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Chapter 23
Comparing Estimation Methods for Categorical
Marginal Models

Renske E. Kuijpers, Wicher P. Bergsma, L. Andries van der Ark,
and Marcel A. Croon

Abstract Categorical marginal models are flexible models for modelling dependent
or clustered categorical data which do not involve any specific assumptions about the
nature of the dependencies. Categorical marginal models are used for different pur-
poses, including hypothesis testing, assessing model fit, and regression problems.
Two different estimation methods are used to estimate marginal models: maximum
likelihood (ML) and generalized estimating equations (GEE). We explored three
different cases to find out to what extent the two types of estimation methods
are appropriate for investigating different types of research questions. The results
suggest that ML may be preferred for assessing model fit because GEE has limited
fit indices, whereas both methods can be used to assess the effect of independent
factors in regression. Moreover, ML is asymptotically efficient, while GEE loses
efficiency when the working correlation matrix is not correctly specified. However,
for parameter estimation in regression GEE is easier to apply from a computational
perspective.

23.1 Introduction

In the social and behavioral sciences, researchers frequently collect data that are
correlated or dependent, such as longitudinal data, dyadic data, and data obtained
from psychological or educational testing in which each respondent answers several
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items. Although the dependencies are not always of main interest for the research,
they cannot be ignored. Ignoring the dependencies in the analysis may produce
incorrect standard errors and p-values. Categorical marginal models (Bergsma
et al. 2009) are flexible models for categorical data that take these dependencies
into account without making assumptions about their nature. These models are
useful when researchers investigate research questions concerning the marginal
distributions of a set of variables instead of testing hypotheses with respect to the
joint distribution for all variables in a certain data set.

Categorical marginal models are used to answer various types of research
questions. Two types of research questions we encountered in the literature are
research questions that involve hypothesis testing and research questions that
involve parameter estimation. An example of a research question that involves
hypothesis testing is provided by Kuijpers et al. (2013a). They proposed fitting cate-
gorical marginal models to test the hypothesis that Cronbach’s alpha is equal for two
or more subgroups. Other examples include testing marginal models for scalability
coefficients (Van der Ark et al. 2008; Kuijpers et al. 2013b), marginal homogeneity
(Bergsma et al. 2009), and ordinal association measures (e.g., Lang 2004).

For the second type of research question, the main interest lies in the values of
the estimated regression parameters. For example, Molenberghs and Verbeke (2005)
used marginal models to investigate the effect of two types of vaccinations from two
different companies on the presence/absence of headaches and respiratory problems
in two trial periods. Other examples include (1) modelling the effect of different
demographic variables on the relation between smoking and drinking behavior in
different subgroups of the Belgian Interuniversity Research on Nutrition and Health
study (Kesteloot et al. 1989) and (2) investigating whether different (combinations
of) variables such as gender, age, education, and religiosity have a significant effect
on the attitude towards women’s roles (Bergsma et al. 2009, pp. 168–171).

Both likelihood methods and quasi-likelihood methods have been used to
estimate marginal models. For likelihood methods, which include maximum like-
lihood (ML) estimation (Bergsma 1997), maximum empirical likelihood (MEL)
estimation, and maximum augmented empirical likelihood (MAEL) estimation
(Van der Ark et al. 2013), the full likelihood is optimized under the marginal
model of interest and under the assumption that the data follow a multinomial
distribution. ML, MEL, and MAEL estimation differ with respect to whether or
not they use all possible item-score patterns of a set of items for the estimation of
a model. For research questions that concern hypothesis testing, the authors have
used ML (e.g., Kuijpers et al. 2013a,b; Van der Ark et al. 2008). For this paper,
we only consider ML estimation. The most popular quasi-likelihood method is
generalized estimating equations (GEE; Liang and Zeger 1986). GEE is not based
on a specific probability model for the data. The estimation method assumes only
a mean-variance relationship for the dependent variable. GEE is mainly used for
estimating regression models (e.g., Agresti 2013; Molenberghs and Verbeke 2005;
Pawitan 2001). Skrondal and Rabe-Hesketh (2004, p. 200) noted that GEE has some
limitations with respect to hypothesis testing and assessing model adequacy.
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In this study, we explored to what extent ML estimation and GEE are appropriate
for investigating the three types of research questions. We considered three different
research questions, referred to as Case 1, Case 2, and Case 3. Let θ denote a
particular coefficient, and let c denote a fixed value. In this study θ can refer to
either the mean (μ) or the reliability coefficient Cronbach’s alpha (α). In Case 1,
we investigated whether θ is equal to a fixed value c (i.e., θ = c); in Case 2,
we investigated whether θ is equal for two groups (i.e., θ1 = θ2); and in Case 3,
we investigated whether θ is a linear function of independent variable X (i.e.,
θ = β0 + β1X). In each case, we investigated the two coefficients μ and α , and
we compared the results obtained with ML estimation and GEE. We illustrated each
case with a real-data example.

