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ABSTRACT
Chemical potentials of coexisting gas and liquid phases for water, methanol, hydrogen sulphide and carbon
dioxide for the temperature rangeT = 220 K toT = 375 K are computed using two different methodologies:
(1) Widom’s test particle insertion (WTPI) method in the conventional Gibbs Ensemble (GE), and (2) the
Continuous Fractional Component Gibbs Ensemble Monte Carlo (CFCGE MC) method. It is shown that the
WTPI method fails to accurately compute the chemical potentials of water and methanol in the liquid phase
at low temperatures, while accurate chemical potentials in the liquid phase are computed using CFCGE
MC method. For the CFCGE MC method, the statistical uncertainty for computed chemical potentials of
water and methanol in the liquid phase are considerably smaller compared to the WTPI method. For the
water models considered in this study (SPC, TIP3P-EW, TIP4P-EW, TIP5P-EW), computed excess chemical
potentials based on three-site models are in better agreement with the chemical potentials computed from
an empirical equation of state from theNIST database. For water, orientational biasing is applied during test
particle insertion to check whether certain orientations of test particle are energetically unfavourable. A
two-dimensional Overlapping Distribution Method (ODM) in the NVT ensemble is derived for this purpose.
It is shown that failure of the WTPI method for systems with a strong hydrogen bonding network does not
depend on orientation of the test molecule in that system. For all systems in this study, the WTPI method
breaks down when the void fraction of the system drops below approximately 0.50.
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1. Introduction

In the past century, different molecular simulation methods
have been developed to compute equilibrium and transport
properties of fluids primarily by Molecular Dynamics (MD)
techniques, or by sampling phase-space using Monte Carlo
(MC) simulations [1–3]. Many thermodynamic properties such
as the density and pressure of a system are straightforward to
compute [4–7]. The Gibbs Ensemble (GE) was introduced by
Panagiotopoulos in 1987 to compute the coexistence densities
and simulate VLE of pure components andmixtures of different
components [4,8]. Computing the correct coexistence densities
in the conventional GE depends on efficient molecule exchange
between the boxes. At high densities, successful molecule in-
sertions depend strongly on occurrence of spontaneous cavities
large enough to accommodate the insertedmolecule. As a result
of rare occurrence of such cavities at high densities, GE sim-
ulations suffer from low acceptance probabilities for molecule
insertions. For a discussion on the accuracy and efficiency of
the GE, the reader is referred to studies by Siepmann and co-
workers [7,9,10].

The coexistence properties of gas and liquid in the GE can
be sampled when the chemical equilibrium between the phases
is reached, which requires equal chemical potentials of each
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component, equal pressures, and equal temperatures in both
phases.Hence, studyingVLEof pure components ormixtures of
different components requires knowledge of free energies to sat-
isfy the condition of chemical equilibrium [6,8,11,12]. Likewise,
knowledge of the chemical potential plays an important role in
understanding processes such as chemical reactions, diffusion,
phase transitions,mass transfer and the direction inwhich these
processes take place[13–15]. However, the calculation of free
energies has turned out to be much more difficult [16,17] com-
pared to other properties such as density or pressure. Different
methods for computing free energies such as thermodynamic
integration[18], perturbation theory [19], expanded ensembles
[20–22] and histogram reweighting methods have been devel-
oped and thoroughly reviewed in literature [21,23]. Widom’s
Test Particle Insertion (WTPI) method [24] is the most com-
monly used method for determining chemical potentials by
sampling the interaction energy of a test molecule inserted at
a randomly selected position in the system. It is well known that
WTPImethodbreaks downat highdensities because of frequent
overlaps between the test molecule and themolecules within the
system [25–27]. Since spontaneous cavities large enough to fit
a test molecule are less likely to occur in high-density phases,
it renders the WTPI method inefficient or essentially useless
[3,13,24,28] for computing chemical potentials.
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Coskuner et al. have used the WTPI method to compute,
among other properties, the chemical potential of TIP5P water
in the temperature range of T = 300K to T = 320K in the
NPT ensemble [29]. However, the chemical potentials are not
in agreement with the experimental Equation of State (EoS)
[30,31]. This deviation may stem from either inefficiency of
the WTPI method at low temperatures [25–27], or the hy-
drogen bonding network of water. Other reasons may include
inefficiency of the simulations or a force field limitation. To
identify the underlying reason and criterion for the limitations
of the WTPI method, we have chosen to simulate the VLE of
four different components in the GE with similar coexistence
liquid densities, namely water and methanol (with a hydrogen
bonding network), and hydrogen sulphide and carbon dioxide
(without a hydrogen bonding network). To study the role of
different models, we have used several force fields for water
and methanol: SPC,[32] TIP3P-EW [33], TIP4P-EW [34] and
TIP5P-EW [35]) water, OPLS and TraPPE methanol [36,37],
hydrogen sulphide [38] and TraPPE carbon dioxide [39].

Number densities and void fractions of all systems in this
work are compared as it may provide a criterion for limitation
of theWTPImethod.As an independent check, theOverlapping
Distribution Method (ODM) is used in the NVT ensemble [3,
40] to check the reliability of theWTPI results at different system
temperatures. Aswater has a strong hydrogen bonding network,
a two-dimensional ODM in the NVT ensemble is used to test if
certain orientations of the test molecule inside the hydrogen
bonding network of water lead to inefficiency/failure of the
WTPI method. In this method, different number of hydrogen
bonds between the test molecule and its surrounding molecules
corresponds to different orientations of the test molecule.

