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1 General Introduction

This chapter is partly based on: van der Maas H. L. J., Kan K.-J., Hofman, A. D. and Raĳmakers M. E. J, (2012).

Dynamics of Development: A Complex Systems Approach. Handbook of Developmental Systems Theory &Methodology.

And: Brinkhuis M. J. S, Savi O. A., Coomans, F., Hofman A. D., van der Maas H. L. J. and Maris G. (Submitted).

Learning As It Happens: Advances in Computerized Adaptive Practice.
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1. General Introduction

1.1 Introduction

Large longitudinal data sets are required to answer fundamental questions on cognitive
development and learning (Adolph, Robinson, Young, & Gill-Alvarez, 2008; P. C. Mole-
naar, 2004). To capture the developmental patterns, data should be collected while people
develop or learn. Math Garden, a web-based adaptive training and monitoring system
for primary education, is developed to do so, to capture the development in mathematical
skills with intensive time-series for large numbers of children (Klinkenberg, Straatemeier,
& van der Maas, 2011; Straatemeier, 2014).1 Math Garden includes a wide set of games
that students can use to practise well-defined mathematical skills (e.g., counting and mul-
tiplication) and math-related skills (e.g., proportional reasoning and working-memory).
Each game consists of a large item bank with items of various degrees of difficulty so that
children can be presented with items that match their proficiency.

Math Garden started out as a research project in 2007 at the University of Amsterdam
and was commercialized in 2009 in response to the increasing popularity of the system.
This was the start of Oefenweb (www.trackandteach.com and www.oefenweb.nl), a spin-
off company that develops and hosts Math Garden and other adaptive practice systems
for Dutch and English language learning, statistics (Groeneveld, 2014; Klinkenberg, 2014)
and typing (van den Bergh, Hofman, Schmittmann, & van der Maas, 2015). Currently
(August, 2017), ten years later, Math Garden covers 22 domains including in total 32.720
items, totaling 831,280,316 responses of 713,985 users, collected roughly at a rate of one
million responses a day.2 This dissertation explores this unique but complicated data set
with the aim to elucidate processes of cognitive development. We first explain what Math
Garden is and describe the psychometric properties of Math Garden. Second, we highlight
some of the research that has been performed with Math Garden and relate chapters of
this dissertation to these previous studies. Third and finally, we introduce possibilities for
innovative analyses of longitudinal data sets from Math Garden, which are elaborated in
chapters of this dissertation. Each chapter of this dissertation is introduced shortly.

1.2 Key Concepts of Math Garden

Math Garden is designed for children to practice math at school or at home instead. Since
children play voluntarily, the system must be rewarding and engaging. Math Garden was
designed to be playful, adaptive and provide direct feedback after every response; this is
accomplished in a number of ways. First, tasks are setup as games and reward for practice
is immediate and visible in Math Garden. Figure 1.1 shows a screenshot of Math Garden’s
landing page. Each plant in the garden represents a game that can be selected to start
a practice session. Children have to visit the games regularly to prevent the plants from
withering. Second, items match proficiency, which is very diverse among children, see for

1in Dutch the system is called Rekentuin; see www.rekentuin.nl
2the most frequent player of the school year 2016-2017 solved 48,231 items.
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1.3. Psychometrics of Math Garden

Figure 1.1: The landing page of Math Garden. Each plant represents a game and the score
on the plant’s tag represents the ability of the player (on a scale of 1 to 1000). Players can
select game difficulty level by clicking the figure on the right with one, two or three ’sweat’
drops. These are associated with the chance of solving the items correctly of either 90, 75
or 60 percent respectively.

example Straatemeier (2014, p. 13) and Dowker (2005). Third, feedback is presented after
each response to facilitate personalized learning and to reward effort.

1.3 Psychometrics of Math Garden

The basis of Math Garden is an extension of classic computerized adaptive testing (CAT)
methods. CAT is a testingmethod based on item response theory, which consists of a large
family of item response models. The method used by Math Garden relies on the simplest
item response model, the 1-PL or Rasch model:

P(x = 1|θp , βi) =
exp(θp − βi)

1 + exp(θp − βi)

where the probability of a correct response depends on the difference between the person
ability (θp) and the item difficulty (βi). The Rasch model non-trivially assumes one-
dimensionality (a single underlying trait is measured by all items within the item bank)
and conditional independence (the response probabilities are independent conditionally
on the underlying trait).

In CAT, the order of presentation of items depends on how a person responded to
previous items (Wainer, 2000): if the immediately preceding response was correct, a more
difficult item is presented next and vice versa. The advantage of using CAT is that abilities,
such as arithmetic ability, can be estimated using fewer items than in standard tests.
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1. General Introduction

Figure 1.2: An example item of the addition game. Players can use either the keyboard
or click a numeric keypad on the screen to submit their answer, and if they are unsure of
the answer they can use the question-mark button on the right. The coins at the bottom
visualize the implemented scoring rule (see section Psychometrics of Math Garden) and
are collected after a correct response and subtracted after an incorrect response.

Currently, CAT is primarily used for testing, but in Math Garden it is used for testing and
training at the same time. Therefore, Klinkenberg et al. (2011) introduced Math Garden as
a computer adaptive practice (CAP) system.

Math Garden uses an extended CAT technique based on two crucial innovations: (1)
incorporating both speed and accuracy in game scores and (2) updating children’s scores
and item difficulties real-time using the Elo-algorithm.

The first innovation, the use of both accuracy and response time when updating ability
and difficulty estimates, takes place by means of a new scoring rule (Maris & van der
Maas, 2012; Klinkenberg et al., 2011). Response times are included because they provide
important additional information about a child’s ability, and makes computerized practice
more game-like. In Math Garden, items usually have a time limit of twenty seconds.
According to the implemented signed residual time (SRT) scoring rule, the score equals
the remaining time (twenty seconds minus response time) for correct responses, but -
1 times the remaining time for incorrect responses (see Figure 1.3). As a consequence,
guessing is risky, and if a child has no clue about the answer, he or she can best refrain
from responding,whichprovides a score of zero. The SRT scoring rule is presentedvisually
through coins at the bottom of the screen that refer to the remaining time (see Figure 1.2).
Due to this visualisation, with a coin disappearing every second, even very young children
can understand the scoring rule. This new scoring rule has two important advantages.
First, it solves the notorious speed-accuracy trade-off problem (Wickelgren, 1977) since

4



1.3. Psychometrics of Math Garden

children now know how speed and accuracy are weighted in the scoring. Second, Maris
and van der Maas (2012) have shown that under certain mild statistical assumptions, this
scoring rule implies a standard two-parameter IRT model, in which discrimination is a
linear function of the time limit of an item. Therefore, much is known about the properties
of the measurement model, for example about the marginal and conditional distributions
of the model estimates.

The score can formally be expressed as:

S = (2Xpi − 1)(d − Tpi),

where Xpi is 1 for correct and 0 for an incorrect response for player p at item i, Tpi is the
response time and d the imposed deadline. The expected score (E(S)) that follows from
the measurement model based on the SRT scoring rule is:

E(S |θp , βi) =
exp(2d(θp − βi)) + 1
exp(2d(θp − βi)) − 1 −

1
(θp − βi)

.

Figure 1.3: A visualization of the signed residual time scoring rule. If a player provides a
correct response at time t j his score is the remaining time. If the response is incorrect the
score is -1 times the remaining time.

The second innovation is the use of an ‘on the fly’ Elo estimation algorithm (Klinkenberg
et al., 2011), which originates from chess competitions (Elo, 1978). Elo-estimation provides
a self-organizing testing system in which both the ability estimates of children and the
difficulty estimates of items are continually updated in real-time immediately after a child’s
response. The reliability of the Elo-estimation system has been well studied analytically
and in simulations (Batchelder & Bershad, 1979; Glickman, 1999; Pelánek, 2016; Pelánek,
Papoušek, Řihák, Stanislav, &Nižnan, 2016). Themost prominent advantage of this system
is that it does not require the time-intensive and expensive procedure of pre-testing items
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1. General Introduction

as in normal CAT, which involves estimating item difficulty beforehand with hundreds of
responses to every single item in the item bank that also contains about a thousand items.

In the Elo algorithm the updated estimates are based on a weighed sum of previous
estimates and the difference between the observed and the expected score:

θnew |p = θold |p + Kp ∗ (S − E(S))

βnew |i = βold |i − Ki ∗ (S − E(S)).

The K-factor serves as a smoothing function that determines the weight of the current
response in the updating of the parameters and implements a bias-variance trade-off.
The K-factor in Math Garden increases when children repeatedly score below or above
the expected score or when they are new to the system (see Klinkenberg et al. (2011),
Straatemeier (2014) or the General Discussion Section for a more detailed description of
the algorithm).

1.4 Research with Math Garden

The growing popularity of Math Garden provides researchers with an invaluable data set.
The research in the current thesis can be broadly categorized by three different approaches.
The first approach is based on direct analyses of person ability and item difficulty param-
eters that follow from the system. Earlier research with this approach was conducted by
Klinkenberg et al. (2011), van der Ven, Straatemeier, Jansen, Klinkenberg, and van derMaas
(2015); van der Ven, Klaiber, and van derMaas (2017) andGierasimczuk, van derMaas, and
Raĳmakers (2013). Klinkenberg et al. (2011) show that the person parameters of various
arithmetic games correlate highly with more traditional tests. Additionally, the work of
van der Ven et al. (2015, 2017) shows that item parameters match the effects predicted by
different theoretical models about mathematics. Furthermore, Gierasimczuk et al. (2013)
and van der Maas and Nyamsuren (2017) show that the person and items parameters in
both the Deductive Mastermind game and a Number Series game can be explained by
substantive models developed for these cognitive tasks. These results provide support for
the validity of some of the games in Math Garden. In Chapter 2, we use this approach as
well and analyze the item parameters of the counting game to investigate different enu-
meration strategies. We further support our findings with a computerized experiment at
two primary schools.

A second research approach is aimed at understanding the cognitive strategies used
by players in Math Garden. To this end, a cross-sectional sample is constructed based
on responses (accuracy and response times) to items of a subset of children who played a
certain game on a regular basis. In this approach, ’raw’ data are analyzedwith an extended
latent variable model that can capture more detailed processes compared to the current
measurement model of Math Garden. In Chapter 3, we study the rules that children use
to solve items from the well-known balance-scale task. We provide a comparison of a
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1.4. Research with Math Garden

rule-basedmodel and an information-integration model on two different data sets: a more
traditional paper-and-pencil data set and adata set collectedwithMathGarden. InChapter
4we investigate the strategies involved inmultiplication using extended IRTmodels. More
specifically, we test whether the abilities involved in fast responses are the same as those
involved in slow responses. These studies elucidate strategies that children use in solving
items and thereby also provide pointers for providing children with feedback as well as
improvements of the Math Garden system.

Figure 1.4: The development of the average ability on the addition game of children from
different birth cohorts. Each coloured line represents a cohort of children born in a certain
year, who gradually become older during data collection. The size of the dots represents
the number of children who played within that week.

Both research approaches, and most of the published work so far, are based on cross-
sectional data. However, the tracking system of Math Garden also allows us to investigate
developmental processes using a longitudinal subset of the data. The third research
approach concerns such longitudinal studies. To illustrate the longitudinal data, Figure 1.43
shows the average ability estimates of a single domain (addition) during four consecutive
schools years of seven cohorts of children (each cohort consists of children born in the same
year). This figure depicts data from 274,383 children who played the addition game, and
indicates that on average the addition ability of children increases over time. However,
some interesting additional patterns are observed: (1) during holidays large dips are found

3The figures are created with the R package ggplot2 (Wickham, 2016)
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1. General Introduction

Figure 1.5: Responses to a set of multiplication items from a single child over time. The
items on the y-axis are ordered on the estimated item difficulty (low is easy, high is hard).
The black line depicts the child’s estimated ability.

in the average rating and (2) the biggest progress is observed at a young age, and progress
slowly diminishes while children grow older.

In the second part of this thesis we present several analyses of longitudinal subsets
of the data. In Chapter 5, we investigate the links between the development of counting
and the development of addition and between the development of multiplication and the
development of division. To this end, we analyze the ability estimates with latent change
scores models to compare both a mutualism (van der Maas et al., 2006a) and a g-factor
(Jensen, 1998) account of development. In Chapter 6, we investigate the developmental
processes of learning to touch type using the response times of keystrokes of a group of
children who followed a typing course using the Type Garden (Typetuin; www.typetuin
.nl).

In Chapter 7, we present different learning analytics aimed at providing descriptives
of times-series of responses of children to single items. These data stem from a subgroup
of children who visit Math Garden almost daily and have played for extended periods.
The data provided by these children are rich in quantity and in dynamics, as Figure 1.5
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1.4. Research with Math Garden

illustrates. The responses of this child show that for some items he is not able to provide
correct responses, but after a set of question-mark or incorrect responses he seems to
learn the correct response and as a consequence his rating increases. In Chapter 7 we
further describe these and other developmental patterns and collect different analytics to
investigate the stability of the responses over time.

In sum, the present dissertation builds on earlier research with Math Garden, and ex-
tends the analysis of item and ability parameters to other domains and to links between
domains. Most importantly, the dissertation shows analyses of longitudinal data, allowing
the study of learning and cognitive development as it happens. The examples in this
dissertation go beyond snapshots of what develops and also show the dynamics of devel-
opmental processes. This dissertation shows that Math Garden data, although not easy to
analyze, provide a new window on cognitive development.
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2 The Role of Pattern Recognition in

Children’s Exact Enumeration of Small

Numbers

This chapter is published as: Jansen, B. R., Hofman, A. D., Straatemeier, M., Bers, B. M., Raĳmakers, M. E., & Maas,
H. L. J. (2014). The role of pattern recognition in children’s exact enumeration of small numbers. British Journal of
Developmental Psychology, 32 (2), 178-194
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2. Pattern Recognition in Children’s Enumeration

Abstract

Enumeration can be accomplished by subitizing, counting, estimation, and combina-
tions of these processes. We investigated whether the dissociation between subitizing
and counting can be observed in 4- to 6-year-olds and studied whether the maximum
number of elements that can be subitized changes with age. To detect a dissociation
between subitizing and counting, it is tested whether task manipulations have differ-
ent effects in the subitizing than in the counting range. Task manipulations concerned
duration of presentation of elements (limited, unlimited) and configuration of elements
(random, line, dice). In Study 1, forty-nine 4- and 5-year-olds were tested with a comput-
erized enumeration task. Study 2 concerned data from 4-, 5-, and 6-year-olds, collected
with Math Garden, a computer-adaptive application to practice math. Both task manip-
ulations affected performance in the counting, but not the subitizing range, supporting
the conclusion that children use two distinct enumeration processes in the two ranges.
In all age groups, the maximum number of elements that could be subitized was three.
The strong effect of configuration of elements suggests that subitizing might be based on
a general ability of pattern recognition.

2.1 Introduction

Subitizing, the ability to rapidly andaccurately enumerate a small set of elements (Kaufman,
Lord, Reese, & Volkmann, 1949), is a component of number sense, which is essential for
proficient math performance (Jordan, Kaplan, Locuniak, & Ramineni, 2007; Kroesbergen,
van Luit, van Lieshout, van Loosbroek, & van de Rĳt, 2009). Deficient subitizing is sug-
gested to underlie lagging math skills of children with dyscalculia (Schleifer & Landerl,
2011). Despite extensive work on subitizing (starting with Kaufman et al., 1949), the ques-
tion whether subitizing is a separate process, dissociable from estimation and counting
is still actively investigated in various domains, such as neuropsychology (e.g., Dehaene
& Cohen, 1994; Demeyere, Lestou, & Humphreys, 2010; Harvey, Klein, Petridou, & Du-
moulin, 2013; Nan, Knösche, & Luo, 2006), psychonomics (Watson, Maylor, & Bruce, 2007),
and developmental psychology (e.g., Schleifer & Landerl, 2011). In this article, we use a
newmethod to test whether subitizing is a separate process. This newmethod also allows
us to investigate the relation between subitizing and pattern recognition.

The standard method to differentiate between subitizing and counting involves a bilin-
ear model, which statistically describes the shape of the function relating response times
(RTs) to numerosity. It combines a regression function with a small positive, near-zero
slope for the subitizing range; and a regression function with a larger, positive slope for
the counting range. Reeve, Reynolds, Humberstone, and Butterworth (2012) additionally
represented the dissociation between subitizing and counting by a change from a linear
to an exponential function. The transition point is often set between 3 and 4 (e.g., Akin &
Chase, 1978; Klahr & Siegler, 1978; Mandler & Shebo, 1982; van Oeffelen & Vos, 1982; Trick
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2.1. Introduction

& Pylyshyn, 1993) but is closer to 3 for children (Maylor, Watson, & Hartley, 2011; Svenson
& Sjöberg, 1983)

The present study uses an alternative method, put forward by Trick (2008), to inves-
tigate the existence of a distinction in preschoolers’ enumeration skills and a possible
development of the subitizing range. The procedure circumvents two problems of the
standard method. First, individual differences in the transition point can only be detected
by estimating statistical models per participant (see Balakrishnanl & Ashby, 1992; Plaisier,
Tiest, & Kappers, 2009, 2010). This requires many administrations of each numerosity to
each participant, which is unfeasible with children. Also, simulations demonstrate that
modern techniques (e.g, Muggeo, 2003) often fail in detecting transition points and differ-
ences in slope, when ranges of numerosities are small and slopes of the regression models
differ in size, but not in sign (Julious, 2001; Muggeo, 2003). Second, good fit measures
that allow model comparison are lacking. Trick argues that the hypothesis of a distinc-
tion is supported if manipulation of task conditions changes performance in the ranges
differently. For example, using differently coloured elements speeds enumeration in the
counting range, but not the subitizing range.

This study is the first to apply Trick’s procedure with preschoolers. It is remarkable
that developmental studies of enumeration are scarce (but see Benoit, Lehalle, & Jouen,
2004; Starkey &Cooper, 1995) because enumeration processes develop in preschoolers and
not in adults. We present developmental data from both an experimental (Study 1) and a
field study (Study 2). Study 1 includes a controlled manipulation of task conditions in a
selected (small) sample, whereas Study 2 is less controlled, but has a very large sample,
from a wide background, with many repetitions per participant.

Time limitwasmanipulated in Study 1. Performance in a conditionwith limited presen-
tation duration was compared to performance in an unlimited time condition. Starkey and
Cooper (1995) conclude that performance of children from 2 to 5 years of age is accurate
in the subitizing but not the counting range in a limited time condition. However, only
2-year-olds’ performance was compared in two time conditions. If subitizing and count-
ing are the same process, manipulation of time limit is expected to affect performance
comparably in the subitizing and the counting range. If subitizing is a separate process,
variation in time limit is expected not to affect performance in the subitizing range because
subitizing would ensure high performance. Limited time would deteriorate performance
in the counting range as counting would be impossible and children probably resort to
estimation.

Configuration of the elements to be enumerated was manipulated in both Study 1
and Study 2, using random, dice, and line configurations. The use of these various
configurations is theoretically important because it allows studying thenature of subitizing,
which is thought to be related to pattern recognition (Mandler & Shebo, 1982). Dice
configurations form familiar patterns that may be processed holistically. Enumeration
performance improves when presenting familiar configurations (e.g., four dots presented
as vertices of a square) as compared to random configurations (e.g., Benoit et al., 2004).
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2. Pattern Recognition in Children’s Enumeration

As random, dice, and line configurations differ minimally for numbers in the subitizing
range, it is expected that configuration would not affect performance in the subitizing
range. Presenting elements in dice patterns is expected to benefit performance in the
counting range. Line configurations also form a pattern (line), but it does not relate to a
specificnumber of elements. Presenting elements in a linemayeither facilitate performance
in the counting range, because elements are easily detected, or complicate performance
because one may easily skip or recount elements (Towse & Hitch, 1996). The age variety
in both studies, combined with the manipulation of configurations, allows for studying
development of the subitizing range when presented with various configurations.

Manipulating the configuration of the elements is particularly important for investigat-
ing the relation between subitizing and pattern recognition. If familiarity of configurations
has a larger effect on performance than the number of elements in the configuration, this
is an important indication that pattern recognition is central in subitizing.

2.2 Study 1: An Experiment

Method

Participants

Participants came from two Dutch primary schools. Socio-economical status was high
in one school (high SES-school) and low in the other (low SES-school). Parents either
signed informed consent to allow their child’s participation or were informed and could
refuse participation. The Local Ethics committee approved of the procedures. A total of
twenty-six 4-year-olds (58% girls) and thirty-seven 5-year-olds (51% girls) participated.

The final sample consisted of nineteen 4-year-olds (M = 4.59 years, SD = 0.24, 47% girls)
and thirty 5-year-olds (M = 5.43 years, SD = 0.33, 53% girls), who completed at least 75% of
the problems in both versions. Childrenmissed problems due to inattentiveness. Inclusion
was independent of age group, χ2(1) = 0.57, p = .452, gender, χ2(1) = 0.77, p = .380, and
condition, χ2(2) = 3.93, p = .140.

Material

Task presentation was on 15-inch laptops, with a screen resolution of 1,024 x 768 pixels.
The screen was viewed from a distance of about 40 cm. Red dots (RGB-values: 255, 0, 0;
diameter: 1 cm; 1.4◦) were presented in a screen-centred black-bordered white square (10
x 10 cm; 14◦ x 14◦). The minimum interdot distance was 1.79◦. The square covered an 8 x
8 cm (11◦ x 11◦) matrix. Response buttons representing numbers 1-7 and a question mark
were displayed at the bottom of the screen.

All subjects performed a task version with presentation duration limited to 250 ms and
a task version with unlimited presentation duration. Order of versions varied randomly.
Four consecutive screens appeared: (1) fixation cross (500 ms), (2) presentation of dots
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2.2. Study 1: An Experiment

Figure 2.1: Study 1: Enumeration problems with three, four, and five elements (from left
to right) in three types of configurations. From top to bottom: random, dice, and line.

(250ms in limited time version; user-terminated in unlimited time version), (3) mask (solid
blue square of 10 by 10 cm; RGB-values: 0, 100, 255; 1,000 ms), and (4) response buttons
(experimenter-terminated).

Two general example problems and two version-specific examples were part of the task.
Test problems were presented in four blocks of six problems each, yielding 24 problems.
In each block, displays of 1-6 elements were presented randomly. Hence, each numerosity
(1-6) was presented four times. Finally, 10 dots were presented in a line on screen.

Participantswere randomly placed in the random, line, or dice condition. In the random
condition, elementswere spread in an unsystematicway. Four different displayswere used
for each number. In the line condition, evenly spaced elementswere aligned on a horizontal
or vertical line. Twodifferent horizontal and twodifferent vertical configurationswere used
for each number, varying distance between elements and length of complete display. In the
dice condition, elementswere presented in a dice pattern. The same dice configurationwas
used for each number, but absolute distance between elements varied, thereby varying the
size of the entire display between displays of the same numerosity. Position of the display
in the white square varied. Figure 2.1 shows examples of each configuration.

Procedure

Individual task administration took place in a quiet room at school. Instructions were
printed on screen and read out loud by the experimenter. She told that ’grand dad
collected berries for a bird near his house’ and announced that berries would be shown
after presentation of a small cross. At presentation of the elements, she asked: ’Can you
tell me how many berries grand dad collected? Tell me how many and I will click on the
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2. Pattern Recognition in Children’s Enumeration

answer’. Dots were presented until the child answered or indicated he/she did not know
the answer. Correct responses varied from 1 to 6, whereas response buttons indicated
numbers 1-7. The experimenter clicked on the button corresponding to the stated number
or on the question mark in the absence of a response. The second example followed.

The experimenter introduced the two versions by encouraging the child to pay extra
attention in the limited time condition and explaining that the berrieswould onlydisappear
if the child pressed the space bar in the unlimited time condition.

In the final task, the experimenter asked ’Can you count these dots for me?’ and
pointed to the 10 dots on screen. Time was unlimited. The experimenter noted whether
the child was able to count up to six or made any errors. We assured that counting skills
were sufficient for counting to six so that performance variations could be attributed to
experimental manipulations.

Results

Multivariate ANOVA with error rates (number of errors expressed as a proportion) in the
unlimited and limited time condition as dependent variables and order and configuration
as between-factors indicated no main effect of order, F(11, 33) = 0.99, p = .476, and no
interaction effect between order and configuration, F(22, 68) = 1.34, p = .181. Hence, data
from different orders were combined.

A mixed ANOVA with between-subjects factor configuration (three levels: random,
dice, line) and age (two levels: 4 and 5 years) and within-subjects factors duration (two
levels: Limited and unlimited) and numerosity (six levels: 1, 2, 3, 4, 5 or 6 elements) was
performed on the error rates. In fact, displays with one element were similar in the three
configurations.

The main effect of configuration was significant, F(2, 43) = 5.47, p = .008, η2
p = .40. Post-

hoc analyses using Tukey’sHSD indicated that error rates of randomand line presentations
were significantly higher than those of dice presentations. The main effect of age was not
significant, F(1, 43) = 2.78, p = .103. The main effect of duration was significant, F(1, 43) =
75.79, p < .001, η2

p = .64, with lower error rates in the unlimited than the limited time
condition. Finally, themain effect of numerositywas significant, F(5, 215) = 56.19, p < .001,
η2

p = .57. Post-hoc analyses demonstrated that error rates increased with every additional
element, except for the increase from 1 to 2 elements and the increase from 5 to 6 elements.

However, main effects were qualified by interactions between configuration and du-
ration, F(2, 43) = 7.84, p = .001, η2

p = .27, configuration and numerosity, F(10, 215) =
5.27, p < .001, η2

p = .20, and duration and numerosity, F(5, 215) = 13.56, p < .001,
η2

p = .24, and three-way interactions between configuration, duration, and numerosity,
F(10, 215) = 2.54, p = .006, η2

p = .11, and between configuration, age, and numerosity,
F(10, 215) = 2.07, p = .028, η2

p = .09. Remaining two-, three-, and four-way interactions
were not significant.
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ANOVAs with factor configuration were performed by numerosity and by duration to
further investigate the interaction between configuration, duration, and numerosity. Alpha
level was divided by the number of ANOVAs performed for each duration condition (6)
and adjusted to .008. In the limited time condition, error rates did not differ between
configurations for one, two, and three elements, F(2, 46) = 0.01, p = .990; F(2, 46) = 1.28, p =
.289; F(2, 46) = 0.79, p = .460, for 1-3 elements, respectively. The error rates for four
elements just did not differ between configurations, due to the corrected alpha level,
F(2, 46) = 4.13, p = .022. Error rates did differ between configurations for five elements,
F(2, 46) = 12.57, p < .001, η2

p = .55, and six elements, F(2, 46) = 7.98, p = .001, η2
p = .35.

Post-hoc analyses showed that error rates were higher for random and line patterns than
for dice patterns and for both five and six elements. Error rates did not differ between
configurations for any numerosity in the unlimited time condition, F(2, 46) = 0; F(2, 46) =
1.13, p = .332; F(2, 46) = 1.75, p = .185; F(2, 46) = 0.47, p = .630; F(2, 46) = 4.26, p = .020;
F(2, 46) = 0.25, p = .782, for 1-6 elements, respectively.1 Note that the configuration
effect just did not reach significance for enumerating five elements in the unlimited time
condition, due to the corrected alpha level.

The three-way interaction was also investigated by testing the duration effect, by nu-
merosity, for random configurations only, performing paired-samples t-tests. Alpha level
was adjusted to .008. Error rates of enumerating one and two elements did not signifi-
cantly differ between the two duration conditions, t(13) = 1.47, p = .165 for one element;
t(13) = 1.00, p = .336 for two elements. The duration effect for enumerating three elements
just did not reach significance, due to the corrected alpha level, t(13) = 2.69, p = .019.
In contrast, error rates for enumerating four, five, and six elements were higher in the
limited compared with the unlimited time condition, t(13) = 5.70, p < .001, r = .85;
t(13) = 4.94, p < .001, r = .81; t(13) = 5.95, p < .001, r = .86 for four, five, and six elements.2

Repeated-measures ANOVAs with age as between factor and numerosity as within

1Chi-square tests were performed as well because distributions of error rates were possibly not normal. A
chi-square test, testing dependence of configuration and error rates was performed by number, by duration. Alpha
level was divided by the number of chi-square tests per duration condition (6) and adjusted to .008. In the limited
time condition, configuration and error rates were independent for numerosities one, two, three, and four, χ2(2) =
0.020, p = .990; χ2(6) = 5.22, p = .516; χ2(6) = 11.15, p = .004; χ2(8) = 17.86, p = .022, for 1-4 elements,
respectively. Configuration and error rates were clearly dependent for numerosities five, χ2(8) = 23.17, p = .003,
Cramer’s V = .49, and six, χ2(8) = 20.80, p = .008, Cramer’s V = .46: Error rates were lower than expected for
dice configurations and higher than expected for random and line configurations. In the unlimited time condition,
configuration and error rates were independent, χ2(4) = 2.56, p = .634; χ2(4) = 3.92, p = .417; χ2(6) = 8.37, p =
.212; χ2(8) = 12.05, p = .149; χ2(8) = 5.66, p = .685 for 2-6 elements, respectively. No errors weremade on problems
with one element, in the unlimited time condition. Hence, results of the chi-square tests replicated results of the
ANOVAs.

2Chi-square tests, testing the dependence of error rates and duration, were performed by number, for random
configurations. Alpha level was adjusted to .008. Duration and error rates were independent for one, two, and three
elements, χ2(4) = 2.15, p = .71; χ2(4) = 1.04, p = .90; χ2(4) = 6.09, p = .19. Duration and error rate were dependent
for four, χ2(4) = 15.43, p < .01, Cramer’s V = .74, five, χ2(4) = 13.16, p = .01, Cramer’s V = .69, and six elements,
χ2(4) = 18.24, p < .01, Cramer’s V = .81. Lower error rates on the unlimited, compared with the limited time task,
caused the dependence. Results of the chi-square tests replicated results of the ANOVAs.
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2. Pattern Recognition in Children’s Enumeration

Figure 2.2: Study 1: Average error rates by numerosity, configuration, time limit, and age
group. Error bars denote standard errors.

factor were conducted per configuration to further investigate the interaction between
configuration, age, and numerosity. The interaction between age and numerosity was
significant in random configurations, F(5, 60) = 3.63, p = .006, η2

p = .23, but not in dice,
F(5, 100) = 1.67, p = .149, and line configurations, F(5, 55) = 1.31, p = .131. Figure 2.2
shows that 4-year-olds had higher error rates than 5-year-olds in random configurations,
on problems with five and six elements.

Conclusion

Variations in configuration did not affect error rates when children enumerated 1-4 ele-
ments. Error rates were low for all configurations, in both the limited and the unlimited
time condition. From five elements, however, dice presentations of elements were signif-
icantly easier compared with random or line presentations but only in the limited time
condition. Time limits affected error rates from four elements. Hence, task manipulations
affected performance in the counting range, but not the subitizing range. Children prob-
ably estimated the number of elements in the counting range, when in the limited time
condition, because counting was impossible. Four-year-olds demonstrated a more steep
increase in error rate than 5-year-olds from five elements, when enumerating problems
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2.3. Study 2: Math Garden

Table 2.1: Distribution of age groups, gender, and average number of attempted problems
in selected set in enumeration game of Math Garden

Age N (% of males) Average number of made items (SD)
4 1,285 (52.8) 93.1 (106.9)
5 3,364 (49.6) 69.2 (99.2)
6 9,778 (50.7) 26.7 (54.1)

Total 14,427 (50.6) 52.3 (91.9)

Note. There were 12,302 unique players with at least one response on the selected problems. A total of 2,125
children played at least one particular problem in two different age groups.

with a random display. In conclusion, these results support the hypothesis that distinct
processes are used for enumeration of elements in the two ranges (Trick, 2008), but not
when elements are presented in dice patterns.

2.3 Study 2: Math Garden

Method

Participants

Data were collected between September 2010 and March 2013 with the enumeration game,
part of project Math Garden (Klinkenberg et al., 2011). Math Garden is a Web-based
computer-adaptive practice and monitoring system, used at school and at home by over
60,000 children. Children practice math skills by playing math games, linked to plants
in a personal garden. Playing a game makes the plant grow. Here, we describe only
those aspects that are essential to understand the data analyses below. Participating
schools gave permission to use data from their students for research purposes and accepted
responsibility to inform parents accordingly. Parents of private individuals (a minority of
the sample) electronically signed for permission for use of their data in scientific research.
Four-, 5-, and 6-year-olds were selected. Table 2.3 shows distribution of age and gender of
participants who attempted at least one of the problems that were analysed. Both problem
difficulties andRTs per problemwere subject to analysis. Estimation of problemdifficulties
is explained in the next section.

Material and procedure

Fifteen enumeration problems were presented sequentially in a session, see Figure 2.3
for an example problem. For each problem, two consecutive screens appeared. The first
screen showed the elements to be enumerated, a clickable keyboard with numbers 1-10, a
question mark in case a participant did not know the answer, a coin bag, a row of 20 coins,
and a green bar indicating game progress. Presentation duration was user-terminated,
with a maximum of 20 s. A coin disappeared with each expiring second. Users clicked a
response, which started the presentation of the second screen (1,000 ms in case of a correct
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2. Pattern Recognition in Children’s Enumeration

Figure 2.3: Study 2: Example of an enumeration problem in Math Garden. The example
shows a random display of five elements.

response; 3,000 ms in case of an error), showing the correct response in green font and,
if applicable, the false response in red font. After a correct (incorrect) response, the total
in the coin bag was increased (decreased) by the number of remaining coins, with the
notation that the total could not become negative. Hence, children were rewarded for fast
accurate answers but penalized for fast inaccurate answers (Klinkenberg et al., 2011; Maris
& van der Maas, 2012). Coins could be spent on prizes in a virtual trophy cabinet. If
the question mark was clicked, no coins were won or lost and the correct response turned
green.

