
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Clustering-based collocation for uncertainty propagation with multivariate
dependent inputs

Eggels, A.W.; Crommelin, D.T.; Witteveen, J.A.S.
DOI
10.1615/Int.J.UncertaintyQuantification.2018020215
Publication date
2018
Document Version
Author accepted manuscript
Published in
International Journal for Uncertainty Quantification

Link to publication

Citation for published version (APA):
Eggels, A. W., Crommelin, D. T., & Witteveen, J. A. S. (2018). Clustering-based collocation
for uncertainty propagation with multivariate dependent inputs. International Journal for
Uncertainty Quantification, 8(1), 43-59.
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2018020215

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://doi.org/10.1615/Int.J.UncertaintyQuantification.2018020215
https://dare.uva.nl/personal/pure/en/publications/clusteringbased-collocation-for-uncertainty-propagation-with-multivariate-dependent-inputs(a61475a3-1f3d-432c-a2a0-1a7d936f64dd).html
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2018020215

International Journal for Uncertainty Quantification, x(x): 1–24 (2017)

CLUSTERING-BASED COLLOCATION FOR

UNCERTAINTY PROPAGATION WITH

MULTIVARIATE DEPENDENT INPUTS

A.W. Eggels,1,∗ D.T. Crommelin,1,2 & J.A.S. Witteveen

1Centrum Wiskunde & Informatica, Amsterdam, the Netherlands

2Korteweg - de Vries Institute for Mathematics, University of Amsterdam, the Netherlands

*Address all correspondence to: A.W. Eggels, Centrum Wiskunde & Informatica, Amsterdam, the Nether-

lands, E-mail: a.w.eggels@cwi.nl

Original Manuscript Submitted: 03/29/2017; Final Draft Received: mm/dd/yyyy

In this article, we propose the use of partitioning and clustering methods as an alternative to Gaussian quadrature for

stochastic collocation. The key idea is to use cluster centers as the nodes for collocation. In this way, we can extend

the use of collocation methods to uncertainty propagation with multivariate, dependent input, in which the output

approximation is piecewise constant on the clusters. The approach is particularly useful in situations where the prob-

ability distribution of the input is unknown, and only a sample from the input distribution is available. We examine

several clustering methods and assess the convergence of collocation based on these methods both theoretically and

numerically. We demonstrate good performance of the proposed methods, most notably for the challenging case of non-

linearly dependent inputs in higher dimensions. Numerical tests with input dimension up to 16 are included, using as

benchmarks the Genz test functions and a test case from computational fluid dynamics (lid-driven cavity flow).

KEY WORDS: uncertainty quantification, stochastic collocation, probabilistic collocation method, Monte

Carlo, principal component analysis, dependent input distributions, clustering

1

1. INTRODUCTION2

A core topic in the field of uncertainty quantification (UQ) is the question how to characterize the distribution of model3

outputs, given the distribution of the model inputs (or a sample thereof). Questions such as these are encountered4

in many fields of science and engineering [1–5], and have given rise to modern UQ methods including stochastic5

2152–5080/17/$35.00 © 2017 by Begell House, Inc. 1

2 A.W. Eggels, D.T. Crommelin, & J.A.S. Witteveen

collocation, polynomial chaos expansion and stochastic Galerkin methods [6–10].1

A still outstanding challenge is how to characterize model output distributions efficiently in case of multivariate,2

dependent input distributions. In the previously mentioned methods independence between the inputs is assumed,3

e.g., for the construction of the Lagrange polynomials in stochastic collocation, or for the construction of the orthog-4

onal polynomials in generalized polynomial chaos. When independence between the input components holds, the5

multivariate problem can easily be factored into multiple 1-dimensional problems, whose solutions can be combined6

by tensor products to a solution for the multidimensional problem. When the inputs are dependent, such factorization7

can become extremely complicated if the inputs have non-Gaussian distributions, making it unfeasible in practice for8

many cases. It generally involves nontrivial transformations that require detailed knowledge of the joint distribution9

(e.g. Rosenblatt transformation [11]), however such information is often not available. In [12], factorization is cir-10

cumvented and instead the problem is tackled by using the Gram-Schmidt (GS) orthogonalization procedure to get an11

orthogonal basis of polynomials, in which the orthogonality is with respect to the distribution of the inputs. However,12

this procedure gives non-unique results that depend on the implementation.13

In this paper we propose a novel approach for efficient UQ with multivariate, dependent inputs. This approach14

is related to stochastic collocation, however it employs collocation nodes that are obtained from data clustering15

rather than from constructing a standard (e.g. Gaussian) quadrature or cubature rule. By using techniques from data16

clustering, we can construct sets of nodes that give a good representation of the input data distribution, well capable17

of capturing correlations and nonlinear structures in the input distributions. It is straightforward to obtain weights18

associated with these nodes. All weights are guaranteed to be positive.19

The approach we propose is non-intrusive and able to handle non-Gaussian dependent inputs. We demonstrate20

that it remains efficient for higher dimensions of the inputs, notably in case of strong dependencies. These depen-21

dencies are not limited to correlations (linear dependencies), but can also be nonlinear. Furthermore, the approach22

employs data clustering, starting from a sample dataset of inputs. The underlying input distribution can be unknown,23

and there is no fitting of the distribution involved. Thus, no fitting error is introduced. This makes the approach24

particularly suitable for situations where the exact input distribution is unknown and only a sample of it is available.25

We emphasize that the method we propose in this paper does not employ orthogonal polynomials and their roots,26

nor does it require to specify an input distribution. This constitutes a main difference from stochastic collocation.27

Furthermore, we demonstrate that generating a random quadrature rule, by randomly selecting points from the sample28

of inputs and using these as cluster centers, gives unsatisfactory results. This is due to the fact that such a random29

selection is ill-suited to sample or represent the tails of the input distribution.30

International Journal for Uncertainty Quantification

3

The outline of this paper is the following: in Section 2, we start by briefly summarizing stochastic collocation1

and multivariate inputs. We discuss the challenges of dealing with dependent inputs, and we introduce the concept of2

clustering-based collocation. In Section 3, we describe three different clustering techniques and give a convergence3

result for one dimension. In Section 4, we present results of numerical experiments in which we test our clustering-4

based collocation method, using the clustering techniques described in Section 3. A test case from computational5

fluid dynamics (lid-driven cavity flow) is described in Section 5. The conclusion follows in Section 6.6

