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Abstract

We introduce a new prior for use in Nonparametric Bayesian Hierarchical Clus-
tering. The prior is constructed by marginalizing out the time information of
Kingman’s coalescent, providing a prior over tree structures which we call the
Time-Marginalized Coalescent (TMC). This allows for models which factorize
the tree structure and times, providing two benefits: more flexible priors may be
constructed and more efficient Gibbs type inference can be used. We demonstrate
this on an example model for density estimation and show the TMC achieves com-
petitive experimental results.

1 Introduction

Hierarchical clustering models aim to fit hierarchies to data, and enjoy the property that cluster-
ings of varying size can be obtained by “pruning” the tree at particular levels. In contrast, standard
clustering models must specify the number of clusters beforehand, while Nonparametric Bayesian
(NPB) clustering models such as the Dirichlet Process Mixture (DPM) [5, 13] directly infer the (ef-
fective) number of clusters. Hierarchical clustering is often used in population genetics for inferring
ancestral history and bioinformatics for genetic clustering, and has also seen use in computer vision
[18, 1] and topic modelling [3, 1].

NPB models are a class of models of growing popularity. Being Bayesian, these models can easily
quantify the uncertainty the the resulting inferences, and being nonparametric, they can seamlessly
adapt to increasingly complicated data, avoiding the model selection problem. NPB hierarchical
clustering models are an important regime of such models, and have been shown to have superior
performance to alternative models in many domains [8]. Thus, further advances in the applicability
of these models is important.

There has been substantial work on NPB models for hierarchical clustering. Dirichlet Diffusion
Trees (DDT) [16], Kingman’s Coalescent [9, 10, 4, 20], and Pitman-Yor Diffusion Trees (PYDT)
[11] all provide models in which data is generated from a Continuous-Time Markov Chain (CTMC)
that lives on a tree that splits (or coalesces) according to some continuous-time process. The nested
CRP and DP [3, 17] and Tree-Structured Stick Breaking (TSSB) [1] define priors over tree structures
from which data is directly generated.

Although there is extensive and impressive literature on the subject demonstrating its useful clus-
tering properties, NPB hierarchical clustering has yet to see widespred use. The expensive com-
putational cost typically associated with these models is a likely inhibitor to the adoption of these
models. The CTMC based models are typically more computationally intensive than the direct gen-
eration models, and there has been substantial work in improving the speed of inference in these
models. [12] introduces a variational approximation for the DDT, and [7, 6] provide more efficient
SMC schemes for the Coalescent. The direct generation models are typically faster, but usually
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Figure 1: Coalescent tree construction (left) A pair is uniformly drawn from N = 5 points to coalesce. (mid-
dle) The coalescence time t¢5 is drawn from Easp((g)), and another pair on the remaining 4 points is drawn

uniformly. (right) After drawing t4 ~ Exp( (3) ), the coalescence time for the newly coalesced pair is t5 + ta.

Figure 2: Consider the trees one might construct by uniformly picking pairs of points to join, starting with four
leaves {a, b, ¢, d}. One can join a and b first, and then ¢ and d (and then the two parents), or ¢ and d and then a
and b to construct the tree on the left. By defining a uniform prior over ¢,,, and then marginalizing out the order
of the internal nodes p (equivalently, the order in which pairs are joined), we then have a prior over v,, that
puts more mass on balanced trees than unbalanced ones. For example the tree on right can only be constructed
in one way by node joining.

come at some cost or limitation; for example the TSSB allows (and requires) that data live at some
of its internal nodes.

Our contribution is a new prior over tree structures that is simpler than many of the priors described
above, yet still retains the exchangeability and consistency properties of a NPB model. The prior
is derived by marginalizing out the times and ordering of internal nodes of the coalescent. The
remaining distribution is an exchangeable and consistent prior over tree structures. This prior may
be used directly with a data generation process, or a notion of time may be reintroduced, providing
a prior with a factorization between the tree structures and times. The simplicity of the prior allows
for great flexibility and the potential for more efficient inference algorithms. For the purposes of
this paper, we focus on one such possible model, wherein we generate branch lengths according to
a process similar to stick-breaking.