The remainder of this paper is organized as follows. First, we briefly explain
categorical marginal models. Second, we discuss the two groups of estimation
methods. Third, we discuss how to express μ and α in an appropriate notation for
ML estimation. Fourth, using a real-data set, we compare the estimation methods
for the three cases. Finally, we discuss the outcomes and provide recommendations
for future research.

23.2 Categorical Marginal Models

In order to use categorical marginal models for testing hypotheses for a coefficient
or for estimating parameters in a regression model, the first step is to write the
coefficient or the regression model as a function of the frequencies of the item-score
patterns that are observed in the data. Consider a set of J items, each item having
z+1 ordered answer categories (0,1, . . . ,z); this produces L=(z+1)J possible item-
score patterns. Let n be an L× 1 vector containing the observed frequencies of the
L possible item-score patterns. For example, a dichotomously scored test consisting
of J = 3 items (denoted by a, b, and c) has L = 23 = 8 possible item-score patterns;
hence, vector n equals

n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n000
abc

n001
abc

n010
abc

n011
abc

n100
abc

n101
abc

n110
abc

n111
abc

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (23.1)

where the subscripts denote the items and the superscripts the item scores. The
observed frequencies of the item-score patterns in vector n are given in lexico-
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graphic order, running from 00 . . .0 to zz . . .z with the last digit changing fastest
and the digit in the first column changing slowest.

The expected frequencies under a categorical marginal model are collected in an
L× 1 vector m. Because there may be more than one set of expected frequencies
that satisfy a marginal model, m is as close as possible to n. Let matrix C be a
marginal matrix consisting of zeros and ones, such that C′m produces the relevant
marginals from the contingency table. Vector ˇ contains the K model parameters βk

(k = 0,1, . . . ,K−1). Then, let Z be the design matrix of the marginal model that uses
effect coding in order to select the right parameters from vector ˇ. In a categorical
marginal model, a function of the relevant marginals is then written as

f(C′m) = Zˇ, (23.2)

where f is an appropriate vector function. Alternatively, the model can be written
without parameter vector ˇ (Agresti 2013, pp. 460–461; Aitchison and Silvey 1958;
Bergsma et al. 2013). Let B be the orthogonal complement of Z, then B′Z = 0. By
premultiplying both sides of Eq. (23.2) by B′, the categorical marginal model can
be written as a set of constraints

B′f(C′m) = B′Zˇ = 0.

Because B and C are known design matrices, we can write g(m) = B′f(C′m).
Then, a concise notation for a categorical marginal model, as is used throughout
the literature (e.g., Bergsma 1997; Kuijpers et al. 2013a; Van der Ark et al. 2008), is

g(m) = 0. (23.3)

Let D be the number of constraints on the expected frequencies m. Each constraint
is a scalar function, so, for example, g1(m) = d1, and can be collected in the
vector g(m). So g(m) contains all constraints that are placed on a vector m. The
constraints in Eq. (23.3) constitute the categorical marginal model. Some examples
of constraints are α = 0.80 and μ1 = μ2.

23.3 Estimation Methods

23.3.1 Likelihood Methods

Likelihood methods use the constraint notation in Eq. (23.3) in combination with
ML estimation. The unconstrained log-likelihood function (for more details see
Bergsma 1997) is

�(m|n) = n′ logm.
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The maximum likelihood estimate m̂ maximizes �(m|n) subject to the constraints
implied by the categorical marginal model, g(m) = 0 [Eq. (23.3)], and to the
constraint that ∑i mi = ∑i ni = N, where N denotes the total sample size.

