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We introduce a novel transition path (TPS) sampling scheme employing nested sampling. Analogous to
how nested sampling explores the entire configurational phase space for atomistic systems, nested TPS
samples the entire available trajectory space in one simulation. Thermodynamic and path observables can
be constructed a posteriori for all temperatures simultaneously. We exploit this to compute the rate of rare
processes at arbitrarily low temperature through the coupling to easily accessible rates at high temperature.
We illustrate the method on several model systems.
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Rare events are ubiquitous in the physical sciences.
Examples are elementary chemical reactions, crystal nucle-
ation, protein conformational changes, surface rearrange-
ments, thermally activated dislocation migration, and other
diffusion processes in solids. Being comparatively infre-
quent, these events are notoriously difficult to assess using
straightforward molecular dynamics simulation techniques.
Enhanced sampling can alleviate this problem, but requires
a priori knowledge of reaction coordinates [1,2]. Transition
path sampling (TPS) circumvents this requirement by
sampling from the distribution of trajectories that undergo
the rare event [3,4]. TPS results in a collection of unbiased
reactive trajectories that can be analyzed for mechanistic
and kinetic information. Since its development 20 years
ago TPS has been extended in many ways [5–9]. A
drawback of TPS, common to many techniques that rely
on molecular dynamics to compute phase space averages, is
that it is difficult to obtain the temperature dependence of
observables [10]. The obvious solution, to perform multiple
TPS simulations at different temperatures and thus compute
the temperature dependence explicitly, is computationally
very expensive. Here we pursue a different route, and use
nested sampling (NS) to compute the “density of states” of
trajectory space, a temperature independent quantity from
which observables at any temperate can be obtained.
Nested sampling was invented in 2004 by John Skilling,
first and foremost to allow efficient evaluation of evidence
integrals in Bayesian inference [11–13]. It is widely used in
astronomical data analysis [14]. The close correspondence
between Bayesian inference and statistical mechanics
suggested a natural application in the latter field. After
an early demonstration on lattice models [15], it was
adapted for materials modeling and enables the determi-
nation of pressure-temperature-composition phase dia-
grams in a single consistent set of simulations, even
without any prior knowledge of the crystal structure of
solid phases. Applications to date have ranged from

Lennard-Jones (LJ) clusters [16–18] and hard spheres
[19] to embedded atom models of aluminium and alloys
[20], water and polymers [21], protein folding [22], and
liquid-vapor phase transitions [23,24].
The aim of this Letter is to develop and test the nested

sampling algorithm for dynamical trajectories. This will
allow evaluating temperature-dependent dynamical observ-
ables, such as mechanisms and rates, from path ensembles
obtained in a single simulation and without defining any
reaction coordinate.
Briefly, nested sampling works by determining the

density of states in configuration space corresponding to
a probability measure at a given value of probability by
generating K samples distributed uniformly in configura-
tion space with the one-sided hard constraint on the
corresponding probabilities all being above the given
probability, and looking at the distribution of the samples’
probabilities. In statistical mechanics, the log of the
probability corresponds to the energy. In practice the
density of states is determined iteratively, starting with
configurations that have the highest energies (lowest
probabilities), where MC moves decorrelate very quickly.
In each iteration, the sample with the highest energy is
removed from the pool, its energy is recorded, and it
becomes the new energy threshold below which the uni-
form sampling distribution is reconstructed. This is done by
cloning one of the existing samples (which are already
uniformly distributed), and then the copy is decorrelated
from its source by a Markov chain Monte Carlo or other
dynamical procedure, the only requirement being that the
process returns a new sample which is again uniformly
distributed under the hard constraint. Since one sample is
removed in each iteration, the phase space volume enclosed
by the energy level corresponding to the hard constraint
reduces by a factor of α ¼ K=ðK þ 1Þ. The iterations are
repeated until all the samples in the pool converge on a very
small part of phase space. Throughout this Letter we use
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“energy” to mean the total energy, as opposed to just the
potential energy, which is often the controlling variable
when NS is used to compute the configurational partition
function.
The key facts that make NS efficient are (i) obtaining

uniformly distributed samples is easy at high energies, and
(ii) as the energy threshold is lowered, maintaining the
approximately uniform distribution of an existing pool is
easier than generating uniformly distributed samples com-
pletely from scratch. These statements remain approxi-
mately true even if the landscape is highly multimodal,
since with enough samples in the pool, many modes will be
sampled simultaneously. The “magic” of NS (shared with
other density-of-states methods) happens in a posteriori
analysis. Given the density of states ΩðEÞ, we define the
cumulative density of states as