2. STOCHASTIC COLLOCATION AND ITS EXTENSION7

Consider a function u(x) : Ω 7→ R , Ω ⊆ Rp, that maps a vector of input variables to a scalar output. Let us assume8

x is a realization of a random variable χ with probability density function f(x). We would like to characterize the9

probability distribution of u(x), in particular we would like to compute moments of u(x):10

E[uq] =

∫
Ω

(u(x))qf(x)dx . (1)

In what follows, we focus on the first moment:11

µ := Eu =

∫
Ω

u(x)f(x)dx . (2)

We note that higher moments can be treated in the same way, as these are effectively averages of different output12

functions, i.e. E[uq] = Ev with v(x) := (u(x))q. In both cases, the expectation is with respect to the distribution of13

χ. In stochastic collocation, the integral in (2) is approximated using a quadrature or cubature rule. As is well-known,14

a high degree of exactness of the integration can be achieved for polynomial integrands with Gaussian quadrature15

rules.16

2.1 Multivariate inputs17

For multivariate inputs (p > 1), stochastic collocation based on Gaussian quadrature can be constructed using tensor18

products if the input variables are mutually independent. In this case, we can write f(x) as a product of 1-dimensional19

probability density functions. The degree of exactness of the corresponding cubature rule is 2k−1 in each dimension20

if k collocation nodes are used in each input dimension. This requires a number of nodes (kp) that grows exponentially21

in p, so collocation with full tensor grids suffers from curse of dimension. To reduce the number of nodes, Smolyak22

sparse grids [13,14] can be used. The construction of Smolyak sparse grids will not be explained in detail here, but an23

Volume x, Issue x, 2017

4 A.W. Eggels, D.T. Crommelin, & J.A.S. Witteveen

important aspect is that the resulting set of nodes is a union of subsets of full tensor grids. When the grids are nested1

and the number of nodes in the nth level for one dimension, k1
n, is O(2n), then the number of nodes in p dimensions2

scales as O(2nnp−1) [14]. This in contrast to O(2np) for the corresponding tensor rule.3

2.2 Gaussian cubature with dependent inputs4

As already mentioned, tensor grids are useful for stochastic collocation in case of independent inputs. If the input5

variables are dependent, grids constructed as tensor products of 1-dimensional Gaussian quadrature nodes no longer6

give rise to a Gaussian cubature rule. In [12], generalization to dependent inputs is approached by constructing7

sets of polynomials that are orthogonal with respect to general multivariate input distributions, using Gram-Schmidt8

orthogonalization. The roots of such a set of polynomials can serve as nodes for a Gaussian cubature rule.9

With the approach pursued in [12], the advantages of Gaussian quadrature (in particular, its high degree of exact-10

ness) carry over to the multivariate, dependent case. However, one encounters several difficulties with this approach.11

First of all, for a given input distribution, the set of nodes that is obtained is not unique. Rather, the resulting set de-12

pends on the precise ordering of the monomials that enter the GS procedure. For example, with 2-dimensional inputs13

and cubic monomials, 24 different sets of nodes can be constructed, as demonstrated in [12]. It is not obvious a priori14

which of these sets is optimal.15

A further challenge is the computation of the weights for the cubature rule. It is not straightforward how to16

construct multivariate Lagrange interpolating functions and evaluate their integrals. The alternative for computing the17

weights is to solve the moment equations. However, the resulting weights can be negative. Furthermore, one cannot18

choose the number of nodes freely: in general, with input dimension p and polynomials of degree m, one obtains19

n = mp nodes. Thus, the number of nodes increases in large steps, for example with p = 8 the number of nodes20

jumps from 1 to 256 to 6561, respectively, if m increases from 1 to 2 to 3. It is unknown how to construct useful21

(sparse) subsets of nodes from these.22

2.3 Clustering-based collocation23

To circumvent the difficulties of Gaussian cubature in case of dependent inputs, as summarized in the previous section,24

we propose an alternative approach to choose collocation nodes. By no longer requiring the collocation nodes to be25

the nodes of an appropriate Gaussian cubature rule, we do not benefit anymore from the maximal degree of exact26

integration associated with Gaussian quadrature or cubature. However, we argue below that this benefit of Gaussian27

cubature offers only limited advantage in practice.28

International Journal for Uncertainty Quantification

5

If one has a sample of the inputs available but the underlying input distribution is unknown, the Gaussian cubature1

rule will be affected by the sampling error (via the GS orthogonalization). Alternatively, if the input distribution is2

estimated from input sample data, the precision of the Gaussian cubature rule is also limited by the finite sample size.3

Additionally, the degree of exactness is strongly limited by the number of nodes in higher dimensions. For exam-4

ple, suppose one can afford no more than 256 evaluations of the output function u(x) because of high computational5

cost, i.e. one can afford a Gaussian cubature rule with 256 nodes. This gives very high degree of integration exactness6

(degree 511) in one dimension (p = 1), but the degree of exactness decreases to 31, 7 and 3, respectively, as the input7

dimension p increases to 2, 4 and 8. For p > 8, the degree of exactness is only 1 in case of 256 nodes, so only linear8

functions can be integrated exactly. The number of nodes for a full tensor grid in p dimensions with 2n nodes in level9

n for one dimension is 2np (O(2np)), while a corresponding Smolyak grid contains a number of points in the order10

O(2nnp−1). However, the approximation accuracy for the full grid is O(2−nm) and O(2−nmn(p−1)(m+1)) for the11

sparse grid with O(2n) nodes in level n for one dimension [14], where m is the smoothness of the function. This is12

still limiting for a high number of dimensions.13

Furthermore, the accuracy of the propagation method does not need to be higher than the accuracy of the input14

uncertainty. Since the input is given by samples, the high accuracy of spectral methods is not fully utilized.15

Instead of constructing a Gaussian cubature rule, we aim to determine a set of nodes that are representative16

for the sample of input data or for the input distribution, with the locations of the nodes adjusting to the shape of17

the distribution. Clustering is a suitable method (or rather collection of methods) to achieve this objective. More18

specifically, clustering is the mathematical problem of grouping a set of objects (e.g., data points) in such a way that19

objects in one group (or cluster) are more similar to each other than to objects in other clusters [15,16]. For each of20

the clusters, a center is defined to represent the cluster.21

The basic idea, in the context of this study, is the following. Assume we have a dataset {x1, ...,xN} available,22

with xi ∈ Rp. We define a partitioning of Rp existing of K subsets, denoted Ωk with k = 1, ...,K. A cluster is a23

subset of the data falling into the same Ωk. A common way to define cluster centers zk is as the average of the data in24

each cluster, i.e.25

zk :=

∑N
i=1 xi 1(xi ∈ Ωk)∑N
i=1 1(xi ∈ Ωk)

