.018 1.012 1.006

3 2.302 2.627 2.513 2.440 2.390 2.349
1.141 1.092 1.060 1.039 1.020

5 1.927 2.108 2.046 2.005 1.977 1.953
1.094 1.062 1.040 1.026 1.013

10 1.619 1.715 1.683 1.660 1.645 1.632
1.059 1.039 1.026 1.016 1.008

0.10 15 1.496 1.565 1.542 1.526 1.515 1.505
1.047 1.031 1.020 1.013 1.006

20 1.425 1.481 1.462 1.449 1.440 1.432
1.039 1.026 1.017 1.011 1.005

25 1.378 1.426 1.410 1.398 1.391 1.384
1.035 1.023 1.015 1.009 1.004

30 1.343 1.386 1.371 1.362 1.355 1.349
1.031 1.021 1.014 1.008 1.004

Table 4.2: Control limit coefficients, unadjusted and adjusted, for Spooled with ε = 0.10 and
α0 = 0.005. Every second row (in italics) gives the ratio between the adjusted and the
unadjusted limit.
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L∗

p n L L∗/L
m = 25 50 100 200 500

3 2.302 2.713 2.562 2.501 2.466 2.402
1.178 1.113 1.087 1.071 1.044

5 1.927 2.153 2.072 2.018 1.982 1.951
1.117 1.075 1.047 1.028 1.012

10 1.619 1.737 1.695 1.666 1.647 1.630
1.073 1.047 1.029 1.017 1.007

0.05 15 1.496 1.581 1.551 1.530 1.516 1.503
1.057 1.037 1.023 1.013 1.005

20 1.425 1.494 1.469 1.452 1.441 1.431
1.048 1.031 1.019 1.011 1.004

25 1.378 1.436 1.415 1.401 1.391 1.382
1.042 1.027 1.017 1.010 1.003

30 1.343 1.395 1.376 1.364 1.355 1.347
1.038 1.025 1.015 1.009 1.003

3 2.302 2.605 2.492 2.446 2.419 2.370
1.132 1.083 1.063 1.051 1.030

5 1.927 2.094 2.033 1.992 1.964 1.940
1.086 1.055 1.033 1.019 1.006

10 1.619 1.706 1.674 1.652 1.637 1.624
1.054 1.034 1.020 1.011 1.003

0.10 15 1.496 1.558 1.535 1.519 1.508 1.498
1.042 1.026 1.016 1.008 1.002

20 1.425 1.475 1.457 1.444 1.435 1.427
1.035 1.022 1.013 1.007 1.001

25 1.378 1.421 1.405 1.394 1.386 1.379
1.031 1.019 1.011 1.006 1.001

30 1.343 1.381 1.367 1.357 1.350 1.344
1.028 1.018 1.010 1.005 1.001

Table 4.3: Control limit coefficients, unadjusted and adjusted, for Spooled with ε = 0.20 and
α0 = 0.005. Every second row (in italics) gives the ratio between the adjusted and the
unadjusted limit.
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CARL CARL
ε p n Unadjusted Adjusted with estimator Spooled

m=25 50 100 200 500
3 10.5 27.8 19.4 15.6 13.6 12.1
5 6.3 12.6 9.8 8.4 7.6 7.0
10 3.2 4.9 4.2 3.8 3.6 3.4

0.10 0.05 15 2.2 3.0 2.7 2.5 2.4 2.3
20 1.7 2.2 2.0 1.9 1.8 1.8
25 1.5 1.8 1.6 1.6 1.5 1.5
30 1.3 1.5 1.4 1.4 1.4 1.3
3 10.5 21.5 16.6 14.1 12.7 11.6
5 6.3 10.5 8.8 7.8 7.2 6.8
10 3.2 4.4 3.9 3.7 3.5 3.3

0.10 0.10 15 2.2 2.8 2.5 2.4 2.3 2.3
20 1.7 2.1 1.9 1.9 1.8 1.8
25 1.5 1.7 1.6 1.5 1.5 1.5
30 1.3 1.4 1.4 1.4 1.3 1.3
3 10.5 26.3 18.5 14.9 13.0 11.6
5 6.3 12.0 9.4 8.1 7.3 6.7
10 3.2 4.8 4.1 3.7 3.5 3.3

0.20 0.05 15 2.2 2.9 2.6 2.4 2.3 2.2
20 1.7 2.1 2.0 1.9 1.8 1.8
25 1.5 1.7 1.6 1.6 1.5 1.5
30 1.3 1.5 1.4 1.4 1.3 1.3
3 10.5 20.4 15.8 13.5 12.1 11.1
5 6.3 10.1 8.4 7.5 7.0 6.5
10 3.2 4.3 3.8 3.6 3.4 3.2

0.20 0.10 15 2.2 2.7 2.5 2.4 2.3 2.2
20 1.7 2.0 1.9 1.8 1.8 1.7
25 1.5 1.6 1.6 1.5 1.5 1.5
30 1.3 1.4 1.4 1.3 1.3 1.3

Table 4.4: Out-of-control CARL for γ = 1.5 of the S chart with and without the adjusted
limits, when W = 1 and α0 = 0.005.
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CARL CARL
ε p n Unadjusted Adjusted with estimator Spooled

m=25 50 100 200 500
3 3.8 6.5 5.3 4.7 4.3 4.1
5 2.2 3.1 2.8 2.6 2.4 2.4
10 1.3 1.5 1.5 1.4 1.4 1.4

0.10 0.05 15 1.1 1.2 1.2 1.1 1.1 1.1
20 1.0 1.1 1.1 1.1 1.0 1.0
25 1.0 1.0 1.0 1.0 1.0 1.0
30 1.0 1.0 1.0 1.0 1.0 1.0
3 3.8 5.6 4.9 4.4 4.2 4.0
5 2.2 2.9 2.6 2.5 2.4 2.3
10 1.3 1.5 1.4 1.4 1.4 1.4

0.10 0.10 15 1.1 1.3 1.3 1.3 1.2 1.2
20 1.0 1.1 1.1 1.0 1.0 1.0
25 1.0 1.0 1.0 1.0 1.0 1.0
30 1.0 1.0 1.0 1.0 1.0 1.0
3 3.8 6.3 5.2 4.6 4.2 4.0
5 2.2 3.1 2.7 2.5 2.4 2.3
10 1.3 1.5 1.4 1.4 1.4 1.3

0.20 0.05 15 1.1 1.2 1.2 1.1 1.1 1.1
20 1.0 1.1 1.1 1.0 1.0 1.0
25 1.0 1.0 1.0 1.0 1.0 1.0
30 1.0 1.0 1.0 1.0 1.0 1.0
3 3.8 5.5 4.7 4.3 4.1 3.9
5 2.2 2.8 2.6 2.4 2.3 2.3
10 1.3 1.5 1.4 1.4 1.4 1.3

0.20 0.10 15 1.1 1.2 1.1 1.1 1.1 1.1
20 1.0 2.0 1.9 1.8 1.8 1.7
25 1.0 1.0 1.0 1.0 1.0 1.0
30 1.0 1.0 1.0 1.0 1.0 1.0

Table 4.5: Out-of-control CARL for γ = 2 of the S chart with and without the adjusted
limits, when W = 1 and α0 = 0.005.
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4.4 Balancing In-Control and Out-of-Control Performance

The aim of the proposed correction is to guarantee a minimum in-control per-
formance. However, the resulting out-of-control performance should not be
ignored, as detecting out-of-control situations is still the main purpose behind
using control charts. To examine this issue, we define the cdf of the CPA,
which can be used to evaluate the out-of-control performance more closely.
First, recall that the CPA as in (4.16) can be rewritten as

CPA(γ, L∗) = P

(
bσ̂2
i

a2σ2 >
W 2

γ2
bL∗2

a2

)
= 1− Fχ2

b

(
W 2

γ2
bL∗2

a2

)
.

