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Chapter 9
Goodness-of-Fit Methods for Nonparametric
IRT Models

Klaas Sijtsma, J. Hendrik Straat, and L. Andries van der Ark

Abstract This chapter has three sections. The first section introduces the
unidimensional monotone latent variable model for data collected by means of
a test or a questionnaire. The second section discusses the use of goodness-of-
fit methods for statistical models, in particular, item response models such as
the unidimensional monotone latent variable model. The third section discusses
the use of the conditional association property for testing the goodness-of-fit of the
unidimensional monotone latent variable model. It is established that conditional
association is well suited for assessing the local independence assumption and
a procedure is proposed for identifying locally independent sets of items. The
procedure is used in a real-data analysis.

Keywords Conditional association • Goodness-of-fit methods • Local
independence • Robustness of conclusions when models fail • Unidimensional
monotone latent variable model
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9.1 Introduction to the Unidimensional Monotone
Latent Variable Model

We discuss the unidimensional monotone latent variable model (UMLVM), which
is a nonparametric item response theory (IRT) model also known as the monotone
homogeneity model (Sijtsma and Molenaar 2002). Next, we discuss the issues of
assessing the goodness-of-fit (GoF) of IRT models and the UMLVM in particular to
the data and problems that GoF investigation of IRT models typically encounters.
Finally, we propose a new GoF procedure for the UMLVM that selects one item
set or several item subsets consistent with the UMLVM’s local independence
assumption from an initial item set that may or may not be consistent with local
independence.

Let � denote the latent variable, and let Xj denote the random variable for the
score on item j ( j D 1; : : : ; J; J is the number of items in the test). The three
assumptions on which the UMLVM is based are the following.

• Unidimensionality (UD): latent variable � is unidimensional;
• Local independence (LI): the item scores are independent conditional on

� ; that is,

P.X1 D x1; : : : ; XJ D xj

ˇ
ˇ
ˇ�/ D

JY

jD1

P.Xj D xj

ˇ
ˇ
ˇ�/:

LI implies Weak LI, for covariances between items defined as

�.Xj; Xk

ˇ
ˇ
ˇ�/ D 0;

and which proves to be useful in this chapter. It may be noted that Weak LI is a
weaker property than LI: LI ) Weak LI, but Weak LI ¤> LI;

• Monotonicity (M): The J IRFs are monotone nondecreasing in � ; that is,

expectation E.Xj

ˇ
ˇ
ˇ�/ is nondecreasing in � .

The essential difference with parametric IRT models, such as the 1, 2, and 3-
parameter logistic models, the (generalized) partial credit model and the graded
response model, is that in nonparametric IRT models, such as the UMLVM, the IRFs
are not parametrically defined by means of, for example, logistic functions, but are
only subjected to order restrictions. For example, let us consider the logistic IRF of
the 1-parameter logistic model (Van der Linden and Hambleton 1997a), in which
ıj denotes the item’s location or difficulty parameter and 0/1 scoring for example
denotes incorrect/correct scoring, so that

P.Xj D 1
ˇ
ˇ
ˇ�/ D E.Xj

ˇ
ˇ
ˇ�/ D exp.� � ıj/

1 C exp.� � ıj/
:
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The latent variable � and the latent item parameter ıj can be estimated by means
of maximum likelihood procedures. However, nonparametric IRT models such as
the UMLVM only impose assumption M on the IRFs but do not parametrically
define the IRFs, and in the absence of parametric IRFs such as the logistic,
nonparametric IRT models do not enable estimating the latent variable � and
the latent item parameter ıj (but see Mokken and Lewis 1982, for an alternative
approach). However, the nonparametric UMLVM is a useful model because it does
imply an ordinal scale for person measurement that is suited in most practical testing
applications. Next, we discuss the properties of the ordinal scale.

For dichotomous items, the UMLVM implies stochastic ordering of latent

variable � by total score XC D
XJ

jD1
Xj (SOL; Grayson 1988; Hemker et al. 1997).

