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Abstract A popular method for detecting changes in the probability distribution of a
sequence of observations is CUSUM, which proceeds by sequentially evaluating a log-
likelihood ratio test statistic and comparing it to a predefined threshold; a change point is
detected as soon as the threshold is exceeded. It is desirable to choose the threshold such
that the number of false alarms is kept to a specified level. Traditionally, the number of false
alarms is measured by the average run length – the expected stopping time until the first
false alarm. However, this is does not in general allow one to control the number of false
alarms at every particular time instance. Thus, in this paper two stronger false alarm criteria
are considered, for which approximation methods are investigated to facilitate the selection
of a threshold.

Keywords Change point detection · False alarm control · Threshold selection

Mathematics Subject Classification (2010) 62L10

1 Introduction

False alarm control for change point detection procedures is an important problem in many
application domains; see (Tartakovsky et al. 2014, Section 1.3). The objective is to minimize
the detection delay subject to a constraint on the number of false alarms. The focus of this
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paper is on the minimax formulation meaning that the change point is regarded as a deter-
ministic parameter (Lorden 1971). A comprehensive treatment of the available methodology
related to change point detection is provided in Tartakovsky et al. (2014).

Many minimax change point detection procedures feature a test statistic St in the form of
a random walk in discrete time with possibly dependent increments. A prominent example
of such a procedure is the method of cumulative sums (CUSUM) due to Page (1954), in
which case St is the log-likelihood ratio (LLR) of the observations up to time t . The test
statistic is computed sequentially as new observations arrive, and compared to a threshold
b. A change point is detected as soon as St > b, which defines a stopping time T . One then
seeks to choose a threshold that ensures that the number of false alarms is kept low with
respect to some appropriate criterion.

Existing literature on minimax change point detection typically considers the average
run length (ARL) – the expected time until the first false alarm is raised – as a performance
criterion. Then a threshold is chosen such that the ARL exceeds a desired (large) constant.
To this end, because in general closed form expressions for the ARL are not available,
the latter is often evaluated based on approximations (Basseville and Nikiforov 1993, Ch.
5.2.2). The ARL criterion is, however, not always informative: in Mei (2008), examples
are provided where the ARL is infinite even though the detection delay is finite. More
importantly, the ARL does not necessarily ensure that the variance of the stopping time is
small (see Lai 1998 and Tartakovsky et al. 2014, Section 6.3.5).

Consequently, more stringent false alarm criteria are desirable. Perhaps the best avail-
able candidate is a criterion coined maximal local false alarm probability (MLFA) in
Tartakovsky et al. (2014), which seems to have first appeared in Lai (1998). It is defined as
supn≥1 P0(T ≤ n + N − 1 | T > n − 1) ≤ α, where P0 indicates that the probability is
evaluated under the null hypothesis that no change has occurred, α is the desired level of
false alarms, and N ≥ 1 is a design parameter. The MLFA is, however, difficult to evaluate
in closed form; in their recent book (Tartakovsky et al. 2014) Tartakovsky et al. note that
even an upper bound is lacking for the general non-i.i.d. case. Similar arguments apply to
the approach developed in Mei (2008) (see Tartakovsky 2008). The difficulty arises from
the fact that the distribution of the stopping time is hard to evaluate in closed form, even if
the distribution of the test statistic is known.

In view of the above, one wishes for further understanding of the distribution of the
stopping time as well as simple but effective methods for selecting the threshold such that
the probability of raising a false alarm is kept low in a stronger sense than allowed by the
ARL criterion. In the current paper we consider two simpler false alarm criteria, which are
derived from the MLFA. We believe that considering these simplified criteria is worthwhile
from a practical point of view because approximations are available and thus the selection
of the threshold is facilitated.

We now describe our contributions in more detail. As a simplification of the MLFA, Lai
(1998) considered

sup
n≥1

P0(n ≤ T < n + N) ≤ α (1)

as a performance criterion. It has, however, since been shown that the probability in (1) is
approximately exponential for small α, if observations are independent or weakly dependent
(Pollak and Tartakovsky 2009). Therefore, by the memoryless property of the exponential
distribution, we have P0(n ≤ T < n + N) ≈ P0(T ≤ N). In the first part of the paper we
therefore focus on the simple criterion

P0(T ≤ N) ≤ α . (2)
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We check that CUSUM (with or without windows) is asymptotically optimal under this
modified false alarm criterion, and investigate methods for selecting the threshold such
that it is satisfied. To do this exactly, one would need closed form expressions for the dis-
tribution of the stopping time. Since such expressions are not known in general, we first
show how the distribution of the window-limited stopping time can be described in terms
of recursive integral equations. For detection procedures without windows, integral equa-
tions have been derived based on renewal theory (Page 1954; Pollak and Tartakovsky 2009;
Siegmund 1985); here we follow a different approach, using results on the maximum of
autoregressive processes (Withers and Nadarajah 2014). We remark that the obtained recur-
sions are not restricted to CUSUM but hold for a broad class of testing procedures including
exponentially weighted moving average schemes (EWMA, see Roberts 1959).