Selection of each enumeration problem resulted from a match between problem diffi-
culties and participants’ enumeration skills. Both were estimated simultaneously using
a computer-adaptive method (Klinkenberg et al., 2011), based on the Elo algorithm (Elo,
1978).3 After a correct response, the estimated problem difficulty lowered (dependent on

3Problem difficulties and participants’ skills are estimated simultaneously and updated continuously after a
first choice of starting values. Starting values are based on problem size for problem difficulties and on age for
participants’ skills. Updating of a problem’s difficulty and a participant’s skills happens after the participant has
solved a problem, according to:

θnew |p = θold |p + Kp ∗ (S − E(S))

βnew |i = βold |i − Ki ∗ (S − E(S)),

where θp is the skill estimate of participant p; βi is the difficulty estimate of problem i; S and E(S) are the score and
expected score of person p on problem i. K is a function of the problem difficulty uncertainty U of the participant
and the problem:

Knew |p = Kold |p (1 + K+U j − K−|iUi )
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2.3. Study 2: Math Garden

Table 2.2: Number of problems in selected set in enumeration game of Math Garden, by
numerosity, by display

Numerosity Random Dice Line
1 - 4A -
2 4 4 7
3 4 4 5
4 4 6 10
5 4 5 5
6 4 5 10

Note. A = Problems with one element could not be assigned exclusively to one of the configurations.

RT and estimated participant’s skills) and the estimated skill increased (dependent on RT
and estimated problem difficulty). The reverse happened after an error. Selection of the
next problem depended on adjusted estimations of skill and problem difficulties. Over
time, problem difficulties converged to a stable level. The next problem could be of dif-
ferent numerosity and/or different configuration but was chosen such that the average
expected probability of a correct answer equalled .75. Hence, order of problems differed
across participants.

Here, we focused on problemswith 1-6 elements, in random, dice, or line configuration.
Because of Math Gardens’ adaptive nature, we did not collect data of children who were
able to count larger numbers quickly and accurately because they were presented with
more difficult items. Table 2.3 shows the number of available problems, by numerosity.

Math Garden’s computer-adaptive method is based on estimation of problem difficul-
ties and individual’s skills on one and the same scale, across age groups. However, for
Study 2, problem difficulties were recalculated for 4-, 5-, and 6-year-olds separately, using
children’s logged records of problems attempted, their answer, and RT on each problem.
The estimation procedure was rerun by age group and resulted in a difficulty and an
average RT for each problem, for each age group. The Euclidean distance, which is the
straight-line distance between two elements, based on the grid used in Math Garden, was
averaged across all elements, for each display and included as a covariate in subsequent
analyses.

Knew |i = Kold |i (1 + K+Ui − K−|iU j ),

where K = 0.0075 is the default value when there is no uncertainty; K+ = 4 and Ki = 0.5 are the weights for the
estimate uncertainty for participant p and problem i. U is uncertainty, which depends on both recency (the more
recent, the lower the uncertainty) and frequency (the higher the frequency, the lower the uncertainty) of playing.
Klinkenberg et al. (2011) assume that uncertainty reduces to 0 after 40 administrations, but increases to themaximum
of 1 after 30 days of not playing:

Unew = Uold −
1

40 + 1
40 D.

Where D refers to the number of days without playing. A more elaborate description of the procedure of
estimating problem difficulties and participants’ skills is given in Maris and van der Maas (2012) and Klinkenberg
et al. (2011).
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Results

Problem difficulties

Although the number of problems may appear low, we contend that problem difficulties
reflect participants’ varying performance in enumeration, dependent on numerosity, and
configuration because problem difficulties were based on responses from a large sample
(see Table 2.3), had converged to stable values, and had small standard errors. Also, split-
half reliability of problem difficulties, based on a split of the problems into two groups,
with numerosity and configuration equally divided, was high, r = .98, p < .001.

Left panels in Figure 2.4 graph problem difficulties against numerosity for random,
dice, and line configurations, by age group. Problems with one element are graphed in
Figure 2.4 but excluded fromanalyses because they could not be assigned exclusively to one
configuration. A univariate ANOVAwith factors configuration (random, dice, and linear),
age group (4-6 years), and numerosity (2-6), covariate average Euclidean distance, and
dependent variable problem difficulties was performed. Average Euclidean distance did
not affect problem difficulty, F(1, 197) = 0.28, p = .60. The main effect of configuration was
significant, F(2, 197) = 72.11, p < .001, η2

p = .50. Post-hoc analyses indicated that problem
difficultieswere significantly lower for dice comparedwith randomand line configurations
(p < .001). The main effect of age was not significant, F(2, 197) = 0.11, p = .89. This is
a consequence of the recalculation method in which the average problem difficulty was
set to 0 for each age group. The main effect of numerosity was significant, F(4, 197) =
248.73, p < .001, η2

p = .25. Post-hoc analyses indicated that each additional element
increased problem difficulty significantly (p < .05 for comparisons between displays of
two subsequent numbers).

Main effects were qualified by the interaction between configuration and numerosity,
F(8, 197) = 7.66, p < .001, η2

p = .12. Post-hoc analyses indicated that the configuration effect
was not significant for two and three elements, p > .05. For four, five, and six elements,
problems with dice displays were easier than problems with random and line displays,
p < .001, whereas problem difficulties of the latter did not differ from each other for all
numerosities, p > .05. The interaction between age group and numerosity was significant
as well, F(8, 197) = 7.76, p < .001, η2

p = .13. In 4-year-olds, problems with two elements
were significantly easier than problems with three elements, which were significantly
easier than problems with four elements, p < .001. Difficulties of problems with four,
five, and six elements were equally difficult in 4-year-olds, p > .05. In 5- and 6-year-olds,
problems with two and three elements were equally difficult, p > .05, whereas problem
difficulty increased significantly from 3 to 4 and from 4 to 5 elements. The interaction
between configuration and age group was not significant, F(4, 197) = 2.11, p = .081. The
three-way interaction was also not significant, F(16, 197) = 1.61, p = .069.

Summarized, dice displays, as compared to random and line displays, only lowered
problem difficulties in the counting range. Moreover, 5- and 6-year-olds, but not 4-year-
olds, showed the typical pattern of comparable difficulties for problemswith two and three
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2.3. Study 2: Math Garden

Figure 2.4: Study 2: Problem difficulties and average response times (RTs) in Math Garden
by numerosity, configuration, and age group. Left panels show problem difficulties, and
right panels show average RTs.

elements and increasing difficulty with each additional element, up to six.
Problem difficulties are the result of a combination of RTs and accuracy. To align with
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previous studies, an RT analysis is reported next. Error rates are not reported because the
adaptive algorithm was designed to keep error rate at a constant value of .25 for as much
as possible, for all individuals. Response times

Response times

The right panels of Figure 2.4 show RTs averaged by configuration, numerosity, and age
group. AunivariateANOVAwith factors configuration, age, andnumerosity, and covariate
average Euclidean distance was performed with RTs as dependent variable. Average
Euclidean distance did not significantly influence RTs, F(1, 197) = 0.02, p = .892. The
main effect of configuration was significant, F(2, 197) = 195.63, p < .001, η2

p = .50: RTs
were longer for problems with random as compared to line displays, which were longer
than RTs of problems with dice displays, all p < .001. The significant main effect of age,
F(2, 197) = 576.36, p < .001, η2

p = .50 indicated that RTs decreased with age, p < .001.
Finally, the significant main effect of numerosity, F(4, 197) = 764.13, p < .001, η2

p = .25,
showed that RT increased with each additional element, all p < .001.

Main effects were qualified by significant interactions between configuration and nu-
merosity, F(8, 197) = 30.21, p < .001, η2

p = .13, and between age and numerosity, F(8, 197) =
3.50, p < .001, η2

p = .13. The interaction between age and configuration was not significant,
F(4, 197) = 2.18, p = .072, just as the three-way interaction, F(16, 197) = 0.67, p = .826.
Post-hoc analyses indicated that the configuration effect was not significant for two and
three elements, p ≥ 968, but RTs were lower for problems with dice as compared to ran-
dom and line displays for four, five, and six elements, p < .001. RTs for line and random
display problems did not differ significantly from each other, p ≥ .056. Post-hoc analyses
also indicated that in 4- and 5-year-olds, RTs for enumerating two and three elements were
equal, p ≥ .708, but RT increased with each additional element, p < .001. In 6-year-olds,
however, RT increased with each additional element, p ≤ .002.

Conclusion

In general, problem difficulties and RTs increased with increasing number of elements,
decreased with increasing age, and were lower for problems with dice as opposed to
random or line displays, but effects of configuration, age, and numerosity interacted. The
configuration effect only occurred when the number of elements was four or higher. In
4-year-olds, problem difficulty increased with each additional element, whereas RTs were
equal in the subitizing range, but increased with each additional element in the counting
range. In 5-year-olds, both problem difficulties and RTs were equal in the subitizing range
and increased with each additional element in the counting range. In 6-year-olds, problem
difficulties were equal in the subitizing range and increased with each additional element
in the counting range, whereas RTs increased with each additional element in both ranges.
Taken together, the results of the analyses of problem difficulties and RTs converged and
suggest thatmanipulating the configuration of elements affectedperformance for problems
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in the counting range only and that the maximum number of elements that children could
subitize was three, in all three age groups.

2.4 Discussion

In a long-standing discussion, it is debated whether humans use a single or two different
processes to precisely enumerate small versus large numbers, referred to as subitizing
and counting (Mandler & Shebo, 1982). The ranges in which the processes are used are
referred to as the subitizing and the counting range. Here, we follow the argument that
the claim of the existence of two distinct processes is supported, when task manipulations
have different effects in the subitizing compared with the counting range (Trick, 2008).

In Study 1, a sample of Dutch 4- and 5-year-olds enumerated visually presented dots.
Dots were arranged randomly, in a line or in a familiar pattern (dice). Presentation du-
ration was limited or unlimited. Study 2 included an analysis of problem difficulties and
RTs, obtained with a computer-adaptive math program (Klinkenberg et al., 2011). Config-
uration was manipulated as in Study 1. In both studies, task manipulations did not affect
performance in the subitizing range, but did affect performance in the counting range. This
consistent finding in these markedly different studies supports the claim that subitizing
and counting are distinct processes (Mandler & Shebo, 1982; Schleifer & Landerl, 2011;
Trick, 2008).

The findings on development in subitizing range diverged. In Study 1, 5-year-olds, but
not 4-year-olds, show a clear difference between performance in the subitizing as opposed
to the counting range. In Study 2, problem difficulties and RTs complemented each other
and showed that 4-, 5-, and 6-year-olds were able to enumerate up to three elements fast
and accurately and probably resorted to counting or estimation for larger numerosities.

Results on enumeration of elements in line configurations show that performance on
problems with line and random configurations was comparable. If anything, problems
with line configurations were easier than problems with random configurations. Line
configurations might facilitate counting, as it is easy to move from one to the next element
and to remember which elements are already counted. Balakrishnanl and Ashby (1992)
solely used linear configurations and found that performance continuously decreasedwith
increasing numerosity, also in the subitizing range. Differences between their study and
the present studies demonstrate the necessity of varying the configuration of elements.

Both studies show that arranging elements in dice configurations facilitates enumera-
tion of large numbers of elements compared with random configurations. Performance
in the subitizing and counting range was similar when elements were presented in dice
configurations (see Mandler & Shebo, 1982, who made a similar observation for adults).
These results suggest that pattern recognition can help the enumeration of large numbers.
Childrenwith developmental dyscalculia show a deficit in both subitizing and the fast enu-
meration of elements in the counting range, when presented in familiar patterns. Difficul-
ties in pattern recognition may relate to these deficits (Ashkenazi, Mark-Zigdon, & Henik,
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2013). Visuo-spatial working memory (VWM) is a prerequisite for pattern recognition
(Ashkenazi et al., 2013). Hence, the hypothesis that subitizing is based on pattern recog-
nition matches the observation that VWM capacity correlates significantly with subitizing
capacity (Piazza, Fumarola, Chinello, & Melcher, 2011). Although subitizing may also be
the result of the application of a limited number of spatial indexes (Trick& Pylyshyn, 1994),
Vetter, Butterworth, and Bahrami (2008) show that it cannot be a pre-attentive process.

In Study 1, performance in the counting range increased when given unlimited obser-
vation time as compared to limited time. However, performance for dice patterns was
already at ceiling in the limited time condition. Note that the number of possible patterns
for numerosities in the subitizing range is limited and that many possible random patterns
map the familiar dice patterns. Hence, associating patterns with number words is rela-
tively easy in the subitizing range. The number of possible patterns grows exponentially
in the counting range (Benoit et al., 2004), complicating the association between patterns
and number words. As a consequence, children in the studied age range may have already
learned these associations in the subitizing range, but not yet in the counting range. This
sketch of development implies that counting is a prerequisite for subitizing (R. Gelman &
Gallistel, 1978).

Mandler and Shebo (1982) and Ashkenazi et al. (2013) already proposed that subitizing
is based on acquisition of associations between patterns and number words. The finding
that subitizing improves with age (Maylor et al., 2011; Reeve et al., 2012; Starkey & Cooper,
1995; Trick, Enns, & Brodeur, 1996) supports this hypothesis. However, the hypothesis
conflicts with results from infant studies (Carey, 2004; Desoete, Ceulemans, Roeyers, &
Huylebroeck, 2009; Feigenson, Dehaene, & Spelke, 2004) and studies on number discrim-
ination among people in remote cultures (Dehaene, 1987). Studies including a broad age
range, applying a shared paradigm across age groups, may contribute to the discussion on
the origins of subitizing.

The current studies are not without limitations. In Study 1, only four repetitions of each
numberwereused in each condition, sample sizewas small, anddistance between elements
did not vary randomly across numerosities. Fortunately, Study 2 showed that distance
between elements did not influence problem difficulties. In Study 2, administration was
unsupervised, and order of presentation of numerosities and displays was uncontrolled.
However, the large sample size probably averages out effects of environment and order.

Summarized, the results suggest that childrenusedistinct processes for the enumeration
of small and large sets of elements when presented in random patterns. The results con-
cerning enumeration of elements in dice patterns suggest that performance of preschoolers
can be explained by three processes: Counting (for large numbers, when given sufficient
time), estimation (for large numbers, when time is limited), and subitizing. The latter
might be based on pattern recognition as performance for dice patterns is comparable for
small and large numbers. If subitizing indeed involves pattern recognition, extension of
subitizing to larger numbers may be possible (as the recognition that two dice patterns
of six represent 12 elements), comparable to the recognition of complex chess patterns
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by advanced chess players (De Groot, 1978). Training of pattern recognition (B. Fischer,
Köngeter, & Hartnegg, 2008) and presenting elements in fixed patterns may ease number
recognition and encourage insight into simple addition and subtraction. After all, enu-
meration is an important requisite for later math skills (Jordan et al., 2007; Kroesbergen et
al., 2009).
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3. The Balance-Scale Task Revisited

Abstract

We propose and test three statistical models for the analysis of children’s responses
to the balance scale task, a seminal task to study proportional reasoning. We use a
latent class modelling approach to formulate a rule-based latent class model (RB LCM)
following from a rule-based perspective on proportional reasoning and a new statistical
model, the Weighted Sum Model, following from an information-integration approach.
Moreover, a hybrid LCM using item covariates is proposed, combining aspects of both a
rule-based and information-integration perspective.

These models are applied to two different data sets, a standard paper-and-pencil test
data set (N = 779), and a data set collected within an online learning environment that
included direct feedback, time-pressure, and a reward system (N = 808). For the paper-
and-pencil data set the RB LCM resulted in the best fit, whereas for the online data set the
hybrid LCM provided the best fit. The standard paper-and-pencil data set yielded more
evidence for distinct solution rules than the online data set in which quantitative item
characteristics are more prominent in determining responses. These results shed new
light on thediscussionon sequential rule-basedand information-integrationperspectives
of cognitive development.

3.1 Introduction

Two types of cognitive processing are often considered, and fiercely debated, in theoret-
ical discussions of cognitive development: sequential rule-based processes (RB) versus
information-integration (InI) based processes. These two types of processing are also con-
trasted in other areas in (cognitive) psychology. For example, in the study of information-
integration in category learning (Ashby & Maddox, 2011) and in the study of explicit and
implicit learning (Shanks, 2010). Moreover, Pothos (2005) provides a discussion of the
rules versus similarity distinction in cognition, and Kahneman (2011) provides an broad
overview and examples of dual route models, explicit versus implicit, in psychology.

In the study of cognitive development the balance-scale task (Inhelder & Piaget, 1958) is
the primary battlefield for this debate and it is the focus of this article. Recent publications
(Quinlan, van der Maas, Jansen, Booĳ, & Rendell, 2007; Schapiro & McClelland, 2009;
Shultz & Takane, 2007) attest that this debate is still very much alive. Proponent of
the RB perspective, initiated by Klahr and Siegler (1978) and Siegler (1976), state that the
cognitive process consists in the sequential comparison of different features of the stimulus.
Cognitive development is described as discontinuous jumps between stages characterized
by qualitatively different rules, that correspond to the consideration of different stimulus
features in different combinations. With age, children acquire new insights that result
in the use of more complex rules (Siegler, 1996; Jansen & van der Maas, 2002). From
the InI perspective, cognitive processing is based on integrating different features of the
stimulus before making a decision (Wilkening & Anderson, 1982, 1991). Knowledge in
this perspective is considered graded and implicit in nature, and development is viewed
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as due to changes in the implicit weights of each dimension (McClelland, 1995; Schapiro
& McClelland, 2009).

The cognitive processes used by children on the balance-scale task are especially inter-
esting because their development spans a long period of time. Young children demonstrate
interesting types of (erroneous) thinking, and many adults fail to use proportional reason-
ing to answer balance scale problems correctly. Also, over age, a mixture of developmental
patterns seems to occur, ranging from sudden transitions to continuous change see for
example Jansen and van der Maas (2002).

Many researchers developed computationalmodels to investigate learning anddevelop-
ment on the balance-scale task. Computational models from different research traditions
have been proposed: production-rule models (Klahr & Siegler, 1978), decision-tree models
(Schmidt & Ling, 1996), connectionist models (McClelland, 1989, 1995; Schapiro & Mc-
Clelland, 2009; Shultz, 2003; Shultz, Mareschal, & Schmidt, 1994) and ACT-R models (van
Rĳn, van Someren, & van der Maas, 2003). Although the current models all adopt some
characteristics of both theoretical positions, there is still no consensus on the best cognitive
processes underlying children’s behavior in the balance-scale task (Dandurand & Shultz,
2013).

In our view, this lack of consensus is partly due to the lack of adequate statistical models
for the analysis of empirical data. Computational models such as production rule models
and connectionist models cannot easily be fitted to data, and the existingmodels within the
RB framework cannot test hypotheses following from the InI perspective. The empirical
status of processmodels differs form traditional descriptivemodels, and a direct evaluation
of these models is difficult since their aims are different (Luce, 1995). In this paper we test
empirical predictions that follow from both theoretical perspectives - discussed hereafter.
Therefore we develop statistical models for the RB and InI perspective and a hybrid model
that combines features of both theories. We apply these models to two different data sets,
a paper-and-pencil data set (N = 779) and a data set collected within an online learning
environment that includes direct feedback, time-pressure, and reward (N = 808).

The Balance-Scale Task: Two Different Perspectives

In the balance-scale task (Inhelder & Piaget, 1958), children have to predict the movement
of a balance-scale (see Figure 3.1), on which the number of blocks on each peg, and the
distance between the blocks and the fulcrum are varied. Depending on the number of
blocks and the distance between the blocks and the fulcrum on each arm, the beam tilts to
one side or remains in balance. Thus, to succeed on the balance-scale task, a child has to
identify the relevant task dimensions (number-of-blocks and distance) and to understand
their multiplicative relation (Jansen & van der Maas, 2002).

To measure proportional reasoning with the balance-scale task, Siegler (1976) classified
items into six item types. There are three simple item types: balance (B) items with an
equal number of blocks placed at equal distances from the fulcrum; weight (W) items with
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3.1. Introduction

Figure 3.1: Three example items of the balance-scale task as programmed in the Math
Garden (upper-left = Distance item; upper-right = Weight item, positive feedback; upper-
right = Distance item; lower = Conflict-Balance-Addition item)

a different number of blocks placed at equal distances from the fulcrum, and distance (D)
items with the same number of blocks placed at different distances from the fulcrum. We
also include weight-distance (WD) items, in which the largest weight is positioned at the
largest distance, such that a focus on either weight (i.e. number of blocks) or distance leads
to a correct answer. Next to these simple items, there are three conflict item types in which
the weight and distance cues conflict: conflict-weight (CW) items, in which the scale tips to
the side with the largest weight; conflict distance (CD) items, were the scale tips to the side
with the largest distance and conflict-balance (CB) items where the scale stays in balance.

Using these item types Siegler (1976, 1981) differentiated between a postulated series
of rules that children might use to solve balance-scale items. A child using Rule I will
only consider the number of blocks in the prediction of the movement and disregards the
distances - the number of blocks is more dominant than the distance. A child using Rule
II does include the distance dimension in the prediction, but only when the number of
blocks on each side of the fulcrum is equal. A child using Rule III does know that both
the number-of-blocks and the distance dimension are relevant but does not know how to
integrate both dimensions. A child using this rule will guess or ’muddle through’ when
both dimensions are in conflict. A child using Rule IV compares the torques on each side
resulting in correct responses on all problems.

Some studiesproposedalternative rules, themain examplebeing the addition-rule (Rule
III-ADD; Ferretti, Butterfield, Cahn, & Kerkman, 1985; Normandeau, Larivée, Roulin, &
Longeot, 1989; Jansen & van der Maas, 1997, 2002). Children who use the addition-rule
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compare the sums of the number of blocks and the distance of each side of the fulcrum
and predict that the side with the largest sum goes down. Detection of this rule is possible
because some conflict items are solvable with the addition rule whereas others are not
(see Table 3.1). In this study, we consider conflict items of the type conflict-balance-
addition (CBA), conflict-weight-addition (CWA) and conflict-distance-addition (CDA),
next to conflict-balance (CB), conflict-distance (CD) and conflict-weight (CW) items. The
latter three cannot be solved with the addition rule, whereas the former can be.

In contrast to theRBperspective, according to the InIperspective childrenuse aweighted
integration of the number-of-blocks and distance between the blocks and the fulcrum,
either based on a sum or a product for each side of the fulcrum and compare these
integrations to select their response (Wilkening & Anderson, 1982). Either the number-
of-blocks or the distance dimension is more dominant, resulting in a higher weight for
one of the dimensions. In this perspective, differences between children are due to the
differences in theweights that they apply to either dimension in integrating information. In
the statistical extension of the connectionist models introduced in this paper, the weighted
integration is only based on the sums and not the products.

Different empirical predictions: Individual Differences and Item
Characteristics

The RB and InI perspectives make different predictions about children’s behavior in the
balance-scale task. Here we discuss the main differences. A first prediction concerns
the characterization of individual differences between children. According to the RB per-
spective, children can be classified into subgroups or classes associated with qualitatively
different rules. For example, Jansen and van der Maas (1997) found evidence in agreement
with the RB model of Siegler (1976), using latent class models. However, according to the
InI perspective, these seemingly qualitative individual differences are due to quantitative
differences in integration weights.

A second distinctive prediction concerns responses to different items of the same type.
According to the RB perspective, the response probability is solely dependent on the
item type. Items of the same item type should have equal response probabilities. This
assumption of item homogeneity applies to each rule. For instance, all conflict balance
items should have equal response probabilities for all users of Rule I. In the InI perspective,
differences innumber of blocks anddistances between itemsof the same item type influence
the response probabilities. According to Ferretti and Butterfield (1986, 1992); Ferretti et al.
(1985), children are more likely to provide correct answers when the difference between
the product of the number of blocks and distance, on each side of the scale is larger. Three
studies reanalyzed data of Ferretti and Butterfield (1986) and concluded that this was only
the case for items with extreme product differences (Jansen & van der Maas, 1997, 2002;
van Rĳn et al., 2003). Therefore, supporters of the RB perspective have argued that item
homogeneity holds.
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Statistical Models: Measuring Rules vs Information Integration

As the RB and InI responsemechanisms are latent (i.e., unobserved), ameasurementmodel
is required to test whether the observed patterns of responses correspond to expected
responses following from the different mechanisms. The empirical detection of rules was
first conducted by using rule-assessment-methodology (RAM; Siegler, 1976, 1978). RAM
was designed to classify children to a set of a-priori defined rules, based on their observed
responses instead of their verbal explanations of balance-scale answers. RAM is a two-step
procedure. First, based on the set of a-priori defined rules the expected responses to the
items are determined for all rules. Second, children are classified to one of the rules based
on the best match between their observed responses and the expected responses following
from each rule. In this classification some deviation between the observed and expected
response pattern is allowed. The degree of deviation allowed depends on the item set. In
the InI approach, a comparable rule-assessment method (Wilkening & Anderson, 1982) is
used. For some specific choice of weights, expected response patterns are calculated and
children are classified as using these particular values based on their observed response
pattern.

Although RAM proved to be a valuable method for studying the cognitive processes
of children on the balance-scale task, is has two important disadvantages. First, RAM is
not based on a statistical model, and as such does not incorporate measurement error.
Hence, RAM lacks a statistical test of the fit of the classification of children to rules. As
a result, it is problematic to decide on the necessity of incorporating all the rules and to
compare competing rule models statistically. Second, by using a priori defined rules one
risks overlooking alternative rules (van derMaas & Straatemeier, 2008) and other response
mechanisms. These limitations apply to some extent as well to the InI method of detecting
integration rules used by (Wilkening & Anderson, 1982).

To overcome these problems latent class analyses (LCA; see McCutcheon (1987), for an
introduction) were introduced in the balance-scale literature (Jansen & van derMaas, 1997,
2002; Boom, Hoĳtink, & Kunnen, 2001). A latent class model (LCM) is a latent variable
model, in which both the manifest (i.e., the item responses left, balance or right) and the
latent (i.e., the rules) variables are categorical. Latent variable models are statistical mea-
surementmodels, which allow for goodness of fit tests and statistical model comparison. It
is best seen as a statistically advanced version of RAM. It is important to note that the rule
model underlying RAM is in fact an instantiation of a restricted confirmatory LCM with
fixed conditional probabilities (van der Maas & Straatemeier, 2008). Recently Dandurand
and Shultz (2013) demonstrated in a simulation study that the response probabilities of
small classes (N=20) are characterized by high standard errors. This lack of power due to
small class probabilities is indeed problematic for parameter estimation in LCMs. There-
fore the description and interpretation of small classes should be donewith care. However,
the simulation study also showed that the LCM correctly recovered the number of classes
and the classification of subjects to classes, also for the small classes. To conclude, these
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difficulties do not outweigh the advantages of LCA over RAM (Quinlan et al., 2007; Shultz
& Takane, 2007; van der Maas, Quinlan, & Jansen, 2007; Raĳmakers, Jansen, & van der
Maas, 2004).

In the next section we describe the RB model and introduce a statistical InI model and
a hybrid model based on predictions from both perspectives.

Rule-BasedModel In the LCM, both the latent variable and the responses are categorical.
Participants are assigned to a latent class, associated with a distinct rule or strategy, based
on their observed responses on the balance-scale items - left side down, balance or right
side down. Equation 3.1 describes the probability of a response vector r in a LCM:

P(R = r) =
C∑

c=1
P(C = c)

I∏
i=1

P(Ri = ri |C = c), (3.1)

where ri denotes the response to item i and c denotes the latent class. The LCM con-
sists of two parts: the prior (or latent class) probabilities, P(C = c), describing the esti-
mated proportion of children in a given class c, and the conditional response probabilities,
P(Ri = ri |C = c), describing the probabilities of a response to each item given a class.
In our formulation, these response probabilities are estimated using a multinomial logit
formulation (Bouwmeester, Sĳtsma, & Vermunt, 2004). The left response is used as the
reference category resulting in two odds-ratios: left versus balance, lo g(p(L)/p(B)), and
left versus right, lo g(p(L)/p(R)). The model described in Equation 3.1, is referred to as the
exploratory model since no constraints are imposed on the response probabilities between
different items.

We also consider a second LCM, in which the response probabilities between items
of the same type are not allowed to vary, following the item homogeneity assumption of
the RB perspective. The response probabilities can be expressed using the following logit
formulation:

P(Ri = ri |C = c) = eβ0rc

1 + ∑R−1
r=1 eβ0rc

. (3.2)

The response probabilities of all items, of one item type, are modeled as a function of a
general intercept β0rc - per odds-ratio, per item type and per class. Hence, in this model,
referred to as the item homogeneity model, the response probabilities are constrained to
be equal over items of each item type and each latent class. Note that the item type index
is missing in Equation 3.2 since the model is fitted seperately to data of each item type.

Information-IntegrationModel For the InI approach a statisticalmodel ismissing. Here,
we propose a new measurement model, the Weighted-Sum Model (WSM). According to
the InI perspective individuals differ in two respects: a) in the dominance for either the
number-of-blocks or the distance dimension and b) in the preference of balance responses.
Given these two sources of individual differences the following model for the weighted-
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addition rule (Wilkening & Anderson, 1982) is proposed:

θp = αp∆wi + (1 − αp)∆di , (3.3)

If θp < −Cp Then LEFT

If θp > Cp Then RIGHT, Else BALANCE,

where αp expresses the persons dominance for either the number-of-blocks (αp > .5) or
distance (αp < .5) dimension, and ∆wi and ∆di are defined as respectively the difference
between the number of blocks (weights) and distance on both sides. Based on θp and a per-
sonal threshold, Cp , the observed responses are derived. Cp serves as a boundary between
responding either left or right (|θ | > Cp) or balance (|θ | < Cp). A high Cp implies a strong
preference for the balance response. The parameters αp and Cp are estimated per child,
based on the likelihood-function of the model (see Appendix to Chapter 3 for a detailed
description of the estimation procedure). Since this statistical model is estimated per child,
no distributional assumptions about the model parameters are required. According to the
InI theory, differences between children are gradual and the distributions of αp and Cp are
assumed to be unimodal. A bi- or multimodal distribution of these parameters provides
support for a mixture distribution representing qualitative differences between children,
thereby resulting in a hybrid WSM.

Hybrid Models Furthermore, to bridge the gap between the RB and InI perspective,
we extend the item homogeneity LCM with item covariates (Huang & Bandeen-Roche,
2004) based on continuous item characteristics. This extension provides a formal mea-
surement of the effect of quantitative item characteristics, such as the product-difference,
on the response probabilities, combining the qualitative differences that follow from a RB
perspective with quantitative item effects following from an InI perspective.

P(Ri = ri |C = c) = eβ0rc+β1rcxi

1 + ∑R−1
r=1 eβ0rc+β1rcxi

, (3.4)

In this LCM, the item heterogeneity model, a slope parameter β1rc is included allowing
for differences in the response probabilities within items of the same item type based on
some item characteristic xi . We focus on the most often used characteristic, the product-
difference (PD), the differences between the product of the number of weights and the
distance on each side of the fulcrum. To conclude, we present three measurement models:
a LCM following from the RB perspective, a WSM following from an InI perspective and
a hybrid LCM that combines both RB and InI effects.
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Table 3.2: Distribution of Age for the Paper-and-Pencil and Math Garden data set

age in years: < 6 6-7.99 8-9.99 10-11.99 12-13.99 14-15.99 > 16

Paper-and-Pencil 1 63 148 171 146 147 93
Math Garden 15 209 281 186 41 14 0

3.2 Method

Participants

The paper-and-pencil version of the balance-scale task was administered to 805 children.
Responses to the first block and responses from children that did not understand the task
or with missing responses (N = 26; hereafter the paper of Jansen and van der Maas (2002)
is referred to as JM) were discarded. On average children needed 10 minutes to complete
the test (20 seconds per item). Further details on this data set can be found in JM.

The Math Garden data set consists of data of 808 children who completed at least five
blocks during the data collection period (between 2011-06-10 and 2011-08-12). In the Math
Garden children practiced either during school or outside school hours, resulting in large
differences in both the number of items made and in the amount of time spent playing
the balance-scale game. On average these five blocks were completed within 8 days (SD =
10.5, range = 0-54). The responses on items of the first block were discarded since children
had to get acquainted to the task. Table 3.2 shows the distribution of age of both the
paper-and-pencil and the Math Garden data set. Note that older children are somewhat
underrepresented in the Math Garden data set compared to the paper-and-pencil data set.

Materials

Paper-and-Pencil The paper-and-pencil version of the balance-scale task consisted of
five items of the types W, D, CW, CDA and CBA (see Appendix to Chapter 3 for the item
characteristics). Before administration of the task, the experimenter explained that the pegs
were placed at equal distances, that all the weights had the same weight, and showed that
a pin prevented the scale from tipping. Subsequently, three example items were presented
to familiarize the children with the format of the test.

Math Garden In the balance-scale game, children are asked to predict what would hap-
pen if the blocks under the balance are removed (see Figure 3.1). The three answer options
are displayed below the item. The Math Garden game differs in three respects from the
standard paper and pencil test. First, items are presented with a time-limit of twenty
seconds. Second, children receive feedback on the accuracy of their response directly after
responding. Third, children are rewarded for correct responses and are punished for incor-
rect responses. The time-limit/pressure is an inherent aspect of the feedback systemwhere
size of reward/punishment is positively related to speed (Maris & van der Maas, 2012). If
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a child has no clue of an answer he or she may press the question mark button. These task
elements are designed to keep the task challenging, and enable learning through feedback
(see Klinkenberg et al., 2011, for an extended description of the Math Garden system and
its rationale).

The original item set consisted of 260 items, divided in twenty blocks of thirteen items of
different types. Ten item types are presented in Table 3.1. The remaining item types were
itemswithweights onmultiple pegs on one or two arms of the scale. We analyze responses
to the fourD, CW,CDAandCBA items to increase comparabilitywith the paper-and-pencil
and the Math Garden data set (see Appendix to Chapter 3 for the characteristics). In both
data sets, for all item types, except CBA items, the quantitative item characteristic of interest
was the product-difference. For CBA items we use weight-difference as an alternative (for
CBA items the product-difference is zero by definition since the weight- and distance-
differences are the same). Although the items were not explicitly constructed to test a
quantitative effect, they exhibit sufficient variation in this item characteristic. For both data
sets the responses were recoded such that the correct response is the left response for D,
CW and CDA items, and such that the largest amount of pegs resides on the left side of
the fulcrum for CBA items.