Let � be a D× 1 vector of Lagrange multipliers and let ν be a single Lagrange
multiplier, then under some regularity conditions, the ML estimates under Eq. (23.3)
are a saddle point of the Lagrangian log-likelihood

�(m|n,�,ν) = n′ logm−ν(1′m−N)−�′g(m). (23.4)

Bergsma (1997) proposed a Fisher scoring algorithm to find the vector m in
Eq. (23.4). The fit of the categorical marginal model can be assessed by means
of a likelihood ratio test G2 = 2n′ log(n/m̂) or a Pearsons’ chi-square test X2 =
(m̂− n)′D−1

m̂ (m̂− n) with D degrees of freedom. Here, Dm̂ is a diagonal matrix
with the elements of vector m̂ on the diagonal. Because ML estimation is based
on the likelihood function, models can be compared and statistical inferences about
parameters can be made.

23.3.2 Generalized Estimating Equations

GEE specifies a link function for the mean, and specifies the dependence of the
variance on the mean. Furthermore, GEE replaces the often complex dependence
structure by a so-called working correlation structure that is more straightforward to
define. GEE can be used to fit any categorical marginal model expressed in terms of
Eq. (23.2), but traditionally GEE is used for regression models for longitudinal data.
In the case of longitudinal data, Yit is the response for person i (with i = 1,2, . . . ,N)
on time point t (with t = 1,2, . . . ,T ). For GEE, for person i, the model of interest is
equal to

h(�i) = Ziˇ, (23.5)

In Eq. (23.5), h(·) is a link function that applies element by element to vector �i.
Vector �i contains the expected responses (i.e., for person i, �i = (μi1, . . . ,μiT )

′).
GEE links the mean μ to a linear predictor and in addition specifies a variance

function that describes how the variance of Yit depends on μit (Agresti 2013, p. 462).
This model applies to the marginal distribution for each Yit . The estimating equation
used in GEE is

N

∑
i=1

∂�i

∂
ˇV−1

i (yi −�i) = 0 (23.6)
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where yi is a vector with t observed responses (i.e., yi = (yi1, . . . ,yiT )
′), and Vi is an

appropriately chosen working correlation matrix. The estimates of the parameters
βi in vector ˇ are a solution of Eq. (23.6). For an exponential family μit = E(Yit).

For GEE, the particular working correlation structure needs to be specified for
the relation between the t different responses of person i collected in yi. Different
correlation structures can be chosen, depending on the nature of the dependencies
between the different responses (Pawitan 2001, p. 396). Choosing a working
correlation structure that approximates the true correlation structure between the
dependent responses enhances the efficiency of the parameter estimates (Agresti
2013, p. 463). Commonly used specifications of the working correlation matrix are:
(1) the independence structure, which treats the different responses as independent;
thus, no dependency exists; (2) the exchangeable structure, which assumes constant
dependency; thus, the correlations between the different responses are assumed
to be equal for each observed response; (3) the autoregressive structure, which is
often used for measurement over time, and treats the correlations as an exponential
function of the time lag; thus, this structure assumes that observations farther
apart in time have weaker correlations; and (4) the unstructured structure, which
assumes a free specification of the working correlation matrix, implying a separate
correlation for each pair of observations (see Agresti 2013, p. 462, and Pawitan
2001, pp. 396–397, for more details).

The choice of the working correlation structure determines the GEE estimates
of the model parameters and the accompanying standard errors (Agresti 2013,
pp. 462–463). However, even if the working correlation matrix is misspecified,
the estimates of the parameters are consistent. In contrast, the estimates of the
standard errors of the parameters are not accurate, and need to be adjusted for
misspecification of the working correlation matrix by using the so-called sandwich
estimator (e.g., Agresti 2013, p. 467). Liang and Zeger (1986) proposed estimating
the GEE parameter estimates and the standard errors by means of a Fisher scoring
algorithm.