Let C and K be values of XC, such that 0 � C < K � J. Then for any t, SOL is
defined as

P.� > t
ˇ
ˇ
ˇXC D C/ � P.� > t

ˇ
ˇ
ˇXC D K/:

SOL refers to the ordering of the conditional, cumulative distributions of � . For the
means of these distributions, SOL implies that an increasing total score XC produces
an increasing mean latent variable � . Hence, SOL means that XC orders persons on
� , and this allows making decisions about relative attribute levels.

For polytomous items, mathematically the UMLVM does not imply SOL but
using an extensive simulation study, Van der Ark (2005) demonstrated that SOL
holds by approximation and that person reversals with respect to � due to the use of
XC usually concern adjacent XC values. Thus, rare ordering errors do not seem to
cause serious and far-reaching decision errors. In addition, SOL implies weak SOL,
defined as

P.� > t
ˇ
ˇ
ˇXC < xC/ � P.� > t

ˇ
ˇ
ˇXC � xC/;

and Van der Ark and Bergsma (2010) proved that the UMLVM implies Weak SOL:
SOL ) Weak SOL, but Weak SOL ¤> SOL. The dichotomization XC < xC and
XC � xC, typical of using cut scores, orders persons on � , and allows the use of
total score XC for assignment of individuals to the categories failure and success
in educational testing, rejection and selection in job assessment, and ineligible and
eligible for therapy or treatment in clinical settings.

The conclusion is that the UMLVM implies an ordinal scale on � by means of
total score XC. An interesting note often ignored is that all the parametric models
that are mathematical special cases of the UMLVM imply the use of XC as an
ordinal estimator of � , thus justifying the use of the much more accessible total
score in all applications where this might prove convenient. That is, the 1, 2, and
3-parameter logistic models and their normal-ogive counterparts imply SOL, and the
(generalized) partial credit model and the graded response model imply Weak SOL.
In the 1-parameter logistic model and its polytomous-item generalization, the partial
credit model, total score XC is a sufficient statistic for the maximum likelihood
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estimation of latent variable � . In other parametric IRT models, this relationship is
absent and it is often assumed incorrectly that XC has no place in the application
of such models. However, it has as an ordinal estimator of the � scale, and when
reasons to resort to the � scale are absent one can use the ordinal XC scale instead.

9.2 Goodness-of-Fit Research for the UMLVM

A good fit of an IRT model to the data is essential for establishing the model’s
measurement properties for the particular application envisaged. Without a well-
fitting model, the measurement specialist and the researcher cannot know whether
the measurement properties, in case of the UMLVM an ordinal scale, hold for the
test of interest, and the measurement practitioner cannot know whether conclusions
about people based on the scale are valid. An important question is when to use the
UMLVM as opposed to parametric IRT models. The answer is: When parametric
IRT models fail to fit the data well. This may seem to be a modest position, but
model-fit failure is the rule rather than the exception and is frequently ignored
implicitly assuming that the misfitting parametric IRT model can be used in practice
anyway; thus, the UMLVM may be useful in many applications to obtain an IRT
model that fits better than a parametric IRT model. We first discuss GoF in general
and then address the question of why researchers tend to neglect GoF investigation.

Like any model, IRT models are idealizations of reality and, consequently, they
cannot describe the data structure perfectly well. Thus, a GoF investigation will
always suggest at least some degree of model misfit. We distinguish three possible
outcomes of a GoF investigation. First, one may find that an IRT model provides
a reasonable approximation to the data and accept the model as a description of
the data. Second, one may conclude that the IRT model shows serious misfit and
decide that, for example, the item set should be divided into different subsets each
measuring a different attribute or misfitting items should be removed from the
item set hoping the IRT model to fit to the remaining item subset. The second
outcome may be a reasonable approximation but in principle the result is always
some degree of misfit. The third outcome is that the misfit is hopeless and nothing
can be done to save the test; that is, as long as one sticks to the IRT model selected to
model the data. In each case, in particular when misfit appears hopeless (i.e., option
3) but also when items are rejected because their IRFs are not logistic or have slopes
deviating from the majority of the IRF slopes (i.e., option 2) may one resort to an
alternative IRT model based on weaker assumptions, such as the UMLVM.