However, while we thus in principle know the exact distribution of the window-limited
stopping time, in general these expressions cannot be solved for the threshold other
than numerically, and the latter is only feasible for the left tail of the distribution (see
Section 3.2.1 for discussion). We then provide non-asymptotic bounds for the distribution
of the CUSUM stopping time when windows are used, as well as for testing without win-
dows. We can then apply available approximation methods to find a threshold (function) that
ensures the proposed false alarm criterion is satisfied. We compare the use of central limit
theorem (CLT), large deviations (LD), as well as extreme value (EV) approximations. The
latter two methods allow one to obtain a threshold function rather than a constant threshold;
this increased flexibility can yield an improved delay performance (see Section 4 as well as
the example in Ellens et al. 2013).

In the second part of the paper, we focus on the criterion

sup
n≥1

P0(T = n | T ≥ n − 1) ≤ α . (3)

Note that this implies that the false alarm probability is limited at any given time n. This
criterion is the most conservative case of the MLFA, where we chose N = 1 because the
MLFA increases monotonically as a function of N . We motivate its application and show
how the aforementioned approximations can be used to select the threshold (for details see
Section 4).

The remainder of this paper is organized as follows. In Section 2 we define the change
point detection problem and the CUSUM method. In Section 3 we discuss the first criterion,
(2). In Section 3.1 we check that asymptotic optimality of CUSUM still holds, before we
turn to analyze the distribution of the stopping time with applications for threshold selection
in Sections 3.2 (when testing windows of fixed size) and 3.3 (when testing the full history
of observations). The alternative of limiting the false alarm probability at any given time via
(3) is discussed in Section 4. We conclude in Section 5.

2 Problem and Procedures

We are concerned with testing a sequence of observations (Vt ) ∈ R
dv against a change in the

underlying probability distribution. At every point in discrete time a new observation arrives
and is to be included in the test sample. That is, at time t ∈ N we want to test H0, the null
hypothesis of no change before time t , against H1 :=⋃t

k=1 H1(k), the alternative that there
was a change point at some time k ∈ {1, . . . , t}. Under H0, we assume that all observations
V t

1 := (V1, . . . , Vt ) have a common history-dependent density p, so that Vi ∼ p(· | V i−1
1 ),
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i + 1, . . . , t . Under H1(k), V k−1
1 and V t

k are independent, with Vi ∼ p(·, | V i−1
1 ), i < k,

and Vj ∼ q(· | V j−1
k ), j > k.

In practice, it can be necessary to test data in windows of fixed size n, rather than keeping
the whole history of observations. In this case we restrict k to the set {t − n + 1, . . . , t}.
Note that testing the full history of observations can equivalently be regarded as testing
with expanding windows: At time t the size of the window to be tested is t . We take this
viewpoint in the remainder of the paper as it allows us to treat both cases in a more unified
manner.

A testing procedure is optimal if it minimizes the detection delay, subject to a con-
dition on the number of false alarms. The CUSUM method due to Page (1954) often
turns out to be asymptotically optimal; for further details see Section 3.1. This motivates
that we focus on CUSUM in the current paper. The method is essentially a sequential
application of a LLR test. A sequence of LLRs can be regarded as a sequence of partial

sums with random increments �(Vt ) given by �(Vt ) := log
[
q
(
Vt | V t−1

1

)
/p
(
Vt | V t−1

1

)]
.

We can identify the LLRs corresponding to H1(1), . . . , H1(n) with a Markov process
Ym := (

S1:n(m), . . . , Sn:n(m)
)′

, where Sk:n(m) := ∑n+m−1
i=k+m−1 �(Vi), so that m ≥ 1

corresponds to the index of the first observation within the window that is to be tested. If no
windows are to be considered (i.e., in the case of expanding windows), then m = 1 is fixed,
and the size of the window n increases with time. In this case, we write Sk:n := Sk:n(1) to
simplify the notation. To consider windows of fixed size n, let m increase with time instead.

The standard CUSUM testing procedure with expanding windows features the stopping
time

τ = inf

{

n ≥ 1 : max
k∈{1,...,n} Sk:n > b

}

. (4)

If window-limited testing (with windows of fixed size) is desired, we define the stopping
time to be

ω := inf

{

m ≥ 1 : max
k∈{1,...,n} Sk:n(m) > b

}

, (5)

In Sections 3 and 4 we consider the performance criteria as briefly introduced in the
introduction, within which we have to distinguish between testing with windows of fixed
vs. expanding size.

3 False Alarm Before Time N

In this section we focus on the criterion (2), where T = ω or T = τ , depending on whether
or not window sizes are fixed, and for a fixed quantity N . Note that (2) is less conservative
than the MLFA, but indeed stronger than the traditional ARL criterion. The latter requires
that E0T ≥ κ, for some given (large) constant κ . Given (2), for 1 ≤ h ≤ N we have
P0
(
T > h

) ≥ 1 − α, which implies that E0T ≥∑N
h=1(1 − α) = N(1 − α).

Note that N plays the role of the length of the time interval considered in (1). In practice,
if the maximum testing period is known to be bounded, then the length of the testing period
seems a natural choice for N . Otherwise one could specify κ and α as desired (that is,
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according to one’s practical requirements on the ARL and the false alarm probability), and
choose N = κ/(1 − α).