GEE can also be used for fitting categorical marginal models that are defined by
more complex functions than the link function h(), and by functions that have n
rather than y as an argument. Here, f(C′n) is a function of the observed responses
and Zˇ = f(C′m) is a function of the expected responses, so Eq. 23.6 becomes

Z′V−1(f(C′n)−Zˇ) = 0. (23.7)

A marginal model Zˇ can represent a wide range of parameters or coefficients, with
f(C′n) being the corresponding sample value (Bergsma et al. 2013). Equation (23.7)
can easily be solved by using

ˇ = (Z′V−1Z)−1Z′V−1f(C′n), (23.8)

which is equivalent to weighted least squares, with V−1 being a weight matrix. By
means of Eq. (23.8), estimates for the parameters in ˇ can be obtained.
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23.4 Expressing Item Means and Cronbach’s Alpha in Terms
of the Generalized Exp-Log Notation

Maximizing the Lagrangian likelihood in Eq. (23.4) requires the matrix of first
partial derivatives of g(m) with respect to m. This matrix, also known as the
Jacobian, is usually difficult to obtain. However, if g(m) is written in the so-called
exp-log notation (Bergsma 1997; Kritzer 1977), the derivation of the Jacobian is
straightforward, and an automated recursive algorithm can be used to compute the
Jacobian for a particular categorical marginal model (Bergsma 1997, p. 68).

23.4.1 Item Means in Exp-Log Notation

For testing hypotheses about the means in vector �, the coefficient should first be
rewritten in the generalized exp-log notation. In this recursive exp-log notation let
A1 and A2 be appropriate design matrices. Then � is equal to

� = exp(A2 log(A1m)). (23.9)

Let R be a J×L matrix that contains all L possible item-score patterns. The rows
of R correspond to the J different items. The item-score patterns in R are from left
to right in lexicographic order, running from 00 . . .0 to zz . . .z with the digit in the
last row changing fastest and the digit in the first row changing slowest, just as is
the case in vectors m and n. Furthermore, let u′

L be a 1× L unit row vector. The
[J+1]×L design matrix A1 is a concatenation of matrix R and vector u′

L; that is,

A1 =

(
R
u′

L

)
.

For a dichotomously scored test consisting of J = 3 items [Eq. (23.1)] this produces

A1n =

⎛
⎜⎜⎝

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n000
abc

n001
abc

n010
abc

n011
abc

n100
abc

n101
abc

n110
abc

n111
abc

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝

∑Xa

∑Xb

∑Xc

N

⎞
⎟⎟⎠ . (23.10)
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As the first three elements of the right-hand side of Eq. (23.10) show, Rn produces
a vector containing the sum of the scores on items a, b, and c across respondents,
and u′

Ln produces the sample size N.
Let IJ be an identity matrix of order J. Then, the J × [J +1] design matrix A2 is

a concatenation of matrix IJ and unit vector −uJ

A2 =
(

IJ −uJ
)
.

For the three items a, b, and c, substituting the right-hand side of Eq. (23.10) for
A1n, exp(A2 log(A1n)) yields

exp

⎡
⎢⎢⎣

⎛
⎝

1 0 0 −1
0 1 0 −1
0 0 1 −1

⎞
⎠ log

⎛
⎜⎜⎝

∑Xa

∑Xb

∑Xc

N

⎞
⎟⎟⎠

⎤
⎥⎥⎦=

⎛
⎝

Xa

Xb

Xc

⎞
⎠ . (23.11)

Equation (23.11) shows that exp(A2 log(A1n)) produces the mean score for each
item in a data set.

23.4.2 Coefficient α in Exp-Log Notation

Kuijpers et al. (2013a) used categorical marginal models for testing different
hypotheses about Cronbach’s alpha (Cronbach 1951). They showed that Cronbach’s
alpha, denoted by α , can be written as a function of m in the generalized exp-log
notation:

α = A5 exp(A4 log(A3 exp(A2 log(A1m)))), (23.12)

where matrices A1 to A5 are appropriate design matrices. For the exact specification
of the design matrices and more details about the procedure, see Kuijpers et al.
(2013a).

23.5 Three Cases

23.5.1 Data

The use of the two different estimation methods to test three different cases is
illustrated by means of a data set obtained by administering a questionnaire to
N = 496 Dutch union members (Van der Veen 1992). The questionnaire measures
the attitudes and opinions on general militancy, and consists of four subscales—
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Table 23.1 Item means and Cronbach’s alpha for each subscale

Subscales

Items General attitude Permissibility Effectiveness Intention

Strike 1.383 1.208 1.698 1.151

Work-to-rule 2.278 1.556 1.788 1.536

D. walkout 2.266 1.573 1.702 1.442

C. walkout 2.161 1.546 1.560 1.450

Protest meeting 2.653 2.258 1.835 1.589

Street protest 2.214 1.810 1.625 1.351

Cronbach’s alpha 0.744 0.840 0.738 0.877

D. walkout demonstrative walkout, C. walkout collective walkout

General Attitude, Permissibility, Effectiveness, and Intention—which each contains
six items. Each of the six items in a subscale refers to different actions union
members can engage in, such as a strike, a protest meeting, or a street protest. For
the subscales Permissibility and Intention, the answer categories range from 0 to
3, and for the subscales General Attitude and Effectiveness the answer categories
range from 0 to 4. Table 23.1 shows the item means, and the values for Cronbach’s
alpha for each subscale.