We introduce the proposed prior on tree structures in Section 2, the distribution over times condi-
tioned on tree structure in 3.1, and the data generation process in 3.2. We show experimental results
in Section 4, and conclude in Section 5.

2 Coalescent Prior on Tree Structures

2.1 Kingman’s Coalescent

Kingman’s Coalescent provides a prior over balanced, edge-weighted trees, wherein the weights
are often interpreted as representing some notion of time. See Figure 1. A coalescent tree can be
sampled as follows: start with n points and n dangling edges hanging from them, and all weights set
to 0. Sample a time from Exp( (;) ), and add this value to the weight for each of the dangling edges.
Then pick a pair uniformly at random to coalesce (giving rise to their mutual parent, whose new
dangling edge has weight 0). Repeat this process on the remaining n — 1 points until a full weighted
tree is constructed. Note however, that the weights do not influence the choice of tree structures
sampled, which suggests we can marginalize out the times and still retain an exchangeable and
consistent distribution over trees. What remains is simply a process in which a uniformly chosen
pair of points is joined at every iteration.

2.2 Coalescent Distribution over Trees

We consider two types of tree-like structures, generic (rooted) unweighted tree graphs which we
denote 1, living in ¥,,, and trees of the previous type, but with a specified ordering p on the
internal (non-leaf) nodes of the tree, denoted (¢, p) = ¢, € P,,. Marginalizing out the times
of the coalescent gives a uniform prior over ordered tree structures ¢,,. The order information is



Figure 3: (left) A sample from the described prior with stick-breaking parameter (1, 1) (uniform). (middle)
A sample using B(2, 2). (right) A sample using B(4, 2).

v

necessary because for a given v, there are multiple ways of constructing it by uniformly picking
pairs to join, see Figure 2. If there are ¢ remaining nodes to join, there are (;) ways of joining them,
so we have for the probability of a particular ¢,,:

p(dn) = ﬁ (;)_1

=2

This defines an exchangeable and consistent prior over ®,,; exchangeable because p(¢,,) does not
depend on the order in which the data is seen, and consistent because the conditional prior! is well
defined — we can imagine adding a new leaf to an existing ¢,,, which creates a new internal node.
Let y; denote the ith internal node? of ¢,,, i € {1...n — 1}, and let y* denote the new internal node.
There are n ways of attaching the new internal node below 1, n — 1 ways of attaching below y5, and

S0 on, giving w = (72’) ways of attaching y* into ¢,,. Thus if we make this choice uniformly at

random, we get the probability of the new tree is p(¢n+1) = p(¢,) ("37) o H?:Ql () -

It is possible to marginalize out the ordering information in the coalescent tree structures ¢, to derive
exchangeable, consistent priors on “unordered” tree structures v,,. We can perform this marginal-
ization by counting how many ordered tree structures ¢, € &, are consistent with a particular
unordered tree structure ,,.
—1)! . . . . .
Lemma 1. A free v, has T(¢,) = 1‘}1}—7111)71 possible orderings on its internal nodes, where m; is
i=1 v
the number of internal nodes in the subtree rooted at node 1.

(For proof see the supplementary material.) This is in agreement with what we would expect: for
an unbalanced tree, m; = {1,2,...,n — 1}, so this gives T" = 1. Since an unbalanced tree imposes
a full ordering on the internal nodes, there can only be one unbalanced ordered tree that maps to the
corresponding unbalanced unordered tree. As the tree becomes more balanced, the m;s decrease,
increasing 7.