3.1 Asymptotic Optimality of CUSUM

For independent observations (i.e., p and q are independent of the history) it is known that
if the CUSUM procedure with stopping time τ satisfies E0τ = κ , then it is optimal with
respect to certain delay criteria among all procedures that satisfy E0τ ≥ κ . However, in
practice it is usually not possible to achieve E0τ = κ because E0τ is not known in closed
form. Therefore, asymptotic optimality results are of interest which establish optimality
of CUSUM with τ satisfying E0τ ≥ κ asymptotically for large κ . (For details see, for
example, Tartakovsky et al. (2014), Ch. 8.) Similarly, we can prove asymptotic optimality
of T ∈ {τ, ω} under (2). This amounts to carefully checking that the proofs given in Lai
(1998) for the case of (1) still go through; we detail the steps below.

Let T be a stopping time with respect to the natural filtration F associated with the
observations, that is, Ft := σ(V1, . . . , Vt ). As before we write Pi and Ei , i ∈ {0, 1} for
the probability measure and expectation under Hi . Furthermore, we define P

k
1 and E

k
1 to be

the probability measure and expectation under H1(k), the alternative that there is a change
point at time k.

The following delay criteria have been considered in the literature: the worst-case
expected delay due to Lorden (1971): supk≥1 ess supEk

1

[
(T − k + 1)+

∣
∣Fk−1

]
, and the less

pessimistic delay criterion supk≥1 E
k
1[T − k | T ≥ k] due to Pollak (1985). We now ver-

ify that CUSUM is asymptotically optimal among all procedures satisfying (2) with respect
to both delay criteria. To this end, we check that the usual asymptotic lower bound on the
detection delay still holds (see Prop. 1), and that this lower bound is attained for small α in
combination with large N (Prop. 2 below).

Proposition 1 Suppose that for some finite positive constant I we have

lim
m→∞P

1
1

(

max
1≤t≤m

S1:t ≥ I (1 + δ)m

)

= 0 ∀δ > 0 . (6)

Assume that α := αN ≤ (log N)/N . Then, as N → ∞,

inf

{

sup
k≥1

ess supEk
1

[
(T − k + 1)+ |Fk−1

] : P0(T ≤ N) ≤ α

}

≥
{

sup
k≥1

E
k
1[T − k | T ≥ k] : P0(T ≤ N) ≤ α

}

≥ (I−1 + o(1)
)

log
(
N(1 − α)

)
.

The proof is a small modification of Lai’s proof (Lai 1998, Thm. 1). Details are presented
in the PhD thesis of the first author (Kuhn 2017, Ch. 10).

It then follows with the same arguments as used to prove Thm. 4.(ii) in Lai (1998) that
the lower bound is attained by ω (see Prop. 2). Since ω ≥ τ almost surely, this implies that
the bound is also attained by τ , and thus, both are asymptotically optimal.
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Proposition 2 Lai (1998) Assume that the threshold b = bN and the window size n = nN

are chosen such that P0(ω ≤ N) ≤ α, where α = αN → 0 as N → ∞. Further assume
that for some positive constant I and m ∈ N we have

lim inf
N→∞ nNI/bN > 1 , (7)

lim
R→∞ sup

k∈{1,...,m}
ess supPk

1

(
1

R

m+R∑

i=m

Xi < I
∣
∣Fm−1

)

= 0 , (8)

Then we have:

sup
k∈N

ess supEk
1

[
(ω − k + 1)+ |Fk−1

] ≤ (I−1 + o(1)
)
bN (9)

where o(1) → 0 as N → ∞.

For example, if observations are i.i.d., the conditions (6) and (8) are satisfied with I the
Kullback–Leibler information number, I = E

1
1�(V1), assuming the later is finite.

In summary, we have the following corollary.

Corollary 1 If b ∼ log
(
N(1 − α)

)
, α ≤ log(N)/N , and (6), (7), and (8) are satisfied with

I > 0, then T ∈ {ω, τ } is asymptotically optimal as N → ∞ in the sense that it minimizes
the detection delay among all stopping times T satisfying P0(T ≤ N) ≤ α.

In order to select a threshold that ensures (2), we need to be able to evaluate the distribu-
tion of the stopping time. We focus on ω in Section 3.2 and turn to τ in Section 3.3. In both
sections we first provide results on the distribution of the stopping time, and then show how
the threshold function can be chosen based on approximations to P0(T ≤ N).

3.2 Window-Limited Testing

First, we show an exact expression for the distribution of the stopping time ω in terms
of iterated integrals. Since these are hard to evaluate in practice, we then propose an EV
approximation that can be used to select the threshold in order to ensure (2).

3.2.1 Exact Expression in Terms of Iterated Integrals

We show that the test statistic of a large class of change point detection procedures (includ-
ing the window-limited CUSUM procedure) can be expressed in form of a first order vector
autoregressive process (VAR(1)). We can then obtain the distribution of the corresponding
stopping time using results on the distribution of the maximum of autoregressive processes
(Withers and Nadarajah 2014).