χðEÞ ¼
Z

E

−∞
ΩðE0ÞdE0: ð1Þ

Since each iteration in the NS procedure reduces the phase
space by a factor α, the total cumulative density of states
(volume of phase space) corresponding to the energy level
En at iteration n is χðEnÞ ¼ αn, where the total phase space
volume of the system under the initial energy constraint is
normalized to 1 [25]. The first object of interest is the
partition function

ZðβÞ ¼
Z

∞

−∞
ΩðEÞe−βEdE: ð2Þ

We approximate the density of states by the finite difference
of successive values of χðEÞ and the above integral for the
partition function by a discrete sum over the energy levels,
giving

ZðβÞ ≈
X
n

ðαn − αnþ1Þe−βEn: ð3Þ

Using this expression, all thermodynamics can be extracted
from the list of successive energy levels fEng. The expect-
ation value of an observable A is given by

hAðβÞi ≈ 1

ZðβÞ
X
n

AðxnÞðαn − αnþ1Þe−βEn; ð4Þ

where xn is the actual configuration with energy En
removed from the pool at iteration n. For example, one
can obtain the expected internal energy using the formula

UðβÞ ¼ 1

ZðβÞ
X
n

ðαn − αnþ1ÞEne−βEn; ð5Þ

and also the heat capacity as

CVðβÞ¼β2
�

1

ZðβÞ
X
n

ðαn−αnþ1ÞE2
ne−βEn −UðβÞ2

�
: ð6Þ

The key point is that all observables are estimated at all
temperatures using the density of states obtained in a single
NS simulation. The accuracy with which an observable is
obtained depends partly on how well the density of states is
resolved, and partly on how well the K samples in the pool
approximate the distribution of the observable near a given
energy level. Both of these errors decrease with the usual
1=K1=2 scaling typical of stochastic methods. Apart from
K, the other parameter that influences the accuracy of NS is
the memory and length of the dynamical or Markovian
process that is used to decorrelate the cloned copy at each
iteration; however, in multimodal situations, convergence
can only be reached by increasing K.
Transition path sampling is an MC scheme in the space

of trajectories. One of the goals of TPS is to obtain a
collection of trajectories that connect two stable states, A
and B. Denoting a trajectory of length L by x ¼
fx0; x1;…xLg with xi the configuration’s positions and
momenta, the path ensemble distribution is given by
PABðxÞ ¼ 1Aðx0ÞPðxÞ1BðxLÞ=ZAB, with PðxÞ the
unbiased path probability (determined by the underlying
dynamics), and where the characteristic functions 1A;BðxÞ
are unity when x is inside the state definition, and
zero otherwise. The path partition function is ZAB ¼R
Dx1Aðx0ÞPðxÞ1BðxLÞ The path probability PðxÞ ∼

e−βEðx0Þ
Q

L
i pðxi → xiþ1Þ is given by the underlying dyna-

mics, where pðxi → xiþ1Þ is the short-time Markovian
probability for a transition from the xi to xiþ1 step, and
the first Boltzmann factor accounts for the canonical
distribution of the energy [5–7]. A particularly simple
expression is obtained for deterministic dynamics in the
NVE ensemble, where these short time probabilities are
delta functions, ZAB ¼ R

Dxe−βEðx0Þ1Aðx0Þ1BðxLÞ. Note
that while the path ensemble is the canonical NVT ensem-
ble, the dynamics is NVE. This is unusual but not a
contradiction. For instance, the coupling to the heat bath
can be so weak that the dynamics is essentially micro-
canonical on short time scales (that of the path) and only
relaxes to constant temperature in the stable states, where
dwell times are long. Other ensembles are possible, and are
treated elsewhere [5–7].
TPS samples the path ensemble using the “shooting”MC

move, which creates a trial trajectory by selecting a random
time slice, or configuration xi, and integrating the equation
of motion backwards and forwards in time. This trial path is
accepted if the path connects the stable states [26].
Intuitively, the move will lead to a high acceptance if
the starting time slice is near the saddle point connecting
the stable states. This move allows a lot of freedom in
implementation, and many versions exist [6]. Here we use
flexible length shooting, which halts the integration when
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reaching a stable state. The path length fluctuates, and to
obey detailed balance a correction factor based on the path
length is needed [7].
Nested path sampling can now be constructed analo-

gously to regular NS, making the identification

ZAB ¼
Z

dE
Z

Dxe−βEðx0Þ1Aðx0Þ1BðxLÞδðE − Eðx0ÞÞ

≡
Z

dEe−βEΩABðEÞ; ð7Þ

which defines the path density of states as ΩABðEÞ ¼R
Dx1Aðx0Þ1BðxLÞδ(E − Eðx0Þ). Now we proceed as out-