Consequently, in a similar way as equation (4.9), we can write the cdf ofCPA(γ, L∗)
as

FCPA(t; γ, L∗) = P

(
1− Fχ2

b

(
W 2

γ2
bL∗2

a2

)
≤ t
)

= P

(
W 2 >

γ2a2χ2
b;1−t

bL∗2

)

= P

(
b0
a2

0
W 2 >

b0
a2

0

γ2a2χ2
b;1−t

bL∗2

)
= 1− Fχ2

b0

(
b0
a2

0

γ2a2χ2
b;1−t

bL∗2

)

Note that FCPA(t; 1, L∗) is equal to FCFAR(t;L∗) from equation (4.10). In the
out-of-control situation, it is desired to obtain a signal as quickly as possible.
This means that in the out-of-control situation the CPA (CARL) is preferred to
be large (small). For a given increase in standard deviation γ and adjusted con-
trol limit coefficientL∗ one can useFCPA(t; γ, L∗) to determine the probability
of obtaining a CPA smaller than a specified value t. Of course, FCPA(t; γ, L∗)
is desired to be small for γ > 1, since this means that a low probability of an
alarm (high CARL) is unlikely in the out-of-control situation. Based on the
situation (e.g. what sizes of shifts may be desired to be detected), one may
argue whether or not such an out-of-control performance is sufficient.

For example, consider the case that m = 50 samples of size n = 5 each
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are available in Phase I, and that we use Spooled as Phase I estimator and Si
as plotting statistic in Phase II. Moreover, consider α0 = 0.005, ε = 0.1 (such
that αtol = 0.0055) and p = 0.05. Finally, suppose that we are interested in
detecting changes in process dispersion such that γ = 1.5. The required value
ofL∗ can be found to be equal to 2.086 (from Table 4.2 or Equation (4.14)). This
control limit coefficient guarantees that the CFAR is less than αtol = 0.0055 (or
the CARL is greater than 1/αtol = 182 when γ = 1) with probability 1 − p =
0.95. From Table 4.4 we conclude that, in the absence of estimation error, the
CARL of this chart will be 9.8 when γ = 1.5. Of course, the out-of-control
CARL for practitioners depends on the estimation error. Suppose that we are
interested in the probability of having CFAR less than 0.067 (or equivalently
CARL greater than 15) when γ = 1.5. For that specific case, one can calculate
this probability to be FCPA(0.067; 1.5, 2.086) = 0.091, which is an indication
of the out-of-control performance.

If the performance is not deemed sufficient, then two alternatives are pos-
sible. The first is to increase the amount of Phase I data, and the second is to
be more lenient on the guaranteed in-control performance. Gathering more
data will provide more accurate estimates of the in-control process in Phase
I, which is incorporated in the adjusted control limits. As there is less uncer-
tainty to account for, the adjusted limit coefficient will be smaller, resulting in
lower out-of-control CARL values. However, often this amount of data is not
available, or costly to collect. If increasing the amount of used Phase I data is
not an option, one may have to choose to be more lenient on the adjustment.
Using larger values of αtol means that we choose a less strict minimum perfor-
mance threshold, while using a larger value of p means that there is a larger
probability obtaining CARL values below the minimum threshold. Both of
these lead to lower adjusted control limit coefficients, and consequently to
lower CARL values in both the in-control and out-of-control situation. In the
example discussed in the previous paragraph, consider adjusting our values
of p and ε to p = 0.1 and ε = 0.2, while leaving the rest as before. This changes
αtol to 0.006 and CARLtol to 1/0.006=167, which indicates a deterioration of
the out-of-control performance. We would then find (from 4.2 or equation
(4.14)) that L∗ = 2.033, which results in FCPA(0.067; 1.5, 2.033) = 0.030. This
is substantially smaller than the 0.091 obtained previously, which illustrates
the balancing of the in-control and out-of-control performance.
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4.5 Practical Example

In this section we illustrate how the proposed control limits should be imple-
mented in practice, by means of a practical example. We consider a dataset
provided in Montgomery (2013) that contains the inside diameters of forged
automobile engine piston rings. In Phase I, the control limits are constructed
based on m = 25 samples of size n = 5 each. These obtained limits are then
used for monitoring the process standard deviation in Phase II. As an exam-
ple, the application of the control chart is illustrated usingm = 15 samples of
size n = 5 each, obtained in Phase II. The corresponding Phase I and Phase
II data can be found in Table 6.3 and Table 6E.8 of Montgomery (2013), pages
260 and 283, respectively.

Before the control limits are constructed, we check if the Phase I data used
to calculate them follow a normal distribution. From the Shapiro-Wilk test for
normality we find no reason to reject the normality assumption, as the p-value
is close to 0.9. This means that we can continue with the construction of the
control limits, which is done through the following steps:

1. First, we determine our parameters. We havem = 25 and n = 5, and we
choose α0 = 0.005, p = 0.1 and ε = 0. Note that for this case αtol = (1 +
ε)α0 = 0.005, and consequently CARLtol = 1/αtol = 200. Combined
with p = 0.1, this means that a minimum in-control CARL of at least
200 is guaranteed with 100(1− p)% = 90% probability.

2. Secondly, we need to determine our estimator and plotting statistic, and
their corresponding values of a, b, a0 and b0. We consider σ̂0 = Spooled
as Phase I estimator, and σ̂i = Si as plotting statistic, which means that
we have a = 1, b = n − 1 = 4, a0 = 1, and b0 = m(n − 1) = 100. As
Phase I estimate we find Spooled = 0.0100.

3. The values from steps 1 and 2 are implemented in equation (4.13) to
obtain L∗ = 2.124. As a comparison, using equation (4.2) we find L =
1.928. We can now calculate the adjusted and unadjusted control limits
as ÛCL

∗
= L∗σ̂0 = 2.124 · 0.0100 = 0.0212 and ÛCL = Lσ̂0 = 1.928 ·

0.0100 = 0.0193, respectively.
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The obtained limit ÛCL
∗

can now be used to monitor the process standard
deviation, as is illustrated in Figure 4.5 for the provided Phase II dataset. For
comparison purposes, we have also added the unadjusted control limit to this
figure. As can be seen in the figure, the adjusted limit is larger than the unad-
justed limit to prevent low in-control CARL values. Note that, for this specific
data, neither of the control limits indicate an out-of-control situation, since all
observations are below both limits.

Figure 4.5: Application of the proposed control chart with the piston ring dataset. Both the
unadjusted and adjusted control limits are indicated.

4.6 Concluding Remarks

Not accounting for the effects of parameter estimation can cause substantial
deterioration in control chart performance, both in the in-control and out-of-
control cases. The in-control performance at some nominal value is very im-
portant when it comes to implementing and using a control chart that can be
relied upon. A Phase I dataset is typically required to estimate the unknown
parameters and as the Phase I dataset will differ across practitioners, so will
the control chart limits, and consequently the control chart performance. In-
creasing the amount of available Phase I data will improve the control chart
performance and decrease the performance variation among practitioners.
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However, the required amount of Phase I data to achieve good (close to
nominal) in-control control chart performance is typically infeasible (see Ep-
precht et al., 2015). Thus, for a practical implementation, we propose the use
of adjusted control chart limits for Shewhart control charts for dispersion un-
der normality adopting an alternative point of view. The idea is in line with
recent research, for example Faraz et al. (2015), Saleh et al. (2015a,b), and with
the results in Chapter 3. The adjusted control limits are determined such that
a minimum in-control chart performance is guaranteed with a pre-specified
probability. However, whereas Faraz et al. (2015) use a bootstrap approach
following Gandy and Kvaløy (2013), we derive analytical expressions to deter-
mine the adjusted limits that are easier to implement, and give more insight in
the required adjustment. Our adjusted limits allow different available estima-
tors of standard deviation to be used in the analysis, and are easily applicable
to any monotone increasing transformation of S.