We are interested in finding an expression for

P0(ω ≤ m) = P0
(∃j ∈ {1, . . . , n} : Hm,j > b(j)

)
, (10)

where Hm is the n-vector with j -th element

Hm,j := max
{
Sj :n(1), . . . , Sj :n(m)

} = max
{
Y 1,j , . . . , Ym,j

}
. (11)

Note that the process Ym follows the recursion

Ym = 	(Ym−1) + ϑ1�(Vm+n) , (12)
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where 1 denotes an n-vector of ones. To obtain the window-limited CUSUM procedure, ϑ is
set equal to one, and 	 is defined as 	(y) = Cy, where C = (ci,j )i,j=1,...,n with ci,i+1 = 1
for i = 1, . . . , n − 1 and ci,j = 0 otherwise. Interestingly, other popular change point
detection methods can also be expressed in this way: for example, to obtain an exponentially
weighted moving average (EWMA, see Roberts 1959) procedure based on LLRs, define
	(y) = (1−ϑ)Cy for ϑ ∈ (0, 1). Thus, while in this paper we are focussed on the CUSUM
procedure, the result in Prop. 3 below would allow one to compute the stopping time for the
window-limited case more generally.

Note that (12) is a VAR(1) process, albeit with a degenerate noise process. A paper that
gives exact expressions (in terms of iterated Fredholm integrals) for the distribution of Hm

for a VAR(1) process is Withers and Nadarajah (2014). We adapt their results to our setting.
Let, for fixed x ∈ R

n,

Qm(x, y) := P (Hm ≤ x, Ym ≤ y) (13)

for m ≥ 0. Denote by xj the j -th entry of the vector x. Let min{x, y} be the component-
wise minimum of x and y. Let F be the distribution function of �(Vi).

Proposition 3 We have Qm(x, y) = KQm−1(x, y) for m ≥ 0, where

K h(y) =
∫

R

F

(
1

ϑ
min

i=1,...,n

{(
min{x, y} − 	(z)

)
i

})

dh(z) . (14)

The proof is similar to Withers and Nadarajah (2014), Thm. 3.1; for details see the first
author’s PhD thesis (Kuhn 2017, Ch. 10). Since P0 (Hm ≤ x) = Qm(x,∞), in principle
this allows us to compute (10) as P0(ω ≤ m) = 1 − P0

(
Hm,i ≤ b(i), i = 1, . . . , n

)
. To

evaluate this in practice, at least for small m one can use approximations based on the eigen-
values of the Fredholm kernel K (see Withers and Nadarajah 2014). In order to facilitate
solving for the threshold function b(·), in the following we provide closed-form approximate
expressions.

3.2.2 Approximation for Threshold Selection

When testing is window-limited, we can apply EV theory to approximate the false alarm
probability (2). This provides an easily applicable method to select b, which we outline
in this section for the example of independent Gaussian observations. We remark that EV
results have been applied very recently in Jirak (2015) in the context of non-parametric
change point detection.

Define γi,j (h) := Cov0(Ym,i, Ym+h,j ). By application of a theorem in Amram (1985),
we obtain the following corollary.

Corollary 2 Assume that observations are i.i.d. Gaussian under H0, and that σ > 1. Then
the process (Hm) defined by (11) satisfies

P0

(
Hm,i − (n − i + 1)μ√

n − i + 1σ
≤ am xi + cm, i = 1, . . . , n

)

→
n∏

i=1

exp
(− exp(−xi )) , as m → ∞ ,

where am = (2 log m)−1/2, cm = (2 log m)1/2 − 1
2 (2 log m)−1/2(log log m + log 4π).
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Proof It has been shown in Amram (1985) that as m → ∞ the limiting distribution of the
process of component-wise maxima of any standard Gaussian process coincides with that of
n independent Gumbel variables, provided that (i) |γi,j (0)| < r fori, j = 1, . . . , n, i 
= j

as well as (ii)
∑∞

h=1 |γi,j (h)|r < ∞ for alli, j = 1, . . . , n holds. We apply this theorem to
the n-dimensional process M̃m with i-th component Hm,i − (n− i +1)μ(σ

√
n − i + 1)−1.

Note that Sk:n(m) − (n − k + 1)μ(σ
√

n − k + 1)−1 has a standard normal distribution, so
that M̃m is indeed the process of component-wise maxima of a standard Gaussian process.

To verify the aforementioned conditions, we note that, for l, k ∈ {1, . . . , n} with l > k,

Cov0

(
Sk:n

σ
√

n − k + 1
,

Sl:n
σ
√

n − l + 1

)

= 1

σ
√

n − k + 1
, (15)

which is smaller than 1 by assumption. Finally, for k, l ∈ {1, . . . , n}, h ∈ N, we have

Cov0

⎛

⎝
n∑

i=k

�(Vi),

n+h∑

j=l+h

�(Vj )

⎞

⎠ = (n − max{k, l + h} + 1
)+

,

which is zero for h large enough.

Recall that we wish to choose a threshold function that yields P0(ω ≤ N) = 1 −
P0(Hm,i ≤ b(i), i = 1, . . . , n) ≤ α. Thus, for fixed N and n, Cor. 2 suggests we choose

b(β) =
[

− aN log

(

− 1

n
log(1 − α)

)

+ cN

]
√

n(1 − β) σ + n(1 − β)μ + δ , (16)

where the change point k is written as nβ + 1, β ∈ Bn := {0/n, 1/n, . . . , (n − 1)/n}
(this notation will turn out to be useful particularly in Section 3.3.2). The parameter δ is a
design parameter to be chosen based on simulation. Because cN → ∞, adding a constant
δ (constant with respect to N ) is negligible for large N . Numerical experiments suggest
that, for small n the choice δ = 0 seems to work well, however, for larger n, a negative δ

should be chosen, possibly a function of the other parameters. We suggest a choice for δ in
Section 3.3.2, for the case of expanding windows.