, (3)

with 1(·) the indicator function. If we define weights wk as the fraction of all the data falling in the k-th cluster, that26

is,27

wk :=

∑N
i=1 1(xi ∈ Ωk)

N
, (4)

Volume x, Issue x, 2017

6 A.W. Eggels, D.T. Crommelin, & J.A.S. Witteveen

the weighted average z̄ :=
∑

k wk zk equals the data average x̄ := N−1 ∑
i xi. Thus, z̄ = x̄ by construction.1

The key idea of what we propose here is to carry out collocation based on clustering of the input data. More2

specifically, we propose to use the cluster centers zk and weights wk as the nodes and weights of a quadrature rule.3

Thus, the (exact) first moment of the output function u(x) over the input data is4

µ =
1
N

N∑
i=1

u(xi) (5)

and the approximation using clustering-based collocation is5

µ̂ :=
K∑
k=1

wk u(zk). (6)

We emphasize that the number of function evaluations in Equation (5) and (6) is different. When K << N , large6

savings in computational time can be achieved due to the smaller amount of evaluations of u(x).7

The proposed approximation (6) to estimate the first moment of u(x) does not explicitly consider a function8

approximation of u(x). However, (6) can be seen as the Monte Carlo integral over a function approximation of u(x)9

which is piecewise constant on the clusters.10

It is easy to show that the approximation is exact (µ̂ = µ) for all linear input functions, due to the fact that11

z̄ = x̄, as mentioned above. In other words, the degree of exactness is one: we can consider (6) as a quadrature rule12

for the integral of u(x) over the empirical measure induced by the dataset {x1, ...,xN}. This quadrature rule is exact13

if u(x) is linear. This may seem limited in comparison to Gaussian quadrature, however as discussed earlier, the14

degree of exactness of Gaussian quadrature reduces rapidly if the input dimension p grows and the number of nodes15

remains constant. For non-linear input functions, the approximation (6) will in general not be exact. However, we will16

investigate its convergence in Sections 3.5 and 4.17

3. CLUSTERING METHODS18

In this section, we describe three different methods to construct clusters, i.e. three methods to construct a suitable19

collection of subsets Ωk. As already mentioned, the methods are based on input given as a dataset in p dimensions20

with N data points {x1, . . . ,xN} with xi ∈ R1×p also denoted by a matrix X ∈ RN×p. If the input is given as a21

distribution, we can create a dataset by sampling from this distribution. Furthermore, we scale this dataset to [0, 1]p22

by linear scaling with the range. This is done to comply with the domain of the test functions we will use further on.23

International Journal for Uncertainty Quantification

7

We cluster the data points into K clusters {C1, . . . , CK} with centers {z1, . . . , zK} and use these as nodes. The1

centers are computed as the mean of the data points in that cluster, see (3). We investigate three different methods,2

namely k-means clustering, principal component analysis based clustering and a method with randomly selected data3

points as cluster centers. In the following, we will use the words clustering and partitioning interchangeably.4

3.1 K-means5

The k-means method is one of the oldest and most widely used methods for clustering [15,17]. The idea behind it is6

to minimize the within-cluster-sum of squares (SOS):7

min
{z1,...,zK}

SOS(z1, . . . , zK), SOS(z1, . . . , zK) =
N∑
i=1

||xi − zargmink||xi−zk||22 ||
2
2. (7)

The minimization problem is solved with an iterative procedure, see e.g. [17] for details. There are many extensions8

and improvements of the (initialization of the) algorithm, such as using the triangle inequality to avoid unnecessary9

distance calculations [18], the use of global methods [19–21] and low-rank approximations [22]. We will use the10

k-means++ method in this subsection, which has a special initialization as described in [23].11

Because the algorithm contains a random initialization and the objective function is non-convex, it can converge12

to a local minimum, rather than to the global optimum. Therefore, in our numerical tests in Section 4, the algorithm13

is performed r times (r > 1) with different initializations and the best solution (with minimal SOS) is chosen. We14

use a fixed number of iterations in the minimization. In some cases, the iterations have not fully converged yet. This15

will be ignored because in practice, nearly all of the r executions converge so that the chosen best solution is always16

a converged solution. Further onwards, we will refer to this method as KME. We choose r = 25.17

3.2 PCA-based clustering18

With this method, based on [24,25] and principal component analysis (PCA), one starts with a single large cluster19

containing all the data, and in each step, the cluster with the largest average radius is split in two. This is implemented20

by splitting the cluster whose data points have the largest average squared distance to the cluster center. We split such21

that the cutting plane goes through the old cluster center (center of mass) and is perpendicular to the largest principal22

component of the covariance matrix of the data in the cluster, as suggested by [25]. This continues until the desired23

number of clusters K is attained (we note that other stopping criteria can be used as well, however these are less24

useful for the purpose of this study).25

Volume x, Issue x, 2017

8 A.W. Eggels, D.T. Crommelin, & J.A.S. Witteveen

This method (referred to as PCA later on) is deterministic, unlike the k-means method described in the previous1

section. Clustering by the diameter criterion is already performed in [26], but there the cluster with the largest diameter2

is split. Division methods based on farthest centroids have been suggested by [27]. Other refinements of this method3

are also possible, e.g., the merging of clusters at some steps in the algorithm, but we will not explore these here. These4

can be investigated in future work.5

3.3 Random clustering6

For comparison purposes we include a third method, in which cluster centers are selected randomly. This method7

consists of randomly selecting data points from the data set, all with equal probability, and use these as cluster8

centers. The clusters are formed by assigning each data point to its nearest cluster center. This method will be referred9

to as MCC (Monte Carlo clustering).10

3.4 Calculation of weights11

As already mentioned, we use the cluster centers as nodes for collocation. To do so, each node must be assigned12

a weight. In all three methods, the weight of each node is determined by the number of data points in the cluster13

associated with that node, divided by the total number of data points, see (4). By construction, all weights are positive14

and their sum equals one.15

3.5 Convergence16

In the case of one dimension (p = 1), it can be proven that the PCA-based clustering converges to the Monte Carlo17

integral for increasing values of K. The proof relies on the fact that in each step, the largest cluster radius either18

decreases or remains constant. If p = 1, the largest cluster radius equals19

δ∗(K) = max
i∈{1,...,N}

min
j∈{1,...,K}

{|xi − zj |}. (8)