Coefficient θ is used to express the different hypotheses. In what follows, θ will
be replaced by either the mean (μ) or Cronbach’s alpha (α). For ML estimation, we
used the R package cmm (Bergsma and Van der Ark 2013), and for GEE, we used
the R package geepack (Yan et al. 2012).

23.5.2 Case 1: θ = c

First, we tested whether the mean value of General Attitude towards a Strike was
significantly greater than 1 (sample value 1.383, Table 23.1). Second, we tested
whether Cronbach’s alpha of the subscale Permissibility was significantly greater
than 0.80 (sample value 0.84, Table 23.1). Nunnally (1978, pp. 245–246) argued
that tests used for making decisions about groups should have at least a reliability of
0.80. The research question is of the form θ > c, and the associated null hypothesis
is θ = c.

For investigating θ = c by means of ML estimation, θ = c should be written
in the constraint notation, g(m) = θ − c = 0. In the generalized exp-log notation,
g(m) = θ − c equals

g(m) =
[

1 −c
]

exp

([
1 0
1 −1

]
log

([
1
1

]
θ
))

. (23.13)

The categorical marginal model estimates vector m under the constraint θ = c.
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Replacing θ in Eq. (23.13) by μ [Eq. (23.9)] and letting c = 1 yields the
hypothesis μ = 1. In general, G2 pertains to a two-sided test. Here, the hypothesis
is one-sided, so for a significance level of 0.05 the value of G2 at the 2 × 0.05
significance level is used. Comparing the observed and expected frequencies
allowed us to reject the hypothesis (G2 = 77.662, d f = 1, p ≤ 0.000), and conclude
that μ > 1. Replacing θ in Eq. (23.13) by α [Eq. (23.12)], and letting c= 0.80 yields
the hypothesis α = 0.80. Comparing the observed and expected frequencies allowed
us to reject the hypothesis (G2 = 9.489, d f = 1, p = 0.002), and conclude that
α > 0.8. This example illustrates that likelihood methods can be used to investigate
research questions of the type θ = c.

For testing whether θ = c by means of GEE, θ = c should be written as θ = Zˇ.
It trivially follows that Z equals the scalar 1, and ˇ = c, so θ̂ is trivially fixed to c,
and the standard error is zero. The software did not provide goodness of fit statistics.
Because θ̂ is fixed to c and no model fit statistics are available, we could not use
GEE to meaningfully answer research questions that can be cast into θ = c. This is
in accordance with Skrondal and Rabe-Hesketh (2004, p. 200), who stated that GEE
has limitations with respect to hypothesis testing and assessing model fit.

23.5.3 Case 2: θ1 = θ2

In this example, we considered whether the population means of the two items
General Attitude towards a Demonstrative Walkout and General Attitude towards
a Collective Walkout were equal. The sample means for the items were 2.266
and 2.161, respectively (see Table 23.1). Furthermore, we investigated whether the
alphas of the two subscales Permissibility and Intention were equal. For the subscale
Permissibility α̂ = 0.840, for subscale Intention α̂ = 0.877 (see Table 23.1). This
categorical marginal model can be useful when one wants to compare the alphas of
two subscales or tests, or for assessing change in reliability over time. Differences
between the reliabilities of two alternate test forms can indicate that the two forms
differ in content and measure slightly different traits (Nunnally 1978, p. 231).