Model Estimation and Comparison

Following the approach of JM, we applied LCA in two consecutive steps. First, the re-
sponses per item type were investigated. The number of latent classes was determined
(investigating qualitative individual differences) with exploratory LCA (the exploratory
model). Thereafter, parameter restrictions, formulated in the item heterogeneity model
and the item homogeneitymodel, were sequentially tested. Second, building on the results
of this fitting procedure per item type, response to multiple item types were analyzedwith
the hybrid LCM (item heterogeneity model; formulated in Equation 3.4). This approach
reduces the sparse data problem in LCA when analyzing a large set of variables since it
limits the number of estimated parameters compared to exploratory model. Hence the
power to detect different classes increases. Third, this item heterogeneity model - the
hybrid LCM - is compared with the item homogeneity model - the rule-based model.

For the LCM including all responses, we analyzed the posterior probabilities, P(C =
c |R = r). These probabilities - based on the observed responses of a person and the esti-
mated prior and conditional response probabilities - indicate the classification probabilities
of a person to each class. The probabilities are related to the homogeneity of responses of
subjects belonging to a certain class and the class separation (Collins & Lanza, 2010). A
high (maximum is one) posterior probability implies that the observed response pattern of
a subject is well described by the estimated response probabilities of a latent class. A value
of one divided by the number of classes indicates that the observed responses pattern
cannot be clearly assigned to any latent class. The average (and standard deviation) of
the posterior probabilities over subjects assigned to each class is presented. A high mean
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indicates that subjects can be clearly assigned to this class compared to the other classes.
All RB and hybrid models were estimated with the depmixS4 package (Visser &

Speekenbrink, 2010) in R (R Core Team, 2013). For stable model estimation we scaled
the product-difference, per item type, such that the mean equals zero. Twenty replications
were used with random starting values to prevent solutions based on local optima. All
presented models were stable. We used the Bayesian Information Criterion (BIC; Schwarz,
1978) formodel selection since this fitmeasure provides a good balance between goodness-
of-fit and parsimony (Raftery, 1995). In addition, BIC-weights, P(BIC), are presented to
facilitate the interpretation of BIC differences. BIC-weights are transformed values of the
BIC differences to a probability scale representing the probability of each model being the
best model given the data and the set of candidate models (Wagenmakers & Farrell, 2004).

For the estimation of the WSM only responses to the conflict items were analyzed since
simple items can be solved without the integration of the two dimensions and therefore do
not discriminate between differences in the integration strategy (Wilkening & Anderson,
1982).

3.3 Results

To investigate whether children in the Math Garden version of the balance-scale task
understood the task we first fitted the exploratory model toWD items. All children should
succeed on these items. The LCM with two classes showed the best fit (see Appendix to
Chapter 3). Responses of children assigned to the class with high probabilities (N=667)
of a correct response (on average 93% correct) were included in further analyses. Of the
selected children, 603 played the task before the start of the study, and made on average
800 items (SD = 965, range = 1-7695). Subjects with missing responses were only excluded
if the missing response corresponded to the investigated item type, resulting in a different
number of children for each analysis. 566 children responded to all selected items. In the
next section we compare the results of the exploratory model, item heterogeneity model
and the item homogeneity model, per item type in the two data sets.

LCM per Item Type

Distance For the JM data set, the three class item homogeneity model was the best
fitting model for D items. The observed response probabilities of each class are presented
in Figure 3.2. The three classes resembled respectively children that provided balance
responses (Rule I), provided the correct left responses (Rule II or more advance strategies),
or predicted that the side with smallest distance goes down. See Appendix to Chapter 3)
for the goodness-of-fit statistics of all models. Although JM concluded that the responses
of children were best described by four qualitatively different rules, the BIC indicated that
the three-class model showed the best fit for the paper-and-pencil data set. This difference
results from a different model specification. JM analyzed direct response probabilities,
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Figure 3.2: The observed response probabilities (y-axis) of the left (L) and balance (B)
response of respectively the paper-and-pencil data set (left panels) and the Math Garden
data set (right panels), ordered on the product-difference or weight-difference for CBA
items (x-axis). M1 (exploratory model), M2 (item heterogeneity model) and M3 (item
homogeneity model) indicate which model provided the best fit. The x-axis labels show
the class description of JM for the paper-and-pencil data set, and the prior probabilities
between brackets. The Small-Distance-Down, Distance-Dominant and Addition Rules are
abbreviated as SDD, DD, and ADD

whereas we used a logit transformation of the odds ratios (see Methods section). As a
result some conditional probabilities of JM were zero and therefore these parameters did
not contribute to the model fit, which is not possible in the logit model specification. For
the Math Garden data set, two classes were needed to describe the observed responses.
The first class showed an average probability of the correct left response of .36, and the
product-difference did not relate to the response probabilities (item homogeneity model).
This class is described as guessing behavior. The second class showed a high probability
of the correct response indicating that these children use a more advanced rule than Rule
I. Furthermore, for this class the probability of a correct response was higher for items
with a large product-difference (item heterogeneity model) indicated by an increase in the
left-right and left-balance odds ratio. The first latent class found by JM, described as Rule
I, was not found in the Math Garden data set.

Conflict-Weight For the JM data set, the three-class model showed the best fit. These
latent classes resembled the classes found in JM, described as: a class of children with near
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perfect responses (Rule I, Rule II or Rule IV), a class of children using the addition rule and
a class of children that perceived the distance dimension as the dominant dimension (DD).
For each latent class the itemhomogeneitymodel resulted in the best fit, i.e., item responses
were homogeneous across different product-difference values. For the Math Garden data
set, the two-class model showed the best fit. Moreover, the item heterogeneity model
fitted better than the exploratory model and the item homogeneity model. The first class
showed a low probability of the correct response. The second class showed an overall high
probability of the correct response corresponding to Rule I, Rule II or Rule IV (the first
class in the paper-and-pencil data set). This indicated that children in the second class
perceived the number of blocks as dominant whereas children in the first class perceived
distance as dominant. The positive relation between the response probabilities and the
product-difference of the item showed that responses of children improvedwith increasing
product-differences.

Conflict-Distance-Addition The LCM for the JM data set resembled the results of JM,
and consisted of three classes resemblingRule I or Rule I, Rule III andRule IV or an addition
rule, respectively. Moreover, the item heterogeneity model resulted in the best fit for each
latent class. These results correspond to the results of JM, since they also found that the
response probabilities of CDA items could not be constrained over items that differed with
respect to the product-difference. Even for children using Rule I or Rule II (class 1) the
probability of the correct response increased as a function of the product-difference. In
the Math Garden data set, the two-class model showed the best fit. In the first class the
item heterogeneity model and in the second class the item homogeneity model resulted
in the best fit. The first class showed an average probability of the correct response of .5.
Children in the second class showed a probability of the correct response of .9.

Conflict-Balance-Addition In the JM data set, the four-class model showed the best fit,
resembling the results of JM. Children in the first class had a high probability of the
left response (the side with the largest number of blocks), resembling Rule I or Rule II.
Moreover, the LCM with a negative effect of the weight-difference in the second latent
class (Rule III) resulted in the best fit. For children in this class, the probability of a correct
responsewas smaller for itemswith a large differences in the number of blocks between the
sides of the fulcrum. The response probabilities of the third class are described by JM as
produced by children who use Rule IV or the addition rule. For the Math Garden data set,
the two-class exploratory model showed the best fit. Hence, the variation in the observed
response probabilities cannot be explained by the weight-differences of the items. Also,
the LCM did not reveal a class of children with a high performance on CBA items.

Conclusions The LCMs based on the paper-and-pencil data set replicated, in general,
the class structure found by JM. In contrast, the models based on theMath Garden data set
deviated in number and description of the classes. In eight out of thirteen latent classes in
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themodels for the paper-and-pencil data set, the responses of childrenwere best described
by the rule-based item homogeneity model, but this model was the best model in only two
out of eight latent classes of the models for the Math Garden data set. In the majority of
the classes in Math Garden data set the item heterogeneity model appeared to be the best
model.

Mix of Item Types

The following analyses concerned responses tomultiple item types. We estimated a second
set of hybrid and RB LCMs and applied the WSM to a selection of items of different item
types.

LCM In the LCM it is assumed that the responses to items of the same type can be
modeled as repeated measures, only allowing variations as a function of the product- or
weight-difference of the items. This assumption is not met for the item types where the
exploratorymodel showed the best fit in the previous analysis (see results of the CBA items
in the Math Garden data set). Therefore, in the Math Garden data set responses to all D,
CW, and CDA items and only the last CBA item were selected and in the paper-and-pencil
data set all responses were selected.

Paper-and-Pencil data set We estimated LCMs with one to ten latent classes. As can be
seen in Table 3.3, the BIC and p(BIC) indicated that the LCMwith nine classes showed the
best fit. Furthermore, the RB LCM resulted in a better fit than the hybrid LCM (see Table
3.3).

Figure 3.3 shows the response probabilities of the nine classes. The first six classes
represented a clear Rule I, Rule II, a small-distance-down (SDD) rule, a distance-dominance
(DD) rule, addition (ADD) rule and Rule IV, replicating the findings of JM. Moreover, the
average person fit (the posterior probabilities of class membership) of these classes showed
that subjects could be rather clearly assigned to most of these classes, respectively .95
(SD=.09), .65 (SD=.18), .77 (SD=.22), .67 (SD=.17), .65 (SD=.15) and .75 (SD=.17). The fourth
class, representing the DD rule, was also found in the LCM results per item type. This
class was probably not found by the analyses of a mix of item types by JM because of a lack
of power. The higher power is achieved by a different item selection and the use of item
covariates in the LCM. The sixth class, representing Rule IV, showed perfect performance
on all items.

The remaining two classes in JM were interpreted by JM as either Rule III or Rule
III/ADD.The current analyses led to three extra classes rather than two, probably as a result
of the higher power. The posterior probabilities of the LCM showed that the classification
of children to rules was rather ambiguous for these remaining classes, indicated by the
high variation and the overall low fit of respectively, .56 (SD=.15), .57 (SD=.19) and .63
(SD=.19), for class 7, 8 and 9 (see Figure 3.4). Hence, the response probabilities cannot be
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Figure 3.3: Paper-and-Pencil data set. The plots show per class the response probabilities,
per item type ordered on the quantitative item effect (on the x-axis).

reliable interpreted as governed by a distinct set of rules. Therefore, these classes are only
loosely described as: a distance dominant class providing a lot of balance responses (class
seven), a class providing left or right responses (eight) and a class that guessed between
the left and balance response (nine).

To conclude, in general, the results of JM are replicated with the new LCM. The gained
power to detect individual differences resulted in two additional classes. The person fit
indicated that subjects assigned to these latter classes showed a high response variability.
Hence, the response patterns were difficult to interpret and could not be ascribed to a clear
set of rules.

Math Garden data set For the Math Garden data set, the fit of the sequence of LCMs
indicated that four classes were needed to describe the responses, according to the BIC
(Table 3.3). Figure 3.5 provides a description of the LCM. The first class (Weight Dominant)
had a high probability of the correct response on CW and a low probability on CDA items.
Furthermore, the high probability of the left response on the CBA items showed that
subjects perceived the number-of-blocks dimension as more dominant. These response
probabilities resembled to some extent Rule II. The second class showed high performance
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Figure 3.4: Paper-and-Pencil data set: Response probabilities of the LCM on a mix of item
types. The plots show per class: the response probabilities, per item type ordered on the
quantitative item effect (on the x-axis).

on all item types, except on the CBA item. Again, the high probability of the right response
on the CBA item indicated that children in this class perceived the distance dimension
as more dominant than the number-of-blocks dimension (for CBA items the right side is
the side with the largest distance). In the third class the probability of a correct response
was higher on CDA items than on CW items, and highest for D items. Moreover, the high
probability of the right response on the CBA item indicated that the distance dimension is
perceived as dominant. The forth class mostly resembled the third class, with the addition
that the response probabilities for a balance response were considerably lower on CDA,
CW and CBA items compared to the third classes.

In general, Figure 3.5 shows that none of these classes resembled Rule I, Rule II, SDD or
Rule IV, but rather resembled variations of Rule III. Also, distance-dominant classes were
found that have not been reported earlier in paper-and-pencil versions of the balance-
scale task. As indicated by the BIC-weight, the response probabilities depended on the
product-difference of the item. The probability of the correct response is higher for items
with a larger product-difference. Finally, the average posterior probabilities of the LCM,
respectively .58 (SD=23), .64 (SD=11), .62 (SD=.19) and .59 (SD=.16) indicates that children
could not be clearly ascribed to one of the four classes.

Conclusion A comparison of the results of the LCM of both data sets show that large
differences are present in the response mechanism. This is alluded by the better fit of
the hybrid LCM in the Math Garden and the rule-based LCM in the paper-and-pencil
data set. Moreover, in the paper-and-pencil data set the majority of children could be
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Figure 3.5: Math Garden data set: A description of the four classes of the LCM on a mix of
item types. The response probabilities are depicted (on the y-axis), per item type ordered
on the quantitative item effect (on the x-axis).

clearly ascribed to latent classes representing qualitative different rules, earlier described
by Siegler (1981) and Jansen and van der Maas (2002). In the Math Garden data set the
four classes did not resemble any earlier found strategies. Also, the overall lower posterior
probabilities showed that differences between the children were more of a quantitative
nature when tested in the Math Garden.

Age and Practice Effects JM already showed that large age differences are present be-
tween children classified to different classes in the paper-and-pen data set. Using the latent
class models introduced in the current paper, we investigated the relation between the de-
pendent variable class membership in the best fitting latent class model (nine classes), and
the independent variable age using multinomial regression models. Different models are
compared based on the BIC. Results of the paper-and-pencil data again showed large age
effects (BIC of model with and without age was respectively 2673 and 3113). In the Math
Garden data set, age was not related to class membership (BIC of model with and without
age was respectively 1140 and 1125). However, the class membership was related to the
amount of practice (BIC of model with and without practice was respectively 1120 and
1125). Practice was defined as the log of the number of items made before the start of the
data collection. Weuse the log function to transform the skeweddistribution of the number
of item made per child to a normal density. Figure 3.6 shows the predicted probability of
a child being assigned to each class as a function of age for the paper-and-pencil data, and
as a function of practice for the Math Garden data.

In line with the previous results, large differences are found between both analyzed
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Figure 3.6: The effects of Age in the Paper-and-Pencil data (left) and practice in the Math
Garden data (right) on the class membership of the latent class models

data sets. In the paper-and-pencil data a clear developmental change is highlighted by the
age effect (further described by JM). In the Math Garden data the developmental pattern
is solely based on the amount of practice.

WSM Figure 3.7 shows the distribution of the estimated α and C parameters of theWSM
based on responses to the four CW, CDA and CBA items. In the paper-and-pencil data
set the distribution of α was clearly not unimodal, and deviated from a normal density as
indicated by the Shapiro-Wilk test (Shapiro & Wilk, 1965) (D = .226, p < .001). The large
peak at α = 1 reflected that some children (N=277, 36%) only responded to the number-of-
blocks dimension, including children using Rule I and II (Wilkening & Anderson, 1982).
The smaller peak at α = 0 indicated that only the distance dimension was reflected in the
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Figure 3.7: Distributions of α, C of the WSM for the paper-and-pencil and Math Garden
data set.

responses of 2.4% of the children (N=19). Both values of α indicate that these children did
not integrate the information regarding both dimensions. Furthermore, the distribution
around α = .5 illustrated that the remaining children weighed both dimensions about
equally in their responses. The distribution of C showed that 45% of the children already
predicted that the scale would tip to a side when their integration of both dimensions
resulted in a value just above zero (note that this does not mean they did not provide any
balance answers).

In the Math Garden data set, the distribution of α showed a different pattern - again
the distribution deviated from a normal density (D = .145, p < .001). In contrast to the
paper-and-pencil data set, the peak at α = 1 was small (N=23, 4.2%). The large distribution
around α = .5 showed that the majority of the children weighted both dimensions about
equally. However, also a small peak at α = 0 was found representing children who only
took the distance-dimension into account (N=34, 6.2%). The distribution of C resembled
the distribution in the paper-and-pencil data set. The majority of the children decided that
the scale would tip if their outcome of the weighted integration of the differences between
the arms was higher than zero.

Conclusion The distribution of α and C indicated that also qualitative differences were
present since differences between children cannot be described by an unimodal distribu-
tion. Moreover, as mentioned previously, a substantial group of children did not integrate
information of both dimensions. Hence, a hybrid WSM model is needed to provide a
description of the full range of individual differences. However, further developments
of the WSM are needed to investigate this. The estimation of the WSM to responses of
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multiple subjects, and the formulation of the random parameters therein, should provide
a test on distribution of these parameters, resulting in a formal test of the InI versus hy-
brid account. However, a visual inspection of the distribution of the model parameters
over persons clearly indicates that a rule-based component is needed to fully explain the
observed responses within the WSM framework.

3.4 Discussion

The aim of the paperwas to compare a RB and an InI perspective on the cognitive processes
used by children to solve balance-scale items, using a new set of statistical models.

According to the LCM analyses aspects of the InI perspective are required to describe
the Math Garden data and the CDA items in the paper-and-pencil data set. The results
of the WSM, allowing for quantitative (continuous) differences between children in the
preference of the number-of-blocks or distance dimension and the preference for balance
responses, indicate that quantitative and qualitative differences show up in the inspection
of the distribution of the estimated parameters. Hence, results of both statistical models
support a hybrid account integrating RB and InI perspectives.

Although we found additional classes in the paper-and-pencil data set, the majority
of children can be clearly assigned to one of the rules described by Siegler (1976, 1981)
and Jansen and van der Maas (1997, 2002). None of the classes in the Math Garden
data set resembles any of these earlier proposed rules. The results indicate that children
testedwithinMathGarden integrate the number-of-blocks anddistance dimension to solve
balance-scale problems. However, although some children did play the task intensively
prior to this study, the LCMdid not reveal any childrenwith a perfect integration rule (RIV
users). Additionally, whereas Siegler (1976) stated that the number-of-blocks dimension
is the dominant dimension, both the LCMs and the WSM reveal that a subset of children
perceive the distance dimension as dominant.

In the Math Garden data, the response probabilities are related to differences in the
product-difference between items, and to a much smaller extent in the paper-and-pencil
data set. This undercuts the conclusions by Jansen and van der Maas (1997) and van
Rĳn et al. (2003) that this item characteristic was only related to the response probabilities
of items with extreme product-differences. Based on a latent-class regression modeling
approach resulting in more power to detect an effect of the product-difference, our results
indicate that items with a larger product-difference are easier than items with a small
product-difference even for items with a reasonably small product-differences. Moreover,
the magnitude of this effect differs between both data sets.

Although in both data sets a hybrid account is evident to fully explain the responses of
children, differences between both data sets are present as well. In the classical paper-and-
pencil version of the task, collected under the standard task demands, cognitive processes
are best described by a RB perspective, with the exception of the product-difference effect
that follows from a InI perspective. Testing children within the Math Garden, with di-
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rect feedback, time-pressure and a rewards system, seems to induce a different cognitive
process, providing more evidence for elements of an InI perspective. Where the debate be-
tween the RB and InI perspectives in the field of proportional reasoning is concerned with
the underlying mechanisms of one cognitive process (or a single response mechanism),
the results of this study indicate that the characteristics hereof might depend on the task
demands. Positioning the findings based on the Math Garden data alongside the findings
of the paper-and-pencil data set suggests that different response mechanisms are at play.
This result sheds new light on the debate of RB and InI perspective in the balance-scale
literature.

This study was not designed to investigate and isolate the effect of task demands. Also,
both age and amount of experience with the task of the tested children differs between
both data sets, and have a different relation to the latent classes. Further research is needed
to determine which factors influence the response mechanism of children. However, it
is surprising that so far, the predictions following from both rule-based and information-
integration perspectives on children’s knowledge on the balance-scale task, have mainly
been tested with only one type of empirical data: responses to a paper-and-pencil test and
the computer analogue thereof (Jansen & van der Maas, 1997, 2002; van Maanen, Been, &
Sĳtsma, 1989). This is even more surprising since Ferretti and Butterfield (1986) already
showed that rule assignments differ when children are asked to rebuild one side of the
scale instead of predicting the movement.

In other fields of cognitive psychology it is known that task demands influence the type
of cognitive processes (or responsemechanisms) that are activated or learned. For example,
in category learning, differences in the type of task result in the use of qualitatively distinct
learning systems (Ashby & Maddox, 2005), and task demands such as time-pressure and
feedback have different effects on these distinct learning systems (Maddox, Ashby, & Bohil,
2003; Maddox & David, 2005). Maddox, Bohil, and Ing (2004) show that the performance
on a rule-based learning task is impaired when subjects have a short period to process
the feedback after a response, while this manipulation did not affect the performance of
subjects using information-integration (or similarity) based learning processes.

Therefore, we argue that the differences between the results of both data sets in the
present study, are best understood by relating these differences to the differences in the task
demands under which children are tested. Based on the described literature, it is expected
that the influence of feedback, time-pressure and/or a reward system promotes the usage
of different processes. This possible influence of task demands on the responsemechanism
and an appeal for the integration of RB and InI perspectives in a model of development
is already made by (K. W. Fischer & Silvern, 1985, p.626): "under certain conditions of
observation and degrees of abstraction, universal stages of cognitive organization can
be observed; under others, important individual differences in developmental sequences
occur." They conclude that: "What is needed is a view fully grounded in the fact that
cognitive development appears diverse under someobservational conditions anduniversal
under others." This is also alluded to by McClelland (1995), since he states that rule-like
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behavior can be induced by different testing situations.
To make the RB perspective compatible with the current results, at least one of the

available response mechanisms should be of a more quantitative (similarity-based) nature.
The description of Rule III (Siegler, 1976) production model provides such a possibility.
Sieglerdescribes childrenusingRule III as "muddling" through. This strategy could include
a mixture of implicit information integration strategies and a preference could be present
for either the number-of-blocks or the distance dimension. Moreover, for these children
the responses could be based on quantitative item characteristics resulting in the presence
of for example a relation between the product-difference and the response probabilities.

To make the InI approach compatible with the current results, it would be necessary to
incorporate some qualitative rule-based effects, as found in the LCMs of both the paper-
and-pencil and Math Garden data set. The work of Dandurand and Shultz (2009, 2013)
already combines RB effects in an InI approach by including an external learningmodule in
which themodel is ’taught’ RIV - the correct rulewhere the difference is calculated between
multiplication of the weights and distance on each side of the fulcrum. This approach is
based on the assumption that children might also learn this rule in an educational setting
from instruction instead of from their own experience, whichmakes it an explicit rule. Such
an interpretation of RIV performance fits verywell in a rule-based approach. Furthermore,
Schapiro andMcClelland (2009) also propose a combination of RB and InI processes. They
state that: "It is possible that the best account will involve a mixture of explicit and implicit
strategies."

To describe the cognitive processes of children used on a proportional reasoning task
like the balance-scale task, a model is required that (1) incorporates both a RB and a InI
account and (2) specifies in what conditions the behavior is caused by which account.
Hybrid models with components relying on rule-based and similarity-based processing
of items have become the norm in modeling categorization learning, for example COVIS
(Ashby & Alfonso-Reese, 1998) and Atrium (Erickson & Kruschke, 1998). These models
can serve as a valuable starting point for including multiple response modes based on
different response mechanisms for development of proportional reasoning in general and
balance-scale learning specifically under different task demands.
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4. Fast and Slow Strategies in Multiplication

Abstract

In solving multiplication problems, children use both fast, retrieval-based, processes,
and, slower computational processes. In the current study, we explore the possibility
of disentangling these strategies using information contained in the observed response
latencies using a method that is applicable in large data sets.

We used a tree-based item response-modeling framework (De Boeck & Partchev,
2012) to investigate whether the proposed qualitative distinctions in fast and slow strate-
gies can be detected. We analyzed responses to two sets of multiplication items, totalling
more than 500.000 responses, collected with an online computer-adaptive training envi-
ronment for mathematics.

Results showedqualitative differences between the fast and the slow strategies. Build-
ing on these results, both item and person characteristics were differently related to fast
and slow processes. These characteristics, resulting from substantivemodels of multipli-
cation, allowed us to further describe the fast and slow strategies. Results emphasize the
quantitative and qualitative differences between strategies used for solving multiplica-
tion problems, and provide possibilities for tailored feedback on learningmultiplication.

4.1 Introduction

The concept of strategy is central in the study of humanproblem solving. Important aspects
of problem solving behavior such as accuracy, duration, and type of errors, are due to the
choice of solution strategy. For instance, in solving arithmetic items, people may use either
retrieval frommemory or a computational strategy (Dowker, 2005; Ashcraft & Guillaume,
2009; LeFevre et al., 1996), where the former typically requires less time than the latter. In
the case of basicmultiplication (for example single-digit problems), detailedmodels for the
retrieval process exist (Geary, Widaman, & Little, 1986; Verguts & Fias, 2005), and several
models for computational strategies have been developed as well (Lemaire & Siegler, 1995;
Imbo, vandierendonck, & Rosseel, 2007). These models make different predictions about
item difficulty and solution time (van der Ven et al., 2015).

When measuring arithmetic ability by using psychometric tests, such as in IQ tests,
individual differences in strategy choice are usually not taken into account. Arithmetic
ability is ultimately tested by counting the number of correct items that participants solve in
any particular test (e.g., Liu, Wilson, & Paek, 2008; Aunola, Leskinen, Lerkkanen, &Nurmi,
2004). Different patterns of response times and errors are hence ignoredwhen the aim is to
compare individuals on a scale of arithmetic ability. Using the number of correct responses
may bewarrantedwhen testing and comparing test takers, butmay be inappropriate when
concerned with studying development and understanding ability differences. In the latter
case, different qualitative processes or strategies should be considered.

For example, an important developmental trend in learning arithmetic can be described
by changes in strategy choice. Initially children will apply various slower computational
strategies (Freudenthal, 1991). Over time, these computations become more sophisticated
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(Lemaire & Siegler, 1995). Through practicing multiplication, children will build up
a network of associations between numbers. When this network is sufficiently strong,
children will be able to confidently retrieve answers to items, and will tend to use faster
retrieval from this network instead of a slower computational strategy (Siegler, 1988).
Children with learning difficulties do not show this typical transition from computational
to retrieval strategies (De Visscher & Noël, 2014; De Smedt, Holloway, & Ansari, 2011).
After years of practice, adults will rely predominantly on memory retrieval for single digit
multiplication (LeFevre et al., 1996). Hence, the largest divide in strategy choice is whether
children and adults use a retrieval strategy or a computational strategy.

In spite of the importance of the strategy concept, detecting strategies is still a major
challenge in many areas of cognitive science. Verbal reports and neural imaging features
are both correlated with strategy choice (Jost, Beinhoff, Hennighausen, & Rösler, 2004;
Tenison, Fincham, & Anderson, 2014; Price, Mazzocco, & Ansari, 2013), but both also have
pitfalls as strategy indicators. Verbal reporting, the most commonly accepted method
of strategy detection, may interfere with the solution process and bias strategy choice
(Kirk &Ashcraft, 2001; Reed, Stevenson, Broens-Paffen, Kirschner, & Jolles, 2015). Another
important problemwith relying on verbal reporting for detecting strategy choice is that it is
time-consuming to apply and thus not feasible in combination with large scale automatic
assessment of arithmetic abilities. The latter problem also applies when using neural
patterns to identify strategy choice. A third approach, whereby strategies are assessed
through latencies combined with accuracy, is more promising in the context of large
scale assessment of arithmetic problem solving as retrieval strategies are usually much
faster than computational strategies (e.g., LeFevre et al., 1996). Hence, here we explore
the possibilities of including response latencies in measurement models of arithmetic
performance to disentangle possible qualitative differences between strategies.

In this paper we investigate whether the fast-slow model (Partchev & De Boeck, 2012;
DiTrapani, Jeon, De Boeck, & Partchev, 2016) allows for automatic analyses of strategy use
in a large scale data set of arithmetic performance in children. In particular, we focus on
multiplication problems as this is a well-studied domain. The fast-slow model is based on
splitting the data into fast and slow responses and estimating separate abilities for each of
the processes. A third process, based on the response latencies, indicates choice for the
fast or slow process. The advantage of this type of psychometric model is that item and
person effects are easily disentangled. This approach is intermediate between the purely
psychometric approach of fitting IRT models to capture multiplication ability on a single
latent trait (e.g., Liu et al., 2008; Aunola et al., 2004) and the purely cognitive approach of
using computationalmodels to predict response accuracy based on problem characteristics
and strategies (partial abilities; e.g., de la Torre & Douglas, 2008).

We will first introduce the fast-slow model, derive predictions for the case of multi-
plication, and then apply the model to a large data set. This data set includes a large
set of responses collected with a popular Dutch online adaptive learning environment for
mathematics; the Math Garden (Klinkenberg et al., 2011; Straatemeier, 2014).
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4. Fast and Slow Strategies in Multiplication

The Fast-Slow Model

The fast-slowmodel is a tree-based item response theory (IRT)model (DeBoeck&Partchev,
2012). The rationale of this model is that responses are governed by one of two processes,
one fast and one slow, that can be separated by an additional observed variable, in this
case the (recoded) response times. The response times are recoded to either fast (1) or
slow (0), which serves as an approximation of the underlying process and is modelled
as a latent speed dimension. This tree model can be formulated as follows, assuming
that a (unidimensional) Rasch model (Rasch, 1960) holds in dimension d, where d =
1, 2, 3 denotes the speed-, fast- and slow dimension, respectively. In these dimensions
respectively the probability of a fast response, a fast and correct or a slow and correct
response are modelled using a Rasch model. In the Rasch model, the probability of a
correct (or for the speed dimension a fast) response of a person p on an item i in dimension
d is given by the logistic function:

P(xpid = 1|θpd , βid) =
exp(θpd + βid)

1 + exp(θpd + βid) , (4.1)

where θpd denotes the ability of person p and βid denotes the easiness of item i on
dimension d. Hence, the full model has three sets of person parameters, and three sets of
item parameters: θp1 reflects the overall speed of a person, θp2 reflects the ability to give a
fast and correct response, and θp3 reflects the ability to give a slow and correct response.
Likewise, item easiness parameters correspond to the probability that items are answered
fast versus slow (βp1), the probability of a correct response given that the response was
fast (βp2), and the probability of a correct response given that the response was slow (βp3).
In line with De Boeck (2008), both θp = (θp1 , θp2 , θp3) and βi = (βi1 , βi2 , βi3) are treated
as random variables with θp ∼ N(µθ ,Σθ) and βi ∼ N(µβ ,Σβ), constraining µθ to zero
to identify the model (see Appendix to Chapter 4 for a description of the model estimation
procedure).

Empirical Predictions in Relation to Fast versus SlowMultiplication Processes

If fast and slow strategies are found to be qualitatively different, some item and person
effects are expected to be differently related to fast and slow strategies. If these effects
match common findings in the multiplication literature, the fast-slow model is a useful
method to identify strategies at the individual level in a big data set.

Item effects

We focus on three prominent empirical effects; the problem-size effect, the tie-effect and
effects of special operands, which are associated with systematic differences in accuracy
and response times between items. Models of retrieval and computation strategies in
simple multiplication have coined different explanations for these differences.
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1) The problem size effect (Ashcraft & Guillaume, 2009) refers to the fact that items with
large problem sizes are more difficult than items with smaller problem sizes. According
to models of computational strategies this effect is due to the additional steps necessary
for computing the answer (van der Ven et al., 2015; LeFevre et al., 1996). In retrieval based
models this effect is explained by less frequent practice with items with large operands
and therefore a less developed memory network (Ashcraft, 1995). Thus, no differences are
expected between fast and slow processes with respect to the problem size effect.

2) The tie-effect (Miller, Perlmutter, & Keating, 1984; De Brauwer, Verguts, & Fias, 2006)
implies that ties (items with an equal operand; e.g 7 x 7) are easier than other items. This
effect is explained bymore practice and easier storage in retrieval basedmodels. Models of
computational strategies do not predict a tie-effect since the computations involved in ties
are the same as in non-tie items. Hence, a tie-effect is expected in the fast process, which
is expected to be associated with retrieval, and no tie-effect is expected in the slow process
which is expected to be associated with computational strategies.

3) The special operands effect refers to the finding that items with 1, 2, 5 or 9 as
operands are easier than other items (Lemaire & Siegler, 1995). This effect follows from
easier computations according to computational accounts, but is not predicted in models
of retrieval. Hence, the effect of special operands is expected in the slow but not in the fast
process.

Person effects

As explained in the introduction the development of simple multiplication skills involves
a shift from computational strategies to retrieval. This shift is expected to be reflected in a
higher number of fast responses for older compared to younger children, resulting in an
effect of age on the latent speed dimension. A gender effect on speed is expected as well,
due to individual differences in response styles. In addition and subtraction problems,
boys provided more retrieval responses than girls, while girls were more likely to count
with their fingers (Carr & Jessup, 1997). It is expected that boys have a higher probability
to respond fast than girls.

4.2 Methods

Data sets: Items and Participants

Data are collected with the website Math Garden. Math Garden is an online adaptive
learning environment for learning basic arithmetic, that is currently used by more than
200,000 children involving more than 1,500 schools in the Netherlands (see Appendix to
Chapter 4). Math Garden provides a valuable data set, including accuracies and response
times of a large group of children, on a large set of multiplication items.

For this studywe selected responses of children collected between June 1, 2011 and June
1, 2015 on two subsets of all multiplication items: (1) all responses to items belonging to the

57
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Table 4.1: Data description

Item selection N responses N children N items % missing
Single digit data set 180,651 3,551 64 21
Most played data set 422,634 7,860 145 63
Note. The number of responses, children, items, and amount of missing data for the different
constructed data sets. The missing data is introduced by the adaptive item selection.

multiplication tables from two up to nine (64 items in total), referred to as the single-digit
data set, and (2) responses to the 150most played items, referred to as themost-played data
set. This second data set includes some of the items from the first subset and additionally
includes multi-digit multiplication items (such as: 1 × 500, 7 × 100, 9 × 12, 803 × 10 and
80× 6000). Items with a minimum of 200 encounters were selected, resulting in 145 items.
Through analysing the second data set we investigated whether the results from the first
data set can be generalised to a data set including responses to a broader set of items. Also,
replicating the initial analyses using this second data set provides a check of the robustness
of the results.