As can be seen, it depends on K. We give the proof for one dimension.20

We can define a finite interval D := [x−, x+] which contains all the data {x1, ..., xN}. Furthermore, we assume21

that the output function (denoted f(x) in this section) is Lipschitz continuous on this interval with Lipschitz constant22

L. Let ν be the empirical measure on D, i. e. ν(Ω ⊆ D) = 1
N

∑N
i=1 1(xi ∈ Ω) for each subset Ω of D. Suppose23

that we have for each K ∈ N+, K ≤ N that x− < z1 < z2 < . . . < zK < x+ are the ordered cluster centers. A24

International Journal for Uncertainty Quantification

9

set partitioning is defined by ∪Kj=1Ej , where Ej = {xi ∈ Cj}, for j = 1, . . . ,K with Cj :=
[
zj−1+zj

2 ,
zj+zj+1

2

)
, for1

j = 2, . . . ,K − 1, C1 =
[
x−,

z1+z2
2

)
and CK =

[
zK−1+zK

2 , x+

]
. Define fk(x) := f(zk) ∀x ∈ Ck and 0 elsewhere2

for k = 1, . . . ,K. Now, denote f̃(x) =
∑K

k=1 fk(x). Because of the Lipschitz continuity, we have that3

∀xi ∈ D∃k = k(xi) ∈ {1, . . . ,K} : |f(xi)− f̃(xi)| = |f(xi)− f(zk)| < Lδ∗(K) (9)

In the PCA-algorithm for p = 1, δ∗ is strictly non-increasing as K grows. It reaches its lower bound δ∗(K) = 0

when K = N , because then each data point is its own cluster center. We can now bound the difference between the

PCA integral IPCA(K) =
∑K

k=1 f(zk)wk and the Monte Carlo integral IMC(N) =
∑N

i=1 f(xi)
1
N as follows

|IPCA − IMC | =

∣∣∣∣∣ 1
N

N∑
i=1

f(xi)−
K∑
k=1

f(zk)wk

∣∣∣∣∣
=

∣∣∣∣∣ 1
N

N∑
i=1

f(xi)−
1
N

N∑
i=1

K∑
k=1

f(zk)1(xi ∈ Ωk)

∣∣∣∣∣
=

1
N

∣∣∣∣∣
N∑
i=1

(
f(xi)−

K∑
k=1

f(zk)1(xi ∈ Ωk)

)∣∣∣∣∣
≤ 1
N

N∑
i=1

∣∣∣∣∣f(xi)−
K∑
k=1

f(zk)1(xi ∈ Ωk)

∣∣∣∣∣
<

1
N

N∑
i=1

Lδ∗(K) = Lδ∗(K). (10)

Since δ∗(k + 1) ≤ δ∗(k) for all k ∈ N when p = 1, δ∗(k) ≥ 0 and δ∗(k = N) = 0, the bound becomes stricter for4

increasing k.5

For higher dimensions, the derivation of the bounds is analogous, although δ∗ will not be monotonically de-6

creasing, but it will decrease in general. This is also the case for the other methods, even for p = 1, where the7

nodes are not nested such as in the PCA-case, such that it is not guaranteed that δ∗ decreases monotonically. For the8

higher-dimensional case, we want to refer to Section 4.3.2 where we give a numerical result on convergence.9

Volume x, Issue x, 2017

10 A.W. Eggels, D.T. Crommelin, & J.A.S. Witteveen

4. RESULTS1

We test the quadrature based on the clustering methods described in Section 3 by integrating the Genz test functions2

on the domain [0, 1]p for three different data sets. In two of these data sets, the variables are mutually dependent. The3

relative error, as defined by the absolute difference between the integral calculated by the cluster points and weights4

and the Monte Carlo integral of the data, is used as the measure of accuracy. We perform the MCC method 10 times5

for each setting to investigate the effect of randomness. We show the mean, minimum and maximum error for MCC.6

For comparison, we have also added results from using Monte Carlo sampling (MCS), which was repeated 10 times7

as well.8

The first test is to assess how these methods perform under an increasing number of dimensions and what the9

effect of dependent variables is. Then, we compare the numerical convergence of the PCA method with the MCC and10

MCS method for an increasing number of clusters. Finally, we compare the computational cost of these methods.11

4.1 Genz test functions12

Genz [28] has developed several functions to test the accuracy of a cubature rule. The definitions, our choice of13

parameters and some illustrations are given in APPENDIX A. We test the methods by integrating the Genz test14

functions over the three different data sets consisting of N = 105 samples. We compare the results from Monte Carlo15

integration and with the results obtained by clustering-based quadrature. The difference between the two integrals is16

a measure for the (in)accuracy of the methods.17

4.2 Data sets18

We use three data sets with different types of nonlinear relationships to illustrate the methods. All sets consist of19

N = 105 samples drawn from a certain distribution. The dimension p is allowed to vary from 1 to 16. The first20

set is the independent beta distribution in p dimensions, the second set is a multivariate Gaussian distribution in p21

dimensions, and the third set is an artificial data set which contains strongly nonlinear relationships between the22

variables. The datasets are re-scaled to the domain [0, 1]p because the Genz test functions are defined on the unit23

cube. Their parameters are given as follows.24

The beta distribution has parameters α = 2 and β = 5 and its probability distribution function for one dimension25

is given by26

f(x) =
1

B(α,β)
xα−1(1− x)β−1, (11)

International Journal for Uncertainty Quantification

11

in which B(α,β) is the beta function. In higher dimensions, a tensor product of the 1-dimensional distribution is1

used.2

The multivariate Gaussian distribution has zero mean, unit variance and correlation coefficients σij between3

dimensions i and j given by4

σij =
1

|i− j|+ 1
. (12)

This is chosen such that neighboring dimensions have larger correlation coefficients than dimensions far apart.5

The third and last distribution is given as6

X1

X2

...

Xp

=

U(−2, 2)

X2
1

...