For investigating this model by means of ML estimation, θ1 = θ2 has to
be rewritten in the constraint notation, g(m) = θ1 − θ2 = 0. Because the two
coefficients we compared are dependent, vector n first should be premultiplied by
A0, a marginal matrix (Bergsma et al. 2009, pp. 52–56). Multiplication by matrix
A0 yields the marginal frequencies of the item-score patterns for both sets of items
separately. Let L1 and L2 be the number of possible item-score patterns for which
coefficients θ1 and θ2 are computed, respectively. Let ⊗ denote the Kronecker
product. The general form of the (L1 +L2)× (L1L2) matrix A0 is

A0 =

(
IL1 ⊗u′

L2

u′
L1
⊗ IL2

)
.
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After premultiplying vector n by A0, the two coefficients for the two sets of items
are computed using design matrices that are constructed as follows. Let design
matrix Aq, with q = 1, . . . ,q, be the particular qth design matrix constructed for the
particular coefficient. For testing the equality of two coefficients, design matrices
A1 to Aq are the direct sum of Aq and Aq. Since for each design matrix Aq the
procedure is the same, it can be expressed in a general form

A∗
q = Aq ⊕Aq =

(
Aq 0
0 Aq

)
.

For more details, see Kuijpers et al. (2013a).
In the generalized exp-log notation, g(m) = θ1 −θ2 equals

g(m) =
[

1 −1
][θ1

θ2

]
. (23.14)

The categorical marginal model estimates vector m under the constraint θ1−θ2 = 0.
Then, vectors m and n are compared by means of G2 in order to assess whether the
two coefficients are equal.

If the coefficient of interest is the mean μ , the population means for the two items
are denoted by μ1 and μ2, and calculated by using Eq. (23.9). For testing Case 2, θ1

and θ2 in Eq. (23.14) should be replaced by μ1 and μ2, respectively. Comparing the
observed and expected frequencies allowed us to reject the null hypothesis (G2 =
5.429, d f = 1, p = 0.020), and conclude that the means are significantly different
from each other.

If the coefficient of interest is Cronbach’s alpha, the population alphas for the two
subscales are denoted by α1 and α2, and calculated using Eq. (23.12). For testing
Case 2, θ1 and θ2 in Eq. (23.14) should be replaced by α1 and α2, respectively.
Comparing the observed and expected frequencies allowed us to reject the null
hypothesis (G2 = 8.939, d f = 1, p = 0.003), and conclude that the alphas are not
equal.

For GEE estimation, constraint θ1 = θ2 must be cast into Eq. (23.2). One
possibility is defining a regression model with only an intercept β0, which can be
interpreted as the value of the coefficient under the constraint that θ1 = θ2. Let
Z = u2, then θ1 = θ2 is equivalent to

f(C′m) =

(
θ1

θ2

)
= u2β0.

If the vector of sample estimates of θ1 and θ2 is represented by (θ̂1, θ̂2)
′, then the

estimating equation [Eq. (23.7)] reduces to

u′
2V−1

([
θ̂1

θ̂2

]
−u2β0

)
= 0. (23.15)
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For an arbitrary correlation matrix V, Eq. (23.15) reduces to

[
θ̂1

θ̂2

]
−u2β0 = 0,

which is minimized for β̂0 =
θ̂1+θ̂2

2 . So the estimated values for θ1 and θ2 are then
both equal to the mean of the two values. The hypothesis θ1 −θ2 = 0 can be tested
by computing the standard errors by means of the sandwich estimator, computing
the confidence interval, and then checking whether 0 is included in the interval.

Using GEE for testing the equality of the means of the two items General Attitude
towards a Demonstrative Walkout and General Attitude towards a Collective
Walkout, the analysis only estimates a mean value for both values and a standard
error, model fit statistics are not available. The estimated mean value for the two
means is equal to 2.214, which is obtained independent of the correlation structure.
The standard error equals 0.037. To test whether the hypothesis of equal means
could be rejected, a 95 % Wald confidence interval for the difference between the
two means (denoted by Δμ) was constructed using Δ̂μ ± 1,96 ∗ se(Δ̂μ). Zero was
not included in the interval, so the means are significantly different. GEE was also
used for testing the equality of the two alphas of the subscales Permissibility and
Intention. The mean value for the two alphas equaled 0.859. The standard error
equaled 0.013. A 95 % confidence interval for the difference between the two alphas
was constructed in a way similar to the computation for the means. Zero was not
included in the confidence interval, so the alphas are significantly different.