Thus the probability of a particular ,, is T'(1),,) times the probability of an ordered tree ¢,, under

the coalescent:? . B . B
p(n) = T(wn) [ @ = 1(1”_11)' 11 (;) (1)

i=2 i=1 M j=9
Theorem 1. p(t),,) defines an exchangeable and consistent prior over ¥,
p(1y,) is clearly still exchangeable as it does not depend on any order of the data, and was defined by

marginalizing out a consistent process, so its conditional priors are still well defined and thus p(¢,,)
is consistent. For a more explicit proof see the supplementary material.

!The sequential sampling scheme often associated with NPB models; for example the conditional prior for
the CRP is the prior probability of adding the n + 1st point to one of the existing clusters (or a new cluster)
given the clustering on the first n points.

>When times are given, we index the internal nodes from most recent to root. Otherwise, nodes are ordered
such that parents always succeed children.

31t has been brought to our attention that this prior and its connection to the coalescent has been studied
before in [2] as the beta-splitting model with parameter 5 = 0, and later in [14] under the framework of
Gibbs-Fragmentation trees.



Figure 4: The subtree .S; rooted at the red node [ is pruned in preparation for an MCMC move. We perform
slice sampling to determine where the pruned subtree’s parent should be placed next in the remaining tree 7.
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Figure 5: We compute the posterior pdf for each branch that we might attach to. If « or 3 are greater than one,
the Beta prior on branch lengths can cause these pdfs to go to zero at the limits of their domain. Thus to enable
moves across branches we compute the extrema of each pdf so that all valid intervals are found.

3 Data Generation Model

Given a prior over tree structures such as (1), we can define a data generating process in many
ways (indeed, any L; bounded martingale will do [19]); here we restrict our attention to generative
models in which we first sample times given a tree structure, and then sample the data according to
some process described on those times (in our case Brownian Motion). Examples of other potential
data generation models include those in [1], such as the “Generalized Gaussian Diffusions,” and the
multinomial likelihood often used with the Coalescent.

3.1 Branch Lengths

Given a tree structure v, we can sample branch lengths, s; = t,,, —t;, with ¢; the time of coalescent
event ¢, with ¢ = 0 at the leaves and p; is the parent of 7. Consider the following construction similar
to a stick-breaking process: Start with a stick of unit length. Starting at the root, travel down the
given ), and at each split point duplicate the current stick into two sticks, assigning one to each
child. Then, sample a Beta random variable B for each of the two sticks where the corresponding
children are not leaves. B will be the proportion of the remaining stick attributed to that branch of
the tree until the next split point (sticks afterwards will be of length proportional to (1 — B)). We
have, B; = 1 — (t;/tp,) = si/tp,. The total prior over branch lengths can thus be written as:

N-—-2
p({Bi}|v) = H B(Bia, B) )

See Figure 3 for samples from this prior. Note that any distribution whose support is the unit interval
may be used, and in fact more innovative schemes for sampling the times may be used as well; one
of the major advantages of the TMC over the Coalescent and DDT is that the times may be defined
in a variety of ways.

There is a single Beta random variable attributed to each internal node of the tree (except the root,
which has B set to 1). Since the order in which we see the data does not affect the way in which we
sample these stick proportions, the process remains exchangeable. We denote pairs (¢, { B;}) as
T, i.e. a tree structure with branch lengths.

3.2 Brownian Motion

Given a tree m we can define a likelihood for continuous data x; € RP using Brownian motion.
We denote the length of each branch segment of the tree s;. Data is generated as follows: we start
at some unknown location in R? at time ¢ = 1 and immediately split into two independent Wiener
processes (with parameter A), each denoted y;, where 7 is the index of the relevant branch in 7. Each



Figure 6: (left) Approximated log-density using a DP mixture. (midleft) Log-density using a Dirichlet Diffu-
sion Tree model. (midright) Log-density using our model directly. (right) Log-density using our model with a
heavy-tailed noise model at the leaves. Contours are spaced 1 apart, for a total of 15 contours. In the probability
domain the various densities look similar.