We discarded the first 90 responses that each child made to allow children to become
acquainted with the task. Furthermore, because data were collected longitudinally and
abilities tend to change over time we selected a time frame for a single assessment of a
child’s ability. This time-framemust contain sufficient data but should also be small enough
to ensure a relatively stable ability, and was fixed to one week. Additionally, in order to
set a minimum number of responses for this time frame, we selected data of children who
completed at least 30 itemswithin oneweek.1 Only the child’s first response to an itemwas
selected (multiple responses for the same item within the time frame are possible). The
total number of responses, children, items and percentage of missing responses for each
data set are presented in Table 4.1. Note that the same children can be included in both
data sets. Since the data were collected with an adaptive algorithm missing responses are
missing by design, and can be seen as missing at random (MAR) since the missingness is
conditional on the estimated ability (Rubin, 1976; Eggen & Verhelst, 2011).

In order to apply themodel, the response times need to be dichotomized into fast or slow
categories. In our analyses, we used three different approaches based on amedian split: (1)
a split on the overall response times distribution; (2) a within person split allocating 50%
of the responses of each person to either fast or slow and (3) a within item split allocating
50% of the responses to each item to either fast or slow. The first split captures both person
and item differences in speed, whereas the person (item) split only captures differences
between items (persons) in speed respectively. A comparison of the results of each of
these split-methods provides information on the robustness of the results (see Appendix
to Chapter 4).

1It was possible to make different choices for selecting data. However, using different inclusion criteria yielded
comparable results, see Appendix to Chapter 4
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Model Comparison

Within the fast-slowmodel, qualitative differences between fast and slow processes would
be reflected by a different ordering of the item parameters, person parameters or both, in
the fast compared to the slow component of the model. Hence, to test the hypothesis that
these differences are present, the full fast-slowmodel with a set of item parameters for both
the fast and the slow part was compared against three constrained versions of the model.
This resulted in four different models: (1) the full model, (2) constrained item parameters:
i.e., βi , f ast = βi ,slow , (3) constrained person parameters: i.e., θp , f ast = θp ,slow , and (4)
both constrained item and person parameters. If one, or both, constraints resulted in a
worse model fit (in terms of prediction; see next section), this would support the notion
that indeed different processes were involved in the fast and the slow responses. However,
from a measurement perspective different item parameters do not necessarily suggest that
the person abilities are different, since these abilities could be highly correlated (the same
holds for item parameters if person parameters are different).

Whenever a constraint was imposed we allowed for a difference in the overall mean
and in the variances of the fast and slow item and/or person parameters. This reflects
the idea that only a correlation between the fast and slow parameters that is significantly
lower than one truly reflects a qualitative different process. For example, if fast retrieval
responses aremore often correct than slow computational responses it does not necessarily
suggest that slow and fast responses have distinct response processes. It may be that for
slower responses, retrieval is simply more difficult. However, if for some persons or items
the slow responses are more often (in)correct than the fast responses, thereby influencing
the correlations of these parameters, this would indeed suggest that a different response
process is involved.

Cross-validation was used to assess the models’ goodness-of-fit. For each person, data
from one response (both the recoded response time and the accuracy) were selected for the
test data. The remainder of the data were used to estimate (train) the model parameters,
and the estimated models were subsequently used to predict the test data. This approach
naturally prevents over-fitting the data with overly-complex models. The test data formed
between 1.4% and 3.0% of the total data in the different data sets but was still fairly large as,
despite including one response per person, a large number of persons were included (see
Table 4.1). Model predictions were based only on accuracy as the models did not differ in
their analyses of response times.

Three cross-validation statistics were used, all three based on the deviation between
the observed and the predicted response: the prediction accuracy (ACC), the root mean
squared error (RMSE) and the log-likelihood LL; Pelánek (2015, see Appendix to Chapter
4 for a detailed description). In both RMSE and LL the continuous prediction of the
probability of a correct response is analyzed. This results in a finermodel comparison than
the ACC, while the ACC provides a simpler interpretation of the goodness-of-fit. When
interpreting the ACC and the LL, higher (less negative) values indicate better fit, while for
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4. Fast and Slow Strategies in Multiplication

Figure 4.1: Data Description. The left-panel shows the RT distribution for the single-digit
and most-played data set. The vertical lines (solid for single-digit and dotted for most-
played data set) indicate the median of the RT distribution. The peak around 20 seconds
is caused by the deadline in the game. The right-panel describes the proportions of a
correct, incorrect and question-mark response for the different observed response times in
the single-digit data set.

the RMSE lower values indicate better fit.

4.3 Results

Since the results of the model comparisons were similar across the various dichotomiza-
tions, we limit the results section to the analyses from data sets where fast or slow was
defined by the overall medium split (see Appendix to Chapter 4).

Data Description

The RT distributions of both data sets are presented in the left-panel of Figure 4.1. For
the single-digit data set the median response time (RT) was 6.22 sec. 59% of the fast
responses and 62% of the slow responses were correct. The lower percentage for the
fast responses was related to the higher proportion of fast question-mark responses: 33%
and 11% respectively for fast and slow responses. This is also shown by the relationship
between RT and the probability of a question-mark response, plotted in the right-panel of
Figure 4.1. In the most-played data set the median RT was 7.36 sec. 72% of the fast and
68% of the slow responses were correct.
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Table 4.2: Model fit based on cross-validation of the full and constrained fast-slow models
in the single digit and most played item data set.

item selection model ACC RMSE LL
single digit full model 0.777 0.391 -2416

β f ast = βslow 0.775 0.397 -2510
θ f ast = θslow 0.773 0.398 -2518
β f ast = βslow and θ f ast = θslow 0.772 0.397 -2489

most played full model 0.750 0.416 -5239
β f ast = βslow 0.740 0.422 -5403
θ f ast = θslow 0.742 0.420 -5351
β f ast = βslow and θ f ast = θslow 0.737 0.421 -5375

Note. Results of the best fitting model are printed in bold.

Model Comparison

To estimate themodel parameterswe used 1,000 iterations and a burn-in of 100. Since some
high auto-correlations were found we used every third iteration for the MAP estimates of
the model parameters. Table 4.2 shows the fit measures for the estimated models. In line
with our hypothesis, the results indicated that for both the single digit and most-played
data set, the model with separate item difficulties and separate person abilities for the fast
and slow dimension - the full model - provided a better fit that any of the constrained
models in terms of ACC, RMSE and LL (see Table 4.2). This suggested that qualitatively
different processes were involved in the fast compared to the slow processes for both the
single-digit and the most-played data set.

These results indicate that the response times (split into fast and slow) distinguished be-
tween two qualitatively different response processes, both with respect to item and person
parameters. In the following sections we will further describe the estimated parameters,
and thereby investigate whether differences between the fast and slow strategies can be
explained by retrieval and computational models of multiplication.

Fast vs Slow Correlations and Variances

The model comparison indicated that fast and slow item and person parameters are not
perfectly correlated since the full model provided a better fit than any of the constrained
models. However in both the single-digit and the most-played data set the correlations
between β f ast and βslow were very high: .969, and .896 respectively for the single-digit
and most-played data set. The correlations between θ f ast and θslow were much lower
(respectively .778, and .635). The lower correlations between person parameters might be
explained by the smaller number of observations for the person parameters compared to
the item parameters (which may have created more measurement error). The higher cor-
relations in the single-digit data set compared to the most-played data set can be explained
by a more unidimensional process underlying the responses of children in the single digit
data set.
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Figure 4.2: Relation between fast and slow item parameters in the single-digit and most
played data set

Furthermore, in the single-digit data set, higher variances in β f ast compared to βslow

were found (σβ, f ast = 1.943 and σβ,slow = 1.085; Levene’s test of equality of variance:
F(1, 62) = 30.07, p < .001). This was also the case in the most-played data set, however
with smaller differences between fast and slow responses than in the single-digit data set
(σβ, f ast = 1.367 and σβ,slow = .775; Levene’s test of equality of variance: F(1, 145) = 52.58, p
<.001). The lower estimated variance in the slow process could suggest that there is more
random variation, compared to structural variance, in the slow responses. This might be
caused by a mixture of different slow strategies.

Item Analysis

In the next step in our analyses we regressed the item parameters on different item char-
acteristics for both the slow and fast responses in the single-digit data set. We intended to
replicate the effects of problem-size, tie and effects of special operands. Additionally, and
most interestingly, here we were able to test for differential effects for fast and slow pro-
cessing. Finding these differential effects would mean that predictors related to retrieval
processes (tie-effect) and/or computational processes (special operands) are differently
related to item parameters in fast compared to slow responses. To investigate these inter-
action effects we imputed the full original data set. To this end we generated a new set of
responses based on the model estimated model parameters. We analysed the sum-scores
over items for both fast and slow responses. This approach ensured that effects can be
directly compared between different nodes.

In separate regression models we predicted the item parameters reflecting the fast and
the slow accuracy and the probability of a fast response (speed). We used the BIC (Schwarz,
1978) for model selection, using a backward stepwise procedure.
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In line with the predictions, for the fast responses, we found a main effect of: (1)
problem-size, indicating that items with large problem size were more difficult than items
with small problem size; (2) ties, ties were easier than non-tie items; and (3) problems
with special operands two, five and nine which were easier than other problems, see Table
4.3. These main effects explained in total 89.2% of the variance. For the slow responses,
the effects of problem-size and the special operands were comparable (resulting in an
explained variance of 88.6%). Interestingly, no differences between ties and non tie-items
were found in the slow responses. This differential effect indicated that the difference
between ties and non-ties was larger in the fast compared to the slow part. This effect is
plotted in the left-panel of Figure 4.2, which shows that all tie items are below the diagonal
that indicates β f ast = βslow . Unexpectedly, effects of items with special operands were not
differently related to the fast and the slow item parameters.

For the item speed parameters, a high βspeed indicated a high probability of a fast
response. Thus Table 4.3 shows that responses to items with large problem sizes were
often slow. Also, responses to items belonging to the two and five multiplication tables,
and ties were often fast (see Table 4.3) indicating that these items were more often solved
by retrieval rather than computational strategies. These effects explained in total 70.6% of
the variance in the item speed parameters.

To conclude, the high explained variance indicates that the item difficulties could be
largely understood by this set of item features. This supported the reliability of both the
data and the model estimation. Moreover, although high correlations between fast and
slow item parameters were found, the interaction between tie and node indicates that tie
items tap into the differences between fast and slow processes. In line with the results of
van der Ven et al. (2015), the tie-effect was more prominent in the fast responses.

Item characteristics were not regressed on item parameters in the multi-digit data
set. However, the right-panel of Figure 4.2 clearly shows a positive relation between
β f ast and βslow in the multi-digit data set. Some items showed higher deviations. An
exploratory look at the three items with the highest deviations where either β f ast > βslow

or β f ast < βslow showed an interesting pattern. The items 11 x 6, 8 x 8 and 11 x 9 were
easier when solved quickly compared to slowly, and the items 80 x 6000, 4 x 108, and 3000
x 80 were easier when solved slowly compared to quickly.

Person Analysis

In the second set of regressionmodels we investigatedwhether person characteristics were
differentially related to fast and slow abilities. For this analyses we only included children
between 6 and 11 years old (N=4233; excluded 467), and children for which their age
matched their grade (excluded 417 children for which their age deviated more than 1.5
year from the grade average). For the single-digit and multi-digit data sets the average
ages of the selected children were 7.86 and 8.42 (SD 1.04 and 1.10) respectively, and 33%
and 42% respectively were girls.
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4.3. Results
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Figure 4.3: Relationship between speed and fast accuracy for items and persons in the
single-digit data set (left two panels) and the most-played data set (right two panels). Low
and high ? denotes the frequency of question mark usage.

All results, based on a stepwise backward procedure using BIC, are presented in Ta-
ble 4.4. As expected we found a main effect of age. Older children were more able than
young children in both fast and slow abilities. Second, no gender differences were found
in both abilities. Third, children with more question-mark responses had a lower ability.
However, this effect was smaller with slow compared to fast abilities. This highlights that
the differences between the abilities measured by fast and slow responses can partly be
explained by differences in how children relate to the question-mark answer option. These
effects explain 54.9% and 36.7% of the variance for fast and slow abilities, respectively.

The regression model for differences in speed between children indicated that; (1) older
children were faster than younger children, (2) boys were faster than girls and (3) children
who provided more question-mark responses were faster than children who did not use
the question-mark response as often (see Table 4.4). These effects explain 27.3% of the
variance in the abilities between children.

Correlations between Speed and Accuracy

In this last section we explore the relations between speed and accuracy from an item and
a person perspective in both the single-digit and most-played data set. We defined speed
as the probability of a fast response, based on the overall split in response times.2

Item speed and accuracy correlated positively. In the single-digit data set the correla-
tions between βspeed and β f ast and βslow were .837 and .739. In the most-played data set,
these correlations were respectively .694 and .440. The correlations between βspeed and
β f ast are plotted in Figure 4.3.

We observed two interesting results. First, in the single-digit data set, the relationship
between speed and accuracy showed an interesting pattern. A regression model with a

2The presented results were stable under the different RT splits; the within item split to investigate person speed
and the within person split to investigate item speed.
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4. Fast and Slow Strategies in Multiplication

Table
4.4:Regression
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4.4. Discussion

breakpoint resulted in an explained variance of 83.8%, an increase of 13.5% compared to the
explained variance of 70.4% of the linear regression model. Furthermore, the breakpoint
could be confidently estimated at zero, indicated by a clear peak in explained variance
compared to models with differently located non-zero breakpoints. This strongly sug-
gested that, for items that were solved quickly (βspeed > 0), there was a strong relationship
between speed and accuracy, whereas for items that were more often solved slowly this
relation was absent. In line with results of the model comparison, this result signifies that
fast strategies are qualitatively different from slow strategies. Secondly, an exploratory look
at the item parameters in the most-played data set showed large differences between items
including a times 10, 100 or 1000 operator and the other items, as visualized in Figure 4.3.
These items were incorrect more often when answered quickly compared to other items.

For persons, a different pattern was found. In the single-digit data set, negative cor-
relations between person overall speed and fast and slow abilities were found: -.125 and
-.033 respectively. Thus, in contrast to expectations, children that were faster were more
often incorrect. To test whether the negative correlation was related to differences between
children in question-mark usage we calculated separate correlations for children who pro-
vided less or more than 13% question-marks (median split). We found a correlation of
.306 for children who used fewer question-marks, indicating that for these children, the
faster children were more able than the slower children, see the blue line in the second
panel of Figure 4.3. This suggested that the negative relation is related to question-mark
uses. Furthermore, all correlations found were positive (min = .191 and max = .373) when
children were grouped by question mark use from zero to ninety percent in increments of
ten percent. The same pattern was found in the most-played data set. To conclude, these
results indicate that, when corrected for question-mark usage, children who are faster had
higher fast and slow abilities.

4.4 Discussion

In this paperwe investigatedwhether qualitatively different strategies inmultiplication can
be disentangled using information in observed response times. This approach allowed for
an automatic assessment of strategy use appropriate for large-scale data. An application
of the fast-slow model on a data set collected with a popular online learning program
confirmed that a mixture of different strategies underlies the children’s performance on
multiplication items. Disentangling fast versus slow strategies improved understanding
of children’s observed responses.

Building on these results, additional analyses showed that specific item and person
characteristics tap into the differences between these strategies. The aim of these analyses
was to investigate differential effects between fast and slow strategies, as predicted by fast
retrieval versus slow computational processes of multiplication (Siegler, 1988). On the
item side, the difference between tie and non-tie items was more prominent in the fast
responses compared to the slow responses. Against expectations, no differential effect
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4. Fast and Slow Strategies in Multiplication

was found for items of special operands (2, 5 and 9). This could be explained by having
used rather crude methods to disentangle strategies. These methods may have allocated
some retrieval responses as slow and some computational responses as fast, resulting
in a lower power to find these effects. However, varying split methods differing in how
responseswere categorised as fast or slow show consistent results. Furthermethodological
improvements are possible with developing better ways of splitting response times as the
most important one. Ideally, the data itself determines the classification into fast and slow
processes, resulting in a more optimal classification of responses to strategies (DiTrapani
et al., 2016).

On the person side, older children (who are assumed to havemore experience) provided
more fast responses. Although older children can be faster in multiple ways, the results
indicate that this developmental trend is partly due to a higher probability of a retrieval
strategy for older compared to younger children. Additionally, although boys and girls
did not differ with respect to both the fast and slow ability - in line with the results of
Carr & Jessup, 1997 - boys provided more fast responses than girls. This highlights that,
as described by Siegler (1988), individual differences in strategy use are present between
children. This difference in strategy use is also reflected by the different relationship
between question-mark usage and fast versus slow abilities. Some children are more
inclined than others to provide a question-mark response, and furthermore, fast question-
marks are governed by a different strategy selection than slow question-marks.

These results confirm that children’s strategies for solving mental multiplication items
can be disentangled using a split in observed response times. Hence, as described by
Siegler (2007) and van der Ven, Kroesbergen, Boom, and Leseman (2012), multiplication
ability should be seen as a toolbox of different strategies, where both the ability of each
child within a certain strategy and individual differences in strategy selection determine
the observed performance. This study indicated that these processes, often studied in
smaller and controlled experimental settings, also determine multiplication ability in a
large-scale online learning platform, supporting the generalizability of the effects and the
validity of the Math Garden.

Future Directions

It should be noted that the mixture of retrieval and computational processes underlying
the responses in multiplication will depend on the testing conditions. In the Math Garden
items were selected to match children’s ability resulting in a mixture of different strategies.
Presenting solely easy or hard items will change the mixture of strategies. Additionally,
the test conditions were such that children perceived time-pressure. This evokes faster
responses, and probably influences the strategies that were used (Hofman, Visser, Jansen,
& van der Maas, 2015). Further research should investigate in what manner children’s
performances in high-stakes tests also depends on multiple processes. Additionally, next
to response latencies, error types also contain information about the used strategy (Siegler,

68



4.4. Discussion

1988). In a first minimal example Coomans, Hofman, Brinkhuis, van der Maas, and Maris
(2016) already showed that fast errors in response to multiplication items were different
from slow errors. Utilizing both response latency and error types could provide additional
confidence in estimating the used strategy.

This line of research will provide applied researchers, teachers and students with valu-
able information on strategies, without using time-intensive methods such as verbal pro-
tocols. First, it sheds light on what cognitive processes are involved in mathematics, and
possible many other domains. Second, it enables tailored feedback about proficiency of
strategies when learning multiplication, and thereby matches the aims for mathematics
education. For instance, in the Netherlands education ultimately aims for understanding
multiplication concepts andmemorization of the single-digit tables ofmultiplication (SLO,
2009).
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5 Tracing the Development of Typewriting

Skills in an Adaptive E-Learning

Environment

This chapter is published as: van den Bergh, M. Hofman, A. D., Schmittmann, V., van der Maas, H. L. J. (2015)
Tracing the Development of Typewriting Skills in an Adaptive E-Learning Environment. Perceptual & Motor Skills:
Learning & Memory, 121, 3, 1-19.
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5. Development of Typewriting

Abstract

Typewriting studies which compare novice and expert typists have suggested that
highly trained typing skills involve cognitive process with an inner and outer loop,
which regulate keystrokes and words, respectively. The present study investigates these
loops longitudinally, using multi-level modeling of 1,091,707 keystroke latencies from
62 children (Mean age = 12.6 year) following an online typing course. Using finger
movement repetition as indicator of the inner loop and words typed as indicator of the
outer loop, practicing keystroke latencies resulted in different developmental curves for
each loop. Moreover, based on plateaus in the developmental curves, the inner loop
seemed to require less practice to develop than the outer loop.

5.1 Introduction

In order to become a skilled typist, one must master a wide variety of motor and cog-
nitive processes, ranging from hand and finger movements to language generation and
comprehension (Shaffer, 1976; Rumelhart & Norman, 1982; Salthouse, 1986; Rumelhart
& Norman, 1982; John, 1996; Wu & Liu, 2008). Older typing studies primarily focused
on developing motor skills. For instance, Swift (1904) measured typewriting skills as
number of words typed per hour, and Lashley (1951) focused on optimizing successive
keystrokes as a function of speed and accuracy. More recent typing development studies
also account for cognitive skill. Logan and Crump (2011) made an explicit distinction
between motor-oriented skills and cognitive-based skills, labeled as the inner and outer
loops, respectively.

The inner and outer loops are nested feedback loops that serve distinct purposes. The
inner loop monitors the immediate goals; e.g., press key T by moving one finger, then
press H by moving a second finger, and finally press E with another finger. The outer loop
monitors the broader, semantic goals; e.g., what word or sentence is to be typed next.

This two-loop theory for typewriting is supported by several experiments (e.g., Logan
& Zbrodoff, 1998; Logan, 2003; Crump & Logan, 2010a, 2010b). For example, Logan and
Zbrodoff (1998) showed with a typewritten Stroop task that congruency of the color and
the word to be typed affected response times but not the inter-keystroke interval. Hence,
the meaning of the word to be typed (outer loop) is influenced by the congruency, but not
by the execution of the keystrokes within a word (inner loop). In another study, Logan and
Crump (2009) limited the characters to be typed to those that should be typed with one of
the hands. This restriction on the inner loop resulted in an increase in errors and decrease
in speed. Furthermore, they concluded that the inner loop is largely an unconscious
process. For a comprehensive overview of most experiments on the inner and outer loops,
see Logan and Crump (2011).

Many studies have provided support for the inner and outer loops by using an expert-
novice paradigm; aspects of expert typewriting are compared to those of novices. However,
motor and cognitive processes of novice and expert typists are likely to be qualitatively

72
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different, as novice typists have developed neither the inner loop nor the outer loop. Fur-
thermore, such a cross-sectional design is of limited use for studying how typewriting
develops, or more specifically how the inner and outer loops develop. Instead, a longitudi-
nal approach is more suitable for showing developmental trends of both loops, as the same
persons are measured on multiple occasions and hence within-participants differences are
also assessed.

Novice typists have to acquire the more motor-oriented inner loop as well as the more
cognitive-oriented outer loop. The development of the two loops can only be indirectly
inferred from differences in latencies between keystrokes. Novices do not know the layout
of the keyboard yet. Hence, they have to search the keyboard for each individual character.
If they have to type the same character consecutively, the latency will be smaller, as this
character will be typed with the same finger. The difference between the latencies of
keystrokes with and without finger repetition can be interpreted as knowledge of the
keyboard. Hence, the development of the inner loop (or aspects of it) can be inferred from
differences in these keystroke latencies.

The outer loop relates to the meaning of the word or sentence to be typed. Outer loop
development can be inferred from differences in inter-keystrokes latencies between typing
words and non-words. Indeed, empirical studies show that expert typistswith a developed
outer loop type words faster than non-words, while novice typists type words and non-
words at the same pace (Fendrick, 1937; Shaffer & Hardwick, 1968; Gentner, Larochelle, &
Grudin, 1988).

All studies thus far have aggregated latencies beyond individual keystrokes, for in-
stance by measuring the average number of words typed in a certain time interval, the
time used for typing words or non-words, or the time used to type a specific number of
characters. Such aggregation does not account for parts of the observed variance and thus
may considerably bias conclusions (Burstein, 1980). Therefore, this study takes a more
statistically sound approach and uses a hierarchical linear model to distinguish within-
and between-participants variance components. This is required to test the development
of the inner and outer loops (compare with Schwartz & Stone, 1998).

It has been shown consistently that typewriting speed increases with practice (e.g., Hill,
Rejall, & Thorndike, 1913) and that typing requires at least two different feedback loops.
However, the way in which these loops develop has not been investigated, despite the
implications for acquiring typewriting skills. Therefore, the present study traces inner
and outer loop development through keystroke latencies in novice typists and assesses the
contribution of both loops to overall typing speed development. Additionally, the study
will investigate how much practice is necessary to reach (at least temporarily) a plateau
in the development of each loop (compare with Buitrago, Schulz, Dichgans, & Luft, 2004;
Maniar et al., 2005) and, hence, which loop requires the least practice.
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5.2 Method

Participants

Participants were selected for the study from an online typing course (Type Garden; N =
1,226). To ensure that all participants had sufficient practice, only those who had made
more than 10,000 keystrokes during the course were selected. Further, to ensure that all
participants had progressed sufficiently, only those who scored at the end of the course
within the top 25% of all participants in terms of speed and accuracy were selected. This
combination of criteria resulted in a selection of 24 boys and 38 girls with a mean age
of 12.6 year. (SD=1.6), who in total had 1,091,707 keystroke latencies, with an average of
17,608 keystrokes per participant (range: 10,067-19,999). Only correct keystrokes that were
also preceded by a correct keystroke were taken into account. This prevented confounding
effects like post-error slowing. The participants agreed with the use of the anonymous
data for scientific research when they took a subscription to the Type Garden system.

Measures

Data for this researchwere obtained through TypeGarden, an adaptive e-learning environ-
ment that teaches children to touch type. It has eight levels in which keys are introduced
progressively. This study used only the first level, which has 270 non-words and 80 words
that use the eight keys of the central row of a QWERTY-keyboard (asdfjkl;). This is the
simplest level since the fingers do not have to travel over the keyboard. Each item is a letter
string consisting of one or more words or non-words shown on screen, and feedback is
given by highlighting each letter as it is typed (green for correct, red for error). Each item
is to be completed within 20 sec. An item’s score depends on both the speed and accuracy
of the response. Though the scoring rule has not been evaluated for Type Garden, a sim-
ilar program called Math Garden has shown it to have excellent psychometric properties
(Maris & van der Maas, 2012). Students progress at their own pace, as Type Garden is a
computer adaptive program where the difficulty of the next letter string (item) is matched
to the participant’s current ability (Klinkenberg et al., 2011). Hence, a novice typist will
receive mainly easy items, while an expert receives mainly difficult items, which causes
participants to practice with items that differ (in the frequency that they are presented).
Therefore, two random participants might have the same number of errors, but not the
same typing skills. Once a certain level is reached, a student has the opportunity to pro-
ceed to the next level. Hence, typewriting skills do not have to be fully developed for a
student to progress, as the typewriting skills can still be improved in the next level. The
students practiced typing at school, but also had the option of practicing individually at
home. Frequent practice was rewardedwith digital coins, and 60% of the selected students
practiced every other day.
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Figure 5.1: The distribution of the reaction times of keystrokes

Analysis

The times between individual keystrokes varied greatly, ranging from 21 to 3,999 msec.
(keystrokes outside this range were regarded as outliers and have been removed), with a
mean of 656.68 msec. (SD = 559.22). As the data were positively skewed, a natural log
transformation was applied to the keystroke latencies to normalize their distribution (see
Figure 5.1).

It is well known that even a small distraction can cause the reaction time of a person’s
individual keystrokes to lengthen (e.g., Strayer & Johnston, 2001). Amore reliable measure
can be extracted if the data are grouped in fixed segments of 100 successive keystrokes. This
way, the number of segments represents the amount of practice. One hundred keystrokes
per second was relatively arbitrary, as a segment could also comprise, for instance, one
item (a string of keystrokes) or one login session. A number of segment sizes were tested;
the authors are convinced that the main results are not influenced by this choice.

The data originate from a complex sample in which observations are nested within
individuals. Therefore, a distinction can be made between the variance between partic-
ipants and the variance between keystrokes within participants. The variance between
participants indicates differences in the participants’ average successive keystroke times
per segment. The variance within participants indicates the difference between keystroke
times of different keystrokes for an individual participant in a specific segment. The ratio
of the within-participant and between-participant variances per segment is indicative for
how well a distinction can be made between participants for a given segment. Generally,
there are two indices which are sensitive for this distinction: intraclass correlation (ICC)
and reliability (compare with Brennan, 2000).

The change in ICC is shown in the top panel of Figure 5.2. This figure indicates how
necessary a multi-level model is (Hox, Moerbeek, & van de Schoot, 2010, p.15). The ICC
changes during learning and ranges from .04 in the beginning to .12 in the middle and .04
at the end. Note that small ICC’s, or small differences in ICC, can indicate large differences
between different typists (compare with Snĳders & Bosker, 1999), and can have a great
effect on the significance of related parameters (Goldstein, 2011). The bottom panel of
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Figure 5.2: ICC and reliability over segments of 100 keystrokes

Figure 5.2 shows the reliability estimates of differences in typing speed of individuals over
time. The reliability ranges from .80 to .94, and is on average .90.

Construction of Models

The development of overall typing skills was modeled by fitting subsequent polynomial
functions to the data. That is, differences in individuals’ keystroke latencies were modeled
as a function of powers of practice (i.e., segments of 100 keystrokes). Such polynomials
are very flexible functions that can take almost any shape (depending on the order of the
polynomial and the value of the individual coefficients). If yi j is the latency on the ith
segment (the amount of practice in i times 100 keystrokes) of the jth individual, then a
polynomial can be written as: yi j = f unction(practicei j). This function can be written as
a regression model, which assumes that the latencies depend on powers of segment:

yi j = β0 j + β1 jSe g1
i j + β2 jSe g2

i j + ...

As the estimated latencies will never correspond perfectly to the observed latencies,
usually the difference is taken into account by an error term. In this case, however, the
error term might also depend on practice (e.g., the reliability estimates in Figure 5.2.
Therefore, an individual’s residuals must be modeled as a function of practice.

The individual regression coefficients (β0 j , β1 j , β2 j , ...) can bewritten as deviations from
an average of the respective parameter:
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Figure 5.3: The general model of average and individual development of keystroke time
over segments

β0 j = β0 + µ0 jβ1 j = β1 + µ1 jβ2 j = β2 + µ2 j ...

For instance, a second order polynomial can be written as:

yi j =β0 + β1Se g1
i j + β2Se g2

i j

[(e0i j + e1i jSe g1
i j + e2i jSe g2

i j)

(u00 j + u10 jSe g1
i j + u20 jSe g2

i j)].

(5.1)

The model, as shown in Equation 5.1, consists of a fixed part and a random part
(between square brackets). The fixed part estimates the average change with practice. The
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first fixed parameter (β0) represents the average keystroke time for segment 0 (also known
as an intercept), the second fixed parameter (β1) represents the change in keystroke time
per segment, and the third fixed parameter (β2) indicates the extent that the change in
keystroke time per segment changes per segment squared. The random part of the model
distinguishes between deviations from the average for individuals (u′s) and deviations of
the observations from the individual curves (e′s). Hence, e0i j represents the deviation of
the average keystroke latency of the jth individual. As the within-individuals variance
might depend on practice, heteroscedasticity is modeled in terms of the polynomial. It
is assumed that all residuals are normally distributed, with an expected value of 0 and
a variance of S2

e0i j
, ..., S2

u20 j
, respectively. Furthermore, it is assumed that the residuals

within and between individuals are uncorrelated (ρe ,u = 0). Based on Equation 5.1, the
variances within and between individuals are a function of segment. The variance within
participants can be approximated as:

Var(within |Seq = T) =S2
e0i j + 2Cov(e0i j , e0i j)T + S2

e1i j T
2+

2Cov(e0i j , e2i j)T2 + ... + S2
e2i j T

4
(5.2)

The variance between individuals can be approximated in the same way (conforms
with Goldstein, 2011). Hence, modeling polynomials with a multi-level model allows for
accommodating heteroscedasticity of variances.

The order of the polynomial can be seen as an empirical matter. This study chose the
polynomial that is most parsimonious and fits the data best according to a likelihood ratio
test for subsequent analysis (conforms with van Veen, Evers-Vermeul, Sanders, & van den
Bergh, 2013). The model can be extended to include variables indicative for the outer
loop (words) or inner loop (finger repetition). Main effects of words or finger repetition
indicate that the intercept between outer and inner loops differs from the average, whereas
interactions with practice show that the development of both outer and inner loops differs
from the average development.

To determine whether the inner loop develops differently from the outer loop, the
inflection points (the points where the change in keystroke latencies becomes zero) will
be assessed for the four possible circumstances: non-words and no finger repetition (NW-
NFR),words andfinger repetition (W-NFR), non-words andfinger repetition (NW-FR), and
words and finger repetition (W-FR). The inflection points will be determinedwith the first-
orderderivative,while the second-orderderivativewill indicatewhether an inflectionpoint
is aminimumor amaximum. Themaximawill not be of interest as they indicate the start of
the development. The minima are of interest as they indicate the end of the development.
As not every individual’s polynomial has to have an inflection point (because not every
student has to finish his development), a selection of participants with an inflection point
will be made. If an inflection point of one circumstance has a lower segment number (i.e.,
took less practice to reach) than another circumstance, then the development of the first
circumstance finished first, thereby indicating which loop finished developing first. This
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Table 5.1: Likelihood ratio test of the general model

Model No. parameters -2LL ∆χ2 ∆d f p

yi j = β0i j + [e0i j + u00 j] 3 2,255,410
+β1 ∗ Se g1

i j 4 2,017,726 237,684 1 < 0.001
+e1i j ∗ Se g1

i j 6 2,009,725 8,001 2 < 0.001
+u10 j ∗ Se g1

i j 8 1,994,665 15,060 2 < 0.001
+β2 ∗ Se g2

i j 9 1,986,498 8,167 1 < 0.001
+e2i j ∗ Se g2

i j 12 1,986,081 417 3 < 0.001
+u20 j ∗ Se g2

i j 15 1,978,324 7,757 3 < 0.001
+β3 ∗ Se g3

i j 16 1,978,144 180 1 < 0.001
+e3i j ∗ Se g3

i j 20 1,977,901 243 4 < 0.001
+u30 j ∗ Se g3

i j 24 1,975,023 2,878 4 < 0.001
+β4 ∗ Se g4

i j 21 1,975,021 2 1 0.842

will be done for both the average curve of each circumstance, as well as for the individual
polynomials.