In test construction, GoF investigation appears to be somewhat neglected despite
the availability of GoF methods for several IRT models (e.g., Glas and Verhelst
1995; Sijtsma and Molenaar 2002; Van der Linden and Hambleton 1997b). One
can only speculate about the reasons for the more general neglect. One reason
may be that GoF investigation is complex. First, GoF methods never address the
whole model simultaneously but only one model assumption or a pair of model
assumptions. For example, several GoF methods exist that assess the combination
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of UD and LI or only LI, and other methods assess M possibly including a particular
parametric shape, but methods that simultaneously assess all assumptions of a
model, say, the 1-parameter logistic model or the graded response model, to our
knowledge do not exist. Second, GoF methods may be global, assessing the GoF
of all items with respect to one or two assumptions simultaneously, or they may be
local, assessing whether pairs of items are locally independent or whether the IRF of
one particular item is monotone. Third, splitting the item set in subsets or removing
an item from the item set produces a smaller data set and affects the GoF results
in the next analysis round, possibly causing initially fitting items to show misfit.
Combining these different aspects of a GoF investigation is difficult and may easily
discourage researchers; De Koning et al. (2002) and Sijtsma et al. (2011) suggest
how to consistently perform a complex GoF investigation.

Another reason for GoF neglect is that several GoF methods check a particular
observable consequence of a model, following the logic that negative results
imply that the IRT model cannot have generated the data. While the logic is
correct, it remains unknown which assumption or assumptions were violated in
particular. For example, the UMLVM and all its special cases including many
parametric IRT models imply positive inter-item correlations but the presence of
negative correlations among several positive correlations usually does not inform
the researcher which assumption or which assumptions have been violated, only
that the model did not generate the data. Hence, the diagnostic value of negative
inter-item correlations appears limited.

A comprehensive GoF investigation based on the combination of different
methods assessing different assumptions, for all items simultaneously and for
individual items and pairs of items, and possibly also considering GoF methods
providing little diagnostic information, may produce additional problems. First, a
comprehensive GoF procedure typically involves many decisions as the procedure
moves along thus introducing results that increasingly capitalize on chance, calling
for cross validating the end result. Second, a GoF investigation typically produces a
plethora of results that need to be combined so as to enable the researcher to draw
a conclusion about the fit of his IRT model to the data. Little research has been
done with respect to the question of how to combine the detailed results into one
conclusion about GoF.

In the third section of this chapter, we discuss a new GoF method that, when
the data are inconsistent with the UMLVM, has two apparent problems that we
try to solve: The method does not inform the researcher unequivocally which
assumption—UD, LI, or M—is violated and moreover produces an avalanche of
detailed results. We investigate which assumption is violated when the method
indicates model misfit and we suggest a solution to the problem of multiple detailed
results. Many GoF methods assess the UMLVM; for UD assessment see Mokken
(1971) and Straat et al. (2013); for LI assessment see Zhang and Stout (1999) and
Douglas et al. (1998); and for M assessment see Rossi et al. (2002) and Tijmstra
et al. (2013). Sijtsma and Molenaar (2002) and Sijtsma and Meijer (2007) provide
overviews.
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9.3 Conditional Association

We studied conditional association (CA; Holland and Rosenbaum 1986), which is
an observable consequence of the UMLVM, as a potential method for assessing
whether the data are consistent with the model’s assumption of LI. Let the vector
of J item-score variables be denoted by X, and let X be divided into two mutually
exclusive and exhaustive item subsets Y and Z, so that X D .Y; Z/. Also, let f1 and
f2 be nondecreasing functions and let h be any function. Holland and Rosenbaum
proved that the UMLVM implies CA,

�Œf1.Y/; f2.Y/
ˇ
ˇ
ˇh.Z/ D z� � 0:

CA implies that in particular subgroups defined by h.Z/ D z, the covari-
ance between nondecreasing functions f1(Y) and f2(Y) is non-negative. Examples
(Sijtsma 2003) of CA are:

• �.Xj; Xk/ � 0; all inter-item covariances/correlations are non-negative;

• �.Xj; Xk

ˇ
ˇ
ˇXl D xl/ � 0; within item-score subgroups, all inter-item covariances

are non-negative; and

• �.Xj; Xk

ˇ
ˇ
ˇR.jk/ D r/ � 0, rest score R.jk/ D

X

i¤j;k
Xi, R has realizations r; within

rest-score subgroups, all inter-item covariances are non-negative.

