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To predict the response of a biochemical system, knowledge of the intrinsic and effective rate constants
of proteins is crucial. The experimentally accessible effective rate constant for association can be
decomposed in a diffusion-limited rate at which proteins come into contact and an intrinsic association
rate at which the proteins in contact truly bind. Reversely, when dissociating, bound proteins first
separate into a contact pair with an intrinsic dissociation rate, before moving away by diffusion.
While microscopic expressions exist that enable the calculation of the intrinsic and effective rate
constants by conducting a single rare event simulation of the protein dissociation reaction, these
expressions are only valid when the substrate has just one binding site. If the substrate has multiple
binding sites, a bound enzyme can, besides dissociating into the bulk, also hop to another binding site.
Calculating transition rate constants between multiple states with forward flux sampling requires a
generalized rate expression. We present this expression here and use it to derive explicit expressions
for all intrinsic and effective rate constants involving binding to multiple states, including rebinding.
We illustrate our approach by computing the intrinsic and effective association, dissociation, and
hopping rate constants for a system in which a patchy particle model enzyme binds to a substrate
with two binding sites. We find that these rate constants increase as a function of the rotational
diffusion constant of the particles. The hopping rate constant decreases as a function of the distance
between the binding sites. Finally, we find that blocking one of the binding sites enhances both
association and dissociation rate constants. Our approach and results are important for understanding
and modeling association reactions in enzyme-substrate systems and other patchy particle systems
and open the way for large multiscale simulations of such systems. Published by AIP Publishing.
https://doi.org/10.1063/1.5012854

I. INTRODUCTION

Unimolecular and bimolecular reactions are the building
blocks of many complex processes in biology, chemistry, and
soft condensed matter. Knowledge of equilibrium constants
is imperative to evaluate the importance of biological reac-
tions like DNA-protein binding,1 receptor-ligand binding, and
enzyme-substrate binding.2–4 However, many biological pro-
cesses are controlled not only by the equilibrium constant but
also by the absolute rates themselves. The rate constants deter-
mine the response time of living cells, which is vital for the
fitness of the organism in a fluctuating environment. Knowl-
edge of the individual rates is also important in the field of
drug development, i.e., for setting the optimal dosage and for
improving drug efficacy.5 Also discrimination by our immune
system is believed to depend on the dissociation rate, rather
than the equilibrium constant.6

Experimentally measured association and dissociation
rates are typically effective rates.2,7,8 These effective rates
describe a two-step process. During association, particles
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come into contact via diffusion and bind with a rate depending
on the intrinsic association rate constant. When dissociating,
a bound particle pair separates with an intrinsic dissociation
rate, after which the particles diffuse away from each other.
Agmon and Szabo7 and Berg and von Hippel8 derived expres-
sions for the effective binding and unbinding rate constants
in terms of the diffusion constants, cross sections, interaction
potentials, and intrinsic rate constants. However, they assume
that the intrinsic rate constants are known a priori. To compute
effective rate constants in computer simulations, one can use
the simulation methods developed by Northrup and Erickson9

and Zhou.10 However, these methods do not yield the intrinsic
rate constants.

In many cases, not only the effective rate constants are
necessary for describing the dynamics of the system but also
the intrinsic rate constants. A particularly striking example is
the class of cellular systems that is based on multi-site pro-
tein modification. Many substrates possess multiple chemical
modification sites. It has long been known that the response of
the system strongly depends on whether the enzyme modifies
the sites according to a distributive or a processive mecha-
nism.11–13 In a distributive scheme, after modifying the first
site, the enzyme needs to dissociate from the site before it
can rebind and modify the next site. In a processive scheme,
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the enzyme remains bound to the substrate in between the
modification of the two sites. In a pseudo-processive scheme,
an enzyme molecule does dissociate from the first site but
then rebinds and modifies the other site before another enzyme
molecule from the bulk does, yielding the same response as that
of a purely processive scheme.14–16 Rebinding at the molecular
scale can thus change the response from a distributive scheme
to an effectively processive one. This can qualitatively change
the behavior of the system at the macroscopic scale, leading
to the loss of bistability and ultrasensitivity.14–16 In addi-
tion, these enzyme-substrate rebindings can have important
implications for proofreading.17 Another class of problems
where the microscopic dynamics is important is receptor-
ligand binding. The microscopic dynamics of ligand binding
to and hopping between multiple receptors affects the accu-
racy of chemical sensing, both in living cells and in artificial
sensors.18–22 In all these examples, the dynamics of the system
cannot be described by effective rate constants: knowledge of
the diffusion constants, cross sections, and intrinsic rate con-
stants for hopping, association, and dissociation is required.
Since these systems are difficult to analyze analytically, they
are often studied by computer simulations via algorithms that
can propagate the system at the particle level, using cross sec-
tions, diffusion constants, and intrinsic rate constants as input
parameters.14,23–27

In a previous paper,28 we derived explicit microscopic
expressions for the intrinsic and effective rate constants, and
we presented a numerical approach that makes it possible
to compute all rates—the effective and intrinsic association
and dissociation rates—in one rare-event simulation of the
dissociation process. We showed how this scheme can be
applied to not only isotropic but also anisotropic particles.
However, the technique that we presented was limited to only
one site on each particle. It therefore did not allow for the
computation of the rate constant for hopping between two
sites on the same particle. This is a drawback since pseudo-
processivity relies on the hopping of a dissociated particle
from one site to the next: a particle dissociates, and instead
of diffusing into the bulk, it rebinds, i.e., hops, to the other
site.