5.3 Results

To describe the development in latencies, several models were fitted. Both the fixed and
random parts of these models increased in complexity. The fit of each model, along with
the difference in fit between consecutive models, is presented in Table 5.1 and expressed
by -2 log likelihoods. From the comparison between models it is apparent that a model
with a fixed linear component, allowing for differences in keystroke latencies between
segments, fitted better to the data than amodel with only an intercept (∆χ2 = 237, 684; d f =
1; p < .001). Allowing the linear component to vary both within and between participants
improved the fit, as can be seen in Rows 3 and 4 of Table 5.1 (∆χ2 = 23, 061; d f = 4; p < .001).
The fit of consecutive models increased up to the third order polynomial. The third order
term is allowed to differ within individuals and between individuals. As shown in Table
5.1, a fixed quartic term did not improve the model fit (∆χ2 = 2.00; d f = 1; p = .84).

Hence, a third order polynomial was necessary to describe the observed average laten-
cies over participants and the changes in variance within and between individuals. The
parameter estimates for this model are presented in Table 5.2. As the change per segment
directly depends on the scale of the segment variable, this has been centered and runs in
200 steps from -10 to 10. The first column of Table 5.2 shows the parameter estimates for the
model of general development. It can be seen that the average time between keystrokes de-
creases significantly over (the recoded) segments. The average log transformed keystroke
time at Segment 100 (keystroke 9,900 until keystroke 10,000; the intercept) is estimated as
6.09 (441 msec.), and changes continuously by -0.057 per segment. As segments have been
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Table 5.2: Fixed and random parameters of models to describe the learning of touch typing
(for convenience Segment has been recoded from -10 to 10).

General Development Word & Finger Repetition
Fixed Part Est. SE Est. SE

Se g0 6.088 0.015 6.152 0.016
Se g1 -0.057 0.003 -0.056 0.003
Se g2 ∗ 103 0.504 0.259 0.141 0.582
Se g3 ∗ 103 -0.178 0.035 -0.324 0.058
Word -0.120 0.002
W ∗ Se g1 ∗ 103 -0.328 0.546
W ∗ Se g2 ∗ 103 0.646 0.046
W ∗ Se g3 ∗ 103 -0.071 0.009
FR -0.472 0.003
FR ∗ Se g1 0.031 0.001
FR ∗ Se g2 ∗ 103 -1.635 0.055
FR ∗ Se g3 ∗ 103 -0.074 0.011
W ∗ FR 0.139 0.004
W ∗ FR ∗ Se g1 0.002 0.001
Random Part
Variance within individuals:

Est. Est.
S2

e0i j
0.342 0.321

S2
e1i j

0.001 0.001
S2

e2i j
∗ 103 0.013 0.003

S2
e3i j
∗ 103 < 0.001 < 0.001

Variance between individuals:
S2

u0i j
0.047 0.045

S2
u1i j

0.001 0.001
S2

u2i j
∗ 103 0.024 0.032

S2
u3i j
∗ 103 < 0.001 < 0.001

recoded from -10 to 10 in steps of 0.1, this amounts to a change of −0.057∗0.1 = −0.0057 per
segment. Simultaneously, there is also an increase with 0.504 ∗ 10−3 per squared segment
and a decrease with −0.178 ∗ 10−3 for the cubed segment.1 Therefore, the expected log
transformed successive keystroke time in the first observed segment (with a recoded value
of -10) is estimated as 6.786 (885 msec.), while the expected log transformed successive
keystroke time for the final segment (10) is estimated as 5.390 (219 msec.). Hence, the
average difference in keystroke times between the first and last segment is 666 msec. In
Figure 5.3, the average key-stroke time is presented by means of a black solid line.

In this general model, both the fixed parameters and the random parameters have been
estimated. The randomparameters showdifferences between participants. The variance of

1This shows one of the reasons for recoding the segments. Without recoding, the quadratic and cubic parameters
would have been even smaller.
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differences between individuals at the intercept, for instance, is estimated as 0.05 (see Table
5.2). Hence, an 80% confidence interval for differences between individuals of segment 0
(i.e., the 100th segment from the start) ranges from 5.73 to 6.37. And the average linear
change per segment equals -0.06, but this change differs between participants (variance
= 0.001). Thus, an 80% confidence interval of the differences between participants for
the linear change with segment ranges from -0.10 to -0.02. That is, for some participants
the linear decrease in keystroke time is steeper than for others. The same holds for the
quadratic coefficient (80%CI = −4.11 ∗ 10−3 , 5.12 ∗ 10−3) and the cubic coefficient (80%CI =
−0.73 ∗ 10−3 , 0.38 ∗ 10−3).

These random terms can be used to approximate the variance in each segment (Equation
2) as well as the variance within and between participants. For instance, at the intercept
the variance within individuals is estimated as 0.34. For the first and last segments, the
variance within individuals is approximated as 0.88 and 0.55, respectively. Thus, the
difference between keystrokes within participants clearly decreases with practice.

The variance between participants at the intercept is estimated as 0.05. The variance
between participants increases significantly with practice; at the first segment this variance
is estimated as 0.12, whereas at the last segment the estimate is 0.90. In Figure 5.3, the grey
lines represent the estimated polynomials for the individual participants. The average
change in keystroke time (on the log scale) is presented by a black solid line.

Words and Finger Repetition

In the next analysis, effects of (non-)words and (no)finger repetition on development of
typing skills were compared. A likelihood ratio test showed that the model with a three-
way interaction between the linear term, finger repetition, and words provides the best fit
at an α level of .05 (Table 5.3).

The estimates of the coefficients of the final model are displayed in Table 5.2. The main
effects of words and finger repetition were significant, as well as the interaction between
words and finger repetition and the interaction between words, finger repetition, and
segment. Hence, the change in latencies with practice when typing words differed from
the latencies when typing non-words. For instance, at the intercept words were typed
faster than non-words (-0.12). At the end of the study, the average latency in keystroke
time in milliseconds for words was 5.152, whereas the average latency for non-words was
5.282.

At the intercept, the difference in average latency due to finger repetition was -0.47,
indicating that keystrokes involving finger repetition were faster. At the end of the study,
the average latency for itemswith finger repetitionwas 4.590, whereas the average for items
without finger repetition equaled 5.282.2 Both the effects for words and finger repetition

2Note that this number is the same as the previously mentioned average latency for non-words, because these
non-word latencies were estimated for when there was no finger repetition. Hence, 5.282 reflected the average
latency for non-words with no finger repetition.
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Table 5.3: Likelihood ratio test of the word and finger repetition (FR) effect.

Model No. parameters -2LL ∆χ2 ∆d f p

General model 20 1975021
+Words 21 1972762 2215 1 < 0.001
+Words ∗ Se g1

i j 22 1972399 400 1 < 0.001
+Words ∗ Se g2

i j 23 1972174 273 1 < 0.001
+Words ∗ Se g3

i j 24 1972037 118 1 < 0.001
+FR 25 1879242 92701 1 < 0.001
+FR ∗ Se g1

i j 26 1861802 17473 1 < 0.001
+FR ∗ Se g2

i j 27 1860730 1075 1 < 0.001
+FR ∗ Se g3

i j 28 1860663 64 1 < 0.001
+FR ∗Words 29 1859542 1129 1 < 0.001
+FR ∗Words ∗ Se g1

i j 30 1859537 4 1 0.040
+FR ∗Words ∗ Se g2

i j 31 1859537 1 1 0.307

Figure 5.4: Estimations of the combinations of word and finger repetition (FR) effects

changed with practice. Figure 5.4 shows for all four combinations of words and finger
repetition the average changewith practice. Figure 5.5 shows that without finger repetition
the estimated average (ln) keystroke latency initially hardly differed between non-words
and words. However, with practice a difference emerged: without finger repetition, words
were typed faster than non-words. When finger repetition was present, there was initially
a difference between non-words and words, with non-words showing smaller latencies
than words. This was probably due to the presence of a set of very easy items with
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Figure 5.5: Effect sizes of finger repetition and words (Cohen’s d)

many repetitions (such as fff, aass or aaasssdddfff). The effect of finger repetition existed,
since items with finger repetition were typed faster than items without finger repetition.
However, this difference between words and non-words was reduced with practice.

Because the sample of this studywas large, the power of the significance tests was large.
Hence, it is possible that some significant results were only due to very small differences in
latencies. Effect sizes showwhether the assessed differenceswere substantial or negligible.
Cohen’s d (Cohen, 1988) was computed for each segment.3 The initial effect size for the
typing of words without finger repetition equaled -0.02 and increased to a maximum of
0.20 at the 112th segment. Thereafter, the effect size decreased slightly to 0.15 at the final
segment (see the top left part of Figure 5.5). This indicates that after some practice words

3Effect sizes over 0.8 are considered large, over 0.5 as medium, and over 0.2 as small
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Table 5.4: Total number of participants with a (at least temporarily) finished development
in the different conditions and the number of participants requiring more and less practice
in the different conditions to reach a (temporary) plateau (less above and more below the
diagonal).

Condition NW-NFR W-NFR NW-FR W-FR Total
NW-NFR 1 (4) 5 (5) 5 (5) 5
W-NFR 2 (4) 4 (4) 4 (4) 4
NW-FR 0 (5) 0 (4) 12 (27) 34
W-FR 0 (5) 0 (4) 14 (27) 31

were typed faster than non-words, but this effect was small at best.
The total effect size for the word effect when finger repetition was present (see the top

right part Figure 5.5) had an initial value of -0.19, indicating that in the beginning words
were typed slower than non-words. It increased slightly, but can be considered as very
small. The initial effect size for finger repetition when non-words were typed was 1.43.
This decreased quickly and had a value of 0.32 at the final segment (see the bottom left
part of Figure 5.5). The effect size for finger repetition when words were typed showed the
same pattern of almost linear decrease, but with smaller absolute values. It started at 1.26
and ended at 0.12 (see the bottom right part of Figure 5.5).

Inflection Points

To assess the moment at which development (at least temporarily) came to a halt, the in-
flection points of the curves were determined. Such inflection points indicate the segment,
or the amount of practice, at which no change in keystroke latencies are expected and a
minimum occurs. The average development, as shown in Figure 5.3 and Figure 5.4 shows
a continuous decrease in inter-keystroke latencies. Hence, the average development does
not show any inflection point; on average the children had not finished developing their
skills for typing words and non-words, with and without finger repetition.

Although the average change over time does not show an inflection point, this does not
necessarily hold for every individual curve. Comparison of how much practice produces
an inflection point in each circumstance (NW-NFR, W-NFR, NW-FR, and W-FR) for every
individual allows determination of which loop developed faster. Note that a comparison
can only be made if an individual’s data actually has an inflection point in both circum-
stances. If there is no inflection point in a certain circumstance, the development for that
circumstance has not been (at least temporarily) finished.

In Table 5.4, the last column shows the total number of inflection points in each of
the circumstances. For NW-NFR there were five participants who showed an inflection
point, while there were four participants with an inflection point for W-NFR. For the
circumstances with finger repetition, NW-FR andW-FR, there were 34 and 31 participants
with an inflection point, respectively. There were more participants with an inflection
point in the circumstances with finger repetition than those without. This shows that the
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required practice for development of finger repetition was less than the development of
no finger repetition. The effect of words was less obvious. The number of participants
with an inflection point with non-words was consistently higher than with words, but the
differences were small.

Furthermore, Table 5.4 also shows whether the (temporary) plateau in one of the cir-
cumstances preceded that of another circumstance (above the diagonal) or whether the
(temporary) plateau occurred later than in another circumstance (below the diagonal). For
instance, the first row shows that for one out of four cases the development in the NW-NFR
circumstance required less practice than in the word combined with no finger repetition.
For five (out of five) participants theNW-FR andW-FR circumstances required less practice
to reach a (temporary) plateau than NW-NFR.

The first column of Table 5.4 shows that for two of four participants W-NFR required
more practice than NW-NFR. Because the first row already indicated that one participant
required less practice, there is one participant who needed the same amount of practice
in both circumstances. No participants (out of five) required more practice to reach a
(temporary) plateau in NW-FR and W-FR compared to NW-NFR.

The last two cells of the second row and the second column indicate that all four
participants with an inflection point in W-NFR and NW-FR or W-FR required less practice
in the circumstances with finger repetition. The final comparison between NW-FR and
W-FR in the final cell of the last row and column indicated that 12 participants (out of
27) required less practice to reach a (temporary) plateau in the W-FR circumstance, while
14 participants required more practice in the W-FR circumstance. Also, between these
circumstances there is one participant who needed similar practice in both circumstances
to reach a (temporary) plateau. Hence, the relationship between words (compared to
non-words) and typing development does not seem to be straightforward.

5.4 Discussion

This study investigated the typewriting skill development in an adaptive learning environ-
ment. The authors analyzed data from the first game of an online course on typewriting
in which the eight characters of the home row were learned. Data were collected at the
keystroke level; therefore, the number of observations was enormous. Since keystroke
latencies were nested within learners, development was modeled using a multi-level ap-
proach. This multi-level model was relatively parsimonious, with four fixed parameters
for the amount of practice and seven random parameters for the differences between and
within individuals. It was shown that the average keystroke latency decreased with prac-
tice, but that the learning curves of each individual differed notably. Based on analyzing
the inflection points in each individual’s polynomial, not all participants had reached their
minimal keystroke latencies yet. Hence, their development in this task was not yet com-
pleted. This is not surprising, as after reaching a certain level the second game becomes
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accessible and it is an individual’s own choice to continue the first game or to start playing
the second game with more letters of the keyboard.

Both the inner loop, indicated by the decreasing finger repetition effect, and the outer
loop, indicated by the word effect, appeared to emerge with practice (this conforms with
Logan & Crump, 2011). The loops developed differently, and both effects contributed
significantly to the model of overall typing development. In general there was no plateau
in development (a vanishing rate of change in keystroke latencies), but these plateaus
were found in some individual developmental curves. Comparing the amount of practice
needed to finish development between the different circumstances of (non-)words and
(no) finger repetition for each individual indicated that many more individuals finished
their development in the circumstances with finger repetition than in the circumstances
without. The results for the (non-)words are not so clear, since some individuals finished
developing fasterwithwordswhile others finisheddeveloping fasterwith non-words. This
also made a comparison between the words and finger repetition more difficult, but the
strong effect of finger repetition on the development compared to the ambiguous effect of
words indicated that the development of the inner loop is finished before the development
of the outer loop. This is in concordance with previous findings that while the associations
between keys and finger movements are helpful for basic typing, associations between
words and letters are required for skilled typing (Yamaguchi & Logan, 2014).

In the present study, the development of average keystroke latencies was analyzed per
100 keystrokes. Such an analysis neglects the natural boundaries between items, which
werewords or non-wordswith different number of characters. The proposedmodel can be
expanded to a so called cross-classifiedmodel (Goldstein, 2011) in which both the variance
between participants and the variance between items are estimated simultaneously. This
allows for a more precise analysis of item characteristics. Alas, this was not possible in the
present study, as the adaptive nature of the Type Garden allocated the demanded items to
the ability of the participant.

Another consequence of the allocation of items was that participants with the same
amount of practice did not receive the same items. However, because the presented items
depended on the ability of the participants, scaffolding took place for the development
of typewriting. Hence, the results should be seen as generalizable for this type of learn-
ing. The results of this paper showed how the finger repetition effect disappears and the
word effect emerges, indicating the development of the inner and outer loops. The devel-
opment of the inner loop seems to be finished before the outer loop, as the word effect
emerges before the development of the finger repetition is finished. This suggests that the
development of the inner and outer loops occur separately.
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6. The Dynamics of Development

Abstract

A famous and well replicated finding in psychology, and mathematics as this paper
expresses, is that individual differences across a large range of cognitive skills are all
positively correlated. In the current study we compared two influential explanations
for this so-called positive manifold of correlations: g-factor and mutualism theory. We
examined a large longitudinal data set (N ≈ 12.000) that tracked the development of
four basic math skills (counting, addition, multiplication and division) for a full school
year. We used bivariate latent change score models to investigate whether the g-factor or
mutualism theory provided a better explanation of the developmental pattern of corre-
lations across math abilities. We found that the correlations between abilities increased
during development and that bidirectional mutually beneficial relations occurred over
time. Both results support mutualism theory, a dynamic network perspective on the
development of cognitive abilities, where, in this case, growth in a particular math
subdomain positively influences that of other subdomains. Our results suggest that mu-
tualistic mechanisms may operate not just between cognitive domains, but also within
domains. We discuss implications of mutualism theory for understanding the dynamics
of learning mathematics.

6.1 Introduction

The ability to domath is essential to daily life and the study of how this develops is of great
interest for the fields of education and cognitive development (Siegler & Lortie-Forgues,
2014). Individual differences in mathematical ability relate to a wide set of cognitive
abilities (Murnane, John, & Levy, 1995) and lifespan outcomes (Siegler et al., 2012). Un-
derstanding how different mathematical abilities co-develop is crucial for understanding
learning in general, and mathematics in particular. A large body of studies have focused
on the symbiotic development of different cognitive and math skills, focusing particularly
on the positive correlations between domains (e.g., Geary, Hoard, Byrd-Craven, & DeSoto,
2004; Halberda, Mazzocco, & Feigenson, 2008).

However, these cross-sectional studies can only provide indications of the processes that
occur within individuals over time (Tucker-Drob, 2009), and could possibly be misleading
(Wohlwill, 1973; P. C. Molenaar, 2004). More direct tests of how the development of differ-
ent skills unfolds can be better established with a longitudinal approach, see for example
the work of Geary, Brown, and Samaranayake (1991) and van der Ven, Kroesbergen, et
al. (2012). Currently, the dynamic processes that drive the development of mathematical
abilities are unclear, as are possible direct links with the development of other skills. In
this paper, we borrow ideas from the expertise in intelligence research to investigate this
issue.

The empirical finding of a positive correlational structure of individual differences in
abilities across domains abilities is not unique for the field of mathematics. In the field
of intelligence this is one of the most famous findings in cognitive psychology, and called
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the positive manifold (Spearman, 1927). This implies that people who perform well on
one cognitive task also tend to score well on other cognitive tasks. In intelligence data,
the correlational structure is often explained by g, for ’general intelligence’, such that the
positive correlational structure between the different cognitive test scores is modelled by
a latent factor that represents general abilities across domains. Although g is a useful
construct in predicting educational success and other life outcomes, the presence of such
a statistical factor does not necessarily imply a causal role for a single underlying factor
across different cognitive tests (van der Maas et al., 2006b; van der Maas, Kan, Hofman,
& Raĳmakers, 2014; van der Maas, Kan, Marsman, & Stevenson, 2017; Kruis & Maris,
2016). Nor does it imply that g necessarily has an ontological status beyond a statistical
entity (Borsboom, Mellenbergh, & van Heerden, 2003). This follows from the fact that
different hypotheses about the nature of the positive manifold can result in the same
cross-sectional correlational data (Bartholomew, Deary, & Lawn, 2009; Anderson, 2017).
In order to differentiate between different explanations of the positive manifold, hence to
shed light on its true nature, a longitudinal approach is valuable (van der Maas et al.,
2006b; P. C. Molenaar, 2004).

In the current paper, following the approach of (Kievit, Lindenberger, et al., 2017), we
compare two important theories of the positive manifold based on their main distinguish-
ing feature – the dynamics between different abilities over time. Using this approach, we
investigatewhether amathematical g-factor (a generalmath ability) plays a causal role dur-
ing development or whether bidirectional mutually beneficial relations between domains
are sufficient. Therefore we use a large longitudinal data set collectedwith an online learn-
ing program for mathematical ability in schoolchildren (Math Garden; Klinkenberg et al.,
2011; Straatemeier, 2014). In this learning program children can log in at any time and play
as much items as they want for one or multiple games. The growing popularity of online
learning systems and an increasing accessibility to the internet provides large amounts of
data on learning. Additionally, this data is collected in a school setting and captures the
processes involved in this natural learning setting. This data set provides a unique sample
to investigate the developmental patterns involved in learning mathematics.

Few studies have approached the study of the nature of the correlational structure
between different skills from the perspective of the positive manifold and compared com-
peting models of development. Even those studies that have focused on longitudinal
co-development of cognitive abilities have focused on development between domains such
as memory, reasoning, vocabulary and perceptual speed (e.g., McArdle, Ferrer-Caja, Ham-
agami, & Woodcock, 2002; Kievit, Lindenberger, et al., 2017). No studies to date have
examined whether a g-factor or interactive account better explains fine-grained develop-
ment within a domain.
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6. The Dynamics of Development

Two different theories of cognitive development

The robust finding of the positive manifold in scores on intelligence and mathematical
abilities requires an explanation. The most prominent explanation is the g-factor theory
itself (Jensen, 1998). This theory suggests that the latent factor (for general intelligence or
in our case general mathematical ability) is of a natural kind and directly affects the scores
on different domains that reflect, to varying extents, the general domain. This g is the real
variable of interest, an entity that exists independent of the data.

Although the standard g-factor theory does not include a developmental perspective
(van der Maas et al., 2006b), a natural developmental interpretation of g suggests that
changes in g induce changes in different subdomains. Thus changes in different skills, that
function as indicators of g, should be caused by developmental processes in g.1 Therefore,
it is often assumed that the correlational structure – reflecting the strength of the general
factor – is relatively stable over time (Jensen, 1998; Gignac, 2014). Empirical results on
these differentiation effects are mixed (D. Molenaar, Dolan, Wicherts, & van der Maas,
2010). Gignac (2014) found that the strength of g was relatively stable between ages 2.5
and 90. Whereas McArdle et al. (2002) concluded that the development of a single g-factor
provides an overly simplistic view, which was based on the analyses of learning curves of
5 to 90 year-olds.

In the field of mathematics such a general latent ability that causes the performance on
multiple relatedmathematical test is often (implicity) assumed. For example, when higher
order latent variables are introduced to model individual differences (e.g., Aunola et al.,
2004; Muthén, Kao, & Burstein, 1991).

A second, more recent, theory was proposed by van der Maas et al. (2006b) as an
alternative explanation for the positive manifold. In mutualism theory, development is
seen as a complex system of (positively) interacting processes, where learning one process
(skill) supports learning of the other processes in the system. The proposed mutualism
model of general intelligence explains the positivemanifold by positingmutually beneficial
relations between the different abilities during development. The strength of these mutual
relations between abilities are captured in the M matrix in the mutualism model and can
be both unidirectional – as for example in investment theory where growth in crystallized
intelligence is fueled by growth in fluid intelligence Cattell (1971) – or bidirectional. These
bidirectional facilitating relations have previously been observed between the development
of cognitive strategies and short-term memory (Siegler & Alibali, 2005), vocabulary and
reading ability (Quinn, Wagner, Petscher, & Lopez, 2015) and between subjective and
objective memory in aging (Snitz et al., 2015). In mathematics, van der Ven, Kroesbergen,
et al. (2012) found a positive interactions between changes in math skills and changes in
working memory, suggesting mutual influences in their development.

1A strict interpretation of the g-factor model would even predict that development in a lower order factor would
not result in any changes in other lower order factors, and would merely result in a larger residual variance (van der
Maas, Kan, & Borsboom, 2014).
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Contrary to the g-factor theory, the mutualism theory predicts a strengthening of the
correlational structure between performance on different cognitive tasks during develop-
ment. Mutualism theory posits that all cognitive processes could initially be unrelated and
then become related due to the positive interactions during development.

In this paperwe compare both theoretical accounts of the positivemanifoldwith respect
to developingmathematical abilities. We investigate the relation between the development
of simple (counting and addition) and more advanced (multiplication and division) math-
ematical abilities. For both sets of abilities, we examine two competing predictions that
follow from each of the two developmental accounts: the cross-sectional correlational
structure between domains and longitudinal coupling between domains over time.

First, we tested whether the g-factor or the mutualism theory best describes the devel-
opment of the correlational structure between different math skills. Based on the idea of
Gignac (2014), we tracked the development of the correlations between skills over time. In
this bivariate approach the straightforward correlation coefficient contains all the neces-
sary information to test whether the strength of the positive manifold is indeed stable or
increases during development. Second, using latent change score models2 (LCSM; McAr-
dle, 2001, 2009; Ferrer & McArdle, 2010; Kievit, Brandmaier, et al., 2017), we compared a
set of models associatedwith the g-factor andmutualism accounts of the positivemanifold
in performance on different mathematics tests. To this end we analyzed data of a large
group of children that frequently played different games in Math Garden.

To summarize, the goals of the current study are to examine whether g-theory or mu-
tualism theory best explains the positive manifold in mathematical abilities. Mutualism
theory predicts (strong) bidirectional relationships between different abilities during de-
velopment whereas g-theory does not. Testing this prediction requires translating it into
a testable statistical hypothesis that can be applied to longitudinal data. The next section
provides these methods, as well as a description of the data.

6.2 Method

Modeling Framework: Latent change score models

Latent change score models are structural equation models where the (latent) variables of
interest are represented as change scores between time-points. The score on variable y of
person p at time-point t is regressed onto the score of t-1 as follows:

ypt = βt ,t−1 ypt−1 + ∆pt .

Setting the regression coefficient βt ,t−1 = 1 results in a ∆pt that reflects the change in the
scores between both time-points:

2Sometimes referred to as latent difference score models.
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∆pt = ypt − ypt−1.

In the current paper we extend the LCSM to bivariate LCSM (McArdle, 2001) which al-
lows us to investigate the relationship between the development of abilities in two separate
domains as follows:

∆1,pt = β1 y1,pt−1 + γ21 y2,pt−1

∆2,pt = β2 y2,pt−1 + γ12 y1,pt−1

In this model a change score is defined for both domains (1,2). We use this framework to
model growth using two different components. First, β, is a self-feedback parameter that
relates the change between time-points to the scores on the previous time-point. A positive
β reflects accelerating growth and a negative β indicates damping, regression to the mean,
or ceiling effects. Second, and most important, are the coupling parameters γ. These
reflect the effect of the previous score in one domain (i.e., at t-1) on the change in score
in another domain. By examining the γ21 and γ12 parameters, we can determine which
domains influence the development of other domains. Both γ and β parameters predict
change scores and can therefore capture nonlinear processes (Ghisletta & De Ribaupierre,
2005).

We formulated a set of LSCM’s that allow a direct comparison of two developmental
theories by focusing on different ways to model change scores, which capture the amount
of development between different time-points. We assumed that differences between g-
factor and mutualism models (both with uni- and bidirectional effects) would show up
in differences in the γ parameters. This is because there is a clear relation between the γ
parameters in the LCSM and the M matrix in the mutualism model (effect of M is also
defined on change scores; see van der Maas et al. (2006b). Using LCSM’s we formulated
different models based on hypothesis of either g-factor or different mutualistic accounts on
the development of mathematical abilities, see Figure 6.1. For both models we included
covariates of age (at T1) and amount of practice (number of items solved before T1) to
account for possible differences between children in the baseline scores (T1). We did not
include any covariates onother variables in themodel because thedevelopmental processes
between the waves should be solely explained by the dynamics defined in the different
LCSM’s.

First, for the g-factor model, the latent g-factor is the underlying mechanism that steers
development (i.e., change) in all domains. Hence, the change processes are defined at
this latent level (∆g1 and ∆g2), and the observed scores and changes in both domains are
expected to be caused by changes at the higher latent level. This results in a univariate
LCSM, since only a single set of change factors at the level of g is required. We imposed
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Figure 6.1: Specifications of the latent change score models of g-factor and mutualism
accounts of cognitive development. Key parameters are color coded, and the same color
indicates parameter equalities. Means and variances were estimated for all orange colored
latent variables.

measurement invariance over time and allowed the observed scores within each domain
to be correlated over time.

Second, for themutualismmodel, we formulated a set of bivariate LCSM’swith separate
change scores for eachdomain and then successively added couplingparameters to connect
the changes (development) acrossdomains. For both the simple (addition andcounting) and
the advanced (multiplication and division) pairs of abilities, this resulted in four LCSM’s:
(1) a model without coupling parameters (see Appendix to Chapter 6 for a description of
the differences between this bivariate LCSM without coupling and the univariate LCSM,
the g-factor model), (2 & 3) two models with unidirectional coupling where only one of
the two coupling parameters was present (for example an increase in counting results in
growth in addition but not vice versa) or (4) amodelwith bidirectional couplingparameters
(mutualism), where changes in each domain influences development in the other domain.
The no-coupling model resembles the correlated growth model of Quinn et al. (2015) and
functions as a baselinemodelwhichwe test against to determine the presence of significant
coupling parameters. Also, as indicated by a simulation study (seeAppendix toChapter 6),
if the coupling parameters are set to zero the model fit of the no-couplingmodel resembles
the model fit of the g-factor model, which further supports its use as a baseline model.

In the bivariate LCSM’s the (residual) change factors (∆X1, ∆X2, ∆Y1 and ∆X2) are
allowed to be correlated. These correlations imply that after possible coupling effects,
the change factors of different variables and at different time-points are related. These
correlations, or ’structured residuals’ cf. Curran, Howard, Bainter, Lane, and McGinley
(2014) reflect the effects of: (1) a possible larger set of variables that influence growth in both
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Figure 6.2: Screenshots of the counting, addition, multiplication and division games in
the Math Garden online learning platform. On counting and addition tasks children click
an answer option to give a response. For multiplication and division children use the
numeric keypad to supply their solution. The coins at the bottom disappear gradually, one
per second, and represent how the games are scored – one point for each remaining coin
after supplying the correct solution.

measured domains, which are not included in the analyzed data set (e.g., workingmemory,
processing speed, reasoning) and/or (2) amismatch betweenmeasurement density during
data collection and the time steps with which natural development unfolds (see Appendix
to Chapter 6). Both of these causes could be present in our sample.

Both models are formulated based on a data set with three time-points. In constructing
a data set based on data from an online learning systems there is a trade-off between either
a large number of time-points with fewer children or a smaller number of time-points
resulting in a large number of participants. We aimed for the latter and selected three
waves. This allows us to test the competing models with sufficient precision, and even
allows for extensions such as incorporating the correlations between changes and sub-
sequent changes between and within domains, whilst retaining sufficiently large sample
sizes of children who played regularly. Also, the formulation of both models including
the correlational structure on the change scores is straightforward, and no higher order
change-factors can or have to be specified as for example in Ferrer and McArdle (2003,
2004). Moreover, sampling three full school years allows us to study a sufficient period of
learning and development.

Instruments

Data was collected using a popular Dutch online adaptive practice system for mathematics
(MathGarden; Straatemeier, 2014; Klinkenberg et al., 2011). The systemconsists ofmultiple
games that measure different mathematical abilities. In each game a player’s ability is re-
estimated after every response using a variant of the Elo-algorithm (Elo, 1978; Klinkenberg
et al., 2011), which takes both accuracy and response time into account (Maris & van der
Maas, 2012). For more details on the Math Garden and its psychometric properties, see
Appendix to Chapter 6. In this study we focus on two basic skills: counting (Jansen et al.,
2014) and addition, and two more advanced skills: multiplication (van der Ven et al., 2015;
Hofman, Visser, Jansen, Marsman, & van der Maas, Submitted) and division. Each skill
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is measured by a separate game. Figure 6.2 shows a screen shot of an example item of
each game. The estimated ability scores (comparable to factor scores in structural equation
models, see Appendix to Chapter 6) were used as input variables in the LCSM’s.

Children (or their parents) who indicated that they did not want to participate in
scientific research conducted with Math Garden were excluded from the analyses. This
research study was approved by the psychology department’s Ethics Committee.

Data Selection: Tracking Development

We selected the ability estimates of children who played at least thirty items in one week
between the start of the school year in 2013 and the end of the school year in 2016 (covering
three full school years). For the investigation of the development of counting and addition
we selected children in first grade, born in 2007 , at the start of the data collection (around
nine years old at the end of data collection - end of 3rd grade). For the investigation of
multiplication and division development we selected children born in 2006 who were on
average eight years old at the start of the data collection (beginning of 2nd grade). By
selecting children based on birth cohorts we ensured that the childrens’ ages increased
(linearly) over time, although children could enter and the leave the data collection at
different time-points by deciding to start or quit playing a particular game. The same
data selection approach was used by Brinkhuis, Bakker, and Maris (2015). We plotted the
number of selected children for eachweek in the upper panel of Figure 6.3. School holidays
are denoted by the grey areas. For the analyses on the changes in correlations between the
math abilities we only included weeks in which a least 25 children played both games.

Data Selection: Latent Change Score Models

For the estimation of the LSCM’s we constructed a data set with three time-points. We
selected the ability estimates of children for the three separate years in the first month
(2013-09-02 - 2013-10-04; 2014-09-01 - 2014-10-03; 2015-08-31 - 2015-10-02), the middle
(2014-01-06 - 2014-02-07; 2015-01-05 - 2015-02-06; 2016-01-04 - 2016-02-05) and at the end of
the school year (2014-05-12 - 2014-06-27; 2015-05-11 - 2015-06-26; 2016-05-09 - 2016-06-24)
giving us nine ability estimates per math task. We defined these time-points based on
school periods to capture our hypothesis that the amount of schooling is the dominant
factor in driving developmental change. In addition, only data of children in grades one
to six, between four and twelve years old3 and who solved at least thirty items on the
two domains within one or multiple periods were selected. For the analysis based on the
counting and addition games we only selected children under ten years old given that the
counting game is most relevant for this age group. All scores were standardized based on
the mean score and SD at T1.

3We performed a reliability check on the information about age and grade, where children who deviated more
than two standard deviations from the average grade per class were deleted
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Figure 6.3: The number of selected players in our dataset for each game (upper-panels;
gray areas indicate school holidays), the mean ability scores for each game (middle-panels;
with the 95% confidence interval) and the correlations between scores for children in a
specific birth cohort (children born in 2007 and 2006, respectively). The gray area indicates
the 95% confidence interval and the dashed blue line is the regression line which indicates
a significant increase in both correlations over time.