23.5.4 Case 3: θ = β0 +β1X

Here, the question was whether the Effectiveness of an action can explain the
General Attitude towards that action. We used Effectiveness measured for a Strike
(denoted by X1) and a Work-to-rule (X2) as the explanatory variables, and General
Attitude measured for a Strike (Y1) and a Work-to-rule (Y2) as the outcome variables.
Hence, we had T = 2 actions and z + 1 = 5 levels of the exploratory variable.
In longitudinal research, one would consider T time points rather than actions.
Estimating a regression model in which Cronbach’s alpha is the dependent variable
seemed artificial from a substantive point of view. Hence, we only investigated Case
3 for μ . However, there are other situations in which testing the effects of one or
more (continuous) variables on the value of a particular coefficient is interesting.
For instance, using the log-odds ratio as a measure of association, Bergsma et al.
(2013) tested whether the association between two categorical variables remained
stable over time.
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The regression model is f(C′m) = Zˇ [Eq. (23.2)], where f(C′m) is the
T (z+1)×1 vector of conditional means:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E(Y1|X1 = 0)
E(Y2|X2 = 0)
E(Y1|X1 = 1)
E(Y2|X2 = 1)
E(Y1|X1 = 2)
E(Y2|X2 = 2)
E(Y1|X1 = 3)
E(Y2|X2 = 3)
E(Y1|X1 = 4)
E(Y2|X2 = 4)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Matrix Z is a T (z+1)×2 design matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 0
1 1
1 1
1 2
1 2
1 3
1 3
1 4
1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The first column is a column of ones, and the second column contains the levels of
X1 and X2. Vector ˇ = (β0,β1)

′ contains the intercept and the regression parameter.
Vector m refers to the joint distribution of (X1,X2,Y1,Y2).

For ML estimation, first C′ and f should be determined. In our example, pre-
multiplying n by the (T (z+1)2 ×L) marginal matrix

C′ =
(

Iz+1 ⊗u′
z+1 ⊗ Iz+1 ⊗u′

z+1
u′

z+1 ⊗ Iz+1 ⊗u′
z+1 ⊗ Iz+1

)

produces the bivariate marginal frequencies of (X1,Y1) and (X2,Y2). Function f
consists of two design matrices: A1 and A2. Let rz+1 be a (z + 1)× 1 vector
containing scores 0,1, . . . ,z; then A1 is a 2T (z+1)×T (z+1)2 matrix

A1 = IT ⊗
(

Iz+1 ⊗ r′z+1
Iz+1 ⊗u′

z+1

)
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and

A2 = IT ⊗
(

I(z+1) −I(z+1).
)

Hence,

f(C′m) = exp
(
A2 log

(
A1C′m

))
.

Second, B, the orthogonal complement of Z, should be determined such that
B′Z = 0. Third, the expected categorical marginal model B′f(C′m) = 0 is estimated,
producing estimates for vector m. Using this method for maximizing the likelihood
includes the constraints, such that the expected frequencies in vector m̂ sum to N
(Agresti 2013, p. 460). Fourth, the estimates m̂ are plugged into model f(C′m) =
Zˇ, producing f(C′m̂). Fifth, parameters ˇ are obtained by solving

ˆ̌ = (Z′Z)−1Z′f(C′m̂).

Finally, the standard errors of ˆ̌ are computed using the delta method (for more
details, see, for instance, Bergsma et al. 2009, pp. 71–73), so that each individual
parameter in ˇ can be tested for significance.

The regression model describes the linear relation between the means that are
calculated for each dependent variable given the response to the corresponding
independent variable (i.e, the means for Y1 given the different scores on X1, and
the means for Y2 given the different scores on X2). Table 23.2 provides the estimates
for the parameters in the regression model.

The categorical marginal model also tests whether the regression model that
assumes a linear relation between the means fits the data. The results of the analysis
showed that the linear regression model does not fit the data, with G2 = 173.071,
d f = 8 and p < 0.000, which implies that the means cannot be fitted onto a
single straight line; thus, there is not a strictly common linear relation between
the conditional means of Y1 and Y2 given the scores on X1 and X2. However, the
regression coefficient is significant, meaning that the scores on X1 and X2 have a
significant effect on the mean scores of Y1 and Y2.