Here, we extend the approach of Ref. 28 to enable the
computation of not only the effective and intrinsic association
and dissociation rate constants in one rare-event simulation
but also that of the hopping rate constant. The rare-event sim-
ulation technique could, for example, be Transition Interface
Sampling (TIS)29 or Forward Flux Sampling (FFS).30,31 Here
we use the latter technique. However, FFS has so far mostly
been used for computing rate constants for transitions between
two states, rather than between multiple states. We therefore
first generalize the canonical FFS expression, which is based
on that of TIS,29,30 so that it allows the computation of rate
constants for transitions among multiple states. This expres-
sion is general and can also be used in other contexts than the
one considered here.

We then apply our scheme to study the association and
dissociation of an enzyme to and from a substrate with two
enzyme-binding sites as well as the hopping of the enzyme
between the two binding sites. We study these rate constants
as a function of the distance (angle) between the two sites.

As a simple approximation to the complex anisotropic
protein-protein interaction, we employ the so-called patchy
particle model in which the binding sites are modeled as
patchy interactions between otherwise isotropically interact-
ing spherical particles. Such patchy particles not only can
model globular proteins32–37 but also play a role in the design
and modeling of novel self-assembled materials, for instance,
in colloidal particles with specific binding sites.38–40 The mul-
tivalency of the particles and the nature of the patches can alter
the relaxation pathways to the most stable state and can induce
higher order phases.41,42 Knowledge of the association kinet-
ics of such systems enables the understanding and improved
design of complex colloidal self-assembly.43,44

As the interaction potential is anisotropic, particles
undergo both translational and orientational diffusion. We
therefore also study the rate constants as a function of the
orientational diffusion constant of the particles. Here, we cap-
italize on the observation that in a crowded environment the
orientational diffusion constant can be varied independently
of the translational diffusion constant, by varying the nature
and the concentration of the crowders.33,45,46

We find that all rate constants increase with the orien-
tational diffusion constant, with the hopping rate constant
showing the strongest dependence on the orientational diffu-
sion constant and the association rate the weakest. Moreover,
we find, as expected, that the hopping rate constant decreases
as the angle between the patches increases, while the associa-
tion and dissociation rate constants are less affected by patch
separation.

In a real system, hopping might be blocked by another
enzyme bound to the substrate. To investigate the effect on the
association and dissociation rate constants, we compare the
scenario of a substrate with two sites with a scheme in which
the substrate has one site and with one in which one of the
two sites is blocked by an enzyme molecule. We find that the
rate constants for binding to one specific site out of the two
sites are smaller than the rate of binding to a substrate with
one site. This seemingly counter-intuitive result is a result of
the fact that the processes of binding to the two respective
sites are not independent: In binding to one specific site, the
other site effectively acts as a trap, reducing the association
rate constant.47 On the other hand, the two sites together have
a larger effective cross section than a single-site substrate, such
that the reduction in the association rate constant is less than
a factor of two; or put differently, the rate constant of binding
to either patch is larger than the rate constant of binding to
a substrate with one site only. As expected from microscopic
reversibility, the other site also acts as a trap on the dissociation
pathway, reducing the dissociation rate constant.

These results show that the intrinsic association, hopping,
and dissociation rate constants can be important for describing
the dynamics of the system. Moreover, they emphasize that
the binding and unbinding kinetics can strongly be affected by
adjacent binding patches and the orientational dynamics of the
molecules.

The remainder of the paper is as follows. In Sec. II A, we
derive the general FFS expression, followed by a derivation
of the intrinsic rate constant expressions for in Sec. II B. We
discuss the results in Sec. III. We end with concluding remarks.
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II. METHODS
A. Rate constants from forward flux sampling
when two states are not separated by all interfaces

Dissociation of anisotropic particles is often a rare event.
In order to simulate such rare event kinetics with minimal
computational effort, an efficient rare event simulation tech-
nique such as Forward Flux Sampling (FFS)30,31 or Transition
Interface Sampling (TIS)29 is necessary. Here, we use FFS to
simulate the dissociation reaction.

The crux of FFS is to drive the system from one state
to another in a ratchet-like manner by capitalizing on those
fluctuations that happen to move the system in the right direc-
tion. To capitalize on these fluctuations, FFS uses a series of
interfaces between the initial and final states. These interfaces
make it possible to store configurations along trajectories that
have progressed in the direction of the final state. While FFS is
typically employed for computing rate constants for transition
between two states, here we present a new expression, which
may prove useful for computing rate constants for transitions
between multiple states.