Figure 7: Posterior sample from our model applied to the leukemia dataset. Best viewed in color. Each pure
subtree is painted a color unique to the class associated with it. The OTHERS class is a set of datapoints to
which no diagnostic label was assigned. A larger view of this figure can be found in the supplementary material.

of the processes evolves for times s;, then, a new independent Wiener process is instantiated at the
time of each split, and this continues until all processes reach the leaves of 7 (i.e. t = 0), at which
point the y;s at the leaves are associated with the data x. This is a similar likelihood to the ones used
for Dirichlet Diffusion Trees [16] and the Coalescent [20] for continuous data.

3.2.1 Likelihood Computation

The likelihood p(x|7) can be calculated using a single bottom-up sweep of message passing. As in
[20], by marginalizing out from the leaves towards the root, the message at an internal node ¢ is a
Gaussian with mean ¢; and variance Av;.

The v and ¢ messages can be written for any number of incoming nodes in a single form:

—1 -1, . Yi
v, = Z (vj+s5)7 Yi =V Z ﬁ
j€c(i) J€c(i)
where ¢(i) are the nodes sending incoming messages to i. We can compute the likelihood using any

arbitrary node as the root for message passing. Fixing a particular node as root, we can write the
total likelihood of the tree as:

n—1
px|m) = [ Zew(x,7) 3)
i=1
When |c(i)] = 1 (e.g. when passing through the root at ¢ = 1), Z.;) = 1. When |c(i)| = 2 and
|e(i)] = 3 (when collecting at an arbitrary node ¢ chosen as the root):

A1 1, . . A
Zy, v (x,m) = [27A| 3 exp (2||ym - yl1|i> i N=Aw, v+ s+ sn) @)

k ~ N N N N N
Zp. Lo (X7 7T) = |27TA|_11/*_56(_%(”;1' 192, —Gr; 13, +V:iHy1’i_yliH?\V*+l/1:‘ |9p; —0r; Hf\,,*))
Vp, =Vp, T 8is v, =V, + 81,5 Vp, =Vp, +Sp; V=V, 00 VLV F V1 (5)
where ||.||s corresponds to the Mahalanobis norm with covariance A. These messages are derived

by using the product of Gaussian pdf identities.



3.3 MCMC Inference

We propose an MCMC procedure that samples from the posterior distribution over 7 as follows.
First, a random node [ is pruned from the tree (so that its parent p; has no parent and only one child),
giving the pruned subtree S; and remaining tree 7;. See Figure 4. We then consider all possible
moves that would place p; into a valid location elsewhere in the tree. For each branch indexed by
the node ¢ “below” it, we compute the posterior density function of where p; should be placed on
that branch. We then slice sample on this collection of density functions. See Figure 5. By cycling
through the nodes to prune and reattach, we achieve a Gibbs sampler over 7.

We can efficiently compute the relative change in the likelihood p(x|7) through a combination of
belief propagation and local computations. First we perform belief propagation on 7; to give upward
and downward messages, and on .S; to give only upwards messages. Denote 7(S,1,t) as the tree
formed by attaching S above node ¢ at time ¢ in 7. For the new tree we imagine collecting messages
to node p; resulting in a new factor Z; ; ,,, (x, m (Sl, i, t)) The messages directly downstream of this
factor are Z,(;)(x,m) and Z,,, (x m) (if I, = 4, ie 4 is the “left” child of its parent). If we
now imagine that the original hkeh}lood was Computed by collecting to node p;, then we see that the
first factor should replace the factor Z;, . p, (X,m) at node p; while the latter factor was already
included in le i Pps (x,m;). All other factors do no change. The total (multiplicative) change in
the likelihood is thus,

pri o (X7 ﬂ-l)

AZ(TFZ(S[, 7:, t)) = Zi,l,pz' (X7 W[(Sl, i, t))Zl—(X’n’l)
piTp;Pp; ’

(6)