Because of the formulation based on the CFAR, the adjusted control chart
(limit) accounts for parameter estimation and yields better in-control perfor-
mance compared to the unadjusted chart which does not account for param-
eter estimation. The in-control performance of the unadjusted chart suffers
from parameter estimation and the practitioner-to-practitioner variability and
therefore is unreliable. However, note that this gain in the in-control perfor-
mance of the adjusted chart is seen to lead to a deterioration of the out-of-
control performance for smaller number of Phase I subgroups. Thus, a trade-
off has to be made in practice to balance the in-control and out-of-control per-
formance properties of the control chart depending on the amount of Phase
I data at hand. We recommend using the adjusted limits since the in-control
(stability) performance of a control chart is deemed more important in prac-
tice and our results show that the loss of some out-of-control performance can
be tolerable, particularly for larger amounts of Phase I data.
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5. Nonparametric Control Charts

In the previous chapters, control limit adjustments are provided for when data
are normally distributed. However, in practice, the distribution of the data is
generally unknown. Therefore, we provide alternative methods in this chap-
ter that are less dependent on this normality assumption. In particular, we
provide nonparametric control limits, as well as some intermediate paramet-
ric methods such as transformations to normality and a bootstrap procedure.
All methods described in this chapter are based on the exceedance probability
criterion. This chapter is based on Goedhart et al. (2018b).

5.1 Introduction

When the data are normally distributed, the methods described in the previ-
ous chapters provide suitable adjustments to compensate for the effect of pa-
rameter estimation. Although it is possible to derive adjusted control limits
for various distributions, the true distribution of a dataset under considera-
tion is in general unknown and has to be estimated along with its parameters.
When the distributional assumptions are violated these adjustments are no
longer appropriate, and yield unsatisfactory control chart performance.

As mentioned also in Section 1.4, the total estimation error can be split
up in two distinct errors: the model error (ME) and the stochastic error (SE).
In order to remove the ME entirely, one can consider the use of nonparamet-
ric methods. Most nonparametric methods revolve around the use of order
statistics, such as the nonparametric tolerance intervals described in Krish-
namoorthy and Mathew (2009). Other methods, such as the bootstrap pro-
cedure of Gandy and Kvaløy (2013), are often only partially nonparametric.
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Although bootstrapping the Phase I sample may be performed in a nonpara-
metric way, the key of this method is to determine the required limits for each
bootstrap replication. This, in turn, requires some distributional assumptions
in order to be accurate for small samples. For this reason, Gandy and Kvaløy
(2013) themselves already advised to use a parametric instead of nonparamet-
ric bootstrap procedure for Shewhart type control charts. We will elaborate on
this further in Section 5.3.2. For some general information on nonparametric
control charts we refer to Chakraborti et al. (2015).

In this chapter we estimate the control limits based on nonparametric tol-
erance intervals, and determine the corresponding exceedance probabilities.
A major advantage of nonparametric control charts is that they can be ap-
plied to individual observations as well as subgroup statistics. For example,
when treating subgroup standard deviations as individual observations, one
can apply a nonparametric control chart to monitor the standard deviation.
The same can be done for various other test statistics as well (e.g. the average,
range, or other robust estimators for location or dispersion), regardless of the
distribution under consideration. Because the nonparametric setup does not
give severe restrictions for the charting statistic Yi, this makes the approach
very general.

However, nonparametric methods generally yield a larger stochastic er-
ror compared to parametric methods, which means that larger sample sizes
are required in order to obtain accurate results. To this end, we compare the
results of the nonparametric methods with several options that make use of
adjustments developed for normally distributed data and transformations to
normality, as well as a bootstrap procedure. We would also like to emphasize
that the choices and consequences regarding sample sizes, model assump-
tions and accuracy of results, are not limited to SPM. The findings and trade-
offs discussed in this chapter also apply to many other statistical applications.

This chapter is organized as follows. In Section 5.2 we illustrate the pro-
posed nonparametric control chart design. Next, in Section 5.3 we discuss
some alternative methods and make a comparison. Finally, in Section 5.4 we
provide some concluding remarks.
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5.2 Nonparametric Control Limits

We want to determine the nonparametric estimated control limits L̂CL and
ÛCL that satisfy the exceedance probability criterion. Consider again Yi as
the Phase II monitoring statistic, and consider the case that the process is
in-control. Note that, in this chapter, Yi is not assumed to be normally dis-
tributed, and can be an individual observation as well as a subgroup statistic.
Because of the analogy between the CFAR and the CARL, we again focus on
CFAR in this chapter. In this case, the exceedance probability criterion is equal
to

P (CFAR > αtol) = P
(
1− P

(
L̂CL ≤ Yi ≤ ÛCL

)
> αtol

)
= p. (5.1)

For a random variable Yi, this criterion is equivalent to the construction of a
tolerance interval with a coverage of at least 1 − αtol with probability 1 − p.
For this reason, we consider nonparametric tolerance interval theory.

The nonparametric tolerance intervals as described in Krishnamoorthy
and Mathew (2009) are constructed using order statistics. In particular, each
limit is determined by a single order statistic. Although this method entirely
rules out the ME caused by model misspecification, it is obvious that this in-
creases the SE compared to parametric methods. Other disadvantages of us-
ing only a single order statistic for each limit is that this approach generally
leads to rather conservative estimates, or to cases where the desired coverage
probability can’t be guaranteed because of small sample sizes. These issues
are addressed in Young and Mathew (2014), who suggest to construct toler-
ance limits based on interpolated and extrapolated order statistics, depending
on the sample size. In this section we explore their procedure for determining
the required limits for completeness and evaluate its performance.
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5.2.1 Estimation of Nonparametric Control Limits

The first step is to determine whether one should interpolate or extrapolate.
This is done by determining the minimum sample size requirement for the
construction of a two-sided nonparametric tolerance interval based on un-
weighted order statistics, as in Krishnamoorthy and Mathew (2009). If the
sample size available is large enough, one should interpolate to make the es-
timated interval less conservative. If the sample size is not large enough, one
has to extrapolate to reach a desired exceedance probability. Note that in this
chapter the sample size and corresponding requirements relate tom, the num-
ber of observations of Yi, and not to the subgroup size n. The sample size m
is sufficient when the following equation holds

(m− 1) (1− αtol)m −m (1− αtol)m−1 + 1 ≥ 1− p. (5.2)

For a derivation of Equation (5.2) we refer to Section 8.6.1 of Krishnamoor-
thy and Mathew (2009). Solutions to this equation can for example be de-
termined relatively easily with the function distree.est() included in the
R-package tolerance (see also Young and Mathew, 2014). In Table 5.1 we
provide an overview ofm2(αtol, p), the minimum sample size requirement for
a two-sided tolerance interval based on unweighted order statistics, for sev-
eral values of αtol and p. We now make a distinction between the limits when
interpolating (m ≥ m2(αtol, p)) and when extrapolating (m < m2(αtol, p)).

p
αtol 0.2 0.1 0.05
0.05 59 77 93
0.01 299 388 473

0.005 598 777 947
0.0027 1109 1440 1756

Table 5.1: Minimum required sample size m2(αtol, p) for two-sided tolerance intervals
based on unweighted order statistics.

104



5.2 NONPARAMETRIC CONTROL LIMITS

5.2.2 Interpolated Control Limits

When m ≥ m2(αtol, p), the starting point is the two-sided tolerance interval
[X(r),X(s)] according to Krishnamoorthy and Mathew (2009), where X(j) de-
notes the j-th order statistic from a Phase I sample Xi, with i = 1, ..,m. Note
thatXi may be an individual observation or a subgroup statistic. This interval
yields a coverage probability of P (B ≤ k − 1) ≥ 1− pwhereB ∼ Bin(m, 1−
αtol), and where k = s − r. In terms of equation (5.1) this is equivalent to
P (CFAR > αtol) ≤ p. Next, the two intervals [X(r+1),X(s)] and [X(r),X(s−1)]
are considered, which yield a coverage probability of P (B ≤ k − 2) < 1 − p.
Linear interpolation is then used at both sides of the original tolerance interval
to obtain

λ1 = (1− p)− P (B ≤ k − 2)
P (B ≤ k − 1)− P (B ≤ k − 2) = (1− p)− P (B ≤ k − 2)

P (B = k − 1)
X(r∗) = λ1X(r) + (1− λ1)X(r+1)

X(s∗) = λ1X(s) + (1− λ1)X(s−1)

(5.3)

The proposed two-sided nonparametric tolerance interval is then given by the
shortest interval of [X(r∗),X(s)] and [X(r),X(s∗)]. L̂CL and ÛCL are then set
equal to the lower and upper limit of this interval, respectively.