Figure 1 illustrates the scheme for a scenario of three
metastable states: A, B, and U. These states are defined in terms
of an order parameter λ. Here, we are interested in the transi-
tion rate constants kAB and kAU . While the expressions that we
will derive below are generic and can be generalized to any sys-
tem consisting of multiple metastable states, it is illuminating
to consider the concrete scenario in which state A corresponds
to an enzyme molecule that is bound to patch A of a substrate
molecule, state B as the enzyme molecule being bound to patch
B of the substrate molecule, and state U as the state in which the
enzyme and substrate molecules are unbound. The dissociation
rate constant kAU is then defined as the rate constant for disso-
ciating from patch A into the unbound state U while not visiting
state B; the ensemble of transition paths that corresponds to
kAU thus contains trajectories that start from A and end at U
yet do not visit B. By contrast, the hopping rate constant kAB is

FIG. 1. Illustration of the possible trajectories starting from state A and end-
ing either in state B or state U and the interfaces λ0, . . ., λn�1 used in the
FFS simulation. A trajectory starting at A and terminating at B need not pass
through all these interfaces, but a trajectory starting at A and terminating at
U has to pass through all the interfaces. Note that the interfaces are defined
by a single parameter λ. The 2D projection is purely to illustrate the effect of
multiple states.

defined as the rate constant at which the enzyme molecule dis-
sociates from patch A and then diffuses to and rebinds to patch
B. Importantly, the transition path ensemble that corresponds
to this hopping rate constant contains not only trajectories that
directly go from A to B but also trajectories that have signif-
icantly progressed in the direction of U before arriving at B.
Here, we will derive the expressions that make it possible to
compute the transition rates constant kAB and kAU in an FFS
simulation.

As Fig. 1 illustrates, the interfaces λ0, λ1, . . ., λn�1, λn

are defined such that all trajectories of the transition path
ensemble corresponding to kAU necessarily cross all inter-
faces λ0, λ1, . . ., λn�1, λn. As a result, the expression for
kAU is based on the conventional TIS expression used also in
FFS,29,30

kAU = Φ0

n−1∏
i=0

P(λi+1 |λi). (1)

Here, λi define the intermediate interfaces between state A and
state U, as illustrated in Fig. 1. The quantity Φ0 is the flux of
trajectories that start from A and then cross interface λ0, while
P(λi+1|λi) is the conditional probability that a trajectory which
comes from A and crosses λi for the first time will subsequently
reach λi+1 instead of returning to A or progressing to B. In an
FFS simulation, one thus first performs a brute-force simula-
tion in state A; this makes it possible not only to compute the
flux Φ0 through the first interface λ0 but also to generate an
ensemble of points at λ0. In the next step, one then randomly
picks a configuration from this ensemble of points at λ0 and
launches and propagates a trajectory from this configuration
until it either arrives at λ1, returns to A, or arrives at B; by
iterating this a number of times, one obtains not only an ensem-
ble of configurations at λ1 but also P(λ1|λ0) as the fraction
of trajectories that reach λ1. This procedure is then repeated
for all the subsequent interfaces, yielding P(λi+1|λi) for all
interfaces λi.

In contrast to the trajectories of the AU transition path
ensemble, the trajectories of the AB path ensemble do not
necessarily cross all interfaces λ0, λ1, . . ., λn�1, λn. Some
paths directly go from A to B, while other trajectories cross λ1

and perhaps even λi > λ1, before proceeding to B. All these
excursions must be accounted for to calculate the transition
rate constant from A to B. This means that Eq. (1) cannot be
used to compute kAB. A general expression for the transition
rate constant between two states, where the trajectories start
at A and end at B yet do not necessarily cross all intermediate
interfaces, is given by

kAB = Φ0

[
P(λB |λ0) + P(λ1 |λ0)P(λB |λ1)

+ P(λ1 |λ0)P(λ2 |λ1)P(λB |λ2) + · · ·

+ P(λ1 |λ0), . . . , P(λn−1 |λn−2)P(λn |λn−1)P(λB |λn)
]

= Φ0

n∑
i=0

P(λB |λi)P(λi |λ0). (2)

Here, P(λB|λi) is the probability that a trajectory which is
launched at interface λi arrives at B before reaching either
A or λi+1, while P(λi+1|λi) is, as before, the probability that
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a trajectory which is fired at λi arrives at λi+1 before reach-
ing either A or B. In the last line, we summed the expression
realizing that P(λi |λ0) =

∏i−1
j=0 P(λj+1 |λj).

Equation (2) is a generic equation to calculate the tran-
sition rate constant between two states. Equation (2) reduces
to Eq. (1) when the trajectories from the initial state have to
pass through all the interfaces to reach the final state. Note that
the expression is also applicable to the case of more than two
states.

We note that a similar situation of stable states nested
between interfaces occurs in multiple state TIS and single
replica exchange TIS, which was treated in Refs. 33, 44, 47,
and 48.

B. Effective and intrinsic rate constants for two
binding sites

We now apply the generic equation (2) to the specific
case of an enzyme-substrate association-dissociation reaction,
where the enzyme has one binding site, while the substrate has
two binding sites. We will first discuss the details of the path
ensembles that correspond to each of the rate constants.