Xp
1

+ σN(0, I), (13)

in which U(−2, 2) is the uniform distribution on [−2, 2], σ is chosen to be 0.5 and N(0, I) the multivariate standard7

normal distribution. We refer to this distribution as the “polynomial distribution”.8

In Figure 1, we show 103 data points generated for p = 2 for the different test sets. From the figure, it is clear that9

these data sets have different types of nonlinear relationships. The beta distributed data is independent, the normally10

distributed data is weakly dependent and the polynomial data contains strong nonlinear relationships between the11

variables and is far from Gaussian.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

((a)) Beta distributed data
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

((b)) Normally distributed data
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

((c)) Polynomial data

FIG. 1: Visualization of the test sets for p = 2 and N = 103. The beta distributed data is independent, while the normal distributed
data is weakly dependent and the polynomial data is strongly, nonlinearly dependent.

12

In Figure 2, the partitionings (forK = 20 and 100) for the different test sets are shown. One of the observations is13

Volume x, Issue x, 2017

12 A.W. Eggels, D.T. Crommelin, & J.A.S. Witteveen

that the MCC method yields most clusters in dense regions, just as the KME method. In the latter, the spacing between1

the nodes is more evenly distributed in space. However, the PCA method also has nodes in less dense regions of the2

data set and is even more evenly distributed.

0 0.5 1

0

0.5

1
MCC

0 0.5 1

0

0.5

1
PCA

0 0.5 1

0

0.5

1
KME

((a)) Beta distributed data, kmax = 20
0 0.5 1

0

0.5

1
MCC

0 0.5 1

0

0.5

1
PCA

0 0.5 1

0

0.5

1
KME

((b)) Beta distributed data, kmax = 100

0 0.5 1

0

0.5

1
MCC

0 0.5 1

0

0.5

1
PCA

0 0.5 1

0

0.5

1
KME

((c)) Normally distributed data, kmax = 20
0 0.5 1

0

0.5

1
MCC

0 0.5 1

0

0.5

1
PCA

0 0.5 1

0

0.5

1
KME

((d)) Normally distributed data, kmax = 100

0 0.5 1

0

0.5

1
MCC

0 0.5 1

0

0.5

1
PCA

0 0.5 1

0

0.5

1
KME

((e)) Polynomial data, kmax = 20
0 0.5 1

0

0.5

1
MCC

0 0.5 1

0

0.5

1
PCA

0 0.5 1

0

0.5

1
KME

((f)) Polynomial data, kmax = 100

FIG. 2: Visualization of the partitionings for p = 2. The general observation is that MCC and KME have most nodes in dense
regions of the data, while PCA is more spread out over the domain of the data.

3

4.3 Tests4

The tests of the methods will consist of integrating the test functions on each of the data sets and comparing the5

integrals to the Monte Carlo integrals. The data sets will be generated only once and reused. The output of each of6

the methods is the value of the integral of the test function when performed with the cluster points and weights. Not7

all results will be shown, but we will show representative examples. The error measure we use is the relative error,8

defined by9

ε =
|IPCA − IMC |
|IMC |

. (14)

International Journal for Uncertainty Quantification

13

4.3.1 Dimension effects1

First, we compute the relative error as given by Equation 14. We do this for various values of p and data sets for a2

fixed maximum number of cluster points K = 50 to see how the error relates to dimension. The results are in Figure3

3 for the first and second test function. In this figure, we observe a trend which holds for all of the proposed methods:4

namely, that the relative error of PCA and KME are in general lower then for MCC. Furthermore, the error of the5

MCS does not vary to a large extent with dimension, as expected. Also, it is visible that the PCA-method for the6

second test function performs better for the dependent data sets and especially for the polynomial data set, which is7

highly dependent. This indicates that the methods work especially well for dependent inputs, which is caused by the8

data being concentrated on or near a low-dimensional manifold. It can also be seen that for the deterministic PCA9

method, the result is more robust with respect to increase of the dimension. For the test functions 3−5, the results are10

similar (not shown). For the discontinuous test function 6, results are less robust (not shown), due to the discontinuity11

of the test function. It can also be seen that in some cases, the MCC and MCS results are better than the PCA and12

KME results, however the variance of the error with MCC and MCS can be large.13

4.3.2 Effect of number of clusters14

In Figure 4, the effect of increasing K is studied for the MCC and PCA-method for p = 4. These results support the15

statements from Section 3.5, namely that the errors generally decrease with increasing K. We show the results for the16

first and second test function. It can be seen that for the first test function, the PCA-method performs clearly better17

than the MCC method, which in turn performs better than MCS. Similar to the previous test, we observe that the18

methods work better for more strongly dependent datasets. For test function 2 the PCA, MCC and MCS methods are19

closer in performance, however the error decrease with increasingK is more robust for PCA. For the last two settings20

of K, the simulation times restricted the number of simulations to only 1. Therefore, no minimum and maximum are21

shown, and the marker is adapted.22

4.3.3 Computational cost23

For MCC and PCA, the time to compute 100 nodes and weights is in the order of seconds, while it is in the order of24

minutes for KME (when 25 repetitions are used to compute one set). For MCS, it is negligible. The time to perform25

the clustering is about linear in K and N for all methods, although the constants differ. PCA is fastest, followed by26

KME (which depends on the number of repetitions r), while MCC is slowest. This is due to the cost from assigning27

all data points to clusters and the implementation of the methods. We emphasize that the clustering needs to be carried28

Volume x, Issue x, 2017

14 A.W. Eggels, D.T. Crommelin, & J.A.S. Witteveen

1 2 4 8 16

p

10-6

10-4

10-2

100

102

re
la

ti
v
e

 e
rr

o
r

MCC-mean

MCC-min

MCC-max

PCA

KME

MCS-mean

MCS-min

MCS-max

((a)) Beta distributed data, test function 1

1 2 4 8 16

p

10-5

10-4

10-3

10-2

10-1

100

re
la

ti
v
e

 e
rr

o
r

MCC-mean

MCC-min

MCC-max

PCA

KME

MCS-mean

MCS-min

MCS-max

((b)) Beta distributed data, test function 2

1 2 4 8 16

p

10-6

10-4

10-2

100

102

re
la

ti
v
e

 e
rr

o
r

MCC-mean

MCC-min

MCC-max

PCA

KME

MCS-mean

MCS-min

MCS-max

((c)) Normally distributed data, test function 1

1 2 4 8 16

p

10-5

10-4

10-3

10-2

10-1

100

re
la

ti
v
e

 e
rr

o
r

MCC-mean

MCC-min

MCC-max

PCA

KME

MCS-mean

MCS-min

MCS-max

((d)) Normally distributed data, test function 2

1 2 4 8 16

p

10-6

10-4

10-2

100

102

re
la

ti
v
e

 e
rr

o
r

MCC-mean

MCC-min

MCC-max

PCA

KME

MCS-mean

MCS-min

MCS-max

((e)) Polynomial data, test function 1

1 2 4 8 16

p

10-6

10-4

10-2

100

re
la

ti
v
e

 e
rr

o
r

MCC-mean

MCC-min

MCC-max

PCA

KME

MCS-mean

MCS-min

MCS-max

((f)) Polynomial data, test function 2

FIG. 3: Relative error depending on dimension for different methods and data sets with K = 50.