5.2.3 Extrapolated Control Limits

Whenm < m2(αtol, p), the coverage probability of [X(1),X(m)] is not sufficient,
and one has to extrapolate. Note that the coverage probability of [X(1),X(m)]
equalsP (B ≤ m− 2), and that the coverage probability of the intervals [X(1),X(m−1)]
and [X(2),X(m)] equals P (B ≤ m− 3). Then, with linear extrapolation, the
following results are obtained

λ2 = − (1− p)− P (B ≤ m− 2)
P (B ≤ m− 2)− P (B ≤ m− 3) = −(1− p)− P (B ≤ m− 2)

P (B = m− 2)
X(1∗) = λ2X(2) + (1− λ2)X(1)

X(m∗) = λ2X(m−1) + (1− λ2)X(m)

(5.4)
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The two-sided nonparametric tolerance interval proposed by Young and Mathew
(2014) is then equal to [X(1∗),X(m∗)]. For a nonparametric control chart, one
can thus set the L̂CL and ÛCL equal to the lower and upper limit of this in-
terval, respectively.

5.2.4 Performance of the Proposed Limits

In this section we evaluate the performance of these methods for various dis-
tributions. Although Young and Mathew (2014) already provide an extensive
evaluation, their results are focused on theory on tolerance intervals. In that
setting, values for αtol of interest are generally in the order of 0.05 to 0.5, while
in statistical process monitoring the interest lies much further in the tails. For
that reason, we focus mainly on the results for αtol = 0.0027, but we have
included the values 0.01 and 0.05 as well for completeness.

The evaluation of the proposed control limits is done for various distri-
butions. In particular we consider the standard normal distribution, its ex-
ponent (i.e. lognormal with µ0 = 0 and σ0 = 1), a chi-square distribution
with 4 degrees of freedom (χ2

4), and a t-distribution with 4 degrees of free-
dom (t4). The standard normal distribution gives a good representation of
the performance when normal theory is applicable. The lognormal distribu-
tion provides a common skewed alternative. The χ2

4 provides another skewed
alternative, and gives a good indication of the performance of these control
limits for various estimators of dispersion. Note that if the data itself are nor-
mally distributed, most estimators of dispersion are distributed according to
a chi-square distribution, as also discussed in Chapter 4. The chosen degrees
of freedom (df = 4) corresponds to standard deviations of subgroups of size
5. The t4 provides a symmetrical alternative to the normal distribution, but
with wider tails. Also, similarly to the χ2

4, various test statistics for location
are based on the t-distribution, such that the chosen df = 4 could represent
test statistics in subgroups of size 5.

In order to asses the performance of the proposed limits, we have per-
formed a simulation study. In particular, for various combinations of m and
αtol together with p = 0.1 and p = 0.2, we have applied the following proce-
dure
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1. A dataset consisting of m observations is drawn from the specified dis-
tribution.

2. Estimate the control limits L̂CL and ÛCL according to formulas (5.3)
and (5.4), depending on the value of m, as described in the previous
section. This method is available in the R-package tolerance with the
function nptol.int().

3. Determine P
(
L̂CL ≤ Yi ≤ ÛCL

)
using the in-control distribution of

the data.

4. Repeat steps 1 to 3 for 10,000 different Phase I samples, and calculate the
proportion for which 1−P

(
L̂CL ≤ Yi ≤ ÛCL

)
> αtol. This proportion

should be approximately equal to p according to the criterion described
in (5.1).

The results of the described procedure are given in Table 5.2 for p = 0.1
and Table 5.3 for p = 0.2. Recall that the values displayed should be approxi-
mately equal to p. As can be seen in the tables, the obtained values are in gen-
eral close to their desired value. However, one can still observe a deterioration
of the performance when αtol becomes smaller, given the sample sizes consid-
ered. While we observe only small deviations from p when αtol = 0.05, these
deviations are substantially larger for αtol = 0.0027. Also, for αtol = 0.0027
the performance is not entirely consistent for the smallest sample sizes under
consideration, as we observe quite some different values for the sample sizes
m = 100, 250 and 500.

As we increase the sample size to larger values such asm = 1500, the per-
formance moves closer to the desired level. This is, of course, not entirely un-
expected because of the sample sizes and αtol values under consideration. For
example, estimating a tolerance interval with a coverage of 1−0.0027 = 0.9973
based on order statistics from a sample of m = 250 observations is not as ac-
curate as we would like. Note also that m2(αtol, p), the minimum sample size
requirement when using Krishnamoorthy and Mathew (2009), equals 1440 for
αtol = 0.0027 and p = 0.1, as can be seen in Table 5.1. When the interpolation
Formula (5.3) is applied, the results for p = 0.1 are almost perfect. Moreover,
contrary to other parametric methods, the distribution under consideration
only has a small impact on the performance. This difference only becomes
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slightly larger when the difference in coverage probability between the inter-
vals that are used for the interpolation increases, as can be seen for example
when p = 0.2 and αtol = 0.0027

As observed, the proposed control limits provide better performance in
terms of exceedance probability when sample sizes are larger. Moreover, the
variation between the resulting CFAR values becomes smaller as sample sizes
are increased, due to a smaller SE. This is illustrated as well in Figure 5.1. For
αtol = 0.0027, p = 0.1 and various sample sizes under consideration, this
figure shows the variation between CFAR values obtained from the different
simulated Phase I samples by means of boxplots. We have used the results
from the normally distributed data, but the results for other distributions are
similar. The horizontal dotted line indicates the location of αtol, which should
be close to the (1−p)-quantile of the boxplots (the actual value can be obtained
from Table 5.2). We have left out the case m = 100 due to the large variation
present there, which would make the rest of the boxplots more difficult to
compare.

As can be observed, increasing the sample sizes results in less variation,
and less extreme CFAR values. Although perhaps more difficult to detect di-
rectly, these extreme CFAR values occur close to zero as well, which can be
seen from the location of the bottom side of the box and/or whisker. For
m = 250, it is obvious from the box that there are many low CFAR values. For
m = 100, these values are even more frequent. This is mainly caused by the
fact that the extrapolations will go further beyond the furthest order statistics
obtained when sample sizes are small. Since the extrapolation is linear, this
may result in rather extreme estimates of the control limits. This is undesir-
able, as it may lead to a substantial deterioration in control limit performance
in out-of-control situations. When sample sizes are sufficient so that the con-
trol limits can be derived by interpolation, the estimated limits will never go
beyond the smallest/largest order statistics obtained from the sample, result-
ing in fewer extreme estimates. Therefore, when sample sizes are small (e.g.
m = 100), it might be better to step away from the exceedance probability cri-
terion or choose more lenient parameter values (e.g. larger αtol and/or p).
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αtol
m 0.05 0.01 0.0027

100 0.0932 0.2374 0.0927
250 0.1124 0.1612 0.2146

Normal 500 0.0733 0.0906 0.2477
1000 0.0820 0.0972 0.1526
1500 0.1127 0.1089 0.0988
2500 0.0915 0.0802 0.1034
100 0.0836 0.2236 0.0814
250 0.1028 0.1630 0.1862

χ2
4 500 0.0990 0.0808 0.2299

1000 0.0903 0.0871 0.1494
1500 0.1037 0.0973 0.0884
2500 0.0966 0.0939 0.0987
100 0.0728 0.2355 0.0963
250 0.0942 0.1705 0.2200