The update in prior probability for adding the parent of [ in the segment (4, p;) (with times ¢; and
tp,) at time ¢ is proportional to the product of the Beta pdfs in (2) that arise when (.S}, ¢,t) is
constructed, and inversely proportional to the Beta pdf that is removed from 7;, as well as being
proportional to the overall prior probability over 1/,,:*

! L. i _ b :
mb’(l — £7a,6)8(1 — ?,mﬁ) (1 i ,B)p(W(mi(S,4,t))
(7)

Where () gives the structure part of m = (v, { B;}). p(v(m (S, ,t)) can be computed for all 4
in linear time via dynamic programming (it does not depend on the actual value of ¢). By taking the
product of (6) and (7) we get the joint posterior of (¢, t):

p(mi (81,4, )| X) oc AZ(m(S1,4,t)) p(mi (S, i,t)) ®)

p(?Tl(Sl, i,t)) X

p(m(Sy,4,t)|X) defines the distribution from which we would like to sample. We propose a slice
sampler that can propose adding S; to any segment in 7r;. For a fixed 4, p(m;(S;, i,t)| X) is typically
unimodal, and typically has a small number of modes at most. If we can find all of the extrema of the
posterior, we can easily find the intervals that contain positive probability density for slice sampling
moves (see Figure 5). Thus this slice sampling procedure will mix as quickly as slice sampling on a
single unimodal distribution. We find the extrema of these functions using Newton methods.

The overall sampling procedure is then to sample a new location for each node (both leaves and
internal nodes) of the tree using the Gibbs sampling scheme explained above.

3.4 Hyperparameter Inference
As we do not know the structure of the data beforehand, we may not want to predetermine the
specific values of «, 8 and A. Thus we define hyperpriors on these parameters and infer them as

well. For simplicity we assume the form A = kI for the Brownian motion covariance parameter.
We use an Inverse-Gamma prior on k, so that k=1 ~ G(k, 0).

N—-1
-1 (N-1)p } )
kKX ~G (2 + K, 5 ;:1 d; +0

“Note that if either [ or i is a leaf, then the prior term will be simpler than the one listed here
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where NV is the number of datapoints, p is the dimension, and d; = S
i i L

, |I.]] is the
Euclidean norm.

By putting a G(£, A) prior on « — 1 and 8 — 1, we achieve a posterior for these parameters:

€ & ~Aa—1+5-1) = 1 N
pla BIE N, X) ox (o — DE(B — 1)fe 11 503 (1— t) (t>

This posterior is log-concave and thus unimodal. We perform slice sampling to update « and .

3.5 Predictive Density

Given a set of samples from the posterior, we can approximate the posterior density estimate by sam-
pling a test point located at y; into each of these trees repeatedly (giving new trees 7’ = 7 (y;, 4, )
for various values of ¢ and s) and approximating p(y;|X) as:

p(ye] X) = / p(x| X )p(yrlm, X)dm = / drmp(| X) / dn'p(n, |, X)
~ Z Z p(yt|ﬂ-§'a X)
mirom| X wheop(nl|mi, X)

where p(7' |7, X) = [ p(7’, y¢|m, X )dy,. By integrating out y;, in (5), we get a modification of (8)
that is proportional to p(7'|m, X). Slice sampling from this gives us several new trees 7’; for each
;, where one of the leaves is not observed. p(y;|’;, X) is then available by message passing to the
leaf associated with y; (denoted [), which results in a Gaussian over y;. Thus the final approximated
density is a mixture of Gaussians with a component for each of the 773—.

Performing the aforementioned integration (after replacing ¢;, with y,), we get:

Zpred(iat) CX/dytZi,pi,l(XﬂT/(yt))

1 _ _
—l2mA 07 4 5) " exp (=507 + 077 05,7 )

where d; p, = ||9; — Up, ||, This gives the posterior density for the location of the unobserved
point:
. . Zl' r'(x '/Tl) .
/ )
p(r" =xa({l},i,t)|m, X) x Zpreali,t) =——————p(x({l},i,t
(' = w({8} 5.0l X) o6 Zyrealis ) T2} ,1)

where p(m({l},4,t)) is as in (7).