The intrinsic dissociation rate constants for the enzyme
initially bound at patch A, kA

d (σ), involve counting the trajec-
tories that start from A and reach σ without reaching patch B
(see Fig. 2 for a graphical illustration). Similarly, the effective
dissociation rate constant for the enzyme starting at patch A,
kA

off , takes into account all trajectories starting at A and going up
to infinity, without visiting patch B. The effective association
constant of an enzyme to bind to patch A, kA

on, corresponds to
trajectories that start at infinity and terminate at patch A with-
out first visiting B, while the intrinsic association rate constant
kA

a (σ) corresponds to trajectories that start at the σ-interface
and terminate at patch A without first visiting B. The intrinsic

FIG. 2. The path ensembles contributing to each rate constant. The substrate
has two patches A and B, and when the particle diffuses to infinity, it is in the
unbound state. All rates are calculated with respect to the patch A, i.e., the rate
constant of binding to patch A or the rate constant of unbinding from patch
A. σ is the interface where the intrinsic rate constants are measured, and rn
is an interface beyond σ.

rate constant of hopping from patch A to B, kAB
hop(σ), corre-

sponds to trajectories that start from patch A and end at patch
B, without first visiting the σ-interface, while the effective
rate constant of hopping from patch A to patch B, kAB

effHop(σ),
corresponds to trajectories that start from patch A and end at
patch B, without diffusing to infinity (however, they may cross
the σ interface). We can similarly define the ensemble of tra-
jectories that define the rate constants for associating to and
dissociating from patch B. We emphasize that while the intrin-
sic rate constants depend on the definition of σ, the effective
rate constants do not.

We will now show how from a single FFS simulation of a
dissociation reaction from patch A both the intrinsic and effec-
tive dissociation rate constants and the intrinsic and effective
hopping and association rate constants can be computed. The
intrinsic dissociation rate constant at the σ-interface is given
by

kA
d (σ) = Φ0P(σ |r0), (3)

where, as before, Φ0 is the flux across the first FFS interface
r0 and P(σ|r0) is the probability that an enzyme starting at
this first interface reaches the σ-interface before binding to
either patch and can be computed using Eq. (1). The effective
dissociation constant can be similarly expressed as

kA
off = Φ0P(σ |r0)P(∞|σ) = kA

d (σ)P(∞|σ), (4)

where P(∞|σ) is the probability that a trajectory which has
reached σ, escapes to infinity, i.e., dissociates, before it
associates with either patch A or patch B.

The intrinsic hopping rate constant, given that the enzyme
starts at patch A, is given by

kAB
hop = Φ0P(B|r0), (5)

where P(B|r0) is the probability that the enzyme, starting at
patch A, associates with patch B before it arrives at σ.

The effective hopping rate constant, given that the enzyme
starts bound to patch A, is given by Eq. (2). Taking for sim-
plicity only three interfaces (n = 1) located at λ0 ≡ r0, λ1 ≡ σ,
and λB ≡ B, this expression becomes

kAB
effHop = Φ0 [P(B|r0) + P(σ |r0)P(B|σ)] , (6)

where P(σ|r0) is the probability of the enzyme starting at
the first interface r0, subsequently reaching the σ-interface
before binding to either patch. P(B|σ) is the probability that the
enzyme, starting at σ, reaches B before it either escapes (i.e.,
dissociates) or reaches A; the path ensemble corresponding to
this effective hopping rate constant does include, however, tra-
jectories that progress (significantly) beyond the σ interface.
In a full FFS simulation employing multiple (n) interfaces,
P(B|r0) and P(σ|r0) are replaced by the full summation over
n as in Eq. (2).

To see how all the rate constants (intrinsic/effective associ-
ation, dissociation, and hopping rate constant) can be obtained
from one single FFS simulation of a dissociation reaction, it is
instructive to imagine that starting from the bound state A, we
have generated N configurations at interfaceσ. These configu-
rations are thus distributed over the σ surface according to the
distribution as obtained from an FFS dissociation simulation
starting from patch A.
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Of the N trajectories at interface σ, Nσ→B progress (on
average) to B, Nσ→A return to A, and Nσ→∞ dissociate, i.e.,
escape to infinity: N = Nσ→B + Nσ→A + Nσ→∞. In the limit of
N → ∞, we can define the probabilities P(B|σ) = Nσ→B/N,
P(A|σ) = Nσ→A/N, P(∞|σ) = Nσ→∞/N. For a finite num-
ber of sampled trajectories, the trajectory fractions become
approximations of these probabilities. We can then write

P(B|σ) =
P(B|σ)

P(A|σ) + P(B|σ)
(P(A|σ) + P(B|σ))

=
P(B|σ)

P(A|σ) + P(B|σ)
(1 − P(∞|σ))

= α(1 − P(∞|σ)), (7)

where we have defined

α ≡
P(B|σ)

P(A|σ) + P(B|σ)
(8)

and made use of the fact that P(A|σ)+P(B|σ)+P(∞|σ) ) = 1,
and we have introduced α as a “splitting probability” for tra-
jectories from σ arriving at B versus A. To compute P(∞|σ)
in a brute-force manner, one would have to generate extremely
long trajectories because there is always a small but finite prob-
ability that an enzyme molecule which has diffused far away
and deep into the bulk will return to the substrate molecule. To
mitigate this problem, we put, following our earlier work,28

an interface at a position rn > σ. As we will show below,
this extra interface makes it possible to efficiently compute
P(∞|σ). Moreover, the probability P(B|σ) for trajectories that
move from σ to B is then given by the sum of the probability
Pdir(B|σ) of trajectories that directly go from σ to B without
first visiting rn and the probability Prn (B|σ) for those that first
visit rn and then proceed to B,