Model Estimation and Comparison

LCSM’s were estimated in Lavaan (Rosseel, 2012) using Full InformationMaximum Likeli-
hoodwith robust standard errors to account for missings and non-normality. To assess the
overall model fit we used the following tests with guidelines based on Schermelleh-Engel,
Moosbrugger, and Müller (2003); chi-square test, the CFI (acceptable fit .95 − .97, good
fit > 0.97), the RMSEA (acceptable fit < 0.08, good fit < 0.05), the SRMR (acceptable fit
.05 − .10, good fit < 0.05). We compared the model fit using information criteria (AIC
and BIC) and Akaike Weights (Wagenmakers & Farrell, 2004). These weights express the
evidence for each model given the observed data and the set of candidate models.
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6.3 Results

Developing Correlations

First, we investigate the development of the correlations between the two math skills in
each data set. The upper-panel plots of Figure 6.3 show the number of participants for
each week; the green line indicates the number of participants that played both games.
The number of participants varied from 25 (minimum) to 250 at the peaks. The division
game was the least popular game, with about 100 participants during peak periods. Not
surprisingly, in each math domain the average rating clearly increases during the three
years of data collection (middle-panel plots), with the exception of the summer holidays
where a dip is observed. The lower-panel plots show the correlation between the twomath
domains for each week (only weeks where >25 children played both games). The grey
areas indicate the 95% confidence interval and the blue dashed line shows the predicted
values from a weighted linear regression model where the correlation is predicted by time
(week number) using the number of observations per week as weights. For both data
sets this regression coefficient was positive and significant (1 counting and addition: β
= .00094, t(107) = 4.779, p < .001, R2 = .166; 2 multiplication and division: β = .00087,
t(100) = 4.458, p < .001, R2 = .158)4. This clearly indicates that the estimated correlation
coefficients increased over time.

This analysis provides indirect evidence that mutualistic interactions drive the devel-
opment of these math skills, resulting in increased correlations over time. This evidence,
however, is inconclusive since the change could be caused by either changing error vari-
ances in both scores or changes in the strength of the factor (Gignac, 2014; D. Molenaar et
al., 2010). Yet the current result naturally follows from a mutualism perspective, while it
is more difficult to reconcile from a g-factor perspective. In the next analyses we provide
a more direct comparison of both theoretical accounts explaining the positive manifold,
using a set of LCSM’s.

Latent Change Score Models

The data selection resulted in 11,980 participants for the counting vs addition data set and
12,368 participants for the multiplication vs division data set (of which 697 and 1,054 cases
respectively contained data on both variables at all three time-points). 218 participants
from the countingvs additiondata set and8participants from themultiplicationvsdivision
data set were deleted due to outliers (ability score that deviated more than three SDs from
the mean). Table 6.1 shows the total number of participants included at each time-point,
the mean and SD of the unstandardized ratings, and the correlations between the ability
scores at each time-point for each data set.

4Since some cases might have overlapped for different data-points we used a bootstrap method and performed
a permutated null-hypothesis test. Using 50.000 replications, none of the sampled t-statistics exceeded the observed
t-statistics, supporting the significant results of the presented tests for both data sets
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6. The Dynamics of Development

We fitted the five different LCSM’s on both data sets. Table 6.2 shows the different fit
indices for each of themodels. For both data sets, all models showed a good fit as indicated
by the CFI, RMSEA and SRMR, with only small differences between these three fit indices.
The AIC and BIC, which take both fit and model complexity into account, showed that the
four bivariate LCSM’s (a no-coupling, two unidirectional coupling and amutualismmodel
with bidirectional coupling) fit better than the g-factor model. Furthermore, according to
the AIC the mutualism model including two sets of coupling parameters showed a better
fit than both unidirectional models and the bivariate model without coupling Using AIC-
weights (Wagenmakers & Farrell, 2004), we can represent the conditional probability of
each model, given the observed data, within our set of candidate models.

No Coupling

Uni.(Y <− X)

Uni.(X −> Y)

Mutualism

g−Factor

Counting vs Addition

P(Model | Data)

0.0 0.2 0.4 0.6 0.8 1.0

Multiplication vs Division

P(Model | Data)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 6.4: The AIC-weights of all models for both data sets, indicating the evidence for
each model given the observed data and the set of candidate models.

Figure 6.4 shows these weights for each model and clearly indicates that the mutual-
ism model outperforms all other candidate models in the counting vs addition data set.
This differences is less prominent for multiplication vs division data set. For this data
set the fit of the mutualism model only slightly outperforms the unidirectional model
including a coupling parameter from division to multiplication. According to the BIC this
unidirectional model provides a better fit, while comparison of the likelihoods indicates
significantly better fit for the mutualism model (X2(1) = 4.746, p = .029). Both models
clearly outperform the g-factor account. Although the evidence of bidirectional coupling
is less clear, the mutualism model provides the best description of the data.5

In the following section we investigate the parameter estimates of the mutualismmodel
in more detail. Figure 6.5 shows all parameter estimates for the mutualism model fitted

5For the multiplication vs division data set, the results were comparable if no covariates were included in the
model and the mutualism model clearly outperformed the other models. For the counting vs addition data set this
was also the case when only Age was included as a covariate. Excluding Age resulted in a small variance in one
of the change factors (no difference from zero). This suggested that no individual differences were present in this
change-score. This caused problems for the estimation of the covariance matrix of the change scores, resulting in
unreliable model comparison.
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6.3. Results

to the counting and addition data set. Since the model parameters for the counting
and addition data set were very similar to those of the multiplication and division data
set, we first describe the general model details and then go on to describe the main
differences between the results for the two data sets (see Appendix to Chapter 6 for all
model parameters of the multiplication and division data set).

Figure 6.5: The estimated model parameters for the best fitting mutualism model for the
counting and addition data set. The first value denotes the unstandardized coefficient,
with the standard error between brackets, and the value after the vertical bar denotes the
standardized coefficient. The stars indicate the significant levels (* = p <.05, ** = p < 0.01
and *** = p < .001). The grey lines indicate fixed parameters. The observed scores (X and
Y) are the latent trait estimates provided by Math Garden.

Both age and the number of items solved before T1 (counts) have large effects on the
scores at T1, and the corrected scores in both domains are, as expected, still highly corre-
lated. The means of the change scores indicate significant positive changes in ability from
one time-point to the next. The self-feedback parameters are negative, which indicates
that participants with high scores have lower change scores than participants with lower
scores. These negative effects are often found, both in longitudinal data (e.g., Kievit, Lin-
denberger, et al., 2017) and in dynamic testing (e.g., Stevenson, Hickendorff, Resing, Heiser,
& de Boeck, 2013). This could indicate regression toward the mean, as well as reflecting
a deceleration in mathematical development over time. In principle these negative effects
can also be caused by ceiling effects, but these were not present in the data. More im-
portantly, the coupling parameters are positive, indicating that high scores in one domain
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6. The Dynamics of Development

result in more change in the other domain, as is predicted by the mutualism model. The
self-feedback and coupling parameters explained 7.8% and 8.4% of the variance respec-
tively for the first and second change score of addition (X) and 3.6% and 4.3% respectively
for the first and second change score of counting (Y). For the multiplication and division
data set these explained varianceswere 3.1% and 2.6% for the first and second change score
of multiplication (X) and 1.9% and 0.4% for first and second change score of division (Y).
Although these values differ, in general they indicate that a non-trivial part of the variance
in the change scores can be explained by the effects included in the model.

We found significant correlations between the latent change scores of the different
domains at the same time-points (respectively, .546 and .566 for the first and second
change scores). These correlations show that after including the coupling parameters
the residual changes are still positively correlated. This suggests that, unsurprisingly,
it is likely that other cognitive or developmental factors influence change rates in both
domains (see Appendix to Chapter 6) or that the analyzed data does not include enough
waves to perfectly describe the true developmental processes (see Appendix to Chapter
6). Possible other cognitive candidates include growth of working memory, processing
speed and attention factors. For the multiplication vs division data set these correlations
were respectively .638 and .657. The remaining correlations between the change scores
(correlations between ∆X12 and ∆X23, ∆Y12 and ∆Y23, ∆X12 and ∆Y23 and between ∆Y12
and∆X23) did not differ fromzero in the counting vs additiondata set. In themultiplication
vs division data set these correlations were non-zero, varying between .104 and .199. The
remaining residual correlations between the change factors ∆1,tp and ∆2,tp , after including
the direct links between learning processes, could be caused by unobserved coupling
effects (see Appendix to Chapter 6), but also allows for an additional g-factor effect. Hence,
these results are inconclusive about the explanation of the remaining correlations structure
of the change factors.

To conclude, consistent with the conclusion from the analyses of the developing cor-
relations, the comparison of different LCSM’s indicated that, in line with the mutualism
model, bidirectional coupling is present between the development of counting and addi-
tion, as well as the development of multiplication and division. A final alternative account
to explain the large positive correlational structure between change scores can again posit a
g-factor to explain these correlations between change-scores. Hence these results indicate
that a non-trivial proportion of developmental processes can be ascribed tomutualistic pro-
cesses, but a considerable proportion of the shared variance remains to be explain, either
by a g-factor account or by incorporating more dynamically coupled cognitive domains.

6.4 Discussion

We compared two leading theories on the development of intelligence, g-factor and mutu-
alism, using a large longitudinal dataset of primary school children’s developing mathe-
matics skills. The main finding is that a g-factor account of mathematics learning provides
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6.4. Discussion

a too simplistic account of the developmental processes. Instead, to understand how chil-
dren learn mathematics, a dynamic mutualism account, where learning one skill benefits
learning another, and vice versa, needs to be added to the equation.

We found significant coupling effects during the development of counting and addition
aswell asmultiplication and division. Thesemutually beneficial interactions could emerge
through mechanisms in cognitive development and/or as a result of the educational pro-
cesses Kievit, Lindenberger, et al. (2017). From a cognitive development perspective, it
is possible that, on the one hand, learning to count is a prerequisite for solving addition
problems and, on the other hand, some counting tasks are easier to solve using advanced
addition strategies (counting sets of elements Carpenter & Moser, 1984). If so, we would
observe direct coupling between overlapping cognitive skills, which could possibly be due
to test items with overlapping skills (this hypothesis corresponds with the bonds model of
Thomson (1951)). Since the transfer effects of learning between different tasks are usually
not very strong (Barnett & Ceci, 2002), a second indirect coupling is also likely to occur
via the (learning or school) environment of students. From an educational perspective,
indirect coupling could, for example, be due to selection effects. The skills under study are
relatively easy to observe in classrooms and this would allow teachers to intervene based
on individual differences they see between children. An education system where more
skilled children are selected for more challenging academic environments would result
in an indirect coupling between learning different skills (see for example the proposed
mutualism model of intelligence by p. 101 Kan (2012) where both direct and indirect
environmental effects are included). In such an environment an excellent student in, for
example, multiplication would be earlier provided with more challenging division items
compared to his peers. These environmental effects are, for example, present in the relative
age effect in education (Verachtert, De Fraine, Onghena, & Ghesquière, 2010) which can be
explained by selection effects (Musch & Grondin, 2001).

Another explanation of the coupling effects we found could be based on developments
in the modeling procedure. That is, it is likely that individual differences between children
are present in the coupling between learning different skills. van der Maas et al. (2006b)
showed that individual differences in coupling effects leads to vastly different learning
curves between children, and also the complex factor structure often found in real data.
For example, Ferrer, Shaywitz, Holahan, Marchione, and Shaywitz (2010) found that differ-
ences in coupling parameters between IQ and reading development were present between
typically developing readers and two groups of children with reading difficulties (com-
pensated and poor readers). The authors concluded that the differences in the dynamics
between developmental groups accounted for the differences in reading development. If
substantial individual differences in coupling parameters are indeed present, these could
provide a new window for understanding development and this would allow for early
detection of abnormal developmental trajectories.

Althoughwe analyzed ’big’ longitudinal data collected in a natural learning setting, the
sample has some shortcomings. First, the children selected the games they wanted to play.
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6. The Dynamics of Development

Most likely higher-ability children chose to play more difficult games earlier than lower-
ability children; this would mean that we compared the scores of higher-ability children
at earlier time-points with those of lower-ability children at later time-points. This self-
selection bias would likely underestimate the average level of change between time-points.
However, since this selection mechanism likely underestimates rather than overestimates
average changes in ability, our findings remain valid. Second, the the density of data
collection determines the level of detail we see in the window of development, which of
course should mimic (to a reasonable extent) real developmental processes. But, coupling
effects that occur on a different time-scale than the detail of data collection could influence
the correlational structure of the change scores. The time-points we used, three within a
full school year, probably resulted in an underestimation of the true coupling effects. This
is also supported by the high correlations between the change factor of different skills at the
same time-points. Third, as with other longitudinal data analyses, practice effects could
have influenced our results (Salthouse & Tucker-Drob, 2008). However, as explained by
Kievit, Lindenberger, et al. (2017), the presence of practice effectswould only underestimate
mutualistic coupling effects, because ability changes caused by practice effects would be
less likely to result in coupling with other skills. For example, Lövdén, Ghisletta, and
Lindenberger (2004) showed that, within a multilevel model framework, coupling effects
increased when the models accounted for retest effects. Fourth, the estimated ability
scores are based on responses in a low-stakes testing environment and children might be
distracted or not motivated to do their best. However, we do not expect that this caused
biases in the data for two reasons. On the one hand, we analyzed a large group of children,
which means that possible differences between motivational differences between children
are likely to cancel each other out. On the other hand, the motivational effects probably
did not differ between time-points.

Despite these limitations, our findings have important implications for understand-
ing the processes involved in the development of mathematics abilities. The mutualistic
effects found in this study imply that during development different skills become more in-
tertwined and possibly, at some point, become so strongly connected that they can be seen
as a higher-level unidimensional skill. Hence, these higher-level factors emerge fromdirect
links during development. These mutualistic effects imply accelerated growth during this
developmental period and differences in the learning speed should be determined by the
strength and number of coupled skills. If the presented results replicate, future research
should study large-scale multivariate longitudinal data of important skills during devel-
opment to get a more complete picture of the processes involved in cognitive development,
and mathematics learning in particular.

104



7 Learning Analytics: Examining Processes in

Time-Series of Responses to Single Items

This chapter is published as: Hofman, A. D., Jansen, B R. J., de Mooĳ, S M. M., Stevenson, C. E. & van der Maas,
H. L. J. (2018) A Solution to the Measurement Problem in the Idiographic Approach Using Computer Adaptive
Practicing. Journal of Intelligence, 6 (1), 14
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7. Learning analytics

Abstract

Molenaar’s manifesto on psychology as idiographic science (P. C. Molenaar, 2004)
brought the N = 1 times series perspective firmly to the attention of developmental sci-
entists. The rich intraindividual variation in complex developmental processes requires
the study of these processes at the level of the individual. Yet, the idiographic approach
is all but easy in practical research. Onemajor limitation is the collection of short interval
times series of high quality data on developmental processes. In this paper we present
a novel measurement approach to this problem. We developed an online practice and
monitoring system which is now used by thousands of Dutch primary school children
on a daily or weekly basis, providing a new window on cognitive development. We will
introduce the origin of this new instrument, called Math Garden, explain its setup, and
present and discuss ways to analyze children’s individual developmental pathways.

7.1 Introduction

Mathematical proficiency is essential for functioning in today’s society. Higher proficiency
levels are associatedwith higher levels of employment (Hoyles, Wolf, Molyneux-Hodgson,
& Kent, 2002; Finnie & Meng, 2006) and are, for example, necessary for making well-
informed choices about health and health care (Reyna & Brainerd, 2007). Despite the
importance of mathematics, relatively little is known about the development of mathemat-
ical abilities (van der Ven, Kroesbergen, et al., 2012). One main reason for this is the lack
of an intra-individual perspective and the scarcity of large longitudinal data set collection
(P. C. Molenaar, 2004).

In 2007, an adaptive online learning system for mathematical abilities was launched
(Math Garden; Straatemeier, 2014; Klinkenberg et al., 2011) with the aim to collect the lon-
gitudinal data required for the study of developmental patterns in learning mathematics.
Math Garden and other similar online learning systems can provide recommendations to
students, predict their future performance, provide feedback for teachers and facilitate the
development of cognitive models of student behaviour and learning processes (Romero &
Ventura, 2010; Koedinger, D’Mello, McLaughlin, Pardos, & Rosé, 2015). The emergence
of such large-scale online learning systems (Castro, Vellido, Nebot, & Mugica, 2007) have
resulted in the availability of a new type of data set to study learning. In particular, such
systems can provide high-frequency measurements of single individuals performing on
single items, and such data have great potential in elucidating the processes of learning at
the lowest possible level of study: the process of learning a single item.

In the current study we explore how to visualize, describe, and analyze data at this
detailed level of an individual’s responses to single items. Example response data are
shown in Figure 7.1. Before delving into these data, we briefly introduce theMath Garden,
which was used to collect the time-series data, in the next section.
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7.1. Introduction

Math Garden

MathGarden is a computer adaptive practice (CAP) environment formathematics. In 2017
Math Garden collected around 500 million responses from 409,000 children on more than
22,000 items. In Math Garden, with the use of computerized adaptive testing (CAT), items
are matched to children in such a way that each player has a fixed probability of answering
an item correctly. This fixed probability corresponds to the chosen difficulty level. These
difficulty levels - easy (P(+) ≈ 90%), medium (P(+) ≈ 75%) or hard (P(+) ≈ 60%) - can be
selected by the players (Jansen, Hofman, Savi, Visser, & van der Maas, 2016). If players
don’t know the answer they can press the question mark button. After every incorrect
response feedback about the correct response is presented to the player. The feedback
provided helps facilitate learning (Van der Kleĳ, Feskens, & Eggen, 2015).

To match items to players, Math Garden uses an extension of classic computer adaptive
testing (CAT). The extended CATmethodMath Garden uses is based on two psychometric
innovations. First, it implements an explicit scoring rule that incorporates both accuracy
and response time. It is called the Signed Residual Time (SRT) scoring rule and was
introduced by Maris and van der Maas (2012). The scoring rule discourages fast guessing
and it makes the speed-accuracy trade-off explicit. Second, Math Garden uses an Elo
estimation algorithm based on the Elo Rating System (ERS) that originates from chess
competitions (Elo, 1978). Within each game, the Elo estimation is used to track the person
ability and the item difficulty after each answered item (Klinkenberg et al., 2011).

This extended CAT method is based on two assumptions. First, the processes involved
in both the accuracy and the speed of the response can be capturedwith a single latent trait.
Although, recent work of Rĳn and Ali (2017) showed that this assumption seems tenable,
while Coomans et al. (2016) and Hofman et al. (Submitted) propose different approaches
relaxing this assumption using an extended measurement model. Second, it is assumed
that responses to multiple items within one game (e.g., the addition game) are due to a
single unidimensional ability. This means that the responses of a person with a specific
ability level to all items within a given domain are conditionally independent for that
domain. If this assumption holds it should not be possible to find systematic differences
in responses to items within each game for users with the same ability.

The Addition and Multiplication Games

For this research a subset of the addition and themultiplication data will be used. The data
is from children that have visited Math Garden almost daily and who played frequently
for prolonged periods. The data consists of a large set of person-by-item time-series, which
are time-series of responses of a single child to a single item. The large amount of data on
learning of individual children that is unlocked by these time-series is illustrated by Figure
7.1.

This player starts (week one) with correct and some incorrect responses to easy mul-
tiplication items. Items are ordered by item difficulty. Easier items are displayed at the
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Figure 7.1: Oneplayer’s development in learning to solvemultiplicationproblems correctly.
The colors refer to correct (green), incorrect (red), question mark (blue) or responses that
were too late (yellow). The minimum number of responses for each time-series was 5. The
items are sorted by item difficulty (low = easy and high = difficult). Plots for other players,
providing different patterns, are available on www.abehofman.com/papers
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7.1. Introduction

lower end of the y-axis and more difficult items are placed at the higher end. Due to the
CAT routine at each time-point only a subset of all items are presented. Around week two
this player seems to learn the items with a times 10 operator. As a consequence his rating
increases and more difficult items are presented. Responses to this more difficult set of
items (e.g., 2× 6 and 5× 5) are more often incorrect, as is predicted from the measurement
model. Around weeks eight, nine, and ten even more difficult items are presented (e.g.,
2 × 33 and 19 × 100). Here the observed responses seem to deviate from the expected
probabilities. These deviations are especially prominent for the long series of only correct
responses to more difficult items (e.g., 64 × 100 and 100 × 12). These differences between
observed and expected responses are again present inweeks thirteen and fifteen. Themost
difficult items (at the top of the figure) are almost always solved correctly, while the easier
items - including some items that belong to the the standard multiplication tables - are still
solved incorrectly.

Furthermore, the individual item patterns show very different patterns of longitudinal
changes. Some items seem to be learned slowly (e.g., 7 × 10), whereas other item types
seem to go through abrupt changes (e.g., 55×2). For some items it is even unclear whether
the are learned at all, since the player continues to switch between correct and incorrect
responses (e.g., 2× 1). Also, for some items it seem that despite not being learned they are
no longer presented (e.g., 2 × 9).

The visual inspection of these figures highlights many interesting patterns. However,
the large number of users in these systems, combined with the fast rate with which re-
sponses are collected (about a million a day), makes it impossible to inspect these plots
for all users. Hence, learning analytics are needed to characterize different patterns of
learning, to highlight users that show interesting (deviating) developmental patterns, and
in the end to use such analytics to provide users with person-specific support in their
learning process.

Research Questions

We developed and investigated learning analytics to characterize different learning pat-
terns.1 These analytics are aimed to describe per item: (1) whether the child learned the
item; (2) what the learning pattern is; (3) what the stability and variability of responses
are over time. We focus on learning analytics that are feasible in a big data setting, such
that they can also be of a practical value for online learning systems such as Math Garden.
The learning analytics should thus be fairly simple and easy to compute. The aims of this
study are twofold: (1) To shed light on the processes of learning mathematics and (2) To
collect learning analytics to improve the system of Math Garden.

In Study 1 different learning analytics will be analyzed. In a follow-up project (Study
2) we investigate the dimensionality of the data using different analytics based on an
item clustering approach. This clustering approach (based on an extend measurement

1We thank Timo Fernhout for his contributions to parts of this chapter.

109



7. Learning analytics

model; Pelánek et al., 2016) is aimed to classify items into subsets of related mathematical
constructs. These subsets are defined by stronger correlations within the item sets and
weaker correlations between items in other sets. These sets possibly relate to different
skills involved within the games and therefore allow a more detailed description of the
individual differences between children.

7.2 Study 1: Learning analytics

Method

Data Selection

We collected responses of frequent players from the addition and multiplication games
between 2013-09-01 and 2017-07-01. To this end, we first selected players with more than
1500 responses (N is 5339 and 4714, respectively). In both games so-called mirror items
exist. Mirror items are items that only differ in the order of the operands (e.g., 1 + 2 and
2+1). Since thesemirror items are closely related, responses to bothmirrorswere combined
within a single time-series. In a second step, we omitted all responses to (mirror) items
with less than five observations and only included players when they provided at least 250
responses to 25 different items.

The data selection procedure resulted in a data set of 3,801 and 3,711 players for the
domains of addition and multiplication respectively. The data included in total 2,140,431
and 2,841,067 responses to 1169 and 741 mirror items. As expected from the results of
(Jansen et al., 2016), these responses were mainly collected for children who played at
the hard difficulty level. The probabilities of a correct response per difficulty level (see
Table 7.1) were lower than expected based on the item selection procedure, but match the
probability described by (Jansen et al., 2016).

Table 7.1: The descriptives of the response probabilities and times-series per difficulty
level.

Addition Multiplication
Easy Medium Hard Easy Medium Hard

P(+) 0.79 0.69 0.54 0.80 0.67 0.53
P(−) 0.14 0.19 0.22 0.11 0.15 0.15
P(? ) 0.03 0.05 0.13 0.06 0.12 0.26

responses 700523 399587 1040321 395509 354736 2090822
series 66279 43983 121013 32754 31405 154258

mean length 10.57 9.09 8.60 12.08 11.30 13.55
max length 165 360 249 210 180 439

Note. P(+), P(−) and P(? ) are respectively the probability of correct, incorrect and question mark
responses.
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7.2. Study 1: Learning analytics

Learning analytics

To characterize individual learning curves, a number of candidate learning statistics were
computed for each person-by-item time-series. These were the following (statistics were
computed for correct and incorrect responses only, including question mark and too late
responses as incorrect):

1. Response probabilities of the last two responses.

2. Transition probability matrix of correct and incorrect responses.

3. Coefficients of logistic regression model.

The percentage correct responses in the last two responses informs uswhether users are
able to answer an item correct at the end of a time-series. The transition probability matrix
indicates how persistent switches from incorrect to correct responses are; this is a 2 by 2
transitionmatrix, where the probability of switching froman incorrect to a correct response
and the probability of staying at a correct response are particularly informative. Since, the
other two transition probabilities are complementary this information is redundant and
will be omitted. Parameters of the logistic regression provide information on the person-
by-item learning curve. The logistic function is:

P(x = 1|t) = 1/(1 + exp−β0+β1xt )

where β0 is the intercept and β1 is the steepness of the curve. We used the position in the
time-series as the explanatory variable (xt ). The steepness of the curve reflects the speed
of learning. A flat curve indicates that an item is already learned at the start of the data
collection, or that an item is not learned during the period of data collection, depending
on the value of the intercept (β0).

WeuseBayesian logistic regression insteadof regular logistic regression, because the lat-
ter cannot handle complete separation (A. Gelman, Jakulin, Pittau, & Su, 2008). Complete
separation occurs when a developmental trajectory involves a perfect step-like function
between different states (Adolph et al., 2008). The models were fit using the arm package
(A. Gelman et al., 2009) in R (R Core Team, 2013) using default priors. BIC differences
were calculated between models with and without a slope parameter to compare the
contribution of this parameter to model fit.

Results

The distribution of the length of the person-by-item time-series is shown in Figure 7.2.
As can be seen, a high proportion of the person-by-item time-series are rather short. For
the addition games these series were on average shorter than for the multiplication game.
These differences can be due to (1) different numbers of items in the itembanks, (2) possibly
relate to violations of the unidimensionality assumption within games (see Study 2), or
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7. Learning analytics

(3) result from possible intrinsic differences between learning to add or to multiply. If
indeed learning to multiply is more difficult than learning to add this might result in a
slower progression through all items in the item bank and therefore in more observations
of particular items.
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Figure 7.2: The distribution of the length of the collected time-series for the Addition (left)
and Multiplication (right) games.

Stability, Change and Learning

First, we examined the proportion of correct responses for the last two or last five responses
for each series. These proportions indicate whether the player learned the item at the
end of the series. In the addition data set 35% of the series ended with two correct
responses. This percentage is higher than the expected probability of .29 (0.542) based on
the average response probability over all collected responses (see Table 7.1) and close to
the measurement model implied average probability of .36 (.62).2 For the multiplication
data set 47% of the series ended with two correct responses, higher than the expected
probability.

Second, the transition probabilities reflect the amount of switching between correct
and incorrect responses (including question mark responses). These probabilities indicate
whether an observed correct response reflects a truly learned state or whether switching
is more accidental. Figure 7.3 shows a histogram of the switching probabilities between
an incorrect (0) and correct response (1) (learning probability), indicating learning, and the

2For many results in this section, formal significance tests could be provided. However, we refrain from doing
so because: (1) no clear a priori hypothesis could be formulated and (2) due to the large data sets very small
an uninteresting results become significant in a null-hypothesis testing framework. For example, the 35% did
significantly differ from the expected 36% according to a simple proportion test (X2(1) = 58.60, p = 1.936e − 14)
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7.2. Study 1: Learning analytics

Figure 7.3: The distribution of the transition probabilities of switching for incorrect to cor-
rect (top) and staying at an correct response (bottom) for addition (left) and multiplication
(right) for all collected time-series.

probabilities of staying at a correct response for each domain.3 For both domains there
is a clear peak at one (bar at the right), indicating that in about 30% of the addition
series and 25% of the multiplication series the learning probability is one. For the staying
probabilities a large peak is observed at zero, indicating that in 20% for addition and 15% of
the series for multiplication a correct response is always followed by an incorrect response.
Furthermore, a comparison of the probabilities of staying in the learned state (1 → 1)
between the addition and multiplication data shows that for addition these probabilities
are lower than for multiplication. In general, these results imply that the switch from
incorrect to correct responses is not very stable.

Third, we investigate the evidence for learning in the time-series by fitting learning
curves with logistic regression models. To explore the fit of these models to the observed
time-series we plotted the observed and predicted responses of three series of the same
player in Figure 7.4.

For the addition data set 19% of the models fitted to the time-series included significant
slope parameters (as indicated by the BIC difference between the model with only an
intercept and themodelwith both a slope and an intercept parameter). Of these time-series
that included a significant slope, 70% of the slopes were positive. For the multiplication
data set 36% of the series were best described with a model including a slope parameter,
and 86% of these were positive. The slope parameters for multiplication were higher
(β1 = .25) than the slope parameters for addition (β1 = .08), see also the left panel of Figure

3The incorrect to incorrect and correct to incorrect are not depicted since these are simply the inverse of the
presented probabilities.
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items by the same player. The left panel shows a time-series with a clear increase in the
probability of a correct response. The middle and right panel respectively show a series of
a previously learned item and a series that indicates no learning.
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Figure 7.5: Thedistribution of the estimated slopeparameters for bothdata sets (left-panel),
and the relation between the length of the series and the slope parameter (middle-panel)
and the switching probability from an incorrect to a correct response (right-panel).

7.5. Furthermore, for both data sets the time-series length was negatively correlated with
slopes and learning probability in the transition matrix.

For a better understanding of these learning curves, we investigated differences between
the estimated slopes of children. First, a positive correlationwas foundbetween the average
learning between the domains addition and multiplication (ρ(826) = .345, p < .001; only
players with more than five time-series in both domains were included). Second, we
investigated the correlations between the slopes ondifferent itemswithin themultiplication
domain. Based on the patterns of Figure 1.1 and the results of van der Ven et al. (2015)
two different item clusters can be defined: items than belong to multiplication tables 2
through 9 (table items) and items with a times 10, 100 or 1000 operator (time 100 items).
Within the multiplication domain no significant correlation was found between these two
item clusters (ρ(185) = −.003, p = .964). We tested whether the correlation between these
two sets of multiplication items is indeed lower compared to correlations based on more
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similar items within the domain. To this end, we used a permutation test4 to calculate the
correlation between learning curves of two random sets of table and times 100. The average
(within cluster) correlation for table items was .471 (SD = .067) and for time 100 items was
.420 (SD = .050). These results indicate that players who show steeper learning curves on
table (time100) items also show steeper learning curves on other table (time 100) items, but
learning between items sets is unrelated. These results are surprising and will be further
explored in Study 2.

To conclude, the results about learning, stability, and change show that only for a small
set of the series significant learning seems to be present in the data. Although large
variations in learning can be expected (Siegler, 2006), some variability is caused by the
manner of data collection in an adaptive learning environment. Items are selected with a
constant fixed expected probability correct. In these systems, items that are too easy or too
difficult for children are not presented, hence more variability is expected on the observed
time-series. A second explanation for the small learning curves is provided by possible
violations of unidimensionality. This will be the topic of the next section.

7.3 Study 2: Exploring Dimensionality

In Study 2 we investigate possible violations of unidimensionality of the measurement
model currently used by Math Garden (see Klinkenberg et al., 2011; Maris & van der
Maas, 2012). Such violations, resulting from possibly different types of heterogeneous
response behaviour, could result in lower model fit and thereby worse predictions of the
expected score based on the estimated person’s ability and item difficulty parameters.
One indication of such a violation is already provided by the zero correlation between
the learning curves of table and time100 items. First, differences between these two sets of
predefined item types are further investigated. Second, using an extended measurement
model we examined the presence of item clusters in both the addition and multiplication
data set.

Methods

Analytics to Investigate Dimensionality

In order to find deviations from the expected patterns based on the Math Garden model,
the following statistics of person-by-item time-series were collected:

1. Percentage correct (question-mark responses were labeled as incorrect) in the last 10
responses (omitting shorter time-series).

2. Percentages question mark, correct responses, and incorrect responses.

4For thepermutation testweused 5000 replicationswhere in each replication all itemswere randomlydistributed
between two sets. For each set we calculated each player’s average slopes and the correlation between both of these
averages values.
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3. The mean difference between observed and expected score according to the SRT
scoring rule.

Using these statistics, the most important deviation that will be tested is the violation of
the assumption of unidimensionality with respect to different sets of items. In particular
between items that belong to the table two through nine (table items) and items that include
a times 100 or 1000 operator (time100 items). This first analysis allows us to compare
multiple predefined item sets. In a second approach, we will explore the possibility of
multiple item clusters that, if present, violate the unidimensionality assumption.

Model Extension and Item Clusters

In a recent paper by Pelánek et al. (2016), different extensions of Elo models are presented.
One of these extensions, called the networked model, is especially suited for estimation of
item clusters. In the networked model the expected score is based on an weighted sum of
the global skill (θglobal) and the local skill (θlocal):

P(x = 1|θglobal |p , θlocal |p , βi) = 1/(1 + e−(w1θglobal |p w2θlocal |p−βi )),

where the configurations of the weights (w1 and w2) were both set to .5. In our case we
estimated a local skill for each individual item. In a second step the clustering of item –
using the local skill estimates – was explored using a hierarchical clustering algorithm.5 In
this model we only focus on the response accuracy. The model parameters were updated
in the following order:

θglobal |new = θglobal |old + Kp ∗ (S − E(S))

βnew |i = βold |i − Ki ∗ (S − E(S))

θlocal |new = θlocal |old + Kp ∗ (S − E(S)),

where Kp was set to .25 and Ki to .01.

Data Selection

Two different data sets were analyzed for both the addition and the multiplication game.
First, for the computation of the analytics on dimensionality the data of Study 1 was used.
Second, for the estimation of the networked model, we selected the responses (accuracies)
of the 200 most played items of players who completed at least 20 sessions of 15 responses
between ’2014-09-01’ and ’2017-06-01’. This resulted in 5,144 and 8,180 users providing
in total 2,708,027 and 4,557,333 responses for the addition and the multiplication game,
respectively.

5These values could be optimized with different cross-validation procedures on training data.
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Figure 7.6: The distribution of the average response probability of a correct response
per time-series of the Addition and the Multiplication game and based on the expected
response probability according the the CAT algorithm.