Lognormal 500 0.0958 0.0738 0.2401
1000 0.1000 0.0900 0.1613
1500 0.0983 0.0900 0.0912
2500 0.1032 0.1002 0.0943
100 0.0904 0.2756 0.1243
250 0.1013 0.1794 0.2617

t4 500 0.0769 0.0803 0.2744
1000 0.0745 0.1022 0.1705
1500 0.1094 0.1082 0.0909
2500 0.0845 0.0781 0.0999

Table 5.2: Exceedance probabilities for proposed control limits for p = 0.1.
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αtol
m 0.05 0.01 0.0027

100 0.1124 0.2664 0.1056
250 0.1954 0.2192 0.2368

Normal 500 0.1612 0.1239 0.2665
1000 0.2146 0.1325 0.2129
1500 0.2066 0.2039 0.2015
2500 0.2028 0.1732 0.1435
100 0.1654 0.2484 0.0927
250 0.1973 0.2127 0.2179

χ2
4 500 0.1887 0.1703 0.2613

1000 0.1958 0.1856 0.2014
1500 0.1931 0.1920 0.1677
2500 0.1919 0.1890 0.1996
100 0.1835 0.2747 0.1107
250 0.1979 0.2235 0.2379

Lognormal 500 0.1964 0.1765 0.2725
1000 0.2016 0.1944 0.2089
1500 0.2016 0.1928 0.1582
2500 0.1967 0.1989 0.2015
100 0.1338 0.3115 0.1397
250 0.1944 0.2350 0.2883

t4 500 0.1657 0.1331 0.3114
1000 0.2138 0.1432 0.2075
1500 0.2022 0.1998 0.1775
2500 0.2037 0.1748 0.1538

Table 5.3: Exceedance probabilities for proposed control limits for p = 0.2.
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Figure 5.1: Boxplots of CFAR for normally distributed data with αtol = 0.0027 and
p = 0.1, when applying nonparametric control limits. Horizontal dashed line indicates αtol.

5.3 Alternative Parametric Methods

In this section we discuss alternative methods that aim to satisfy equation
(5.1). First, we discuss methods based on normal theory, after which we elab-
orate more on the bootstrap procedure proposed by Gandy and Kvaløy (2013).
In parametric methods, SE will be smaller compared to nonparametric meth-
ods due to better use of available information. However, ME plays a bigger
role there since deviations from the model assumptions might be larger than
the actual decrease in SE. Moreover, the errors can differ in size for different
distributions. At the end of this section, we include a performance compari-
son using a numerical study.
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5.3.1 Normal Tolerance Interval Methods and Extensions

Various publications have been devoted to tolerance intervals for normal pop-
ulations, see also Krishnamoorthy and Mathew (2009). Moreover, in Chap-
ter 3 we also discuss control limits based on this theory. However, in prac-
tice the problem is that data often aren’t normally distributed. To this end,
we evaluate some techniques that aim to make normal theory applicable. In
particular, we discuss the application of the Central Limit Theorem (CLT) on
subgroup averages to create an approximately normally distributed dataset,
as well as transformations to normality as proposed for SPM by Chou et al.
(1998). The intention of such techniques is to retain the relatively small SE
compared to completely nonparametric models, but reducing the accompa-
nying ME caused by deviations from normality.

Application of CLT in SPM

The use of subgroups is a common practice in SPM during data collection.
In such a sampling strategy, one could argue to use the subgroup averages as
individual observations and apply CLT. Often, subgroups of size 5 are rec-
ommended in SPM, while a sample size of 30 is generally deemed enough
for CLT to apply. Especially with the recent developments in increasing data
availability, one could argue that collecting such amounts of data should not
be a problem.

Although CLT works well for the major (middle) part of the data, it is of
less use when the far tails are of interest. As recently shown by Huberts et al.
(2018), in some cases it might even require subgroups of more than 1,000 ob-
servations before the control chart performance is satisfactory for application
in SPM. This is primarily caused by the fact that SPM is interested in the far
tail of the distribution. While common statistical tests are generally based
on a 5% significance level, the original Shewhart control chart based on 3σ-
limits goes as far as 0.27%. Also, distributions with wider tails (such as the
t-distribution) and highly skewed distributions (lognormal in particular) re-
quire much larger subgroup sizes before the control chart behaves as it would
under normal theory. While using subgroup averages would thus be appro-
priate for statistical tests or tolerance intervals based on a 5% significance level
or coverage, its benefits in SPM are only marginal.
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Transformations to Normality

Another option to make the use of techniques developed for normally dis-
tributed data viable, is to transform the data such that a normal distribution
is appropriate. One of the most applied transformations in statistics is the
Box-Cox transformation, originating from Box and Cox (1964). This method
is used to transform data into a symmetrical distribution. Although this gen-
erally lowers the deviation from normality, the resulting transformed data are
often far from normally distributed. Similar conclusions can be found in Sakia
(1992) among others.

A method that specifically intends to transform data to normality in the
field of SPM is proposed by Chou et al. (1998). They propose transforma-
tions based on the Johnson system of distributions, and provide a step-by-step
procedure revolving around the Shapiro-Wilk test for normality. Transforma-
tions are only applied when normality of the data is rejected in the first step.
One can use this procedure in combination with the suggested control lim-
its in Equation (3.37), which satisfy the exceedance probability criterion for
normally distributed data. This results in the following procedure

1. First, test the data for normality using the Shapiro-Wilk test. If normality
is not rejected, proceed to step 3. Otherwise, continue with step 2.

2. Transform the data as described in Chou et al. (1998). This can be done
for example with the R-package RE.Johnson.

3. Compute the average and standard deviation of the (transformed) data,
and use these to construct the control limits using Equation (3.37) with
the input parameters m, αtol and p. Note that for the average and stan-
dard devation we have a = 1, b = m − 1 and c = 1/m in this Equation.
Of course, other estimators can also be considered.

4. If the data were transformed, transform the control limits back to their
original scale by inverting the transformation used in step 2. If not, no
further actions are required.
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5.3.2 Bootstrap Procedure

In the previous Subsection 5.3.1 we have described several methods that aim
to make the normal tolerance interval theory applicable. Another option is
to derive parametric limits for various other specific distributions, as is done
in Krishnamoorthy and Mathew (2009). In their book they considered the
lognormal, Gamma, two-parameter exponential and the Weibull distribution.
However, in practice the true distribution of the data is unknown and still has
to be estimated. To this end, we consider methods that aim to provide a more
general parametric model in order to find the required limits. Such methods
have to be flexible with regard to the location, shape, skewness and kurtosis
of the distribution under consideration. A well known system of distributions
that allows for such flexibility is the Pearson system, which consists of differ-
ent types of distributions. An alternative that has one single distribution type
based on four parameters to be estimated is given in Low (2013).

The next step is to derive tolerance limits for these general models. To
do this, they can be combined with the Gandy and Kvaløy (2013) bootstrap
procedure. The idea of the bootstrap procedure is that first, a distribution is
fitted to the data. This fit is then assumed to be the true distribution, after
which bootstrap samples are drawn from the assumed distribution. These
bootstrap samples provide an estimate of the estimation uncertainty accom-
panying the Phase I data. Then, in each bootstrap replicate, one has to deter-
mine the required limits in order to provide a desired result in the assumed
distribution of the Phase I sample. This however, requires some distributional
assumptions to be accurate, as it requires estimation of small (e.g. αtol/2 and
1 − αtol/2) quantiles of the assumed Phase I distribution. Thus, even when
the bootstrap samples are drawn in a nonparametric way (using the empirical
cdf), determining the required limits for each bootstrap sample is not accurate
when done nonparametrically. To still remain general with the distributional
assumptions, one can combine the bootstrap method with the Pearson system
of distributions. This procedure is as follows

1. A Pearson distribution is fitted on the dataset based on the first four
central moments. Procedures to do this are available in various statis-
tical software programs, such as the function pearsonFitM from the R-
package PearsonDS. We denote this fitted distribution as F̂ .