3.3 Testing With Expanding Windows

We first derive non-asymptotic bounds on the distribution of τ , which can then be used
to apply the CLT, LD, and EV approximations to select the threshold. The latter two
approaches yield a threshold function rather than a fixed threshold, and the achieved false
alarm performance is overall closer to the desired level.

3.3.1 Non-asymptotic Bounds

The complication in evaluating P0(τ ≤ N) arises from the fact that this
involves a double maximum of a sum with random increments: P0 (τ ≤ N) =
P0
(
max1≤m≤N max1≤k≤m Sk:m > b

)
. In this section we provide bounds that circumvent

this problem. The upper bounds we provide below in (17) and (18) turn out to be very tight,
particularly if the size of the change is large (see Fig. 1). We use these in Section 3.3.2. We
remark that similar bounds could be obtained for P0(ω ≤ N); the adaptation to this case is
straightforward and therefore omitted.
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First, note that we have

P0 (τ ≤ N) = P0

(

max
1≤m≤N

max
1≤k≤m

Sk:m > b

)

= P0

(

max
1≤m≤N

max
m≤n≤N

Sm:n > b

)

= P0

(

∃ m ∈ {1, . . . , N} : max
m≤n≤N

Sm:n > b

)

= P0

(

min
1≤m≤N

τm ≤ N

)

,

where τm =: inf{n ≥ m : Sm:n > b}. Therefore, the CUSUM stopping time can be written
as τ = minm≥1 τm. Hence, we have

P0 (τ ≤ N) = P0

(

min
1≤m≤N

τm ≤ N

)

= 1 − P0(τN > N)
N∏

i=2
P0 (τi−1 > N | τi > N) ,

which yields the bounds

1 − P0(τN > N) ≤ P0 (τ ≤ N) ≤ 1 −
N∏

i=1

P0(τi > N) . (17)

We furthermore note that the right-hand side is smaller than

1 −
(

min
h∈{1,...,N}P0(τh > N)

)N

= 1 − P0

(

max
h∈{1,...,N} S1:h ≤ b

)N

. (18)

Approximations to EqE 18 are available, based on which we can devise simple yet effective
procedures, see Section 3.3.2.

As Fig. 1 shows, the upper bounds turn out to be very tight. The lower bounds are tighter
when the size of the change is smaller. To see why this should be true, consider the following
heuristic argument. Since the mean μ of the LLR increments is negative, let us suppose
that all increments were negative. In this case Si:n < b would imply that Si−1:n < b, and
hence τi > N would imply that τi−1 > N . Thus, when μ is small compared to σ 2, then
P0(τ ≤ N) ≈ P0(τN ≤ N) = P0(VN > b), where VN = SN :N − SN−1:N . One would thus

Fig. 1 Comparison of P0(τ ≤ N) and the bounds provided in (17) and (18), with N = 50, σ = 1 and
threshold b = 0.5
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expect that an alarm is typically raised at the end of the current window, as is confirmed in
numerical experiments (see Fig. 4).

We now discuss how the bound (18) can be used for threshold selection.

3.3.2 Approximations for Threshold Selection

From the upper bound (18) we obtain that a sufficient condition for P0(τ ≤ N) ≤ α is

P0

(

max
h∈{1,...,N} Sh:N > b

)

≤ 1 − (1 − α)1/N . (19)

Below we discuss different limiting regimes that yield approximations to (19). In this section
we assume that observations are independent to facilitate the comparison of the differ-
ent methods. We remark, however, that the LD approximations suggested below can be
extended to the case of correlated observations (as was done in Ellens et al. (2013) for obser-
vations following a Gaussian autoregressive process). We restrict ourselves to a Gaussian
example only for the EV approximation; the LD and the CLT approximation apply more
generally.

EV Approximation As opposed to the approach in Section 3.2.2, we now consider the
univariate process of partial sums. That is, in this case we are interested in the maximum of
Sk:N over k ∈ {1, . . . , N}. Therefore, to achieve (19), in the case of i.i.d. Gaussian random
variables the threshold function can be chosen as

b(β) = √N(1 − β) σ

[

−aN log

(

− 1

N
log(1 − α)

)

+ cN

]

+ N(1 − β) μ + δ (20)

where β ∈ BN . For choosing δ we recall our remark from the previous section that one
may expect that – at least for large changes – a change tends to be detected at the end of the
window, where a single increment is considered. Thus, it seems intuitive to choose δ such
that b

(
(N − 1)/N

)
equals the 1 − (1 − (1 − α)1/N

)
-quantile of the distribution of the LLR

increments. It is confirmed in numerical experiments that this choice indeed yields good
performance of the resulting testing procedure; see the independent data example provided
at the end of this section as well as the example provided in Kuhn (2017, Ch. 10) featuring
a state space model.