P(B|σ) = Pdir(B|σ) + Prn (B|σ)

= αdir (Pdir(A|σ) + Pdir(B|σ))

+ αrn (Prn (A|σ) + Prn (B|σ))

= αdir(1 − P(rn |σ)) + αrn P(rn |σ)(1 − P(∞|rn)). (9)

Here, αdir and αrn are, respectively, the splitting probabilities
of arriving at A versus B of those trajectories that proceed
directly from σ to either A or B and those that arrive at A or B
passing via rn,

αdir =
Pdir(B|σ)

Pdir(A|σ) + Pdir(B|σ)
, (10)

αrn =
Prn (B|σ)

Prn (A|σ) + Prn (B|σ)
. (11)

Similarly for the trajectories starting at the σ-interface
and reaching A, we can write

P(A|σ) = (1 − αdir)(1 − P(rn |σ))

+ (1 − αrn )P(rn |σ)(1 − P(∞|rn)). (12)

As a sanity check, we can add Eqs. (9) and (12) which gives

P(A|σ) + P(B|σ) = 1 − P(rn |σ) + P(rn |σ) (1 − P(∞|rn)

= 1 − P(rn |σ)P(∞|rn)

= 1 − P(∞|σ), (13)

which is indeed equal to the probability to observe trajecto-
ries that do not escape to infinity and hence bind to either A
or B.

Combining Eqs. (8), (9), and (12) yields

α =
αdir(1 − P(rn |σ)) + αrn P(rn |σ)(1 − P(∞|rn))

1 − P(∞|σ)
. (14)

The quantities P(rn|σ), P(∞|σ), and αdir can be directly
obtained from the FFS simulations. Hence, to close the
above equation and find P(B|σ) [see Eq. (7)], we need an
expression for αrn . Since Prn (B|σ) is the product of the prob-
ability P(rn|σ) of trajectories going from σ to rn and the
probability P(B|rn) of subsequently reaching B, the splitting
probability αrn in Eq. (11) is also given by

αrn =
Prn (B|σ)

Prn (A|σ) + Prn (B|σ)

=
P(rn |σ)P(B|rn)

P(rn |σ)P(A|rn) + P(rn |σ)P(B|rn)

=
P(B|rn)

P(A|rn) + P(B|rn)
. (15)

We emphasize that up to this point, no assumption has been
made. In particular, the expressions hold for any choice of
the location σ, including one that is close to the bound state,
which would lead to a non-uniform distribution of configura-
tions at σ. With such a non-uniform distribution, αrn is likely
to be unequal to αdir, which would make it impossible to close
Eq. (14). By contrast, if the distributions at the σ and the rn

interfaces are isotropic, then

Prn (B|σ)

Prn (A|σ) + Prn (B|σ)
'

Pdir(B|σ)
Pdir(A|σ) + Pdir(B|σ)

, (16)

and, thus,

αrn = αdir. (17)

Inserting Eq. (17) in Eq. (14), we find

α = αdir = αrn ≡
P(B|σ)

P(A|σ) + P(B|σ)
, (18)

which reduces Eq. (7) to

P(B|σ) = αdir(1 − P(∞|σ)). (19)

Hence the effective hopping rate constant from Eq. (6) reduces
to

kAB
effHop = Φ0 [P(B|r0) + αdirP(σ |r0)(1 − P(∞|σ))] . (20)

Note that when A and B are identical patches, then α = αdir

= 0.5. However, in general, this does not need to be the case.
Both the effective dissociation rate constant given by

Eq. (4) and the effective hopping rate constant in Eq. (20)
require the calculation of the escape probability P(∞|σ).
Below, we describe how P(∞|σ) can be obtained efficiently in
an FFS simulation. The escape probability, together with the
diffusion-limited arrival rate constant kD(σ), makes it possible
to define the intrinsic association rate constant,28

P(∞|σ) =
kD(σ)

kA∨B
a (σ) + kD(σ)

, (21)
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where kA∨B
a is the intrinsic rate constant at which a particle at

σ binds either A or B. This equation, and hence the intrinsic
association rate constant, can, in principle, also be defined
for surfaces σ for which the distribution of configurations is
not isotropic;28 yet, the expression for the diffusion-limited
arrival rate constant kD(σ) is then, in general, not known. In the
case considered here, where the distribution of configurations
at σ is isotropic [and σ is (significantly) beyond the cutoff
of the potential], the diffusion-limited arrival rate constant is,
however, simply given by kD(σ) = 4πσD, where D is the (sum
of the) diffusion constant(s) of the particles. Rearranging the
above equation yields the intrinsic rate constant of binding to
either A or B,

kA∨B
a (σ) = kD(σ)

1 − P(∞|σ)
P(∞|σ)

. (22)

The effective association rate constant of binding to either
A or B is given by the diffusion-limited arrival rate constant
kD(σ) times the binding probability (1 � P(∞|σ)),

kA∨B
on = kD(σ)(1 − P(∞|σ)), (23)

the effective association rate constant of binding to patch A is

kA
on = (1 − α)(1 − P(∞|σ))kD(σ), (24)

and the intrinsic association rate constant of binding to patch
A is given by

kA
a (σ) = (1 − α)kA∨B

a (σ). (25)