2. From the fitted distribution F̂ , draw mB (e.g. 500 or 1,000) bootstrap
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samples of size m each. For each bootstrap sample, fit a Pearson distri-
bution, similarly to step 1. Denote the fitted distribution of the bootstrap
sample as F̃ .

3. For each bootstrap sample (i = 1, ...,mB), determine the required value
αB,i such that F̂

(
F̃−1(αB,i/2)

)
+ 1− F̂

(
F̃−1(1− αB,i/2)

)
= αtol. Note

that, for two-sided control charts, determining the limits through ad-
justing the chosen quantiles α/2 and 1 − α/2 seems to be the most rea-
sonable choice for correcting equally on both sides, as treating the LCL
and UCL separately may lead to an infinite number of solutions. Note
also that, due to the bounded character of some of the Pearson distribu-
tion types, this equation does not always have a solution. This happens
in particular for highly skewed distributions. When this is the case, set
αB,i = αtol/100, or some other small value. The reason to choose such a
rather small value is that when it occurs rarely, it won’t impact the out-
come of the bootstrap procedure (see the next step). However, when it’s
not rare, it means that such small quantiles are actually required to con-
trol the performance, but going for even smaller values would result in
control limits converging to infinity on one side.

4. Determine the required adjusted value αadj as the p-quantile of the vec-
tor αB obtained in the previous step. Then construct control limits ac-
cording to L̂CL = F̂−1(αadj/2) and ÛCL = F̂−1(1− αadj/2).

Note that, instead of the Pearson system of distributions, one could also con-
sider other general parametric methods such as Low (2013). However, our
results in that case were similar.

5.3.3 Performance Comparison

In order to assess the performance of the methods proposed in this section, we
have evaluated the prescribed procedures for various settings. We illustrate
the results for the limits from Equation (3.37), both with (denoted Chou) and
without (denoted Normal) the transformation proposed in Chou et al. (1998),
as well as the Gandy and Kvaløy (2013) bootstrap procedure (denoted GK)
described in 5.3.2. Also, we consider the same distributions as in Section 5.2.4.
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For various sample sizes m together with p = 0.1 and αtol = 0.0027, we have
assessed the exceedance probability criterion as described in (5.1). Note that
in this comparison we only consider αtol = 0.0027 since we are interested
in the application of these methods in SPM. We have applied the following
procedure for each parameter combination

1. A dataset consisting of m observations is drawn from the specified dis-
tribution.

2. The methods under consideration are applied to determine the estimated
control limits L̂CL and ÛCL for each method.

3. DetermineP
(
L̂CL ≤ Yi ≤ ÛCL

)
using the original in-control distribu-

tion of the data.

4. Repeat steps 1 to 3 for 1,000 different Phase I samples, and calculate the
proportion for which 1−P

(
L̂CL ≤ X ≤ ÛCL

)
> αtol. This proportion

should be approximately equal to p according to the criterion described
in (5.1).

The results of the described procedure can be found in Table 5.4. We have
also included the results from Table 5.2 (denoted by YM) for comparison pur-
poses. Recall that the values displayed in the tables should be approximately
equal to p. As can be observed from the table, the performance for the para-
metric methods is not very stable for this small value of αtol, as the outcomes
vary substantially. It can also be seen that the nonparametric control limits
from Section 5.2 perform best for every distribution except the normal distri-
bution, as the values are in general closest to p. It is of course not unexpected
that the other methods perform better for normally distributed data. The con-
trol limits of (3.37) are derived specifically for this case, while the Johnson
transformation from Chou et al. (1998) is only applied when the normality
assumption is rejected. The Pearson system also subsumes the normal dis-
tribution as special case in various types. Although the Pearson system also
subsumes the t-distribution and the chi-square distribution as special cases,
these are each only incorporated in a single type of the Pearson system. Since
the type has to be estimated as well in the bootstrap procedure, this yields
some extra estimation uncertainty, resulting in an unsatisfactory performance
for these distributions. The lognormal distribution is not incorporated in the

116



5.3 ALTERNATIVE PARAMETRIC METHODS

Pearson system, and the corresponding results are very unsatisfactory for
the bootstrap procedure. Due to the highly skewed character of the lognor-
mal distribution, small deviations in the estimation of the limits lead to large
changes in the CFAR or CARL.

We also observe some influence of the sample sizem on the performance.
However, increasing the sample size to values such as 2,500 does not seem
to overcome the performance issues corresponding to small values of αtol for
the parametric methods. Taking these aspects in consideration, together with
the fact that the true distribution of the data is generally unknown, we ar-
gue that the proposed limits in Section 5.2 yield a more stable and satisfying
performance when moderately large sample sizes are available. When sam-
ple sizes are small, one has to lower the demands placed on the control chart
performance. To do this, there are two general directions. The first option is
to evaluate which assumptions one can reasonably make about the data, and
use these assumptions to determine the control limits. For example, if one is
confident that an underlying dataset is (approximately) normally distributed,
one can use the control limits from Equation (3.37) for more satisfying results.

The second option is to implement less strict performance criteria, which
can be done through parameter settings (e.g. p and αtol). Especially when
combined with subgroup or aggregated statistics, the latter is not that strange.
For example, consider a process for which an observation is collected once
every day. For a control chart with individual observations, αtol = 0.0027
corresponds to about one false signal per year. When using some weekly (ag-
gregated) statistic, such as an average, instead of the individual daily obser-
vations, the same value of αtol = 0.0027 would lead to a false signal about
once every seven years. In order to remain with the one false signal per year,
one has to increase αtol accordingly. This holds for every situation where ob-
servations are aggregated, regardless of the actual time difference between
observations. The aggregation itself may help in transforming the data to a
known (such as normal) distribution, while somewhat larger values of αtol (in
the direction of 0.05) improve the performance of the described methods due
to a lower dependency on the far tail behavior. Thus, when aggregating ob-
servations or when using subgroup statistics, considering an increased value
of αtol is actually a plausible idea.
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NONPARAMETRIC CONTROL CHARTS

m Normal Chou GK YM
100 0.0990 0.0970 0.3830 0.0927
250 0.0960 0.1180 0.1830 0.2146

Normal 500 0.1090 0.1210 0.0900 0.2477
1000 0.1000 0.1150 0.0880 0.1526
1500 0.1000 0.1200 0.0890 0.0988
2500 0.0960 0.1310 0.0870 0.1034
100 0.9910 0.4590 0.8630 0.0814
250 1.0000 0.4030 0.7900 0.1862

χ2
4 500 1.0000 0.3700 0.6870 0.2299

1000 1.0000 0.3010 0.6260 0.1494
1500 1.0000 0.2900 0.5500 0.0884
2500 1.0000 0.2590 0.4650 0.0987
100 0.9800 0.3860 1.0000 0.0963
250 0.9960 0.3730 1.0000 0.2200

Lognormal 500 0.9990 0.3520 1.0000 0.2401
1000 0.9990 0.3190 1.0000 0.1613
1500 1.0000 0.3220 1.0000 0.0912
2500 0.9990 0.3270 1.0000 0.0943
100 0.9880 0.4910 0.5550 0.1243
250 0.9940 0.3950 0.2650 0.2617

t4 500 0.9980 0.4590 0.2240 0.2744
1000 0.9990 0.5660 0.2310 0.1705
1500 0.9980 0.6420 0.2610 0.0909
2500 1.0000 0.7360 0.2990 0.0999

Table 5.4: Comparison of exceedance probabilities for αtol = 0.0027 and p = 0.1.
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5.4 Concluding Remarks

Since the data distribution and its corresponding parameters are generally un-
known, they have to be estimated using a Phase I reference sample. Because
of the variability induced by sampling (stochastic error), the estimated control
limits will vary for different Phase I samples. This leads to different control
chart performance for different practitioners. To correct for the effect of pa-
rameter estimation, we proposed the application of nonparametric tolerance
intervals in statistical process monitoring in this chapter, and compare them
with some general parametric models.