LD Approximation Since we wish the false alarm probability α to be small, we may
regard this as a rare event scenario. Change point detection procedures based on LD approx-
imations have been considered in Bucklew (1985), Ellens et al. (2013) for i.i.d. and VARMA
models, yielding a threshold function b(·) that depends on the assumed position of the
change point under the alternative hypothesis. We express the change point k via N , that is,
we write k = Nβ + 1, where β ∈ BN . First, note that

lim
N→∞

1

N
logP0

(

max
β∈BN

1

N
SNβ+1:N > b

)

= max
β∈BN

lim
N→∞

1

N
logP0

(
1

N
SNβ+1:N > b

)

(for details see Ellens et al. 2013, Section 2). LD theory suggests that for fixed β the false
alarm probability can be approximated by

P0

(
N−1SNβ+1:N > b

)
≈ exp

(−NI(b)
)
, (21)

where I denotes a function specified below. We remark that sharp LD asymptotics (Bahadur
and Rao 1960), which include a polynomial term to achieve asymptotic equivalence, are to
be preferred whenever they are available; the way of proceeding remains the same. Using the
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logarithmic LD approximation (21) is, however, not uncommon; see e.g. (Bucklew 1985).
We focus on logarithmic asymptotics in order not to overload the paper.

As we observed earlier, there is no need to pick a constant b, as in the case of the EV
approximation, we can pick a function b(β) instead, such that (21) holds with b replaced by
b(β) for all β ∈ BN . Recall that we wish the false alarm probability to be kept at a small
level α. Therefore, we propose to pick the threshold function b(·) such that it satisfies

1 − (1 − α)1/N = exp
(
−NI

(
b(β)

))
. (22)

This choice entails that raising a false alarm is essentially equally likely irrespective of the
supposed location of the change point within the window, and it is therefore optimal in terms
of type II error performance; see Bucklew (1985), Ch. VI.E.

Now let us make the above discussion more rigorous. The limiting logarithmic moment-
generating function �(λ) associated with the distribution of the LLR is defined as

�(λ) := lim
N→∞

1

N(1 − β)
log MNβ(λ) := lim

N→∞
1

N(1 − β)
logE0

(
eλSNβ+1:N

)
; (23)

we assume for now that this function exists and is finite for every λ ∈ R. Define I as the
Fenchel–Legendre transform

I
(
b(β)

) := sup
λ∈R

(
λb(β) − (1 − β) �(λ)

)
.

Provided that �(λ) exists for all λ ∈ R, noting that we can rescale as written out in EqE 24,
the Gärtner–Ellis theorem (Bucklew 1985; Dembo and Zeitouni 1998) yields

lim
N→∞

1 − β

N(1 − β)
logP0

(
1

N(1 − β)
SNβ+1:N − b(β)

1 − β
> 0

)

= −I
(
b(β)

)
. (24)

In accordance with the idea expressed in (22), we choose the threshold function b(·) such
that it satisfies

− I(b(β)) = lim
N→∞

1

N
logP0

(
1

N
SNβ+1:N − b(β) > 0

)

= − γ (25)

for some positive γ = −N−1 log
(
1 − (1 − α)1/N

)
, across all β ∈ BN . Then asymptotically

for large N we have that (19) is satisfied.

CLT Approximation As a third alternative, we consider the approximation of the false
alarm probability based on CLT arguments. Applying a CLT approximation has been con-
sidered in Kuhn et al. (2015), Pawlak and Steland (2013). Motivated by Donsker’s theorem,
we can approximate the probability in (19) by Siegmund (1985), Eq. (3.15),

P0

(

max
t∈[0,N] σBt + μ t > b

)

= 1 − �

(
b − μ N

σ
√

N

)

+ e
2bμ

σ2 �

(−b − μ N

σ
√

N

)

, (26)

where Bt is a standard Brownian motion (Wiener process). Then a fixed threshold b (rather
than a function as before) can be obtained numerically from setting (26) equal to 1 − (1 −
α)1/N .

Independent Data Example For illustration we provide an example with independent
data, see Figs. 2–3. For a more interesting example featuring a state space model, we refer
to Kuhn (2017, Ch. 10). Note that when testing an independent sequence of N (0, ν) obser-
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vations against a shift in mean of size θ , then the LLR Sk:n(m) corresponding to testing
against H1(k) is given by

Sk:n(m) =
n+m−1∑

i=k+m−1

�(Vi) =
n+m−1∑

i=k+m−1

θ

ν2

(

Vi − θ

2

)

.

Thus, under H0 the LLR increments are normally distributed with mean μ = −(θ/ν)2/2
and variance σ 2 = (θ/ν)2.

Application of the EV and CLT approximations is then straightforward. To apply the LD
approximation, we need to compute the limiting log-moment-generating function �(λ) in
more explicit terms (this way we also check that it indeed exists and is finite for all λ).
Because the sequence of observations is independent, with k = Nβ + 1, we can write the
associated moment-generating function as

MNβ(λ) = E0

[

exp

(

λ
N∑

t=k

log q(Vt )
p(Vt )

)]

=
N∏

t=k

exp
[

λ
2 (λ − 1)

(
θ
ν

)2]
.