These covariances are used separately in several GoF methods for the UMLVM, but
here we will investigate whether they can be used for investigating LI.

CA provides the means for testing the GoF of the UMLVM to the data as follows:

• If the covariances are negative, then the UMLVM did not generate the data; and
• If the covariances are positive, then one has found support for the UMLVM (but

not proof, which is impossible in sample data).

A drawback for this sort of GoF research is the many covariances generated, among
them perhaps negative covariances due to serious model violations but others due
to only minor violations and sampling fluctuation, thus rendering it difficult to draw
straightforward conclusions about GoF. For example, assume one has 20 items and
5 ordered item scores per item; then, drawing conclusions about GoF would involve
a complete and possibly confused inspection that assesses and combines the results
from

• 190 covariances � (Xj, Xk);

• 5700 covariances �.Xj; Xk

ˇ
ˇ
ˇXl D xl/; and

• 13,680 covariances �.Xj; Xk

ˇ
ˇ
ˇR.jk/ D r/.
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9.3.1 How to Use CA Failure to Identify UMLVM Misfit?

How are the three cases of CA related to violations of UD, LI, and M? Suppose,
we need a multidimensional ™ to explain the associations between the items;
then, conditioning on one latent variable � violates LI and also weak LI, and
may also cause non-monotone IRFs reflected by negative (conditional) inter-item
covariances. We distinguish two violations of weak LI: positive local dependence

(PLD), �.Xj; Xk

ˇ
ˇ
ˇ�/ > 0, and negative local dependence (NLD), �.Xj; Xk

ˇ
ˇ
ˇ�/ < 0

(Rosenbaum 1988). What one needs to know is whether, for example, �.Xj; Xk

ˇ
ˇ
ˇXl D

xl/ < 0 is due to items j and k being PLD or NLD, or whether the negative
covariance is due to non-monotonicity of the items’ IRFs. We used mathematical
results provided by Holland and Rosenbaum (1986) and Rosenbaum (1988) and a
computational study to find an answer to questions like these when the three cases
of CA provide negative values in sample data (Straat et al. 2014).

The mathematical results showed that even when the UMLVM fails to hold,
particular observable covariances are positive; hence, such covariances are useless
to assess UMLVM fit. For the other observable covariances, a computational study
was used to mimic PLD or NLD for particular item pairs or IRF non-monotonicity
for particular items, and to estimate the proportion by which a particular conditional
covariance for the corresponding items was negative. Reversely, we argued that the
higher the proportion, the higher the power of a particular covariance to identify
item pairs that were PLD or NLD, or items that had non-monotone IRFs.

The results of the computational study were the following. Conditional covari-
ances had insufficient power to detect IRF non-monotonicity; hence, they are not
suitable for this purpose. The next three types of covariances are suitable for
identifying PLD and NLD; that is, they are suited to identify violations of LI. Let a
and b be two items from item subset Y, and let c be an item from Z; j indexes any
item from the union of both subsets, X. PLD(a, b) means that items a and b are PLD,
and NLD(a, b) that both items are NLD. Further, s denotes sample covariance. The
next three results appear consistently across different choices of item parameters:

PLD: 1. If PLD(a, c) is investigated, then s.Xa; Xj

ˇ
ˇ
ˇXc D xc/ < 0 indentifies PLD;

2. If PLD(a, j) is investigated, then s.Xa; Xb

ˇ
ˇ
ˇR D r/ < 0 identifies PLD;

Note: item b may replace item a; formally, nothing changes.

NLD: 3. If NLD(a, b) is investigated, then s.Xa; Xb

ˇ
ˇ
ˇR D r/ < 0 identifies NLD.