Equations (3)–(5), (20), (25), and (24) yield the expressions for
the intrinsic and effective dissociation, hopping, and associa-
tion rate constants. Only one point remains to be addressed,
which is how P(∞|σ) can be obtained efficiently in an FFS
simulation. To this end, we exploit that the effective rate con-
stant of binding either patch is independent of the location of
the effective cross section,28

kA∨B
on (σ) = kA∨B

on (rn), (26)

which means, using Eq. (23), that

kD(σ)(1 − P(∞|σ)) = kD(rn)(1 − P(∞|rn)). (27)

P(∞|σ) can be factorized as

P(∞|σ) = P(∞|rn)P(rn |σ). (28)

Solving Eqs. (27) and (28) yields

P(∞|σ) =
P(rn |σ)(1 −Ω)
1 −ΩP(rn |σ)

, (29)

whereΩ ≡ kD(σ)/kD(rn). If the interfaces σ and rn are beyond
the cutoff of the potential, then the particles move by free
diffusion. In this case, we can exploit the analytic expression
for the diffusion-limited arrival rate constant kD(σ) = 4πσD
to evaluate all the rate constants.

The above equations hold for a situation in which both
A and B are very long lived states so that the association rate
constant kAU for binding to A is dominated by the paths that
directly proceed from the unbound state to path A, and the
paths that visit B do not contribute significantly to kAU. We
argue that also in the (mean-field) modeling of biochemical
networks, this is the most natural and useful definition of the
association rate constant.

C. Particle model and interaction potential

All particles are spherical with an isotropic centre of mass
interaction, dressed with one or more sticky spots on their
surface called “patches,” which allow for highly directional,
anisotropic interactions. We use two species of such particles
in our simulations, a substrate particle which has two patches
and an enzyme particle that has one patch.

The enzyme-substrate pair, in our model, experiences a
strong attractive potential, Us(r), over a narrow band of ori-
entations (see Fig. 3). This specific attraction depends on the
distance, r, between the patches, i.e., stronger attraction when
the patches are closer. When the patchy particles approach each
other, they experience a repulsive potential, U rep(R), which
is a function of the center-of-mass distance, R. In addition,
particles experience a weak, isotropic, non-specific attraction,
Uns(R). The total patch potential reads

Uan(R, r) =
n∑

i=1

Us(ri) + Urep(R) + Uns(R), (30)

where n is the number of patches on the substrate (two in
the context of this paper) and ri are the inter-patch distances
between the patch of the enzyme and the ith patch of the
substrate. Us(r), U rep(R), and Uns(R) have the form

Ui(x) =




ε i

(
1 − ai

(
x
σan

)2
)

if x < x?i ,

ε ibi

(
xc

i
σan
− x
σan

)2
if x?i < x < xc

i ,

0 otherwise,

(31)

with i = {s, rep, ns}, respectively. The overall strength ε i, the
length scale σan = 5 nm, the stiffness ai, and the parameter
x?i , which when combined with ai determines the range of
the potential, are free parameters. Cutoffs xc

i and smoothing
parameters bi are fixed by requiring continuity and differentia-
bility at x?i . In this paper, we use the same parameter settings as
in Refs. 28, 49, and 50: ε s = 20kBT, as = 20, and r∗att = 0.1σan,
implying bs = 5 and rc

s = 0.5σan; ε rep = 100kBT, arep = 1, and
R∗rep = 0.85σan, implying brep = 2.6036 and Rc

rep = 1.1764σan;
and ans = 1 and R∗ns = 0.85σan, implying bns = 2.6036 and
Rc

ns = 1.1764σan. εns is varied from 2kBT to 20kBT with
steps of 2kBT. When the patches are aligned (r = R � σan)
and misaligned (r = R + σan). When the patches are aligned,
particles experience both specific and non-specific attraction,
creating a deeper potential well and a stronger bond. When
the patches are misaligned, Us = 0, and the particles only
experience the weak Uns which results in a shallow potential
well and a weaker bond. The non-specific attraction, however,
promotes realignment since the particles do not diffuse away
immediately.

Particles of the same species, i.e., enzyme-enzyme
and substrate-substrate, only have a WCA (Weeks-Chandler
Andersen) repulsion based on the centre of mass distance, R.