A major advantage of nonparametric control charts is that they can be ap-
plied to any monitoring statistic of interest, by treating subgroup statistics
as individual observations. In that way, the nonparametric control chart can
be applied to X , X̄ , R, and S control charts, or even other test statistics, re-
gardless of the distribution under consideration. The proposed control limits
in this chapter perform well in satisfying this criterion in general, especially
when moderately large samples are available.

When available sample sizes are small, or when data collection is costly,
one may have to be more lenient towards the desired control chart perfor-
mance. This means that one might have to place some additional restrictions
on the used model, such as distributional assumptions, or lower the demands
through the choices of parameters p andαtol. The latter is also a feasible choice
when sample sizes are made small artificially due to aggregation of individual
observations.
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6. Summary

In this dissertation we discuss the effects of parameter estimation in statistical
process monitoring (SPM), and provide adjusted and new control chart de-
signs to take these effects into account. As data availability is steadily increas-
ing in recent times, the need for tools to monitor large data streams increases
with it. The field of SPM revolves around detecting possible changes in a pro-
cess through monitoring its process data. An important tool that aids in this
detection is the control chart. In this dissertation, we focus on a specific type
of control chart, namely the Shewhart control chart.

Every process displays variation. For example, if we think of our own
body, our heart rate, blood glucose, and many other characteristics vary over
time. It is often very difficult to pinpoint the exact cause of these differences,
as they are an aggregation of many minor influences. However, certain special
events or disturbances can change the underlying process, leading to another
source of variation. For example, a virus or disease can affect certain char-
acteristics in our body. Detecting these special events or disturbances early
makes it possible to take adequate counter measures, limiting the impact of
the special causes.

In order to detect possible changes in an underlying process, a distinction
is made between two sources of variation, common cause and special cause
variation. The first is variation that is inherent to the process, while the latter
is caused by special events. When a process only contains common causes of
variation, it is referred to as in-control. When special causes are present, the
process is referred to as out-of-control. The first step in order to detect pos-
sible out-of-control situations, is to determine the in-control behavior of the
process. To this end, a Shewhart control chart consists of two control limits,
an upper and a lower control limit (UCL and LCL, respectively) that indicate
whether or not a process is in-control.

Originally, the in-control behavior of a process was assumed known. More
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specifically, normally distributed data with known mean and standard devi-
ation were assumed in the determination of the control limits. These lead to
a known in-control performance in terms of the false alarm rate (FAR) or the
average run length (ARL). The FAR indicates the probability that the control
chart signals a possible out-of-control situation, while the process is actually
in-control. The ARL indicates the average number of observations until a pos-
sible out-of-control situation is detected. In practice however, the true mean
and standard deviation, as well as the actual distribution of the data, are gen-
erally unknown and have to be estimated. The estimation of the in-control
behavior is referred to as Phase I.

Estimation of the in-control behavior in Phase I is generally done by means
of a reference sample. As different practitioners obtain different samples, this
leads to different parameter estimates. Consequently, the estimated control
limits and their corresponding performance will differ between practitioners.
This variation is often referred to as practitioner-to-practitioner variation. In-
creasing the sample size reduces this variation, but the sample sizes required
for sufficient control chart performance are often not available. Therefore, we
consider adjusted control limits in order to compensate for the effect of pa-
rameter estimation in Phase I in this dissertation.

In Chapter 2 we consider Shewhart control charts for location for normally
distributed data. We provide corrections such that a specified control chart
performance is obtained in expectation. The objective considered is referred
to as the bias criterion, and relates to the unconditional (expected) perfor-
mance of the control chart. The reason behind these corrections is that, when
parameters are estimated, the expected control chart performance is not equal
to the nominal (design) value. The derivations allow different performance
measures to be used, such as the FAR or ARL. The related control limit ad-
justments for Shewhart control charts for dispersion using the bias criterion
can be found in Diko et al. (2017). However, a disadvantage of the bias cri-
terion is that there may still be a large proportion of practitioners with an
unsatisfactory control chart performance.

In Chapter 3 we again consider Shewhart control charts for location for
normally distributed data, but this time in combination with the exceedance
probability criterion. This criterion focuses on the conditional performance,
by providing a specified conditional in-control performance with a specified
probability. We provide control limit adjustments to satisfy this criterion. In
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this chapter we also make a comparison with other related methods, such as a
bootstrap procedure, self-starting control charts, and tolerance intervals. We
also illustrate the out-of-control implications of the proposed adjustments.
Since we emphasize the importance of the conditional performance, we re-
main with the exceedance probability criterion as design criterion in the fol-
lowing chapters.

In Chapter 4 we derive adjusted control limits for control charts for dis-
persion. When data itself are normally distributed, most estimators of dis-
persion follow a chi-square distribution. Obviously, the symmetrical form of
the control limits described in the previous chapters would not work well for
monitoring dispersion. Thus, adjusted probability limits are considered here
that take the chi-square distribution of the monitoring statistic into account.
Following a similar procedure, one could derive adjusted control limits for
monitoring location of non-normally distributed data. However, the true in-
control distribution is generally unknown, and has to be estimated as well,
along with its parameters.

Therefore, in Chapter 5 we consider nonparametric control limits, as well
as methods that aim to make normal (or other parametric) theory applicable.
A major advantage of nonparametric control charts is that they are not depen-
dent on the distribution of the data, and can therefore also be applied to many
different monitoring statistics. Thus, they can also serve as a control chart for
both location and dispersion. The disadvantage is that the sample size re-
quirements to obtain a specified control chart performance increase. When
larger sample sizes are not available, one has to put more restrictions on the
data under consideration, or be more lenient in the desired performance. Es-
pecially when monitoring aggregated statistics rather than individual obser-
vations, having a higher FAR value as minimum performance threshold is a
suitable solution.

In summary, we have derived several adjusted control limits for Shewhart
control charts to take the effect of parameter estimation into account. We
have considered the bias criterion and the exceedance probability criterion,
and have derived limits for normal theory as well as nonparametric limits.
We recommend to focus on the conditional performance by means of the ex-
ceedance probability criterion when determining the control limits. More-
over, when sufficient data is available, we recommend the use of nonpara-
metric control limits as they provide a better overall performance for differ-
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ent distributions. When sample sizes are small, one has to choose between
placing more demanding assumptions on the dataset, or setting a lower in-
control performance threshold. The findings and tradeoffs discussed in this
dissertation are also relevant in many other statistical applications. In Figure
6.1 a schematic overview is given of the contributions and recommendations
given in this dissertation.
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Shewhart
control charts with

estimated parameters

Exceedance probability
criterion

Nonparametric

m < m2(αtol, p),
cf. Section 5.2.1

Alternative:
additional assumptions
or lower performance

requirements

Extrapolated
control limits
– Section 5.2.3

m > m2(αtol, p),
cf. Section 5.2.1

Interpolated
control limits
– Section 5.2.2

Normality
assumption

Control charts
for dispersion
– Chapter 4

Control charts
for location
– Chapter 3

Bias Criterion
(normality assumption)

Control charts
for dispersion

– Diko et al. (2017)

Control charts
for location
– Chapter 2

Figure 6.1: Summary and recommendations of this dissertation.
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Samenvatting

De effecten van het schatten van parameters in statistische procesbeheersing
en de bijbehorende correcties voor regelkaarten (control charts) zijn het onder-
werp van dit proefschrift. Aangezien de beschikbaarheid van data toeneemt
in de huidige tijden, neemt ook de behoefte toe voor methoden om grote
datastromen te monitoren. In het vakgebied SPM (statistical process monitor-
ing, statistische procesbeheersing) staat het detecteren van mogelijke veran-
deringen binnen een proces door het monitoren van procesdata centraal. Een
belangrijk hulpmiddel voor deze detectie is de regelkaart. Dit proefschrift
richt zich op een specifiek type regelkaart, namelijk de Shewhart regelkaart.