lined above. The nested TPS algorithm uses a pool of K
paths that randomly populate trajectory space, under the
extra condition that paths connect A and B. Just as in
ordinary NS the trajectory space is reduced by a factor α ¼
K=ðK þ 1Þ when removing the path with the highest
energy En at iteration n.
In addition to the usual thermodynamic quantities, it is

easy to extract path observables, such as transformation
mechanisms. For instance, the fraction of pathways tra-
versing via a mechanism m is given by

fmABðβÞ ¼
1

ZðβÞ
X
n

ðαn − αnþ1Þe−βEnδmn ; ð8Þ

where δmn ¼ 1 when path n follows mechanism m and zero
otherwise. Any path observable can be evaluated in
this way.
Of special interest are the rate constants, which are

difficult to obtain for a rare event using brute force
dynamics. TPS has a special procedure to compute rate
constants, using integration along an order parameter [5].
Here we take a different route and link the rate at any
temperature β to any other temperature β0 via

ln kðβÞ − ln kðβ0Þ ¼
Z

β

β0

dβ0
∂ ln kðβ0Þ

∂β0 : ð9Þ

In TPS the rate constant is the time derivative of a
correlation function CðtÞ ¼ h1Aðx0Þ1BðxLÞi=h1Aðx0Þi:

k ¼ dCðtÞ
dt

¼ h1Aðx0Þ _1BðxLÞi
h1Aðx0Þi

: ð10Þ

Taking logarithms and the derivative with respect to β gives

∂ ln kðβÞ
∂β ¼ ∂ lnh1Aðx0Þ _1BðxLÞiAB

∂β −
∂ lnh1Aðx0Þi

∂β : ð11Þ

Carrying out the derivative yields, after rearranging,

∂ ln kðβÞ
∂β ¼ −hEiAB þ hEiA; ð12Þ

where the subscript AB denotes a path average over
trajectories connecting A and B, and the subscript A
denotes an average over trajectories starting in A, both
of course at a given temperature setting. As stated above, all
these ensemble averages are straightforward to evaluate
after the NS run. In contrast, this approach using ordinary
TPS would necessitate a separate simulation for each
temperature on a fine grid of values [10].
In order to help understanding and build intuition, we

first illustrate NTPS on a double-well potential in two
dimensions with two different transition channels. We
chose the following potential form [27]

Vðx; yÞ ¼ 4ðx2 þ y2 − 1Þ2y2 − e−4½ðx−1Þ2þy2�

− e−4½ðxþ1Þ2þy2� þ e8ðx−1.5Þ þ e−8ðxþ1.5Þ

þ eαðyþ0.25Þ þ 0.2e−8x
2

;

with α ¼ −4 that makes the height of the two saddles
unequal (approximately 1.1 and 0.9 above the minima). We
initialized the ensemble of 50 path samples by starting from
the linear path and deforming each by 10 000 shooting
moves and the very high energy limit of 20. The paths were
discretized to allow 200 time steps of size 0.05, and the
number of shooting moves used to decorrelate the cloned
path in each subsequent NTPS iteration was 1000. Figure 1
shows the potential as a heat map, as well as the paths
generated during the NTPS run. At early iterations (black
lines), the path energy is high, and many kinds of paths are
sampled, with transitions between the two channels easily
made. During the middle of the run (light gray lines), paths
are confined to the channels, with very few switches
between the two. Towards the end of the run (white lines),
paths are confined to the top channel which has a lower
barrier (even though it is significantly longer in terms of
path length between the minima). Figure 1(c) shows a
trivial order parameter (the y value at the midpoint of the
path) that distinguishes the two channels, as a function of
NTPS iteration. In the first 300 iterations, paths are not
confined to the channels, and many different values are
present. Between iterations 300 and 480, paths are mostly
confined to the two channels, with just a couple of paths
across the local maximum in between them, and after
iteration 480, all paths follow the top channel.
The second illustration of NTPS is on a 2D Lennard-