These parameters were chosen to mimic protein asso-
ciation with dissociation constants on the order of nM to
mM.2,51,52 The length scale σan = 5 nm represents a typi-
cal diameter for a protein substrate or enzyme. Not only the
dissociation constant, corresponding to the ratio of the dis-
sociation and association rate, corresponds to that in many
biochemical networks but also the absolute rates themselves,
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FIG. 3. Potential energy landscape (left column) of the enzyme-substrate system as a function of the spacial position of the pair and rate constants evaluated
with the derived expressions (right column). The energy landscape is obtained by moving the enzyme around the substrate, with the patch of the enzyme pointed
to the centre of the substrate. The rows (a), (b), and (c) correspond to a patch spacing θ (angle between the two patch vectors) of 45◦, 90◦, and 120◦, respectively.
For all three angles, all the rate constants increase as a function of the orientational diffusion constant Dr. However the hopping rate constants show the strongest
dependence, while the association rate constants show the least. The hopping rate constants are largest when θ = 45◦ and decreases as the spacing increases.
The dissociation rate constants are smallest when θ = 45◦ and increases when θ = 90◦. Furthermore, increase in the spacing between the patches has no effect
on the dissociation rate constant. The association rate constants are not influenced by the patch spacing.

being on the millisecond-second time scale, are typical for
biological systems.2,51,52

D. Simulation details

All simulations are performed using a Brownian dynamics
integrator.53 The system specific parameters of the simulation
are as follows: The particle diameter is σ = 5 nm, the time
step is δt = 0.1 ns, the mass of the particle is m = 50 kDa,
the mass moment of inertia is M = 8

15 mσ2, the translational

and rotational friction coefficients are γ = kBT
Dtm

and Γ = kBT
DrM ,

respectively, where Dt = 1µm2/s and Dr are translational and
rotational diffusion constants, kB = 1.38 × 10�23 JK�1 is the
Boltzmann constant, and T = 300 K is the temperature of the
system.

As we employ an anisotropic interaction potential, a geo-
metrical definition of interfaces for FFS is not easy. Therefore,

we base the interfaces on the potential energy up to the poten-
tial cutoff. The first interface (r0-interface), which defines
the bound state, is located at 18 kBT. The other interfaces
are located at 15, 10, and 5 kBT. The interface at the cutoff
of the potential is defined by zero energy and R = 1.6σan.
Beyond the cutoff of the potential, the interfaces are defined
by the interparticle distance R = 1.7, 1.9, 2.1, 2.3, 2.5, 3.0,
3.5, 4.0, 4.5, 5.0, 5.5. Finally the rn-interface is located at
R = 7σan.

III. RESULTS

In this section, we evaluate the transition rate constants
using the expressions derived in Sec. II B for the patchy particle
model system described in Sec. II C. First, we determine all rate
constants for the case with the enzyme initially bound to one
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of the patches of the substrate. Employing FFS on the dissoci-
ation reaction, we determine all six rate constants as a function
of the rotational diffusion constant Dr for several patch angular
spacings. Next, we compare the computed association and dis-
sociation rate constants for this case to two other scenarios: (i)
the other substrate patch is blocked by a static/inert (second)
enzyme and (ii) the substrate has only a single patch, which is
identical to the other patch being blocked by an infinitesimally
small enzyme.

A. Effect of the rotational diffusion constant
and patch spacing on the rate constants

From the FFS simulation of the dissociation reaction of an
enzyme initially bound to a patch, we compute the association,
dissociation, and hopping rate constants as a function of the
rotational diffusion constant for patch opening angles 45◦, 90◦,
and 120◦. Figure 3 shows the potential energy landscapes and
the rate constants resulting from Eqs. (3)–(5), (20), (25), and
(24). In the system that we present here, since the substrate
has two identical patches, the value of α measured from the
simulation is around 0.5.

For all path opening angles, the rate constants only weakly
increase as a function of the orientational diffusion constant
Dr. The hopping rate constant has the strongest dependence
on Dr, whereas the association rate constant has the weakest.
At higher Dr, the particles rotate faster, allowing the particle
to leave the potential well more easily since even a small mis-
alignment of the patches causes unbinding. Once unbound,
the particle either dissociates or hops to the other patch.
Hence, the hopping and dissociation rate constants sensitively
depend on Dr. The association rate constant, on the other hand,
increases only marginally with Dr, as the rotational diffusion
does not limit the rate constant of association for these values
of Dr.

Figure 3(a) shows that for the θ = 45◦ case, the two patches
partly overlap, enhancing the probability for hopping rather
than dissociation. Hence, for θ = 45◦, the dissociation rate

constant is lower and the hopping rate constant is four orders
of magnitude larger when compared to the dissociation and
the hopping rate constants when θ = 90◦ or θ = 120◦. For the
higher patch angles, the two patches truly separate so that an
enzyme unbinding from one patch rarely hops to the other
patch. When the patch angle is increased from θ = 45◦ to
θ = 90◦, the dissociation rate constant initially increases but
levels off when the patches are positioned at θ = 120◦. Associa-
tion rate constants are hardly dependent on the angular distance
between the patches.

B. Effect of blocking on the rate constants

As the substrate has more than one binding site (patch),
multiple enzymes can bind simultaneously. The presence of
another bound enzyme might affect the association and dis-
sociation rate constants of an enzyme to and from the free
patches. Restricting ourselves to a substrate with two patches,
we consider first the case where one of the two patches is
blocked by an identical enzyme. We assume this enzyme to
remain bound and treat it as being static and inert. In this case,
the hopping rate constants are zero since the enzyme cannot
hop to the other patch. We compute the effective and intrin-
sic association/dissociation rate constants for patch opening
angles θ = 90◦ and θ = 120◦. We also compare the computed
rate constants to those obtained when there is no blocking and
the case where the substrate has only one patch.