Elk proces is onderhevig aan variatie. Denk bijvoorbeeld aan je eigen
lichaam, waarin je hartslag, bloeddruk, en vele andere karakteristieken variëren
over de tijd. Het is vaak erg lastig om de precieze oorzaak van deze verschillen
aan te wijzen, aangezien het om combinaties van vele kleine invloeden gaat.
Specifieke gebeurtenissen of verstoringen kunnen echter het onderliggende
proces veranderen, wat een ander soort variatie tot gevolg heeft. Een virus of
ziekte kan bijvoorbeeld invloed hebben op bepaalde karakteristieken in ons
lichaam. Het vroeg detecteren van deze gebeurtenissen of verstoringen maakt
het mogelijk om tijdig tegenmaatregelen te nemen om de invloed te beperken.

Om het detecteren van veranderingen in een onderliggend proces mo-
gelijk te maken, moet eerst een onderscheid gemaakt worden tussen twee
soorten variatie, variatie door normale oorzaken (common cause variation) en
variatie door bijzondere oorzaken (special cause variation). Eerstgenoemde is
variatie die inherent is aan het proces, terwijl laatstgenoemde veroorzaakt
wordt door speciale gebeurtenissen. Wanneer een proces slechts variatie door
normale oorzaken bevat, wordt er gesproken van een in-control (beheerst) pro-
ces. Als er speciale oorzaken aanwezig zijn, dan wordt gesproken van een
out-of-control proces. De eerste stap voor het detecteren van mogelijke out-of-
control situaties, is het bepalen van de in-control situatie van het proces. Ver-
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volgens worden voor de Shewhart regelkaart twee regelgrenzen (control lim-
its) geconstrueerd, de UCL (upper control limit) en de LCL (lower control limit),
waarmee bepaald kan worden of een proces in-control is of niet.

Oorspronkelijk werd de in-control situatie van een proces bekend veron-
dersteld. Dit gebeurde door de aanname dat het gemiddelde en de stan-
daardafwijking van een proces bekend zijn bij het opstellen van de UCL en
LCL. In dat geval is de prestatie van de regelkaart, in termen van de FAR (false
alarm rate, de kans op een onterecht out-of-control signaal) of de ARL (average
run length, het gemiddelde aantal waarnemingen tot een out-of-control sig-
naal), een bekende constante waarde. In de praktijk zijn het gemiddelde en
de standaardafwijking van een proces echter onbekend, evenals de werkelijke
verdeling van de data, en moeten deze worden geschat. Het schatten van de
in-control situatie wordt Phase I genoemd.

Het schatten van de in-control situatie in Phase I wordt over het algemeen
gedaan met behulp van een representatieve steekproef. Aangezien verschil-
lende gebruikers verschillende steekproeven zullen verzamelen, betekent dit
dat zij ook verschillende schattingen verkrijgen. Dit heeft tot gevolg dat de
geschatte UCL en LCL, en de bijbehorende regelkaart prestatie, ook verschillen
tussen de gebruikers. Het verzamelen van grotere steekproeven reduceert
deze variatie tussen verschillende gebruikers, maar de benodigde steekproef
omvangen voor een adequate regelkaart prestatie zijn vaak niet beschikbaar.
Om die reden richt dit proefschrift zich op aanpassingen van de regelgrenzen
ter compensatie van het effect van het schatten van parameters in Phase I.

Hoofdstuk 2 gaat over Shewhart regelkaarten voor locatie (bijvoorbeeld
gemiddelde) voor normaal verdeelde data. Hier worden correcties gegeven
zodat een gewenste regelkaart prestatie wordt verkregen door gebruikers in
verwachting. Dit criterium wordt ook wel het bias criterion genoemd, en rela-
teert zich aan de onconditionele (verwachte) prestatie van de regelkaart. De
motivatie achter deze correcties is dat wanneer parameters worden geschat,
de verwachte regelkaart prestatie niet gelijk is aan de nominale (ontwerp)
waarde. De afleidingen in dit hoofdstuk zijn te gebruiken voor verscheidene
prestatie indicatoren, zoals de FAR of de ARL. De gerelateerde correcties voor
regelkaarten voor spreiding (zoals de standaardafwijking) zijn te vinden in
Diko et al. (2017). Een nadeel van sturen op verwachting is echter dat er
nog steeds een relatief groot aantal gebruikers kan zijn met een ontoereikende
regelkaart prestatie.
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Hoofdstuk 3 gaat ook over Shewhart regelkaarten voor locatie voor normaal
verdeelde data, maar hier in combinatie met het zogeheten exceedance prob-
ability criterion. Dit criterium richt zich op de conditionele prestatie van de
regelkaart, en houdt in dat tenminste een specifieke conditionele prestatie
bereikt wordt met een vooraf gedefinieerde kans. In dit hoofdstuk worden
de benodigde aanpassingen aan de regelgrenzen gegeven om dit te bereiken.
Ook wordt er een vergelijk gemaakt met andere vergelijkbare methoden. Daar-
naast wordt de out-of-control prestatie van de regelkaart onderzocht voor ver-
schillende scenario’s. Gezien het belang van de conditionele prestatie in de
evaluatie van regelkaarten, richten ook de volgende hoofdstukken zich op dit
criterium.

Hoofdstuk 4 gaat over aangepaste regelgrenzen voor regelkaarten voor
spreiding. Wanneer data normaal verdeeld zijn, dan volgen veel schatters
van spreiding een chi-kwadraat verdeling. In dat geval zijn de symmetrische
regelgrenzen uit de voorgaande hoofdstukken niet geschikt. Daarom wor-
den in dit hoofdstuk aangepaste regelgrenzen afgeleid die rekening houden
met de chi-kwadraat verdeling van de schatter voor spreiding. Via een zelfde
aanpak is het mogelijk om aangepaste regelgrenzen te bepalen voor het mon-
itoren van de locatie van data die niet normaal verdeeld zijn. Echter, de in-
control verdeling van de data is over het algemeen onbekend, en moet geschat
worden samen met de bijbehorende parameters.

Hoofdstuk 5 gaat daarom over nonparametrische regelgrenzen, evenals
methoden die de theorie voor normale data toepasbaar maken. Een voordeel
van nonparametrische regelkaarten is dat ze niet afhankelijk zijn van de verdel-
ing van de data, en daardoor ook kunnen worden toegepast voor het mon-
itoren van verschillende statistieken. Ze kunnen dus toegepast worden bij
regelkaarten voor zowel locatie als spreiding. Het nadeel is dat de benodigde
steekproef omvang om een specifieke regelkaart prestatie te behalen groter is.
Als deze steekproef omvang niet beschikbaar is, moeten er meer restricties op
de dataset geplaatst worden, of moet een mindere regelkaart prestatie worden
geaccepteerd. Wanneer geaggregeerde steekproef statistieken gebruikt wor-
den in plaats van individuele waarnemingen, is het een redelijk alternatief om
een hogere FAR als minimum prestatie te accepteren.

Samenvattend bevat dit proefschrift verschillende aangepaste regelgren-
zen voor Shewhart regelkaarten om te corrigeren voor het effect van het schat-
ten van parameters. De correcties zijn afgeleid voor zowel onconditionele (in
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verwachting) als conditonele prestatie indicatoren. We raden aan om bij het
opstellen van de regelgrenzen te concentreren op de conditionele prestaties.
Indien genoeg data beschikbaar zijn, adviseren wij om nonparametrische regel-
grenzen te gebruiken, aangezien deze een betere algemene prestatie leveren
voor verschillende verdelingen. Wanneer de steekproef omvang beperkt is,
moet er gekozen worden tussen het aanscherpen van de restricties op de data,
of het accepteren van een mindere regelkaart prestatie. De bevindingen en
afwegingen in dit proefschrift zijn ook relevant in vele andere statistische
toepassingen.
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