This implies that I
(
b(β)

) = supλ

{
λb(β) + (1 − β)λ

2 (1 − λ)
(

θ
ν

)2}
, which we set equal

to γ . The optimizing λ is 1/2 + b(β)/
[
(1 − β) (θ/ν)2 ], so that we obtain the desired

closed-form expression for b(·):

b(β) = −1 − β

2

(
θ

ν

)2

+ √
2γ (1 − β)

θ

ν
. (27)

It is interesting to compare this to the EV threshold function (20): we note that in both
cases (up to scaling by N ) the threshold function is of the form b(β) = N(1 − β)μ +√

N(1 − β) σ ζ(·), where ζ(·) is some function of the parameters. This form is intuitively
appealing: it makes sense to select a threshold that exceeds the expected value of SNβ+1:N
by some function of the standard deviation.

Using the three different thresholds, we can evaluate P0(τ ≤ N) by Monte Carlo simu-
lation. We estimate the false alarm rate as the relative frequency with which a false alarm is
raised. Figure 2 shows that the performance in terms of false alarms is conservative, as was
to be expected because we approximate the upper bound (19) rather than P0(τ ≤ N) itself.
Nevertheless, the false alarm rates are close to the desired level α when the EV approxima-
tion is applied, while the LD approximation is more conservative. The CLT approximation
does not seem to adjust enough for different α. This may be related to the fact that we have
to solve for b numerically in this case while in absolute terms 1 − (1 − α)1/N in (19) does
not change much with α. Moreover, it has also been found in Ch. III of Siegmund (1985)
that the CLT approximation typically underestimates the probability of interest. An expla-
nation for this is that in (26) it is assumed that the maximum is taken over a continuous (and
thus larger) interval.

Figure 3 displays the obtained delay values for various values of α. Here, the delay is
evaluated as the sample average of the difference between the first detection time and the
actual change point. Note the trade-off between the false alarm probability and the resulting
delay for the LD and CLT approximation. Interestingly, the EV approximation yields a
higher delay even though the false alarm probability is higher, suggesting that the shape of
the threshold function does not match the shape of the LLRs SNβ+1:N . (Note that this is not
generally the case: for the state space model example discussed in Kuhn et al. (2015) the
EV approximation achieves the better delay performance.)
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Fig. 2 False alarm rates under criterion P0(τ ≤ N) ≤ α, with θ = 2, N = 150, ν = 1. Comparison for
various α (indicated by the dotted line)

To further investigate this issue, we plot a graph of the threshold function as well as the
LLRs, both as a function of β ∈ BN , see Fig. 4. Indeed, the distance between the EV thresh-
old and the LLR is not uniform across β. The shape of the LD threshold, however, matches
the LLRs very well. The figure also suggests that particularly when using the EV thresh-
old, false alarms usually occur at the end of the window. One may thus wonder whether
one could simply choose a constant threshold equal to the 1 − (1 − (1 − α)1/N

)
-quantile

of F , the distribution of the LLR increments. This choice, however, does not work well, the
obtained false alarm rate is usually considerably higher than the desired level (in this exam-
ple it is close to 1). The figure shows clearly why a threshold function is to be preferred with
respect to a constant threshold: the CLT threshold is far away from the actual LLRs, except
when β is close to 1. Choosing a function is favorable particularly in view of the detection
delay, provided that it closely mimics the behavior of the LLRs.

Fig. 3 Delay values under criterion P0(τ ≤ N) ≤ α, with θ = 2, N = 150, ν = 1
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Fig. 4 Comparison of LLRs SNβ+1:N and the threshold functions devised in Section 3.3.2 (the LD threshold
is multiplied by N for comparability)

Figure 5 shows a comparison of the delay for various choices of the shift size θ . As
expected, the delay performance improves as the shift size increases. We remark that, reas-
suringly, for different choices of θ the resulting false alarm performance is highly similar to
Fig. 2.

4 More Control over False Alarms

The criterion considered in the previous section may not always be restrictive enough, as is
illustrated in Fig. 6. This figure shows the alarm rate obtained when testing a sequence of

Fig. 5 Delay values under criterion P0(τ ≤ N) ≤ α, with α = 0.01, N = 150, ν = 1. Comparison for
various values of the shift size θ
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Fig. 6 Alarm ratios obtained when testing an i.i.d. Gaussian sequence without windows. A constant
threshold is chosen such that E0τ ≥ N(1 − α), where N = 1, 000 and α = 0.01

independent Gaussian observations with expanding windows. We compute the alarm rate
as the relative frequency of the alarms raised – thus, the alarm rate before the change point
corresponds to the false alarm rate we discussed in Section 3.3.2, whereas the alarm rate
after the change point is to be interpreted as the rate of detection. The position of the change
point is indicated by the vertical line. The threshold is chosen such that (2) is achieved. It
can be seen that at the beginning of the period, where only a small number of data points
are tested, the false alarm rate is too high but because it then decreases below the desired
level, the criterion is still satisfied. This also confirms once more that one should choose
b to be a function, rather than a constant threshold as is often assumed. With a constant
threshold, as the example shows, P0(τ ≤ N) ≤ α can only be achieved if P0(τ = 1) ≤ α.
This is true more generally; recall that for independent or weakly dependent observations,
it has been shown, for example, in Pollak and Tartakovsky (2009) that the distribution of τ

is approximately exponential when the threshold b is large but constant.
In view of the above, we propose to choose a threshold function that limits the false

alarm rate for the current window to be α̃ (which can be related to α from before as outlined
below). That is, we require

P0(T = n | T > n − 1) = P0

(

max
k∈{1,...,n} Sk:n > bn

)

= α̃ (28)

to hold, uniformly across all n, where T ∈ {τ, ω}. If T = ω, the above can be simplified
because P0(ω = 1) = P0(ω = n |ω > n − 1) for any n. As mentioned in the introduction,
in the definition of the MLFA we can choose N = 1 to recover (28). In view of Fig. 6 this
seems a good choice as one would like to control the false alarm rate at every time instance;
it is, however, the least conservative because the MLFA increases monotonically in N .