These results show that only a limited number of observable conditional covariances
have enough power to be useful in GoF research. The other covariances often have
positive values if LI is violated, that is, when the UMLVM fails to fit the data.
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9.3.2 Usefulness of CA Failure for Identifying Locally
Dependent Items

Straat et al. (2014) proposed a methodology that uses the three specific conditional
covariances above for identifying locally dependent items from a larger set, and
which therefore are candidates for removal from the test represented by vector X.
For each of the three covariance results discussed in the previous section, the authors
defined unique indices denoted W(1), W(2), and W(3), respectively, that quantify the
degree to which the item is suspected to belong to locally dependent pairs. For a
set of J items, each of the J.J � 1/ indices W(1) is a weighted count of negative

covariances defined in Result 1 in the previous section [i.e., s.Xa; Xb

ˇ
ˇ
ˇXc D xc/ < 0,

j D 1; : : : ; J; j ¤ a; b]; each of the J indices W(2) is a weighted count of negative

covariances defined in Result 2 in the previous section [i.e., s.Xa; Xj

ˇ
ˇ
ˇR D r/ < 0,

j D 1; : : : ; J; j ¤ a; r D 1; : : : ; R]; and each of the J.J � 1/ indices W(3) is a
weighed count of negative covariances defined in Result 3 in the previous section

[i.e., s.Xa; Xb

ˇ
ˇ
ˇR D r/ < 0; r D 1; : : : ; R]. Each index is the sum of probabilities

that a sample conditional covariance s is negative under the null hypothesis that the
population covariance � is non-negative. After a Fisher Z-transformation, sample
covariances are assumed to be normally distributed, and the sum of the areas under
the normal curve that correspond to the negative scale region on the abscissa defines
the value of a W index. A larger negative sum, that is, a larger positive W value,
suggests a stronger case for local dependence and thus removing the item from X.

Tukey’s fences were used to determine whether a W index has a negative value
high enough to remove the item from X. The authors adjusted a procedure Ligtvoet
et al. (2010) used in another context for item selection to their purpose, which was to
identify and then remove locally dependent items from X. Straat et al. (2014) called
the adjusted procedure the CA procedure. In a simulation study, the authors found
that CA procedure had a specificity—the proportion of correctly identified LI items
or item pairs that were kept in X—equal to 89.5 %. The CA procedure’s sensitivity
was defined for single items and pairs of items and assessed for different versions
of local dependence, and varied from approximately 42–90 %.

9.3.3 Real-Data Example: The Adjective Checklist

We analyzed data from the Adjective Checklist (Gough and Heilbrun 1980), which
are available in the R package “mokken” (Van der Ark 2007, 2012). The data
consisted of the scores of 433 students on 218 items from a Dutch version of the
Adjective Checklist. Each item is an adjective having five ordered answer categories
(0 D completely disagree, 1 D disagree, 2 D neither agree nor disagree, 3 D agree,
4 D completely agree). The respondents were instructed to consider whether an
adjective described their personality, and mark the answer category that fitted best
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Table 9.1 Item means, item-scalability coefficients, and total-scalability coefficient
(standard errors between parenthesis) for two ACL scales

Achievement Nurturance
Item Mean Hj (s.e.) Item Mean Hj (s.e.)

Active 2.471 0.408 (0.030) Kind 2.771 0.266 (0.036)
Alert 2.395 0.337 (0.036) Aloof* 2.312 0.190 (0.031)
Ambitious 2.448 0.410 (0.030) Helpful 2.624 0.264 (0.034)
Thorough 2.259 0.322 (0.036) Intolerant* 2.998 0.247 (0.034)
Energetic 2.460 0.423 (0.032) Sympathetic 2.778 0.265 (0.036)
Unambitious* 2.734 0.367 (0.033) Snobbish* 3.044 0.196 (0.032)
Quitting* 2.811 0.321 (0.036) Affectionate 2.972 0.207 (0.037)
Determined 2.499 0.384 (0.036) Hostile* 3.307 0.337 (0.027)
Industrious 2.067 0.372 (0.034) Friendly 2.806 0.317 (0.032)
Persevering 2.298 0.433 (0.032) Distrustful* 2.700 0.221 (0.031)
Total scale 0.378 (0.026) Total scale 0.247 (0.024)