Jones cluster of 7 particles. This simple system was used as
a test bed for the development of the TPS algorithm [4,28].
At low temperature the cluster has 4 metastable states
(ignoring permutations) between which transformations
can occur [29]. TPS can sample all transitions but here
we focus on the transitions out of the ground state into any
of the remaining three states.
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We initialize the ensemble of K ¼ 1000 paths, perform-
ing l shooting moves between each sample. In each
shooting move the velocities were changed with
dvmax ¼ 0.1. To conserve the linear and angular momen-
tum we applied a relative velocity change along a particle
pair vector [30]. Paths connecting the ground state with any
other metastable state are accepted. We restrict the energy
of the NVE paths to a maximum of E ¼ −8.5, as the
acceptance probability vanishes at high energy, where the
stable states are no longer basins of attraction. We obtained
sufficiently decorrelated trajectories after l ¼ 1000 shoot-
ings [31]. After the decorrelation phase, we apply the
iterative nested sampling algorithm, using again l ¼ 1000
shooting trials. This took around 24 hr on a single Intel
CPU core. The cumulative density of states function in
Fig. 2(a) shows that trajectory space is reduced by around
24 orders of magnitude during the nested sampling. From
this data we construct the energy U via Eq. (5), shown in

Fig. 2(b). As expected U decreases as function of inverse
temperature β, eventually reaching the saddle point energy
for β → ∞. The heat capacity, which measures fluctuations
in the path energy, is plotted in Fig. 2(c). CV increases
initially, indicating a rapid change in available path space,
and settles to a constant value around β ≈ 20, where the
path energy fluctuations are completely determined by
the saddle points. Figure 2(d) shows the probability of the
observed mechanisms. Clearly, the transition to the higher
lying metastable state becomes improbable at lower tem-
perature, while the two other metastable states are about
equally probable, which is reasonable considering the two
saddle points are almost equal. At low β, these fractions
differ from the simple prediction based on the Boltzmann
factors of the barrier heights (dashed curves), indicating
that entropy plays a role.
While we do not study the convergence with K here, we

note that when NS is used to obtain the configurational
partition function, K does not scale with system size
directly, but with the number of relevant (symmetry
reduced) energy basins that need separate sampling. The
analog of that for NTPS is the number of different relevant
transition mechanisms.
Next, we computed the derivative in Eq. (12) from the

path observables. The unconstrained variable hEiA was
computed by carrying out a NTPS simulation of a path
ensemble in which only the first slice was constrained to A.
We integrate this derivative d ln k=dβ (see inset in Fig. 3)
using a known rate at high temperature β0. Figure 3 shows
the integrated NTPS rate for β0 ¼ 10. This known rate has
to be computed directly at this high temperature, for
instance using brute force MD. Figure 3 also shows
computed rate constants at several other temperatures,
including those from Refs. [28,29] for β ¼ 20, indicating
the NTPS prediction is excellent at low temperature. The
direct computation becomes extremely slow around
β ¼ 15, while NTPS can easily assess rates up to
β ¼ 50. For β < 6 the direct MD rates deviate from the
NTPS prediction, because of the imposed hard upper
limit in energy. The NTPS estimate is only valid up to
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FIG. 2. NTPS of 2D LJ cluster transitions: (a) cumulative
trajectory phase space volume χðEÞ, (b) internal energy, (c) heat
capacity, and (d) fraction of paths following a given mechanism,
all as functions of inverse temperature, β (solid curve). Fraction
estimated from Boltzmann factor of saddle-point energy Es ¼
−10.8 (green dashed) and Es ¼ −11.04 (black dashed).

FIG. 1. (a) Double well potential with two transition channels. Three example paths are shown: a very high energy path (black) and
two lower energy paths through the lower (gray) and upper (white) channels. (b)Nested transition path sampling of the double well
potential. The brightness of the path indicates the NS iteration, with black corresponding to high energies and white paths to low energy
paths. The green circles delimit the two states. (c) The y value at the path midpoint, as a function of NTPS iteration.
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temperatures where the probability to observe this upper
energy limit is negligible. The rate clearly shows Arrhenius
behavior at high β, with the negative slope of the curve
equal to the activation barrier, Ea ¼ −d ln k=dβ ¼ 1.5 (see
inset of Fig. 3), which is indeed the barrier height [29].
In the above examples the effect of entropy is very limited,

and in both cases Arrhenius behavior is observed. To show
that NTPS also can handle barriers dominated by entropy,
we provide a third example, a condensation transition in a
small LJ system (see Supplemental Material [32]). This
example clearly shows that when sampling the path density
of states properly NTPS can correctly treat both energy as
wells entropy dominated barriers.
In summary, we have introduced a novel path sampling

method that uses the nested sampling algorithm to walk
through trajectory space. We showed that rates can be
obtained for all temperatures from a single simulation
without defining a reaction coordinate. The nested transition
path sampling method can be of interest when temperature
dependence is required, which is difficult in ordinary TPS
simulations. Finally, we note that the concept of nested
sampling of path space is generally applicable to any thermal
path integral, including quantum mechanical ones.
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