To relate (28)-(2), note that P0(T ≤ N) =∑N
n=1 P0(T = n). Using that

P0(T =n)=P0(T =n | T > n − 1)P0(T > n − 1) = P0(T = n | T > n − 1)

(

1 −
n−1∑

t=1

P0(T = t)

)

.
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it is possible to express each P0(T = n) as P0(T = n | T > n − 1)
∏n−1

t=1

(
1 − P0(T =

t | T > t − 1)
)
. Thus, in principle one can allow for α̃ to depend on the current window size

n as well, and choose a sequence of α̃n such that P0(τ ≤ N) ≤ α is achieved. For example,
we can set

α̃1 = α

N
, α̃n = α

N

[
n−1∏

t=1

(1 − α̃t )

]−1

. (29)

Therefore, the condition (28) indeed allows a better control over the false alarm performance
as desired.

Approximations for (28) are readily available. For example, we can apply EV, LD, and
CLT approximations as in Section 3.3.2 with N replaced by n, and 1 − (1 − α)1/N replaced
by α̃. In order to ensure (28), we now need the threshold function to depend on the current
window size n. Thus, if the window size is fixed, the threshold function is the same for
every window. If windows are expanding, we obtain an adaptive threshold function. In the
latter case, it is all the more important that evaluation of the threshold function is simple so
that this can be carried out on-line as a new observation arrives.

Independent Data Example For illustration we consider again the independent data
example from Section 3.2.2, yet now false alarm rates are estimated according to (28). See
Fig. 7 for an example with stopping time ω, which displays the probability P0(ω = 1) that
is achieved on average, for various choices of α̃. (A comparison of different shift sizes is
not depicted because the false alarm behavior remains very stable, as desired.) In compari-
son to the example in Section 3.3.2 we note that the LD and EV approximations are closer
but slightly above the desired false alarm rate; whereas in Section 3.3.2 they were rather
conservative. This difference may be explained by the fact that in Section 3.3.2 we approx-
imated an upper bound to P0(τ ≤ N) rather than the probability itself. When windows
are expanding (and the stopping time is τ and thresholds are adaptive), a very similar false
alarm performance is obtained.

In Fig. 8 we check that when the threshold is obtained as suggested in the current section,
with the sequence α̃n defined by EqE 29, we indeed obtain a false alarm performance similar
to Fig. 2, where the threshold was chosen with the aim of achieving P0(τ ≤ N) ≤ α. The

Fig. 7 Comparison of probabilities P0(ω = 1) obtained with adaptive thresholds chosen such that EqE 28
is achieved with n = 50, θ = 1, ν = 1, for various α̃ (indicated by the dotted line)
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Fig. 8 Comparison of probabilities P0(τ ≤ N) obtained with adaptive thresholds satisfying (28), where α̃n

is chosen according to EqsE 29 such that EqE 2 holds, with N = 150, θ = 1, ν = 1, for various α (indicated
by the dotted line)

performance in terms of delay is then as in Fig. 3, as a consequence of the similar false
alarm performance.

In summary, Figs. 7 and 8 together confirm that (28) is a stronger false alarm criterion
that allows better control over the false alarms at any given time point.

We provide more involved examples in Kuhn (2017), Kuhn et al. (2015), which show
that for Gaussian observations the procedures we proposed can also be applied without
modification when observations are not independent themselves but can be transformed into
a sequence of independent random variables by applying a whitening filter.

5 Conclusion

In this paper we considered two false alarm criteria derived from the MLFA. Both criteria
are stronger than the traditional ARL, however, the first is less stringent than the MLFA,
whereas the second is a special case.

We then provided methods for the selection of the threshold such that the false alarm
criteria under consideration hold at least approximately. With respect to numerical methods
for threshold selection these are easily applicable, and moreover allow the selection of a
threshold function rather than a constant threshold. We investigated the performance of the
resulting detection procedures in numerical examples. In terms of false alarm performance,
the EV approximation was usually closest to the desired level. However, the LD threshold
function typically mimicked the shape of the LLRs more closely, and thus yielded the best
trade-off between false alarm and delay performance. We also saw that a threshold function
generally seems to be preferable in comparison to a constant threshold (and accordingly the
EV and the LD threshold functions outperformed the constant CLT threshold).

A topic for future research is the improvement of the EV approximation: we saw that
a shift of the resulting threshold function yields a good false alarm performance; however,
it should be determined what the optimal size of that shift is, depending on the available
parameters. Furthermore, the LD approximation requires the evaluation of the limiting log-
arithmic moment generating function of the LLR. In this paper, we only provided these
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computations for the case of Gaussian observations. Similarly, for the EV approximation
we assumed Gaussian observations. In future research other distributions should also be
considered in more detail.
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