4 Experiments

We compare our model to Dirichlet Diffusion Trees (DDT) [16] and to Dirichlet Process Mixtures
(DPM) [5, 13]. We used Radford Neal’s Flexible Bayesian Modeling package [15] for both the DDT
and the DPM experiments. All algorithms were run with vague hyperpriors, except for the DPM
concentration parameter which we set to .1 as we did not expect many modes for these experiments.

4.1 Synthetic Data

To qualitatively compare our method to Dirichlet Process Mixtures and Dirichlet Diffusion Trees,
we ran all three methods on a simulated dataset with N = 200, p = 2. The data is generated from a
mixture of heavy tailed distributions to demonstrate the differences between these algorithms when
presented with outliers. As can be seen in Figure 6, the DDT fits a density with reasonably heavy
tails, whereas our model fits a narrower distribution. This is a result of the fact that the divergence
function of the DDT strongly encourages the branch lengths to be small, and thus a larger variance
is required to explain the data. Our model can be combined with a heavy-tailed observation model
to produce densities with heavier tails — see the rightmost panel of Figure 6.
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Figure 8: A comparison of our method to the DDT and DPM, using predictive log likelihood on test data. Plots
show performance over time, except the DPM which shows the result after convergence. (left) the comparison
on a p = 200 version of the St. Jude’s Leukemia dataset. The “TMC - k” runs are with k fixed throughout
the run. (middle) the comparison on the p = 1000 version of the Leukemia dataset (right) comparison on a
N = 1400, p = 200 bag of visual words dataset.

4.2 Gene Clustering

We applied our model to the St. Jude’s Leukemia dataset [22], which has Ny,4;, = 215 datapoints,
Niest = 112, and preprocessed” to have p = 1000 dimensions. We preprocessed the data so that
each dimension had unit variance. Associated with each datapoint is one of 6 classifications of
leukemia, or a 7t class with which no diagnosis was attributed. We applied our method to the full
dataset to see if it could recover these classes. Figure 7 shows the posterior tree sampled after about
28 Gibbs passes (about 10 minutes). We also compared our method against the DDT and DPM on
these models’ abilities to predict test data on a p = 200 subset of the p = 1000 dataset, as well as on
the p = 1000 datset, see Figure 8. On the p = 200 dataset, both the DDT and the TMC outperform
the DPM, with the TMC performing slightly worse. We attribute this difference in performance due
our model’s weaker prior on the branch lengths, which causes our model to overfit slightly; if we
preset the diffusion variance of our model to a value somewhat larger than the data variance, our
performance improves. In the p = 1000 dataset, the same phenomenon is observed.

4.3 Computer Vision Features

We also cluster visual bag of words features collected from birds images from Visipedia [21]. We
worked on a dataset of size N = 1400, N;.s,+ = 1412, where each observation belongs to one of
200 classes of birds, see Figure 8. Again our method is better than DPM yet not as well as the DDT.
Fixing the variance does improve the performance of our algorithm but not enough to improve over
the DDT.

5 Conclusion

We introduced a new prior for use in NPB hierarchical clustering, one that can be used in a variety
of ways to define a generative model for data. By marginalizing out the time of the coalescent, we
achieve a prior from which data can be either generated directly via a graphical model living on
trees, or by a CTMC lying on a distribution over times for the branch lengths — in the style of the
coalescent and DDT. However, unlike the coalescent and DDT, in our model the times are generated
conditioned on the tree structure; giving potential for more interesting models or more efficient
inference. The simplicity of the prior allows for efficient Gibbs style inference, and we provide an
example model and demonstrate that it can achieve similar performance to that of the DDT. However,
to achieve that performance the diffusion variance must be set in advance, suggesting that alternative
distributions over the branch lengths may provide better performance than the one explored here.
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