Results

Analytics

The distribution of percentage correct, P(+), for the last 10 responses to an item for all
time-series is plotted in Figure 7.6. Included in this figure is the expected distribution. The
expected distribution was based on samples from a binomial distribution with a P(+) of .6
(corresponding to the hard difficulty level)6 and the number of samples that corresponds
to the length of the collected time-series. For both the addition and themultiplication data,
the variance of the distribution of the average P(+) was higher than the distribution of the
expected P(+). For the multiplication data set there was even a large density observed
at the tails of the distribution. This reflects that (contrary to the model expectancy) in
these series either only incorrect or correct responses were observed. To further examine
whether this large variance is due to a violation of unidimensionality, we investigated
differences between the addition and the multiplication items and between the table and
times 100 subsets of the multiplication items.

Themean percentages correct per item did not differ between the addition andmultipli-
cation games. However, within the multiplication game differences were present between
the two sets of items. The left panel of Figure 7.7 shows that the time 100 items had a higher

6Note that also a P(+) of .54 could be used based on the overall observed response probabilities, see Table 7.1.
Although this would change the location and the variance of the distribution slightly, the observed variances were
also much larger than the expected variances based on this P(+)
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Figure 7.7: The average response probabilities (accuracy and question mark; left-panel)
and the bias and root square mean error (RSME; right-panel) per item.

probability of a correct response and a lower probability of a question mark response com-
pared to the table items. These differences between these sets of items were also present
in the model fit - the difference between the observed and the expected score according
to the SRT model. The right-panel of Figure 7.7 shows the bias (the average difference
between the observed and the expected score) and the root mean square error (RMSE) per
item, taking both the accuracy and response time into account. For both the addition and
the multiplication game, as expected, the item bias was generally centered around zero.
However, the time 100 items had a negative bias whereas the table items showed a positive
bias.

Next, we found a negative relation between the average response probabilities of users
for the table and the time 100 items (ρ(185) = −.416, p < .001; we only included users with
time-series of a minimal length of 10 to more than five different items).7 This indicates
that for a subgroup of users table items were easier than predicted while the time 100 items
were more difficult than predicted, and one group of users for whom it was the other
way around.8 This further supports the results following from the item perspective, that

7We compared this correlation coefficient with the estimated correlations between the average response prob-
abilities of users based on two random sets of items within the table or time 100 set (using a permutation test with
5000 replications). The average correlation between two random sets of table items was .815 (SD = .030) and between
sets of time 100 item was .727 (SD = .070). Hence, users that score higher than expected on one set of items, score
lower than expected on the other set of items.

8It should be noted that the negative relationship between the percentages correct for the 10, 100 and 1000
operators and for the regular multiplication tables is a local effect due to the adaptive nature of Math Garden. This
negative relationship holds for users who have roughly the same ability estimate for multiplication, because only
users with roughly the same ability estimatewill make the same items. Thus, it does notmean that the same negative
relationship would hold if users would be presented with all items in a non-adaptive test.
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Figure 7.8: The distributions of the estimated correlations between the local skills in the
addition, multiplication and simulated data. Gray squares indicate missing values in the
correlation matrix, resulting from the adaptive item selection.

indeed violations of unidimensionality seem present between the table and time 100 item
sets.

To conclude, the presented analyses on dimensionality suggest that within both the
addition and themultiplication domain some violations of the unidimensionality assump-
tions occur. Furthermore, in the multiplication domain these problems seem to be more
severe, and related to differences between items of the 2-9 tables and items with a time
100 operator. In the next section we explore whether more item clusters are present in the
multiplication game and whether any clusters can be found in the addition game.

Item Clusters

Wevisualized the correlationmatrix of the estimated local skills (θlocal) to explore patterns
in this correlation matrix. Therefore we used a heatmap based on a hierarchical clustering
procedure using the clustR-package (Maechler, Rousseeuw, Struyf, Hubert, & Hornik,
2017). In this clustering procedure initially every local ability was assigned to its own
cluster. In each iteration the two most similar clusters were merged based on the sum of
the absolute differences of the estimated correlations. This step was repeated until all local
abilities were collapsed into a single cluster.

To interpret the results we first compared the heatmaps based on the addition and the
multiplication data set to a heatmap constructed on simulated data. For this simulationwe
generated responses with an unidimensional SRT model and fitted the networkedmodel to
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Figure 7.9: A heatmap based on the correlation matrix of the local user abilities estimated
on a simulated data set based on the unidimensional SRT model. Gray squares indi-
cate missing values in the correlation matrix, resulting from the adaptive item selection.
The figure can also be found on www.abehofman.com/papers allowing a more detailed
inspection.

the generated accuracy data. In the generated data no local skills were present. Hence,
extending to model by estimating these local skills would merely result in capturing
random fluctuations (error) in the generated data. Hence, the correlation matrix of the
local skills will in this case be centered around zero and no specific patterns between items
are expected. As shown by Figure 7.8, the estimated correlations are indeed around zero.
The heatmap based on this correlation matrix shows no clear patterns (see Figure 7.9).
Although the clustering metric seems to be sensitive to the missing data patterns, no clear
clustering structure is found on the estimated correlations.

A comparison of the density of the estimated correlations between the local skill of both
collected data sets and the simulated data set showed large discrepancies, as indicated
by the large tails in both distributions in Figure 7.8. Furthermore, the heatmaps based
on both the multiplication data (see Figure 7.10) and the addition data (see Figure 7.11)
showed clear item clusters of items with related content. First, replicating the results of
the previous section on Analytics, a large cluster of items that involve a times 10, 100 or
1000 operator was found. As expected, the local skills within this cluster had a strong
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Figure 7.10: A heatmap based on the correlations matrix of the local user abilities of
200 multiplication items. Gray squares indicate missing values in the correlation matrix,
resulting from the adaptive item selection. The figure can also be found on www.abehofman
.com/papers allowing a more detailed inspection.

negative correlation with the items of the tables 2 through 9 (table items). The table items
are not clearly represented in a single cluster. However, based on content of the items the
clustering solutions seems clearly interpretable. For example the items 700 × 80, 3000 × 80
and 80 × 6000 are placed close to the items 8 × 7 and 8 × 6. A third weaker cluster seems
present that included items that involve larger, more complicated, calculations without
any times 10, 100, or 1000 operator.

For the addition data set the cluster solution seem less prominent, however certain
item clusters do allow for an obvious interpretation. First, a cluster of addition items with
relative small solutions is present (add 2, 3, 4 or 5), with negative correlations between
items with large solutions that involve adding tens (e.g., 40 + 10 and 6 + 90). A clear third
small cluster is present with items that have an add zero term. However, a large set of
addition items cannot be clearly assigned to a cluster. This indicates that for the addition
data set the violations of unidimensionality seem less severe than for the multiplication
game.

To conclude, the different analytics show that table and time 100 items are best described
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Figure 7.11: A heatmap based on the correlations matrix of the local user abilities of
200 addition items. Gray squares indicate missing values in the correlation matrix. See
www.abehofman.com/papers for a downloadable version.

by two different skills, resulting in heterogeneous response patters. Furthermore, the
results based on the networked model show that local skills can be estimated that provide
an important addition to the global skill currently used in the Math Garden. Furthermore,
the correlations between these local skills should be described by multiple clusters that
could be interpreted based on the item content. Follow-up analyses using cross-validation
techniques should determine both the weights in the expected score formula and the
optimal number of clusters.
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7.4 Discussion

In the current paper we collected and explored different analytics based on time-series
data of responses of children to single items. The results of Study 1 shows that the learning
analytics on the collected time-series often fail to provide support for learning at the item
level. In Study 2, different analyses indicated that multiple item clusters are present,
possibly caused by qualitative different solutions strategies in both the addition and the
multiplication game.

Since the data was collected adaptively the learning patterns were expected to show
morevariability than innon-adaptive environments. Tobetter investigatedifferent learning
curves, the CAP system could be modified to collect more interesting time-series. The
current item selection procedure could be changed such that with a certain probability
one of a set of pre-selected items is selected. Although this would result in a less optimal
item selection for practicing, it would result in the collection of valuable time-series data
to further study development. Siegler and Crowley (1991) already stressed the importance
of such frequent sampling to collect longitudinal data as exemplified in his microgenetic
method. The key properties of this method are: observations span the full change process,
the density of observations is high relative to the rate of change, and the analysis is aimed
to infer the process that gives rise to both quantitative and qualitative changes (Siegler
& Crowley, 1991). Since it is very time intensive to collect this type of data using more
traditional approachesCAP systems - possiblywith some extensions - do seem a promising
way to collect this type of data.

One of the main findings of microgenetic research is that children’s cognitive develop-
ment is highly variable; the results of Study 1 are in line with this observation. Another
main finding based on the microgenetic method is that strategy-usage is highly variable
within children when a problem is repeatedly presented close in time (Siegler, 2006). Ac-
cording to Siegler and Crowley (1991) multiple strategies are available to an individual and
new more advanced strategies are not consistently applied. Over time the more advanced
strategy will replace the older less adequate strategies. Hence, developmental change is
not sudden, from strategy A to strategy B, but characterized by continuous shifts in the
distribution of use of multiple (in)correct solution strategies (Kuhn et al., 1995), which
Siegler refers to as the overlapping waves theory (Siegler, 1996). Moreover, this variability
in strategy-use is often found in mathematics learning (Lemaire, 2010; Ambrose, Baek,
& Carpenter, 2003). For example, children start with mostly simple counting strategies
(Dowker, 2005; Ashcraft & Guillaume, 2009) and after they gain experience these will be
replaced with more complex strategies, such as repeated addition for solving single digit
multiplication (van der Ven, Boom, Kroesbergen, & Leseman, 2012). In an experiment
done by Lemaire and Siegler (1995) children progressed to using more complex strategies
more often, but at each time point children used a mixture of strategies.

The results of Study 2 supports this viewon the development inmathematics. Although
each game consists of items that belong to a clearly defined domain (e.g., multiplication),
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we found multiple indications of severe multidimensionality. In the CAP system of Math
Garden this results in errors in predicted scores, and larger variances in the difference
between the observed and the expected scores. As Straatemeier (2014; p.174) proposed,
ideally ability estimates would be based on unidimensional small item clusters within
large item banks. We expect that separate ability estimates for these clusters will provide
detailed insights into students’ skills.

Currently Oefenweb is implementing a new feature that allows items to be classified
into learning goals as defined by a Dutch centre of curricula development SLO (2009).
Based on the approach of Study 2, a more data driven modeling framework could be
used to construct these learning goals, using the detected item clusters. Hence, with
an extended version of the current model that includes ability estimates of item clusters
within a domain (Pelánek et al., 2016), we could capture multidimensionality and provide
teachers with additional information about erroneous strategies or subsets of items for
which a student lacks knowledge or skills. Additionally, Oefenweb is developing a learning
module where students can select which learning goals they want to practice. This new
way of focused practice aimed at certainmisconceptions inwell defined item clusters seems
a very promising next step for the Oefenweb systems.
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8.1 Summary of Main Findings

In this dissertation entitled "Psychometric Analyses of Computer Adaptive Practice Data:
A New Window on Cognitive Development" we investigated a wide set of cognitive tasks
that are either directly or indirectly related to an educational setting. These tasks ranged
from general abilities such as proportional reasoning to specific skills such as learning
to touch type. The majority of the data was collected with adaptive web-based games
from Oefenweb, like Math Garden. In the first part of this dissertation we analyzed
cross-sectional data to study between person differences, such as the cognitive strategies
involved in the different tasks (Chapters 2-4). In the second part of this dissertation we
used a longitudinal approach to uncover within person dynamics (Chapters 5-7).

In Chapter 2 we compared a Math Garden data set with a data set from a controlled
experiment. The task was for children to determine the number of elements in a visual
display, which could be achieved by counting, subitizing or a combination of strategies. We
manipulated the configurations of the elements (random, line or dice patterns) during data
collection and investigated whether this influenced the children’s enumeration strategies.
Themanipulation affected the performance in the counting range (4-6 elements), but not in
the subitizing range (1-3 elements); this supports the idea of two distinct strategies. Since
we found similar results on the items with dice patterns for the subitizing and counting
range, this might indicate that subitizing is best seen as a pattern recognition process.

Based on the analyses of two cross-sectional data sets collected with the balance-scale
task (Inhelder & Piaget, 1958; Jansen & van der Maas, 2002), we found in Chapter 3 that
responses in the Math Garden data set were best described by more implicit information-
integration approaches, whereas responses in the paper-and-pencil data set were best
described by explicit rule-based strategies. This discrepancy shows that the results based
on traditional paper-and-pencil data cannot be generalized to those collected with online
learning environments such as Math Garden.

In Chapter 4, cross-sectional data from the multiplication game in Math Garden were
analyzed. Chapter 4 illustrates, by using a novel psychometric approach, that fast processes
are qualitatively distinct from slowprocesses in basicmultiplication. These results support
the idea that multiplication involves both faster fact-retrieval processes and slower back-
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up strategies. Allowing for these differences resulted in a more detailed and better fitting
measurement model compared to a simpler unidimensional model.

In Chapter 5 we analyzed two longitudinal samples from Math Garden. One sample
concerned data from the counting and addition games whereas the other concerned from
the multiplication and division games. It was investigated whether a one-factor latent
variable model (as implied by the g-factor theory) or a mutualistic network model best
describes developmental patterns and the interrelations between two related domains. A
latent-change score specification of both models allowed for a direct comparison of the
models. The mutualistic network model fit the data better for both the counting and
addition data set and the multiplication and division data set. This showed that, although
cross-sectionally the patterns can be described by a one-factor model, the one-factor model
is too simplistic when using a developmental perspective and describing the dynamics in
the developmental system.

In Chapter 6 we analyzed longitudinal data from the typing game in Type Garden.
Cross-sectional studies show qualitative differences between novice and experts and the
aim of Chapter 6 was to investigate how these differences might emerge. To this end we
analyzed the development of learning to type from keystroke data provided by a group
of children who completed a typing course in Type Garden. The longitudinal results
supported the two loop theory that predicts qualitatively different strategies between
novice and expert typists. We were able to show that the developmental patterns in each
loop were different, despite large individual differences.

In Chapter 7 longitudinal data were analyzed from the addition and multiplication
games in Math Garden. We used a data-driven approach to classify patterns in time-
series of individuals on single items. The clustering of specific item abilities indicated that
multiple small clusters are present within the large item banks of both the addition and
the multiplication games. In both games, estimating the ability for each cluster of items
refines the assessment of children’s skills.

To summarize, the results of the dissertation corroborate earlier findings in cognitive
development and educational psychology and also provide new insights. The disserta-
tion illustrates the range of possibilities of the data from the computer adaptive games in
Oefenweb for studying development and learning. The data also pose important psycho-
metric challenges that were identified and addressed. In the next section we discuss the
challenges that will be the subject of future research of the psychometric research group
at the University of Amsterdam (UvA) and of the development team at Oefenweb. This
discussion concludes with a short reflection on psychometrics, cognitive development and
educational practice.

8.2 Psychometrics in Math Garden Systems: The Next Steps

The research in this thesis has brought to the forefrontmany aspects ofMathGarden system
that are as yet unstudied. In what follows a number of these aspects are discussed along
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with suggestions for directions of research to further understand and improve adaptive
practice systems.

Estimating the Dimensionality of Games First, within each game a single ability is
estimated based on the responses to all items in the item bank. This approach assumes
unidimensionality: a single ability underlies the individual differences between children
on all items. Although each game consists of items that belong to a clearly defined domain
(e.g., multiplication), Chapter 7 shows that within a domain different clusters of items can
be present. The presence of item clusters cannot be captured by Math Garden’s current
IRT model; this results in errors in predicted scores and larger variances in the difference
between the observed and the expected scores. In the multiplication game, the items in a
cluster have similar content (e.g., basic multiplication problems versus problems with an
operator of 100 or 1000) and require the samemultiplication strategies (Pelánek et al., 2016).
Using learning analytics, these clusterswere detected and could be clearly interpreted, thus
supporting their validity.

As Straatemeier (2014, p. 174) already proposed, ideally ability estimates are based on
small item clusters within the large item banks. Item cluster abilities could provide de-
tailed insights into students’ skills. Oefenweb is currently implementing a new feature that
allows items to be classified into learning goals as defined by SLO (2009). Alternatively, the
presented research in Chapter 7 provides a more data driven modeling framework for de-
tecting such item clusters. Learning goals can be formulated for the detected item clusters.
Hence, with an extended version of the current model that includes ability estimates of
item clusters within a domain (Pelánek et al., 2016), we could capture multidimensionality
and provide teacherswith additional information about erroneous strategies or knowledge
that is lacking for particular subsets of items. Oefenweb is also developing a learningmod-
ule where students can select which learning goals they want to practice. This new way
of focused practice aimed at certain misconceptions in well defined item clusters seems a
very promising next step for the Oefenweb systems.

Accuracy and Speed The second issue is also related to a unidimensionality assumption
in the current model, but in this case concerns the accuracy and speed of the responses. It
is clear that response times entail important information about the solution strategies in
mathematics (e.g., Campbell & Austin, 2002), in addition to accuracy. However, different
choices can be made on combining these sources of information in a measurement model.
First, the SRT model introduced by Maris and van der Maas (2012), collapses information
about accuracy and response times into a single score to estimate the ability of students,
and thereby imposes a one-to-one relation between accuracy and speed. Second, a more
flexible approach is introduced in the seminal work of van der Linden (2007). In this
measurement model (Van der Linden model)) a correlation is introduced between two sets
of latent abilities: one related to the accuracy of the responses and one related to the
(log of the) response times. Using this approach the information in the response times
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is used to optimize the precision of the ability estimates based on accuracy. Rĳn and
Ali (2017) showed in a computerized adaptive testing context that the reliability of the
estimated parameters was higher for the SRT model than for the model by Van der Linden.
Third, Partchev andDe Boeck (2012) propose an evenmore flexible approach by separating
fast and slow responses (fast-slow model). Coomans et al. (2016) compared each of these
frameworks on different Math Garden data sets and concluded that the most flexible fast-
slowmodel is needed to capture all patterns in the data (these results correspond with the
results in Chapter 4).

Future psychometric work entails the implementation and evaluation of different mod-
eling approaches in Oefenweb games to deal with the imperfect correlation between ac-
curacy and response times. First, Hofman et al. (Submitted) and Savi, Ruĳs, Maris, and
van der Maas (2017) show that there is a relatively large proportion of fast question mark
responses. These fast question mark responses violate the assumption in the SRT model,
and are also undesirable from an educational perspective. An A/B test was implemented
(Savi, van der Maas, &Maris, 2015; Savi, Williams, Maris, & van der Maas, 2017) to test the
effects of delaying the possibility to provide a question-mark response (Savi, Ruĳs, et al.,
2017). Results indicated that, as expected, fewer question mark responses were provided.
Although direct effects on the model fit were not tested, these results will have a positive
effect on the fit of the SRT model.

A second approach to circumventing the problem of the imperfect relation between
accuracy and response times involves slight variations of the SRT scoring rule. A scoring
rule that does not punish fast errors more than slow errors (i.e., a penalty independent of
response time) seems very promising for two reasons. First, such an adaptation of the SRT
rule allows for removing punishment, which can be encouraging for insecure students.
Second, this variation of the SRT model implies a different relation between speed and
accuracy, possibly resulting in a better description of the data.

A third approach to take into account the imperfect relation between accuracy and
response times in a measurement model involves the incorporation of a complete new,
state-of-the-art tracking system. Current work of Gunter Maris (and others) is based on
an urning-scheme (see next section). One of the possibilities of using this approach is
tracking two sets of abilities based on either accuracy or speed, and the possibility to
provide (on-the-fly) significance testing of whether the abilities can be collapsed.

Optimizing Prediction and Tracking A third psychometric issue concerns the optimiza-
tion of the estimation of abilities and difficulties. In Math Garden, abilities of children
and difficulties of items are estimated continuously. Each response is used to update both.
Although abilities may be stable in the short term, they will grow in the long term as
practice enables learning. In contrast, item difficulties are assumed to be stable in the short
term and only minor changes in the long term.

Ability estimates must keep up with the growing abilities that result from the learning
process. However, responses are noisy and ability estimates may fluctuate too much if
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the updating process is too sensitive, introducing variance and lowering the reliability of
estimates. Hence, there is always a trade-off between bias (estimates do not grow) and
variance (estimates fluctuate too much) in optimizing the estimation process.1

In Elo systems, a K-parameter is introduced to optimize the bias-variance trade-off. In
general, large (small) values of K provide a large (small) weight to new responses, and
thereby introduce a high (low) variance and a low (high) bias in the system; the Elo update
rules for person abilities and item difficulties are:

θnew |p = θold |p + Kp ∗ (S − E(S))

βnew |i = βold |i − Ki ∗ (S − E(S))

Two approaches are currently available to determine the value of Kp and Ki in order to
optimize the bias-variance trade-off. A first approach is based on the off-line re-calculation
of all model parameters, using different values of K. Metrics based on differences between
observed and expected scores help in determining the value of K. A disadvantage of this
approach is the off-line character. A second approach is to determine K on the outcomes
of a large A/B test. Such an approach has been implemented recently. In ten different
settings, different values of K and of related parameters are used. These ten conditions
are based on the initial results of the first approach. Several metrics showing differences
between observed and expected scores are again used to decide on the value of K. The
advantage of this second approach is its empirical basis.

An alternative approach for optimizing the estimation process comes from the urning
updating scheme based onPólya urnmodels (e.g., Mahmoud, 2008), that is currently under
construction. In the urning updating scheme, an ability is expressed as the proportion of
successes (an item is solved correctly) and failures (an item is solved incorrectly), which are
represented by marbles in an urn. Likewise, items are represented by urns with marbles
representing the successes and failures on the item. The proportion of these marbles
indicates the item difficulty. Updating of abilities and difficulties takes place by randomly
removing one of the marbles in the ability urn and the item urn and replacing it with the
marble that represents the current success or failure. Urn sizes determine the precision
of estimates and speed of updating the estimates. Although the bias-variance trade-off
also needs to be optimized in this system by determining the urn sizes, the urning-system
has the advantage that the distribution of the model parameters is known, which is not
the case for the Elo-system. One of many possible extensions using the urning-scheme
is the possibility to calculate confidence intervals around parameters of interest. These
intervals can, for example, be used for inferences about individual differences as well as
about individual developmental growth.

To conclude, a computer-adaptive learning environment requires a firm psychometric
foundation. In Oefenweb this is accomplished through the close connection between Oe-

1The same problem is for example present in a model that uses predictions based on moving averages.
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fenweb and the psychometrics research group at the University of Amsterdam.2 Their
largely overlapping research agendas result in an iterative process where insights from
fundamental research are applied to the Oefenweb learning systems and problems that
arise in these systems are worked on (and occasionally solved) by researchers of the psy-
chometrics group. A good example is the more frequent use of A/B tests to optimize both
the psychometric groundwork and the learning environment of students, as illustrated
above. In the next section we zoom out even further and describe the crucial links between
psychometrics, cognitive development and the educational practice.

8.3 Bridging Psychometrics, Cognitive Development and Education

Math Gardenwas originally developed to collect data for the study of the complex dynam-
ics of the development of math skills. This resulted in a set-up with three different goals.
First, at the student level we aimed to develop an engaging adaptive learning environment.
The following quotes from children who played in Math Garden show their opinion on
Math Garden.

‘Rekenen ga ik nooit leuk vinden maar door Rekentuin gaat het gewoon beter’.
I will never like maths, but with Math Garden I just do better. Roos (student with
dyscalculia)

‘Door het vaker te doen werd het [rekenen] leuker, door de goede resultaten
te zien werd ik beter’. By practicing more I liked maths more, and because of the
positive feedback I learned more. Jens (student)

Second, at the teacher level we aimed to free teachers from correcting workbooks and to
provide them with detailed feedback on the learning process. The quotes below illustrate
teachers’ evaluation of Math Garden.

’Wat ik een meerwaarde vind aan dit programma [Rekentuin] is de mogeli-
jkheid om meerdere zintuigen tegelĳkertĳd te gebruiken en dat het zich aan-
past aan het niveau van de leerlingen.’ An advantage of Math Garden is that it can
trigger different senses at the same time, and that it adapts to the level of the students.
(Teacher at the Frans Jozef Pryor school in Suriname)

’We houden iedere week bĳ waar de kinderen op vooruit zĳn gegaan of
eventueel op achteruit zĳn gegaan en dat zie je in één oogopslag en dat is
echt de kern. Daar kun je je les op inrichten.’ With a quick look we can track the
progress and decline of student on a weekly basis - that is the core. We can configure
the next lessons based on this. Egon Stroop (teacher of grade 5 (7 in the Dutch
schoolsystem), De Zonnewĳzer)

2See for example the interests of the different participating researchers at https://www.oefenweb.nl/
wetenschappelijke-partners/
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8.3. Bridging Psychometrics, Cognitive Development and Education

’MathGarden creates insight and urgency in their [students’] learning process.’
Victor Ogola (research intern who explored the implementation of Oefenweb
systems in public schools in Uganda)

Finally, at the researcher level we aimed to unlock a large time-intensive database to study
learning and cognitive processes (Chapter 7 Straatemeier, 2014).

The citations of teachers and students and the popularity of Math Garden, used by
about 2000 schools, suggest that the first two goals are met. The many research papers
and this dissertation (the third on Math Garden) demonstrate the success in meeting the
research goal. However, an overarching aimhas emerged: the outcomes of research should
ultimately result in improvements of the feedback to teachers and the learning environ-
ments for students. Ideally, teacher and student experiences again feed both fundamental
and applied research. In the next section, we will highlight two different links between
psychometrics, cognitive development, and education based on results of this dissertation.

Classification of (erroneous) strategies within domains Chapter 4 provides an example
of a direct link between psychometrics and cognitive development. Based on the litera-
ture on multiplication we expected that both fast (retrieval strategies) and slow (back-up
strategies, such a counting) would be used by children solving multiplication items. The
use of the extended psychometric approach in this chapter allowed us to disentangle these
processes. The results enable tailored feedback on proficiency of both the slow and the fast
strategieswhen students learnmultiplication. Thismatches the aims of Dutch education to
both understand multiplication concepts (slow process) and to memorize the single-digit
tables of multiplication (fast process) (SLO, 2009). An implementation of this extended
measurement model in the Oefenweb systems will provide teachers information on, for
example, the ability of children in both processes. This would allow teachers to act on this
information by, for example, providing practice in automatizing the solution for specific
item clusters (see for example Chapter 7).

Understanding the connection between learning in different domains Cognitive de-
velopment can be conceptualized as a complex system of connected abilities (van derMaas
et al., 2006a; van der Maas, Kan, Hofman, & Raĳmakers, 2014). The results of Chap-
ter 5 support the presence of positive connections between the development of different
mathematical abilities measured by different games in Math Garden. Further explorations
of connections are aimed at: (1) an even larger set of abilities, (2) testing differences in
strength over time and (3) examining individual differences in the strength of the con-
nections. Using this approach Ferrer et al. (2010) found that children with dyslexia have
weaker connections between reading development and the development of IQ compared
to typically developing peers. These results suggest that the strength of connections be-
tween developing domains can provide important information about the developmental
trajectories of individual children.
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8. General Discussion

To summarize, the present dissertation shows examples of the application of psycho-
metric innovations that improve insights in cognitive development, learning processes,
the learning environment of the student and information for teachers. Practice shows
that teachers’ wishes and viewpoints as well as children’s learning behavior again re-
quire new psychometric innovations, closing the circle between psychometrics, cognitive
development, and educational practice.
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A. Appendix to Chapter 3: The Balance-Scale Task Revisited

Estimation of the weighted-sum rule

The estimation of the weighted-sum rule is based on the optimization of the following set
of equations, for each subject. First, the person vector θp is based on the implicit weight for
the number-of-blocks (αp > .5) or distance (αp < .5) dimension and on the characteristics
of the item set:

`p = (αpwl + (1 − αp)dl) − (αpwr + (1 − αp)dr)

= αp∆wi + (1 − αp)∆di .

Based on the scaled `p (σ = 1), and assuming a normal density to express the response
probabilities, the log-likelihood of the response vector can be expressed as follows (person
subscripts are dropped):

log L(`, C) =
I∑

i=1
(Ri = l) log

∫−C−θi

−∞

1√
2π

e
−(x−θi )

4 dx+

(Ri = b) log
∫C−θi

∞

1√
2π

e
−(x−θi )

4 dx − log
∫−C−θi

∞

1√
2π

e
−(x−θi )

4 dx+

(Ri = r) log
∫∞

C−θi

1√
2π

e
−(x−θi )

4 dx ,

where the indicator terms, Ri = l , b , r, are one if the response is respectively left, balance
or right and zero otherwise.

θ
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0.0

0.1

0.2

0.3
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−C C

L B R

Figure A.1: The response probabilities expressed by the weighted-sum rule.

FigureA.1 shows a visual representation of these response probabilities. The set of func-
tions is optimized with respect to α and C, using a constrained optimization implemented
with the optim-function in Cran-R (R Core Team, 2013). α is constrained between zero
and one, and C higher than zero. Note that (Wilkening & Anderson, 1982) also propose
an implicit multiplication rule that can capture RIV. However it is not possible to estimate
the parameters of this rule since the likelihood function is zero if α is zero, hence this rule
will not be further studied.
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Description of the selected items of the Math Garden data set

Table A shows the item description of the selected items of the Math Garden data set.
We also included W, CWA, CD, CB and multiple-pin items of the types B, W and D -
for multiple pin items the weights are placed on two pins on each side of the fulcrum.
Responses on these item types are not included in the results for this paper. Items where
constructed such that the variation of the product-differences within the set of items of the
same type is comparable between the different types.

Paper-and-Pencil Math Garden
Type WL DL WR DR PD Cor WL DL WR DR PD Cor
CBA 3 4 4 3 0 B 1 3 3 1 0 B
CBA 1 2 2 1 0 B 5 6 6 5 0 B
CBA 2 4 4 2 0 B 2 1 1 2 0 B
CBA 1 3 3 1 0 B 1 5 5 1 0 B
CDA 1 4 3 1 1 L 4 1 1 5 1 R
CDA 1 4 2 1 2 L 2 1 1 4 2 R
CDA 2 4 3 1 5 L 4 2 3 5 7 R
CDA 4 1 3 4 8 R 5 4 6 2 8 L
CW 1 3 2 2 1 R 3 3 1 6 3 L
CW 2 2 1 3 1 L 5 3 2 6 3 L
CW 3 3 2 4 1 R 2 5 1 6 4 L
CW 1 4 2 3 2 L 3 4 1 6 6 L
D 2 4 2 3 2 L 1 3 1 4 1 R
D 4 4 4 3 4 L 4 4 4 3 4 L
D 3 2 3 4 6 R 2 2 2 6 8 R
D 5 2 5 4 10 R 2 6 2 2 8 L

Note. The name of the item type refers to the dimension that determines the correct response; for example, in
distance items, the beam goes down to the side with the largest distance between the peg with the weights and the
fulcrum; WL, WR, DL and DR refer to respectively the number of blocks on the left and right side and the distance
between the blocks and the fulcrum on the left and right side; PD = product-difference; Cor = correct response.

Table A.1: Item Characteristics of the Math Garden and Paper-and-Pencil dataset
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A. Appendix to Chapter 3: The Balance-Scale Task Revisited

Description of the LCM per item type

Type Model NC BIC 1:p(BIC) 2:p(BIC)
D Exploratory 2 2766 <.001

3 2661 .999 <.001
4 2674 .001

Item Heterogeneity 3 2607 >.999
Item Homogeneity 3(1) 2601

3(2) 2595
3(3) 2598

Final 3(1,2,3) 2581
CW Exploratory 2 4013 <.001

3 3899 >.999 <.001
4 3934 <.001

Item Heterogeneity 3 3839 >.999
Item Homogeneity 3(1) 3834

3(2) 3831
3(3) 3840

Final 3(1,2) 3826
CDA Exploratory 2 4047 <.001

3 3831 >.999 0.048
4 3856 <.001

Item Heterogeneity 3 3825 0.952
Item Homogeneity 3(1) 3837

3(2) 3864
3(3) 3925

CBA Exploratory 3 4280 <.001
4 4253 >.999 <.001
5 4294 <.001

Item Heterogeneity 4 4233 >.999
Item Homogeneity 4(1) 4221

4(2) 4224
4(3) 4240
4(4) 4227

Final 4(1,2,4) 4208

Note. NC = the number of latent classes, the number between brackets refers to the class with constraints; p = BIC
model probability of (1) select number of classes (2) select constraints; The best fitting model is underlined.

Table A.2: Paper-and-Pencil: Fit Results LCM per Item Type
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Type Model NC BIC 1:p(BIC) 2:p(BIC)
WD Exploratory 1 2839 <.001

2 2749 >.999
3 2784 <.001

D Exploratory 1 1330 0.018
2 1322 0.982 <.001
3 1367 <.001

Item Heterogeneity 2 1303 >.999
Item Homogeneity 2(1) 1293

2(2) 1304
CW Exploratory 1 4906 <.001

2 4785 0.999 0.165
3 4798 0.001

Item Heterogeneity 2 4782 0.835
Item Homogeneity 2(1) 4793

2(2) 4840
CDA Exploratory 1 3247 <.001

2 3209 0.992 0.003
3 3219 0.008

Item Heterogeneity 2 3197 0.997
Item Homogeneity 2(1) 3186

2(2) 3213
CBA Exploratory 1 4817 <.001

2 4763 0.920 >.999
3 4768 0.080

Item Heterogeneity 2 4858 <.001
Item Homogeneity – –

Note. NC = the number of latent classes, the number between brackets refers to the class with constraints; p = BIC
weights (1) select number of classes (2) select constraints; The best fitting model is underlined.

Table A.3: Math Garden: Fit Results LCM per Item Type
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B. Appendix to Chapter 4: Fast versus Slow Multiplication

Simulating from the full-conditional distributions

The full-conditional distribution of the between dimension person covariance matrix Σθ is
easily sampled from:

f (Σθ) ∝ Inverse–Wishartn−1(Sθ),

where n refers to the sample size and Sθ to the ‘sample’ covariance matrix Cov(θ). Sim-
ilarly, we find that the full-conditional distributions for {µβ, d , σ2

β, d} are easy to sample
from:

f (µβ, d | σβ, d , βd) ∝ N(β̄d , σ2
β, d/k)

f (σβ, d | βd) ∝ Inverse-χ2(k − 1,
k∑

i=1
β2

id/(k − 1)),

where k refers to the number of items in our analyses.
Unfortunately, the full-conditional distributions of the person and the item parameters

are not readily sampled from. Standard approaches, such as the Metropolis within Gibbs
approach of (Patz & Junker, 1999a, 1999b), are difficult to apply here due to the need of
non-trivial fine-tuning that is required for each of the n×3person and k×3 itemparameters.
This fine-tuning is particularly problematic as each of the persons responds to a possibly
different set of items, and, similarly, each of the items has been responded to by a different
set of persons.