International Journal for Uncertainty Quantification

15

10
2

10
3

10
4

K

10
-4

10
-3

10
-2

10
-1

10
0

re
la

ti
v
e

 e
rr

o
r

MCC-mean

MCC-min

MCC-max

PCA

MCS-mean

MCS-min

MCS-max

((a)) Beta distributed data, test function 1

10
2

10
3

10
4

K

10
-5

10
-4

10
-3

10
-2

10
-1

re
la

ti
v
e

 e
rr

o
r

MCC-mean

MCC-min

MCC-max

PCA

MCS-mean

MCS-min

MCS-max

((b)) Beta distributed data, test function 2

10
2

10
3

10
4

K

10
-6

10
-4

10
-2

10
0

re
la

ti
v
e

 e
rr

o
r

MCC-mean

MCC-min

MCC-max

PCA

MCS-mean

MCS-min

MCS-max

((c)) Normally distributed data, test function 1

10
2

10
3

10
4

K

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

re
la

ti
v
e

 e
rr

o
r

MCC-mean

MCC-min

MCC-max

PCA

MCS-mean

MCS-min

MCS-max

((d)) Normally distributed data, test function 2

10
2

10
3

10
4

K

10
-6

10
-4

10
-2

10
0

10
2

re
la

ti
v
e

 e
rr

o
r

MCC-mean

MCC-min

MCC-max

PCA

MCS-mean

MCS-min

MCS-max

((e)) Polynomial data, test function 1

10
2

10
3

10
4

K

10
-5

10
-4

10
-3

10
-2

10
-1

re
la

ti
v
e

 e
rr

o
r

MCC-mean

MCC-min

MCC-max

PCA

MCS-mean

MCS-min

MCS-max

((f)) Polynomial data, test function 2

FIG. 4: Relative error depending on kmax for MCC, PCA and MCS and the three data sets with p = 4.

Volume x, Issue x, 2017

16 A.W. Eggels, D.T. Crommelin, & J.A.S. Witteveen

out only once, as a pre-processing step to determine the nodes (and associated weights) in parameter space at which1

the expensive model u(x) must be evaluated. For certain applications, a single evaluation of u(x) can take hours of2

computation, hence the computational cost of a pre-processing step that takes only seconds to minutes is negligible.3

5. LID-DRIVEN CAVITY FLOW4

The lid-driven cavity flow is a well known example in computational fluid dynamics for validating new computing5

methods [29–33]. The problem involves fluid flow in a simple, 2D geometry with equally simple boundary conditions.6

The geometry consists of a (square) boxD = [0, 1]2 with three fixed walls, and the top wall is moving in one direction7

with a fixed velocity U . The box contains a fluid with viscosity ν and the incompressible Navier-Stokes equations are8

solved for the stationary case. The output we consider is the velocity along the centerline at x = 0.5. The code from9

[34] and [35] was used for the simulations, with a 50× 50 nonuniform grid, which is refined at the boundaries of the10

domain. A sketch of the situation with Reynolds number Re = UL
ν

= 100 (L = 1) can be found in Figure 5. We treat

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

FIG. 5: Sketch of the situation (with streamlines). The top wall is moving, while the others contain a no-slip boundary condition.
11

U and ν as uncertain input parameters. Our goal is to demonstrate that we can quantify the uncertainty in the output12

efficiently by using the PCA method instead of Monte Carlo simulations. To do this, we construct two data sets with13

N = 103 samples of the velocity U and the viscosity ν. In one data set, they are independent, while in the other set,14

they are dependent. The samples are generated from a standard Gaussian copula with ρ = 0 (independent case) and15

ρ = −0.99 (dependent case) and transformed to samples for U and ν in the following way:16

Ui = 0.1 + 0.9 · F−1
β (ωi,1),νi = 10−2−F−1

β (ωi,2), (15)

International Journal for Uncertainty Quantification

17

where i indicates the ith sample, ωi = (ωi,1,ωi,2) are elements of the Gaussian copula and F−1
β (·) is the inverse1

cumulative distribution function of the beta distribution with parameters α = β = 1/2. This is chosen such that the2

flow is laminar, different flow profiles occur and the convergence to steady state flow is fast. On these two data sets,3

we apply both the PCA based clustering method to get K = 25 clusters and Monte Carlo sampling to get K = 254

samples. The sampling is repeated r = 10 times. The data points, cluster centers and a possible set of samples are in5

Figure 6.

1.0e-01 5.5e-01 1.0e+00

U

1e-03

2e-03

5e-03

1e-02

uncorrelated

correlated

((a)) Data

1.0e-01 5.5e-01 1.0e+00

U

1e-03

2e-03

5e-03

1e-02

u

c

((b)) Cluster centers

1.0e-01 5.5e-01 1.0e+00

U

1e-03

2e-03

5e-03

1e-02

u

c

((c)) Random samples

FIG. 6: Visualization of the data,the cluster centers and random samples for the lid-driven cavity flow data.
6

The centerline velocity is computed for the complete data sets and is shown in Figure 7 together with the 2.5 and7

97.5 percentiles. We then computed the centerline velocity for the parameter settings given by the 25 cluster centers

0 0.2 0.4 0.6 0.8 1

y

-0.4

-0.2

0

0.2

0.4

0.6

0.8

U

u-mean

u-2.5

u-97.5

c-mean

c-2.5

c-97.5

FIG. 7: Reference results for the centerline velocity.
8

and compared the results in Figure 8 for the PCA method. For the cluster centers, we could not compute the 2.5 and9

97.5 percentiles exactly due to the cluster weights. Therefore, we show the 2.9 and 97.2 percentiles, based on the10

weight of the cluster centers leading to low or high values of the Reynolds number for the independent data and the11

1.4 and 92.9 percentiles for the dependent data. The results in terms of mean values for the statistics mean, minimum12

Volume x, Issue x, 2017

18 A.W. Eggels, D.T. Crommelin, & J.A.S. Witteveen

0 0.2 0.4 0.6 0.8 1

y

-0.5

0

0.5

1

U

PCA-mean

PCA-min

PCA-max

MC-mean

MC-2.9

MC-97.2

((a)) Independent inputs (U,ν)