Note: An asterisk indicates adjectives that are negative with respect to the attribute.
Tabulated results are based on recoded item scores

to this description. The 218 items constitute 22 scales. For illustration purposes
we selected two 10-item scales: Achievement, having item-scalability Hj-values
(Sijtsma and Molenaar 2002, chap. 4) greater than 0.3 for all items, and Nurturance,
having rather low item-scalability coefficients (Table 9.1). We used the R package
“mokken (Van der Ark 2007, 2012) to compute the scalability coefficients of
the items, and we used the R package “CAprocedure” (available from the
third author upon request) for the CA procedure. The R-code is provided in the
Appendix.

The UMLVM implies that item-pair scalability coefficients (Sijtsma and Mole-
naar 2002, chap. 4) and item-scalability coefficients are non-negative. For both
scales, we found that all item-pair scalability coefficients (not tabulated) and all
item-scalability coefficients indeed were positive, lending support to the fit of the
UMLVM.

For Achievement, the CA procedure flagged only item pair (Ambitious, Unam-
bitious) for possible PLD (Index W(1)). The 10 items produced 90 indices W(1).
Based on these 90 indices, Tukey’s upper fence was equal to 11.433. For item pair
(Ambitious, Unambitious), index W(1) equaled 12.194. For all other item pairs, the
W(1) values did not exceed Tukey’s upper fence. None of 10 indices W(2) and none
of the 45 indices W(3) exceeded the corresponding Tukey’s upper fences. The result
can be explained by noticing that the reversed scores of Unambitious were used to
compute the results, and reversal of the scores renders the items similarly worded,
so that a flag for PLD seems reasonable. Because Unambitious had the lower item-
scalability value, this item is a candidate for removal.

For Nurturance, the CA procedure flagged item-pair (Hostile*, Distrustful*)
for PLD (W(1) D 18.189, Tukey’s upper fence D 15.777), and the items Aloof*
(W(2) D 71.047, Tukey’s upper fence D 70.741) and Snobbish* (W(2) D 74.924,
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Tukey’s upper fence D 70.741) for being in a PLD item pair. Aloof* had the
lowest item-scalability coefficient and was removed first, followed by Distrustful*,
and Snobbish*. After these three items were removed, Intolerant* (W(2) D 33.027,
Tukey’s upper fence D 30.650) was flagged for being in a PLD item pair, and was
also removed, leaving six items in the scale. Except for Hostile*, all negatively
worded items were removed. An explanation for the large number of flagged items
is that the negatively worded items formed a separate dimension.

9.4 Discussion

Conditional association offers possibilities for LI assessment in goodness-of-fit
studies of the UMLVM. Given the variable results for CA procedure’s sensitivity, it
seems worthwhile to study how the procedure can be improved so as to increase
its sensitivity. A comparison with alternative procedures assessing LI is useful
and should be conducted. In a broader context, we noticed that GoF methods for
any statistical model hardly ever address the complete model but target particular
assumptions or sets of intimately related assumptions. For nonparametric IRT
models the picture is no different but fortunately a large array of GoF methods
assessing nonparametric IRT assumptions is available. The assessment of LI
seems to be the least well developed. This chapter discussed a contribution to LI
assessment. From the researcher’s viewpoint a sound methodology that combines
the best GoF methods so as to obtain a comprehensive picture of a model’s fit to the
data with respect to UD, LI and M is another topic we intend to pursue.

A.1 Appendix

R code we used for the real-data example.

R> library(“CAprocedure”)

R> library(“mokken”)

R> data(acl)

R> # Achievement

R> Ach <- acl[, 11 : 20]

R> coefH(Ach)

R> apply(Ach, 2, mean)

R> CAP(Ach, TRUE)

R> # Nurturance

R> Nur <- acl[, 61 : 70] #

R> coefH(Nur)

R> apply(Nur, 2, mean)

R> CAP(Nur, TRUE)
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