Also, GEE was used to test whether the items Effectiveness of a Strike and
Effectiveness of a Work-to-Rule predicted the mean response to General Attitude
towards a Strike and General Attitude towards a Work-to-Rule. Table 23.3 shows the

Table 23.2 Parameter
estimates using ML
estimation

Parameter Estimate Standard error

β0 1.003 0.063

β1 0.471 0.032

Table 23.3 Parameter
estimates using GEE
estimation

Parameter Estimate Standard error

β0 0.921 0.056

β1 0.522 0.027
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GEE estimates of the parameters in the regression model, as defined by Eq. (23.2).
The regression coefficient is significantly different from zero, which indicates
that the scores on X1 and X2 have a significant effect on the mean scores of Y1

and Y2. For the regression problems, alternative model fit statistics exist for GEE
(e.g., Lipsitz and Fitzmaurice 2009, pp. 62–64; Molenberghs and Verbeke 2005,
pp. 160–161) but these statistics were unavailable in the R package geepack, so
the model fit could not be investigated.

23.6 Discussion

For this study, we explored to what extent the two estimation methods are
appropriate for investigating and testing three types of research questions. The two
estimation methods, ML and GEE, both have advantages and disadvantages. ML
estimation is based on the likelihood function, so that model fit statistics can be
obtained, models can be compared, and inferences about individual parameters
can be made. In contrast to ML estimation, GEE does not assume a specific
probability model for the data, but only assumes a mean-variance relationship for
the response variable, making it impossible to obtain likelihood based model fit
statistics. Furthermore, GEE replaces the often complex dependence structure by
a simpler working correlation matrix. Therefore, GEE is more straightforward to
compute than ML methods. For a large number of items, in contrast to GEE, using
ML estimation becomes problematic, since it uses each cell of the contingency table
for computation of the estimates (Bergsma et al. 2013; Van der Ark et al. 2013).
However, ML estimation is asymptotically efficient (e.g., Agresti 2013), whereas
GEE is not when the working correlation structure is not correctly specified.

By means of the three cases, we showed that ML estimation has to be preferred
when one is more interested in testing hypotheses and assessing the fit of the
marginal model. Both methods are appropriate when one investigates the effect of
the independent factors in regression models. For Case 1, GEE could not be used.
This is in line with Skrondal and Rabe-Hesketh (2004, p. 200) who stated that GEE
has limitations with respect to hypothesis testing and assessing model adequacy. An
alternative to solve some of the limitations would be to estimate the standard error
of the saturated model, and then use a Wald-based confidence interval to assess
whether the value c is included in the confidence interval (Lipsitz and Fitzmaurice
2009, p. 55). Furthermore, since standard goodness of fit statistics are unavailable
for GEE, Lipsitz and Fitzmaurice (2009, pp. 62–64) suggested some alternative
model fit diagnostics. For Case 2, ML was easier to apply than GEE, and for ML
model fit statistics could be obtained right away. For Case 3, we found that GEE
was easier to apply than ML from a computational perspective.

ML estimation uses all item-score patterns that are possible for a set of items,
so all elements in vector n are used. ML estimation becomes problematic for large
numbers of items (e.g., Agresti 2013, p. 462) because the number of elements in
vector n and the size of the design matrices increase rapidly (Bergsma et al. 2013;
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Van der Ark et al. 2013). For instance, for a set of ten items (J = 10) each with
five answer categories (z+ 1 = 5), the number of elements in vector n is equal to
(z+1)J = 510 = 9,765,625. An alternative is using MEL estimation (Owen 2001).
MEL uses only the observed item-score patterns, so that the zero-frequencies in
vector n can be ignored. MEL uses much less memory space than ML estimation,
and as a result it also is computationally less complex. Therefore, computation time
is much shorter, and MEL can be used for large numbers of variables. However,
for large sparse contingency tables the empty set problem and the zero likelihood
problem can occur when using MEL estimation (for details, see Van der Ark et al.
2013; also see Bergsma et al. 2012), which causes MEL to break down. Van der Ark
et al. (2013) proposed MAEL estimation as a solution for the problems with MEL.
MAEL uses all observed item-score patterns, plus a few well-chosen unobserved
item-score patterns, the choice of which depends on different factors; see Van der
Ark et al. (2013) for more details.

For marginal models, GEE and the likelihood methods require further research.
We only illustrated the use of both estimation methods by means of three simple
cases for two different coefficients. Many more cases and situations can be
investigated. The research can be extended to more complex models and to other
coefficients. Furthermore, the cases also can be investigated for MEL and MAEL
estimation, which can be compared to GEE estimation in order to investigate which
method yields more efficient estimates.
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