0 0.2 0.4 0.6 0.8 1

y

-0.4

-0.2

0

0.2

0.4

0.6

0.8

U

PCA-mean

PCA-min

PCA-max

MC-mean

MC-1.4

MC-92.9

((b)) Dependent inputs (U,ν)

FIG. 8: Centerline velocity computed by the PCA method and compared to the Monte Carlo results.

and maximum for the Monte Carlo sampling are given in Figure 9. For these results, also the minimum and maximum

0 0.2 0.4 0.6 0.8 1

y

-0.5

0

0.5

1

U

MCS-mean

MCS-min

MCS-max

MC-mean

MC-2

MC-98

((a)) Independent inputs (U,ν)

0 0.2 0.4 0.6 0.8 1

y

-0.5

0

0.5

1

U

MCS-mean

MCS-min

MCS-max

MC-mean

MC-2

MC-98

((b)) Dependent inputs (U,ν)

FIG. 9: Centerline velocity computed by Monte Carlo sampling and compared to the Monte Carlo results.

1

computed value of the statistics are given by dotted lines (not in legend), since the experiment was repeated 10 times.2

Although the result for the dependent inputs is quite similar, differences exist for the minimum of the independent3

inputs. Because of the equal weights of all the samples, we used the 2.0 and 98.0 percentiles of the data set.4

The results match very well, the PCA method required only 25 evaluations of the fluid flow solver, compared to5

103 evaluations used for the full Monte Carlo results.6

International Journal for Uncertainty Quantification

19

6. CONCLUSION1

We have proposed a novel collocation method that employs clustering techniques, thereby successfully dealing with2

the case of multivariate, dependent inputs. We have assessed the performance of this clustering-based collocation3

method using the Genz test functions as well as a CFD test case (lid-driven cavity flow) as benchmarks. Three4

clustering techniques were considered in this context, namely the Monte Carlo (MCC), k-means (KME) and principal5

component analysis based (PCA) clustering techniques. No exact knowledge of the input distribution is needed for6

the clustering-based method proposed here; a sample of input data is sufficient. Furthermore, for strongly dependent7

inputs the methods show good performance with input dimension up to 16. We hypothesize that the more strongly the8

inputs are dependent, the more the input data are concentrated on a low-dimensional manifold. This makes it possible9

to obtain a good representation of the input data with a relatively small number of cluster centers.10

We observed that the nodes obtained with MCC are mostly concentrated in regions of high density of the input11

probability distribution, with poor representation of the tails. As a result, this method does not perform well. The PCA12

method is better at giving a good spread of the collocation nodes, with KME having results in between MCC and PCA.13

Concerning computational cost, the PCA method is fastest. Overall, the computational cost of the clustering methods14

is small, and will be negligible compared to the computational cost of expensive model evaluations (involving e.g.15

CFD solvers).16

Altogether, we suggest to use the method based on principal component analysis (PCA) from the ones that we17

tested. This method is deterministic, it is fast to compute and it yields collocation nodes that are well distributed18

over the input data set. Also, PCA is better able than KME to include effects from regions of the data with low19

probability but high impact on the resulting moments. PCA performs well on the tests with Genz functions and has20

good convergence properties for an increasing number of nodes. Also in the CFD test case of lid-driven cavity flow,21

PCA performed well.22

In this paper we have focused on clustering-based quadrature. However, collocation is also frequently used as23

an approach for obtaining approximations of output functions through interpolation. We anticipate that the clustering24

approach we have proposed here will prove useful for interpolation purposes as well. When used for interpolation,25

the moment estimates might be improved as well, since they are currently based on a function approximation which26

is piecewise constant on the clusters.27

Altogether, the results in this study demonstrate that clustering-based collocation is a feasible and promising28

approach for UQ with correlated inputs. We intend to develop this approach further in the near future.29

Volume x, Issue x, 2017

20 A.W. Eggels, D.T. Crommelin, & J.A.S. Witteveen

ACKNOWLEDGMENTS1

Very sadly, Jeroen Witteveen passed away unexpectedly in the early stages of the research reported here. His presence,2

inspiration and expertise are greatly missed. Jeroen was one of the initiators of the EUROS project, which includes3

the current work. This research, as part of the EUROS project, is supported by the Dutch Technology Foundation4

STW, which is part of the Netherlands Organisation for Scientific Research (NWO), and which is partly funded by5

the Ministry of Economic Affairs.6

APPENDIX A. GENZ TEST FUNCTIONS7

In Table A.1, the definitions of the Genz functions are given. The parameters a can be used to make the function8

harder or easier to integrate, while u contains scale parameters. The functions are defined in p dimensions, in which9

p ∈ N, on the domain [0, 1]p. In all tests, we will choose ai = 1 for i = 1, . . . , p. We will choose ui = 1/2 for10

i = 1, . . . , p for all functions except for f1, where we choose u1 = 0.

TABLE A.1: Definition of the Genz test functions

Nr Characteristic Function

1 Oscillatory f1(x) = cos (2πu1 +
∑p

i=1 aixi)

2 Gaussian peak f2(x) = exp
(
−
∑p

i=1 a
2
i (xi − ui)2

)
3 C0 f3(x) = exp (−

∑p
i=1 ai|xi − ui|)

4 Product peak f4(x) =
∏p

i=1

(
a−2
i + (xi − ui)2

)−1

5 Corner peak f5(x) = (1 +
∑p

i=1 aixi)
−p+1

6 Discontinuous f6(x) =

0 x1 > u1 or x2 > u2

exp (
∑p

i=1 aixi) else

11

12

In Figure A.10, the values for the Genz functions on the domain [0, 1]2 are visualized. Test function 2 and 4 look13

the same, but are different.14

International Journal for Uncertainty Quantification

21

REFERENCES1

1. Bijl, H., Lucor, D., Mishra, S., and Schwab, C., Uncertainty Quantification in Computational Fluid Dynamics, Vol. 92 of2

Lecture Notes in Computational Science and Engineering, Springer, 2013.3

2. Walters, R.W. and Huyse, L., Uncertainty analysis for fluid mechanics with applications, Tech. Rep. 2002-1, ICASE, 2002.4

3. Witteveen, J.A.S. and Bijl, H., Efficient quantification of the effect of uncertainties in advection-diffusion problems using5

polynomial chaos, Numerical Heat Transfer, Part B: Fundamentals, 53(5):437–465, 2008.6