Figure 4 shows the energy landscapes for θ = 90◦ and
θ = 120◦, while Fig. 5 shows the intrinsic and effective asso-
ciation and dissociation rate constants for all cases. From the
energy landscape, we see that the mobile enzyme (not shown
in the figure) feels a strong specific attractive force around
the free patch, a weak non-specific attractive force around
the substrate, and a repulsive force near the blocking enzyme.
Figure 5 shows that all rate constants increase with increasing
rotational diffusion constant. The association rate constants
kA

a and kA
on are highest for the one patch case and for blocked

patch case with θ = 120◦. For the blocked patch case with

FIG. 4. Potential energy landscapes when one of the patches is blocked by an enzyme when θ = 90◦ (left) and θ = 120◦ (right). The second enzyme particle (not
shown in the figure) feels a strong attraction around the free patch, a weak non-specific attraction around the substrate, and a repulsive force around the blocking
enzyme.
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FIG. 5. Clockwise from top left: The intrinsic association rate constant, ka, intrinsic dissociation rate constant, kd, effective dissociation rate constant, koff, and
effective association rate constant, kon, plotted as a function of the rotational diffusion constant, Dr, for three cases: (i) substrate with two patches and both
patches are free (free patch), (ii) substrate with two patches and one of the patch is blocked, (iii) substrate with one patch. The association rate constants are
largest when the substrate has one patch and when one patch is blocked with θ = 120◦. The association rate constants for the blocked patch when θ = 90◦ is
lower than the above value and is least when the substrate has two patches with no blocking. The dissociation rate constant on the other hand is largest when the
substrate has a single patch and least when both patches are free. When one patch is blocked, the dissociation rate constants lie in between the above values.

θ = 90◦, the association rate constants are slightly smaller
because the blocking enzyme is closer to the free patch and
causes steric hindrance, reducing the association rate constant.
When the patches are further apart, this effect is reduced,
corresponding to an increased association rate constant. The
association rate constants are lowest for the unblocked two
patch case. Since the association is specific to patch A, we do
not count trajectories that bind to patch B, which acts as a trap,
effectively reducing the association rate constant for binding to
patch A.

The dissociation rate constants are largest for the one patch
situation because once the enzyme leaves the potential well, it
is only held by the weak non-specific attraction, enhancing the
chance to escape. The dissociation rate constants are lowest
for the unblocked two-patch case since an enzyme leaving a
potential well still can hop to the other patch and rebind to the
substrate, thus reducing the dissociation rate constants. The
dissociation rate constants for the blocked-patch scenario are
in between the two other cases, as then an enzyme leaving a
potential well is repelled by the blocking enzyme and rebinds
to the patch where it started from. This effect is larger for small
distances between the patches, leading to smaller dissociation

rate constants for θ = 90◦ compared to the dissociation rate
constant for θ = 120◦.

IV. CONCLUSION

In this work, we derived a generic expression to evalu-
ate the dissociation rate constant using FFS, for cases where
two states are not necessarily separated by all interfaces. This
expression is also applicable to the case of more than two states.
Moreover, we derived microscopic expressions for intrinsic
and effective association, dissociation, and hopping rate con-
stants, to be used in conjunction with a single rare-event
simulation of the dissociation reaction.

Because in signalling networks, the rebinding of the
enzyme to the substrate can significantly change the response
of the system, it is interesting to study the rate constants of
binding, unbinding, and hopping (rebinding) of an enzyme to
the substrate. In our model, we restrict the number of bind-
ing sites on the substrate to two and the enzyme has one
binding site. For this model, we calculate the rate constants
as a function of the rotational diffusion constant, Dr, and
the spacing between the two patches on the surface of the
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substrate. We find that the association rate constants are mostly
independent of how fast the particles rotate, while the dissoci-
ation and hopping rate constants are more strongly correlated
with Dr (see also Ref. 33). When the patches are close to
each other, the enzyme hops (rebinds) to the other substrate
patch, instead of diffusing away. This hopping rate constant
depends on the patch distance very strongly. By contrast, the
association and dissociation rate constants do not change sig-
nificantly with patch separation. Finally, we studied the effect
of a blocking enzyme on the associating/dissociation/hopping
rate constants. In the presence of an (inert) blocking enzyme,
both the association and dissociation rate constants increase
when compared to the unblocked case. This might appear
counter-intuitive at first, as blocking would seem to lower the
chance of association rather than enhancing it. However, when
considering binding to one specific site, the other site acts as
a trap, effectively reducing this association rate47 with respect
to a single-site substrate. This reduction is less than a factor of
two as the two sites together also have a larger effective cross
section, which would enhance the association again. Indeed,
the association rate constant to either of the two patches is
larger than the association rate constant for the one-patch sys-
tems. As expected from microscopic reversibility, the second
site also acts as a trap on the dissociation pathway, reducing
the dissociation rate constant.47 Removing this site by block-
ing thus enhances both the association and dissociation rate
constants.

Evaluation of these rate constants is useful for understand-
ing in general the association reactions in an enzyme-substrate
system and to study the response characteristics of such a sys-
tem. The intrinsic rate constants also serve as input parameters
for a multi-scale simulation,49,54 where, by using these rate
constants, explicit simulations of the association reactions can
be avoided, which dramatically speeds up the simulations.
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