To sample from the full-conditional distributions of the person and the item parameters
we therefore utilize an independence chain Metropolis algorithm that was proposed by
(Marsman, Maris, Bechger, & Glas, 2015). Their approach is particularly efficient when
applied to the Rasch model and is simple to use with incomplete designs. 1

Robustness Analysis

To investigate the stability of the comparison of the full fast-slow model with the more
constrained versions of the model we constructed multiple data sets and replicated the
analyses presented in the paper.

Data Selection

For the single-digit items, we constructed two data sets based on the selection of children
that completed at least thirty itemswithin one day orwithin oneweek. For themost-played
items we selected data of children that completed at least 30 items within one day or one
week or sixty items within one week. These choices resulted in a total of five different
data sets. Within each data set, we selected items with a minimum of 200 responses, and
looked at the child’s first response to an item (multiple responses can be given to the same

1Details about this algorithm as applied to the Rasch model can be found in (pages 85–88 Marsman, 2014).
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items time min items N responses N children N items % mis
single- day 30 51,284 1,164 64 31
digit week 30 180,651 3,551 64 21
most- day 30 387,882 7,403 135 61
played week 30 422,634 7,860 145 63

week 60 490,874 4,813 147 31

Table B.1: Data description. The number of responses, children, items, and amount of
missing data in the different constructed data sets.

item within a set of 30 or 60 items). The total number of responses, children, items and
percentage of missing responses for each data set are presented in Table B.1

For each of the five data sets the response times were split using the overall median RT,
within-personmedian RT and the within-itemmedian RT. This resulted in a total of fifteen
model comparisons.

Model Comparison
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C. Appendix to Chapter 6: The Dynamics of Development

Description of Math Garden

Datawas collectedwith an adaptive learningprogram formathematics calledMathGarden
(www.mathsgarden.com; Klinkenberg et al., 2011; Straatemeier, 2014). After logging in,
children arrive at a page showing a garden, where each plant represents a game that covers
a particular math domain. A game starts after selecting the corresponding plant. Children
are given 15 items to solve. They respond by clicking on a response option (counting and
addition) or by using the virtual numeric keypad (multiplication and division). Each item
is presented with a time limit of 20 seconds. The time is visualized by disappearing coins
(one is lost each second that a response is not provided). If a correct response is given the
coins are added to a money bag, but they are subtracted if the response is incorrect. The
scoring rule rewards fast correct responses, but also punishes fast incorrect responses. The
score (S) that follows from this model is defined as follows:

S = (2Xpi − 1)(d − Tpi), (C.1)

with the following expected scores, based on the current θ en β estimates:

E(S |θ, β) = d
exp(2d(θ − β)) + 1
exp(2d(θ − β)) − 1 −

1
θ − β (C.2)

This explicit scoring-rule – called the High Speed High Stakes (HSHS) scoring rule
(Klinkenberg et al., 2011; Maris & van der Maas, 2012) – informs players on how to weigh
speed and accuracy. This ensures that children perceive some time-pressure and are
motivated to provide fast responses. But, they are also discouraged from guessing due to
the penalty on a fast incorrect response. When a child does not know the answer (s)he
can best wait the full 20 seconds. To prevent such waiting times the child can also use the
question-mark button, in which case (s)he does not win or lose any coins.

With the HSHS scoring rule in the Math Garden the estimates of both the user ability
and the item difficulty can be updated after each response using an Elo updating scheme
(Elo, 1978):

θp =θp + Kp(Spi − E(S)pi) (C.3)

βi =βi − Ki(Spi − E(S)pi). (C.4)

This can be seen as a dynamic systemwhere both θ and β change can change over time.
K is a smoothing parameter that determines the variance in the ratings in the system. See
Klinkenberg et al. (2011), Pelánek (2016) and Brinkhuis and Maris (2009) for more details
about Elo in the context of adaptive testing.

Based on these estimates, relevant items are selected for each player at each time-point,
such that children were expected to provide 60, 75 or 90% correct responses when playing
at the hard, medium or easy difficulty level (for more details see Jansen et al., 2016). For
the current study we only selected children who played at the medium and hard difficulty
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levels and for which the average proportion of correct responses were around the aimed
proportions, respectively .60 and .75. This ensured that the analyzed ability estimates were
reliable indicators of the true skills at different periods.
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C. Appendix to Chapter 6: The Dynamics of Development

Simulation Study

We performed different simulation studies to investigate two issues. First, we tested the
recovery of the estimated coupling (γ) and self-feedback (β) parameters and of the corre-
lational structure on the latent change factors (∆Xt , ∆Xt+1, ∆Yt , ∆Yt+1) under different sce-
nario’s. Second, we investigated themodel comparison of the bidirectional couplingmodel
(the full model), the no-coupling model and the g-factor model with varying strengths of
the coupling parameters.

Parameter recovery

Figure C.1: The results of the simulation study under three different scenario’s: A = true
model; B = selection of time-points; C = selection of variables. Here you see a simplified
depiction, where only the relevant part of the full bivariate LCSM is shown. The circles
represent change scores of variables X andY at times T andT+1. The first column shows the
coupling (green; indicating a positive effect) and self-feedback (red; indicating a negative
effect) effects of the true model and the second column shows the average estimated effects
over the 500 runs. The third and fourth columns show the true correlational structure (zero
in all true models) and estimated correlation structure respectively between the change
factors. We set the maximum value of the edges to .7 to clearly depict the difference
between the estimated model parameters.

We tested the parameter recovery of the correlations between the change scores in
the bivariate latent change score model under three different scenarios: (1) parameter
recovering in the true model, (2) selection of time-points, and (3) subset of variables. 500
data sets were simulated for each scenario with a bivariate dual latent change score model
of three time-points and 5,000 participants. These settings were chosen to resemble the
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configurations of the data sets and the estimated model parameters of the current study.
In the dynamic structure, the coupling parameters (γ) and the feedback parameters (β)
were respectively set to .2 and −.2, the average of change score factors (∆) to .5 with a
variance of .3. To test the effects of the different scenarios on the correlational structure we
set the correlations between the change factors (correlational structure) to zero in the true
model. The variance of the scores at t1 were .5 and the error variances of all time-points
were .1. The model specifications were equal to the models presented in section6, but to
simplify the model we omitted the in this case unnecessary covariates (age and counts) at
T1 because.

Scenario A: parameter recovery in the true model First, we investigated the recovery of
the parameters under the true model. The results showed that under the specifications
both the parameters of the dynamic and correlational structure we used were perfectly
recovered, see upper-panel of Figure C.1.1

Scenario B: selection of time-points Second, we investigated the effect of collecting a
subset of the time-points on which the real developmental process unfold. To this end we
generated data sets with seven time-points while only three time-points were observed
and analyzed (the first, fourth and seventh time-point). Hence, in the true model multiple
iterationswere present between the dynamical structure of both coupled variables between
the observed time-points. A comparison of the real and the estimated parameters in
the dynamical structure (see middle-panel of Figure C.1) shows that, as expected, these
parameters were overestimated (on average the estimated parameters are around twice
as large as the true parameters). More importantly, also the correlational structure is
largely overestimated (with an average correlation of .32; varying between .03 and .5). This
indicated that this correlational structure can merely result from a data selection problem,
and an inflation of these correlations are expected if only a subset of the time-points of the
true dynamical system are analyzed.

Scenario C: subset of variables Third, we investigated the effect of collecting just a sub-
set of all variables that thrive the full dynamical system. Therefore, we again simulated
500 data sets based on a LSCM with four variables with the same configurations as dis-
cussed before. As expected, in the dynamical system the self-feedback parameters were
underestimated (-.1 instead of -.2) and the coupling parameters were overestimated (.25
instead of .2). This can be explained by the positive relation with other variables that were
not selected, although these variables did drive the changes scores upwards in the data
simulation. Also, the correlational structure between the change scores was overestimated
(correlations ranging from .06 to .24 with an average of .16). This simulation indicated that
a significant correlational structure between the change scores in the LSCM can be caused

1The plot was made with the qgraph package (Epskamp, Cramer, Waldorp, Schmittmann, & Borsboom, 2012)
in R
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Figure C.2: Model comparison using BIC differences based on simulated data sets of the
bidirectional coupling model with varying coupling parameters.

by the analyses of just a small subset of the possibly larger set of relevant variables that
thrive the changes in the dynamical system.

To conclude, the model shows very good parameter recovery under the true model,
but both a selection of time-points and including only a subset of all variables of the
real developmental system will result in an inflated correlational structure on the change
scores variables. These results should be taken into account in the interpretation of such
a correlational structure in a real data example. Crucially, the results of Scenario A and
B show that under a true model with (positive) mutualistic effects and no correlations
between change scores, a selection of time-points or than analyses of a subset of all variables
results in an overestimation of these correlations. This shows that in addition to a g-
factor explanation of the correlational structure, these correlation can also be caused by a
mutualistic account on development.

Model comparison

In a second simulation study we investigated the model comparison between the bidirec-
tional couplingmodel (the full model), the no-couplingmodel and the g-factor model with
varying strengths of the coupling parameters. We used the same set-up as in the previous
simulation study, but with varying coupling parameters. These were sequentially set to 0,
.05, .1, .15, .2, .25 and .4, ranging from absent to moderately high. This resulted in seven
sets of 500 data sets. For each set we calculated the differences between AIC and BIC
values for the comparison of the full model with coupling parameters, constrained model
without coupling parameters and the g-factor model. The results are presented in Figure
C.2. The left-panel plot shows that, as expected, the differences between the BIC values
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were higher for higher coupling parameters (negative differences indicates that the first
model has a lower BIC values than the second model and thus results in a better fit). The
vertical lines indicate the standard deviations (2 * SD) of the differences. Both the full and
the g-factormodel clearly outperform the no couplingmodel when the coupling parameter
is higher than or equal to .1. This indicated that under the utilized data generation we have
enough power to reliably classify coupling parameters of .1 as significantly different from
zero. Also, as expected, the full model outperforms the g-factor model for high values of
the coupling parameters. A close look at the results of the smaller coupling parameters
(middle-panel) indicates that if the true coupling parameters are zero the BIC differences
indicate that the full model is, as expected, outperformed by both the no-coupling and
the g-factor model. Additionally, the BIC differences between the no-coupling model and
the g-factor model are distributed around zero, which shows that in this case both models
result in a comparable fit. This is also shown in the right-panel plot of Figure C.2: if the
coupling parameters were set to zero, in about 60% of the runs the no-coupling model
outperforms the other models, whereas the g-factor model is the best model in the other
40% of the runs. An unexpected result was the high performance of the g-factor model,
outperforming the other models in 90% of the runs, when the coupling parameters were
set to .05. Thus under these settings the g-factor model outperforms both the no-coupling
model and the full model. To conclude, both the no-couplingmodel and the g-factormodel
provide a good baseline model to test the presence of mutualistic coupling parameters and
that the full model outperforms the other models under the current settings of the data
simulation if such coupling is introduced (coupling values above .1).
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C. Appendix to Chapter 6: The Dynamics of Development

Model parameters multiplication and division

Figure C.3: The estimated model parameters for the best fitting mutualism model in the
multiplication anddivision data set. The first value denotes the unstandardized coefficient,
with the standard error between brackets, and the value after the vertical bar denotes the
standardized coefficient. The stars indicate the significant levels (* = p <.05, ** = p < 0.01
and *** = p < .001). The observed scores (X and Y) are the latent trait estimates provided
by Math Garden.
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Grote longitudinale datasets zĳn nodig om fundamentele vragen over cognitieve ontwikke-
ling en leren te kunnen beantwoorden (Adolph et al., 2008; P. C. Molenaar, 2004). Om de
ontwikkelingspatronen vast te leggen, moet deze data worden verzameld terwĳl kinderen
zich ontwikkelen.

Rekentuin, een online adaptief oefen- en meetsysteem voor rekenen, is ontwikkeld
om dit te doen: de ontwikkeling in wiskundige vaardigheden vast te leggen met als
opbrengst intensieve tĳdreeksdata voor grote aantallen kinderen (Klinkenberg et al., 2011;
Straatemeier, 2014). Rekentuin bevat een breed scala aan spellen die studenten kunnen
gebruiken om wiskundige vaardigheden (bĳv. tellen en vermenigvuldigen) en cognitieve
vaardigheden (bĳv. proportioneel redeneren enwerkgeheugen) te oefenen. Elk spel bestaat
uit een set van vragen van verschillende moeilĳkheid, zodat alle kinderen vragen kunnen
maken die overeenkomen met hun vaardigheid.

Rekentuin begon in 2007 als een onderzoeksproject aan de Universiteit van Amsterdam
en werd in 2009 gecommercialiseerd als reactie op de toenemende populariteit van het
systeem. Dit was het begin van Oefenweb, een spin-off bedrĳf dat Rekentuin en andere
adaptieve oefensystemen voor het leren van Nederlands, Engels, statistiek en typen on-
twikkelt enhost. Opditmoment (augustus, 2017), tien jaar later, heeft Rekentuin 22 spellen,
met in totaal 32.720 items en 831.280.316 responsen van 713.985 gebruikers verzameld, met
een snelheid van ongeveer één miljoen reacties per dag2. Dit proefschrift onderzoekt deze
unieke maar gecompliceerde dataset, met als doel cognitieve ontwikkeling te bestuderen.

Sleutelkenmerken van Rekentuin

Rekentuin is ontworpen voor kinderen om op school of thuis wiskunde te oefenen.
Aangezien kinderen vrĳwillig spelen, moet het systeem aantrekkelĳk en motiverend zĳn.
Mede hierom is Rekentuin speels, adaptief en is er directe feedback na elk antwoord. Zo
zĳn verschillende taken opgezet als spellen met beloning voor oefenen. Figuur 1 toont een
schermafbeelding van de landingspagina van Rekentuin. Elke plant in de tuin vertegen-
woordigt een spel dat kan worden geselecteerd om een oefensessie te starten. Kinderen

2De meest frequente speler van het schooljaar 2016-2017 heeft 48.231 vragen gemaakt.
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Figure 1: De landingspagina van Rekentuin. Elke plant staat voor een spel, en de score
op het bord geeft een indicatie van de vaardighied van de speler (op een schaal van 1 tot
1000). Spelers kunnen de moeilĳkheid van het spel bepalen door te klikken op het figuur
met een, twee of drie zweetdruppels. Dit bepaaldt de kans op het correct maken van een
opgave (90, 75, of 60 procent kans op een correct antwoord)

moeten de spellen regelmatig bezoeken om te voorkomen dat de planten verwelken. Ten
tweede komen de oefeningen overeenmet de vaardigheden van de kinderen, die erg divers
zĳn, zie bĳvoorbeeld Straatemeier (2014, p. 13) en Dowker (2005). Ten derde wordt feed-
back gegeven na elk antwoord, om gepersonaliseerd leren te bevorderen en inspanningen
te belonen.

Psychometrie van Rekentuin

De basis van Rekentuin is een uitbreiding op klassieke computer-adaptieve testmethoden
(CAT). CAT is een testmethode die is gebaseerd op item respons theorie (IRT), die bestaat
uit een grote familie van IRT modellen. De methode die door Rekentuin wordt gebruikt,
is gebaseerd op het eenvoudigste IRT model, het 1-PL of Rasch-model:

P(x = 1|θp , βi) =
exp(θp − βi)

1 + exp(θp − βi)

waar de kans op een goed antwoord wordt bepaald door het verschil tussen de per-
soonsvaardigheid (θp) en de moeilĳkheid van de vraag (βi). Het Rasch-model gaat uit
van één-dimensionaliteit (één enkele latente vaardigheid wordt gemeten door alle vragen
in het spel) en conditionele onafhankelĳkheid (de responskansen zĳn onafhankelĳk van
elkaar, gegeven de latente vaardigheid).
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Figure 2: Een voorbeeldvraag van het optellen spel. Spelers kunnen hun eigen toetsenbord
of het numeriek toetsenbord op het scherm gebruiken om antwoord te geven, of op het
vraagteken drukken wanneer ze het antwoord niet weten. De muntjes aan de onderkant
van het scherm visualiseren de geimplementeerde scoreregel. Elke seconde verdwĳnt er
een muntje. Na een goed antwoord wint de speler de resterende munten en na een fout
antwoord verliest de speler de resterende munten.

In CAT hangt de volgorde van presentatie van de vragen af van hoe iemand reageerde
op eerdere vragen (Wainer, 2000): als het onmiddellĳk voorgaande antwoord correct was,
wordt een moeilĳker item weergegeven en vice versa. Het voordeel van het gebruik van
CAT is dat vaardigheden, zoals rekenvaardigheid, kunnen worden geschat met minder
vragen dan bĳ standaardtests. Momenteel wordt CAT voornamelĳk gebruikt voor meten,
maar in Rekentuinwordt het tegelĳkertĳd gebruikt voormeten en trainen van vaardigheid.
Daarom heeft Klinkenberg et al. (2011) Rekentuin geïntroduceerd als een computer adaptive
practice-systeem (CAP).

Rekentuin maakt gebruik van een uitgebreide CAT-techniek op basis van twee cruciale
innovaties: (1) zowel snelheid als accuratesse bepalen de score en (2) het bĳwerken van de
persoonsvaardigheid en de moeilĳkheid van de vraag gebeuren real-time met behulp van
het Elo-algoritme.

De eerste innovatie, het gebruik van zowel accuratesse als reactietĳd bĳ het bĳwerken
van de persoonsvaardigheid en demoeilĳkheid van de vraag, vindt plaats doormiddel van
eennieuwescoreregel (Maris&vanderMaas, 2012; Klinkenberg et al., 2011). Responstĳden
zĳn opgenomen omdat ze belangrĳke aanvullende informatie geven over de vaardigheid
van een kind en een extra spel-element toevoegen. In Rekentuin hebben items meestal
een tĳdslimiet van twintig seconden. Volgens de geïmplementeerde signed-residual time-
scoreregel (SRT) is de score gelĳk aan de resterende tĳd voor de juiste antwoorden (twintig
seconden minus de responstĳd), maar minus de resterende tĳd voor foute antwoorden.
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Raden is dus riskant, en als een kind niet weet wat het correcte antwoord is kan hĳ of zĳ het
beste niet reageren of het vraagteken indrukken, wat een score van nul oplevert. De SRT-
scoreregel wordt visueel gepresenteerd via munten onder aan het scherm die verwĳzen
naar de resterende tĳd (zie Figuur 2). Door deze visualisatie, met eenmunt die elke seconde
verdwĳnt, kunnen zelfs jonge kinderen de scoreregel begrĳpen. Verder heeft deze nieuwe
scoreregel twee belangrĳke voordelen. Ten eerste lost het het beruchte probleem van de
speed-accuracy trade-off op (Wickelgren, 1977) omdat kinderen nu weten hoe snelheid en
accuratesse worden gewogen in de score van hun antwoorden. Ten tweede heeft Maris
and van derMaas (2012) aangetoond dat onder bepaaldemilde statistische aannames deze
scoreregel een standaard twee-parameter IRT-model impliceert. Daarom is er veel bekend
over de eigenschappen van hetmeetmodel, bĳvoorbeeld over demarginale en conditionele
verdelingen van de parameters in het model.

De score kan formeel worden uitgedrukt als:

S = (2Xpi − 1)(d − Tpi),

waarbĳ Xpi 1 is voor een goed en 0 voor een fout antwoord op vraag i van speler p. Tpi is
de responstĳd en d de deadline. De verwachte score (E(S)) die volgt uit het meetmodel op
basis van de SRT-scoreregel is:

E(S |θp , βi) =
exp(2d(θp − βi)) + 1
exp(2d(θp − βi)) − 1 −

1
(θp − βi)

.

De tweede innovatie, is het gebruik van een ‘on-the-fly’ Elo-algoritme (Klinkenberg et
al., 2011), dat zĳn oorsprong vindt in schaken (Elo, 1978). Het schatten van de parameters
door middel van het Elo-algoritme resulteert in een zelf-organiserend systeem waarin
zowel de schattingen van de vaardigheden van kinderen als de moeilĳkheid van de vragen
continu worden bĳgewerkt, onmiddellĳk na de reactie van een kind. De betrouwbaarheid
vanhet Elo-algoritme is analytisch en in simulaties goedbestudeerd (Batchelder&Bershad,
1979; Glickman, 1999; Pelánek, 2016; Pelánek et al., 2016). Het meest opvallende voordeel
van dit systeem is dat het niet de tĳdrovende en dure procedure vereist om de vragen
vooraf te testen zoals in normale CAT.

In het Elo-algoritme zĳn de bĳgewerkte schattingen gebaseerd op een gewogen som van
eerdere schattingen en het verschil tussen de waargenomen en de verwachte score:

thetanieuw |p = thetaoud |p + Kp ∗ (S − E(S))

betanieuw |i = betaoud |i − Ki ∗ (S − E(S)).

DeK-factor bepaalt het gewicht vandehuidige respons bĳhet bĳwerkenvandeparameters,
en implementeert een bias-variance trade-off. De K-factor in Rekentuin neemt toe wanneer
kinderen herhaaldelĳk onder of boven de verwachte score scoren, of wanneer ze nieuw
zĳn in het systeem (zie Klinkenberg et al. (2011), Straatemeier (2014)).
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Onderzoek met Rekentuin

De groeiende populariteit van Rekentuin biedt onderzoekers een rĳke dataset. Het on-
derzoek in dit proefschrift kan grofweg worden gecategoriseerd door drie verschillende
benaderingen. De eerste benadering is gebaseerd op directe analyses van de parame-
ters die uit het systeem volgen. Eerder onderzoek met deze aanpak werd uitgevoerd
door Klinkenberg et al. (2011), van der Ven et al. (2015, 2017) en Gierasimczuk et al.
(2013). Klinkenberg et al. (2011) tonen aan dat de persoonsparameters van verschillende
rekenkundige spellen sterk correlerenmet meer traditionele tests. Bovendien laat het werk
van van der Ven et al. (2015, 2017) zien dat itemparameters overeenkomen met de effecten
zoals voorspeld door verschillende theoretischemodellen overwiskunde. Bovendien laten
Gierasimczuk et al. (2013) en van der Maas and Nyamsuren (2017) zien dat de parameters
van personen en items in zowel het spel Deductive Mastermind als een nummerreeks-spel,
kunnen worden verklaard aan de hand van inhoudelĳke (cognitieve) modellen die voor
deze taken zĳn ontwikkeld. Deze resultaten bieden ondersteuning voor de validiteit van
sommige spellen in Rekentuin. In hoofdstuk 2 gebruiken we deze benadering en analy-
seren we de itemparameters van het tel-spel om verschillende strategieën te onderzoeken.
We ondersteunen onze bevindingen verder met een experiment op twee basisscholen.

Een tweede onderzoeksbenadering is gericht op het begrĳpen van de cognitieve strate-
gieën die worden gebruikt door spelers in Rekentuin. Hiertoe wordt een cross-sectionele
dataset samengesteld op basis van antwoorden (accuratesses en reactietĳden) op vragen
van een subset van kinderen die regelmatig een spel speelden. In deze benadering worden
‘ruwe’ data geanalyseerd met een uitgebreid latent variabel model dat gedetailleerdere
processen kan vastleggen dan het huidige meetmodel van Rekentuin. In hoofdstuk 3
bestuderen we de regels die kinderen gebruiken om vragen uit de bekende balanstaak op
te lossen. We bieden een vergelĳking tussen een op expliciete regels gebaseerd model en
een informatie-integratiemodel, over twee verschillende datasets: een meer traditionele
pen en papier dataset en een dataset verzameld met Rekentuin. In hoofdstuk 4 onder-
zoekenwe de strategieën bĳ vermenigvuldigingmet behulp van uitgebreide IRT-modellen.
Meer specifiek testen we of de vaardigheid om snelle accurate antwoorden te geven gelĳk
is aan de vaardigheid bĳ langzame responsen. Deze onderzoeken werpen licht op de
strategieën die kinderen gebruiken bĳ het oplossen van vragen, en bieden daardoor ook
aanwĳzingen voor het geven van feedback aan kinderen en mogelĳke verbeteringen van
het Rekentuin-systeem.

Beide onderzoeksbenaderingen, en het grootste deel van het gepubliceerde werk tot
nu toe, zĳn gebaseerd op deze cross-sectionele gegevens. Het volgsysteem van Reken-
tuin stelt ons echter ook in staat ontwikkelingsprocessen te onderzoeken met behulp van
een longitudinale subset van de data. De derde onderzoeksbenadering betreft dergeli-
jke longitudinaal onderzoek. Ter illustratie van de longitudinale data toont Figuur 3 de
gemiddeldevaardigheidsschattingenvaneenenkeldomeingedurendevier opeenvolgende
schooljaren, van zeven cohorten kinderen (elk cohort bestaat uit kinderen die in hetzelfde
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Figure 3: Deontwikkelingvandegemiddeldevaardigheid inhet optellen spel vankinderen
geboren in verschillende jaren. Elke lĳn (reeks van stippen) geeft de ontwikkeling van
kinderen weer uit een bepaald geboortejaar. De grootte van de stippen laat het aantal
kinderen zien die in de desbetreffende week gespeeld hebben.

jaar zĳn geboren). Deze figuur geeft data weer van 274.383 kinderen die het optelspel
hebben gespeeld, en laat zien dat de gemiddelde optelvaardigheid van kinderen in de loop
van de tĳd toeneemt. Er worden echter enkele interessante extra patronen waargenomen:
(1) tĳdens de vakantie worden dalingen gevonden in de gemiddelde vaardigheid en (2)
de grootste vooruitgang wordt waargenomen op jonge leeftĳd, en de voortgang neemt
langzaam af terwĳl kinderen ouder worden.

In het tweede deel van dit proefschrift presenteren we verschillende analyses van lon-
gitudinale subsets van de data. In hoofdstuk 5 onderzoeken we de verbanden tussen
de ontwikkeling van tellen en de ontwikkeling van de optellen, en tussen de ontwikke-
ling van vermenigvuldigen en de ontwikkeling van delen. Daarvoor analyseren we de
vaardighedenvankinderenmet behulpvan tĳdreeks-modellen, omzowel eenmutualisme-
benadering (van der Maas et al., 2006a) als een g-factor-benadering (Jensen, 1998) van
ontwikkeling te vergelĳken. In hoofdstuk 6 onderzoeken we de ontwikkelingsprocessen
van leren met behulp van de reactietĳden van toetsaanslagen van een groep kinderen die
een typecursus volgden in de Typetuin (www.typetuin.nl).

In hoofdstuk 7 presenteren we verschillende learning analytics gericht op het beschrĳven
van tĳdreeksreeksen van antwoorden van kinderen op specifieke vragen. Deze data komen
van een subgroep van kinderen die bĳna dagelĳks, en gedurende langere perioden, hebben
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Figure 4: De ontwikkeling van antwoorden van een kind op een verschillen ver-
menigvuldigingsvragen. De vragen op de y-as zĳn gesorteerd op de schatte moeilĳkheid
(laag is makkelĳk, hoog is moeilĳk). De lĳn geeft de geschatte vaardigheid weer van dit
kind.

gespeeld in de Rekentuin. De gegevens van deze kinderen zĳn rĳk aan kwantiteit en
dynamiek, zoals Figuur 4 illustreert. De antwoorden van dit kind laten zien dat het kind
voor sommige vragen niet in staat is om correcte antwoorden te geven, maar na een set
vraagtekens of onjuiste antwoorden lĳkt hĳ het juiste antwoord te leren en als gevolg
daarvan neemt de schatting van zĳn vaardigheid toe. In hoofdstuk 7 beschrĳven we deze
en andere ontwikkelingspatronen, en verzamelen we verschillende learning analytics om
de stabiliteit van de antwoorden te onderzoeken.

Kortom, het huidige proefschrift bouwt voort op eerder onderzoek met Rekentuin,
en breidt de analyse van item- en persoonsparameters uit naar andere spellen en naar
koppelingen tussen spellen. Een belangrĳke stap is dat dit proefschrift analyses van longi-
tudinale data toont, wat een beter beeld geeft van de cognitieve ontwikkelingsprocessen.
De voorbeelden in dit proefschrift gaan verder dan snapshots van wat zich ontwikkelt en
tonen de dynamiek van ontwikkelingsprocessen. Dit proefschrift laat zien dat we aan
de hand gegevens van Rekentuin, hoewel niet gemakkelĳk te analyseren, een nieuwe blik
kunnen werpen op cognitieve ontwikkeling.
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De eerste stap van dit proefschrift is gezet tĳdensmĳnmasterthese in de onderzoeksmaster
psychologie. Ik zocht een project met een combinatie van psychometrie en ontwikkel-
ingspsychologie, en kwam logischerwĳs uit bĳ jou Han, en bĳ de Rekentuin. Ons geza-
menlĳke project over de balans-taak—waarbĳ we eerst even de adaptieve item-selectie uit
moesten zetten, zodatwe betrouwbare data konden verzamelen—vond ik eenmooi project
en zorgde ervoor dat ik op dit thema wilde promoveren. Mede door de manier waarop je
bĳna dagelĳks even op mĳn scherm keek, om vervolgens te concluderen dat het tĳd was
voor een potje tafeltennis. Deze ontspanning, open en altĳd geïnteresseerde houding (ook
voor alle zaken die niet met wetenschap te maken hebben) heb ik zeer gewaardeerd. Je
talent voor het altĳd weer een nieuwe invalshoek verzinnen bĳ een probleem, het soms
streng zeggen dat dat paper nu echt de deur uitmoet en je positieve houding hebben ervoor
gezorgd dat dit proefschrift nu af is. Dat geldt zeker ook voor mĳn beide copromotoren
Brenda en Ingmar. Brenda, dank voor je gedetailleerde feedback en je belangrĳke focus op
de planning. Door je enthousiaste begeleiding van ons onderzoekspracticumgroepje in het
tweede studiejaar wist ik dat ik methodenleer wilde doen. Ingmar, dank voor je waarde-
volle bĳdrage bĳ meerdere hoofstukken in de dit proefschrift. Zowel aan de wiskundige
modellen als aan het schrĳfproces. Door het binnenhalen van een grote onderzoeksbeurs
door Gunter werd de labmeeting een stuk groter. Bedankt Gunter en de andere leden van
het creative industries team (Frederik, Matthieu, Marjan en Alexander). Ik heb genoten van
het meedraaien. De monday-morning-meetings, de hei-dag en de fundamentele discussies
waren leerzaam en inspirerend. En natuurlĳk alle andere collega’s bĳ methodenleer, jullie
zĳn een top team en ik ben dankbaar dat ik daar een onderdeel van ben.

Halverwege mĳn promotieonderzoek ben ik deeltĳd bĳ Oefenweb gaan werken. Zon-
der de bĳdrage van alle mensen die hier aan de Rekentuin en de andere programma’s
sleutelen was er helemaal geen data geweest om te onderzoeken. Jullie maken samen
echt een fantastisch programma (al ben ik natuurlĳk wat bevooroordeeld). Ik geniet van
de balans tussen wetenschap en het verbeteren van de verschillende leerprogramma’s in
samenwerking met de programmeurs en later ook de CoPs (content-psychometrie team).
Dank voor de ontspannen cultuur met veel samenwerking en natuurlĳk het hacky-sacken.

De kerels van de (nieuwe) leven, bedankt dat naast mĳn onderzoek en later ook nog naast
de twee kinderen toch tĳd was om de kroeg in te duiken of te ontspannen in de Ardennen,
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op Texel en in Catalonië. Die houden we erin! Peter, fascinerend om te zien hoe parallel
onze levens blĳven lopen, laten we dat ook samen vasthouden!

En natuurlĳk mĳn twee paranimfen. Lucas, ik heb het idee dat we vaak op dezelfde
golflengte zitten. Misschien niet altĳd als we het hebben over statistische modellen, maar
juist wel als over zaken praten die er echt toe doen. Dank dat je naast me wil staan op deze
belangrĳke dag. Dat geldt natuurlĳk ook voor jou Alexander (ondertussen meer vriend
dan collega). Mooi dat je alweer een plek had bemachtigd in de ITGWO groep, zonder dat
ik daar enig idee van had. Je ontspannen houding, de potjes tafeltennis, onze gezamenlĳke
onderwĳsklussen, het avontuur in Finland; op veel vlakken heb ik van je af kunnen kĳken.

Tot slot, bedank ik graag onze extended familie. Pa, bedankt voor je steun en vertrouwen.
Karin, je bent een geweldige oma. We zĳn samen toch geen adviesbureau begonnen in
onderwĳskundig onderzoek, maar misschien komt dat nog. Mĳn zusjes, Dieuwertje en
Keye, jullie zĳn toppers! Willien en Matthieu, Joke en Agaath; meemoeders (vader),
peetouders of oppas, hoe je het ook wil noemen, jullie zĳn een zeer belangrĳke steun voor
mĳ en ons gezin. De manier waarop jullie betrokken zĳn is zeker niet vanzelfsprekend
en daar zĳn we dankbaar voor. Mĳn moeder, Pieternel, je hebt alleen de eerste zes jaar
van mĳn leven mee kunnen maken, maar toch geloof ik dat de liefde die je daarin hebt
uitgedeeld nog steeds een verschil maakt.

Finne en Ciske, wat zĳn jullie een prachtige aanwinst in ons leven (en staan terecht op
de voorkant). Jullie aanwezigheid relativeren alle uitdagingen op mĳn werk. Wat zorgen
jullie voor veel vreugde. En als allerlaatste, natuurlĳk mĳn vrouw Jessie. Zonder jou had
ik dit nooit gekund. Je bent een fantastische vrouw. De manier waarop je in het leven staat
inspireert me enorm. Het was niet altĳd makkelĳk, maar het is volbracht! Laten we dit
samen gaan vieren.
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