4. Witteveen, J.A.S., Sarkar, S., and Bijl, H., Modeling physical uncertainties in dynamic stall induced fluid–structure interaction7

of turbine blades using arbitrary polynomial chaos, Computers & Structures, 85(11):866–878, 2007.8

5. Yildirim, B. and Karniadakis, G.E., Stochastic simulations of ocean waves: An uncertainty quantification study, Ocean Mod-9

elling, 86:15–35, 2015.10

6. Xiu, D. and Karniadakis, G.E., The Wiener–Askey polynomial chaos for stochastic differential equations, SIAM Journal on11

Scientific Computing, 24(2):619–644, 2002.12

7. Xiu, D. and Hesthaven, J.S., High-order collocation methods for differential equations with random inputs, SIAM Journal on13

Scientific Computing, 27(3):1118–1139, 2005.14

8. Ghanem, R.G. and Spanos, P.D., Stochastic Finite Elements: A Spectral Approach, Dover, 2003.15

9. Le Maı̂tre, O.P. and Knio, O.M., Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid16

Dynamics, Scientific Computation, Springer, 2010.17

10. Eldred, M.S. and Burkardt, J., Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncer-18

tainty quantification, AIAA paper 2009-976, 2009.19

11. Rosenblatt, M., Remarks on a multivariate transformation, The annals of mathematical statistics, 23(3):470–472, 1952.20

12. Navarro, M., Witteveen, J.A.S., and Blom, J., Stochastic collocation for correlated inputs, In UNCECOMP 2015, 2015.21

13. Smolyak, S.A., Quadrature and interpolation formulas for tensor products of certain classes of functions, Sov. Math. Dokl.,22

4:240–243, 1963.23

14. Gerstner, T. and Griebel, M., Numerical integration using sparse grids, Numerical algorithms, 18(3-4):209–232, 1998.24

15. Steinhaus, H., Sur la division des corps matériels en parties, Bulletin de l’Académie Polonaise des Sciences, IV(12):801–804,25

1956.26

16. Jain, A.K., Murty, M.N., and Flynn, P.J., Data clustering: a review, ACM computing surveys (CSUR), 31(3):264–323, 1999.27

17. MacQueen, J. , Some methods for classification and analysis of multivariate observations, In Proceedings of the Fifth Berkeley28

Symposium on Mathematical Statistics and Probability, Vol. 1, pp. 281–297, 1967.29

18. Elkan, C., Using the triangle inequality to accelerate k-means, In Proceedings ICML-2003, Vol. 3, pp. 147–153, 2003.30

Volume x, Issue x, 2017

22 A.W. Eggels, D.T. Crommelin, & J.A.S. Witteveen

19. Likas, A., Vlassis, N., and Verbeek, J.J., The global k-means clustering algorithm, Pattern Recognition, 36(2):451–461, 2003.1

20. Bagirov, A.M., Modified global k-means algorithm for minimum sum-of-squares clustering problems, Pattern Recognition,2

41(10):3192–3199, 2008.3

21. Hansen, P., Ngai, E., Cheung, B.K., and Mladenovic, N., Analysis of global k-means, an incremental heuristic for minimum4

sum-of-squares clustering, Journal of Classification, 22(2):287–310, 2005.5

22. Cohen, M.B., Elder, S., Musco, C., Musco, C., and Persu, M., Dimensionality reduction for k-means clustering and low rank6

approximation, arXiv preprint arXiv:1410.6801, 2015.7

23. Arthur, D. and Vassilvitskii, S., K-means++: The advantages of careful seeding, In Proceedings of the Eighteenth Annual8

ACM-SIAM Symposium on Discrete Algorithms, pp. 1027–1035. SIAM, 2007.9

24. Ding, C. and He, X., K-means clustering via principal component analysis, In Proceedings of the twenty-first international10

conference on Machine learning, p. 29. ACM, 2004.11

25. Su, T. and Dy, J., A deterministic method for initializing k-means clustering, In Proceedings ICTAI 2004, pp. 784–786. IEEE,12

2004.13

26. Guénoche, A., Hansen, P., and Jaumard, B., Efficient algorithms for divisive hierarchical clustering with the diameter criterion,14

Journal of Classification, 8(1):5–30, 1991.15

27. Fang, H. and Saad, Y., Farthest centroids divisive clustering, In Proceedings ICMLA’08, pp. 232–238. IEEE, 2008.16

28. Genz, A., Testing multidimensional integration routines, In Proceedings of International Conference on Tools, Methods and17

Languages for Scientific and Engineering Computation, pp. 81–94. Elsevier North-Holland, 1984.18

29. Burggraf, O.R., Analytical and numerical studies of the structure of steady separated flows, Journal of Fluid Mechanics,19

24(1):113–151, 1966.20

30. Ghia, U.K.N.G., Ghia, K.N., and Shin, C.T., High-Re solutions for Incompressible Flow Using the Navier-Stokes Equations21

and a Multigrid Method, Journal of Computational Physics, 48(3):387–411, 1982.22

31. Botella, O. and Peyret, R., Benchmark spectral results on the lid-driven cavity flow, Computers & Fluids, 27(4):421–433,23

1998.24

32. Erturk, E., Corke, T.C., and Gökçöl, C., Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds25

numbers, International Journal for Numerical Methods in Fluids, 48(7):747–774, 2005.26

33. Bruneau, C.H. and Saad, M., The 2D lid-driven cavity problem revisited, Computers & Fluids, 35(3):326–348, 2006.27

34. Sanderse, B., Energy-Conserving Navier-Stokes Solver. Verification of steady laminar flows, Tech. Rep. E-11-042, ECN,28

2011.29

International Journal for Uncertainty Quantification

23

35. Sanderse, B., Energy-conserving discretization methods for the incompressible Navier-Stokes equations, PhD thesis, Eind-1

hoven University of Technology, 2013.2

Volume x, Issue x, 2017

24 A.W. Eggels, D.T. Crommelin, & J.A.S. Witteveen

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

((a)) Test function 1

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

((b)) Test function 2

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4

0.5

0.6

0.7

0.8

0.9

1

((c)) Test function 3

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

((d)) Test function 4

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4

0.5

0.6

0.7

0.8

0.9

1

((e)) Test function 5

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.5

1

1.5

2

2.5

((f)) Test function 6

FIG. A.10: Genz test functions.

International Journal for Uncertainty Quantification