Molecule exchanges in the GE simulations can become quite
inefficient at low temperatures which may result in densities far
from equilibrium leading to erroneous chemical potentials. To
solve the inefficiency of molecule exchange in the GE at high
densities, Shi and Maginn [21,22] developed a method based
on the idea of the expanded ensembles, in which molecules
are inserted/removed in a gradual manner. This method is
called the Continuous Fractional Component Monte Carlo [5,
21,22,41]. Using this method, the GE is expanded with two
fractional molecules per component (one in each simulation
box). Interactions of the fractional molecule are scaled by a
coupling parameter λ. When λ = 0, the fractional molecule has
no interaction with the surroundings and behaves as an ideal
gas. The fractional molecule has fully scaled interactions at λ =
1 and behaves as other molecules in the system. The fractional
molecule is gradually inserted or removed by slowly changing λ.
Although thismethod has been proven to considerably improve
the molecule exchange efficiency compared to the conventional
GE, it does not allow computing the chemical potential of each
phase directly. Poursaeidesfahani et al. have recently developed
a more efficient alternative of the CFCMC technique [41] in
the GE. The crucial difference between this method and the
original implementation of Maginn and co-workers is that a
single fractional molecule per component is used. The main
advantages of our formulation of the Continuous Fractional
Component Gibbs Ensemble Monte Carlo (CFCGE MC) are
direct and efficient calculation of chemical potential and more
efficient molecule exchange. In addition to the conventional

volume changes and thermal equilibration trial moves, three
new types of trial moves specific to the fractional molecule are
used in this method. These are explained briefly in Section 2.

This paper is organised as follows. In Section 2, the relevant
equations used for sampling the chemical potentials using the
WTPI method in the GE and the CFCGE MC method are
provided, and the differences between the two methods are
explained. Additionally, equations for the conventional ODM
using orientational biasing and the two-dimensional ODM are
presented and explained. Void fractions of every component are
also defined and tabulated at different temperatures. Simulation
details are provided in Section 3. Our findings are presented in
Section 4. Our results show that computing chemical potential
using the WTPI method becomes quite inefficient for systems
with a void fraction smaller than 0.5, while the CFCGE MC
method does not have this limitation and is more efficient at
high densities. Our conclusions are summarised in Section 5.

2. Methodology

An expression for the average chemical potential in the GE was
first derived by Smit and Frenkel [3,42]. The computation of
chemical potential for a pure component in the GE is based on
the original WTPI method[43], taking into account the fluc-
tuations in the volume and the number of molecules in box i:

μi, GE = −kBT ln
〈
Vi/�

3

Ni + 1
exp

[−β�U+
i

]〉
(1)

β = 1/(kBT) in which kB is the Boltzmann constant and T is
the temperature of the system. �U+

i is the interaction energy
of the test molecule with the rest of the molecules in box i. � is
the thermal wavelength, Vi and Ni are the volume and number
of molecules of box i, respectively. Due to overlaps between
the test molecule and the existing molecules in a system, the
potential energy change (�U+

i ) of the trial insertion move can
become infinitely large (�U+

i → +∞), and the correspond-
ing Boltzmann factor becomes almost equal to zero. Since the
majority of trial insertions in a dense liquid phase contribute to
almost zero statistical weight, the chemical potential computed
using Equation (1)may be questionable and has a typically large
uncertainty in high-density phases.

To circumvent the potential sampling problems of theWTPI
method, Shing and Gubbins [26,44] have proposed an alterna-
tive way of obtaining chemical potential by combining particle
insertions and removals. Similarly, Bennett [40] has introduced
the ODM which is used in this work as an independent check
to verify the validity of the WTPI method at different system
densities/void fractions. In the ODM, two separate simulations
in the NVT ensemble based on the coexistence densities from
GE simulations are performed for two separate systems 0 and
1 with N and N + 1 particles, respectively. Here, the volumes
of systems 0 and 1 are assumed to be the same, but this is not
essential [3]. It is shown that the excess chemical potential of
system 0 equals [3]

μex = f1
(
�U

) − f0
(
�U

)
(2)
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The functions f0(�U) and f1(�U) are defined as

f0
(
�U

) = RT
[
ln p0

(
�U

)] − �U
2

f1
(
�U

) = RT
[
ln p1

(
�U

)] + �U
2

(3)

Here, 1/β is written as RT since all chemical potentials and
energies are reported in [kJ.mol−1]. �U is the potential energy
difference between systems 0 and 1. p0(�U) is the probability
distribution for the potential energy difference �U between
system 0 and 1 while sampling configurations in system 0. The
same definition applies for p1(�U) in system 1. Since the ODM
combines insertion and removal trial moves, it offers a better es-
timate of the chemical potential compared to theWTPImethod
[3]. For systems with a strong hydrogen bonding network like
water, the interaction energies of the test molecules may not
only depend on their positions, but also on the orientations
with respect to the hydrogen bonding network. The number
of hydrogen bonds the test molecule forms with its adjacent
molecules is related to the orientation of the test molecule. A
geometrical definition [45–50] was used to count the number
of hydrogen bonds between water molecules as shown in the
Supporting Information. Using this geometric definition, the
computed average number of hydrogen bonds for the TIP4P-
EW water model in the NVT ensemble was in excellent agree-
ment with literature [50] between T = 300K and T = 600K.
The results are shown in the Supporting Information.

To study the hydrogen bonding network of water and
its effect on the performance of the WTPI method, a two-
dimensional ODM is derived by introducing the number of
hydrogen bonds (H) as a second (integer) variable. The two-
dimensional ODM can check the validity of the WTPI method
for different numbers of formed hydrogen bonds between test
molecule and its surrounding water molecules. If orientational
biasing is included as part of the test molecule insertion and
removal, the energy difference −β�U in Equations (2) and (3)
should be replaced by the logarithm of the Rosenbluth weight
of the test molecule [51–55]. The functions f1 and f0 in the
two-dimensional ODM including orientational biasing become
[51,52]

f0
(
W ,H

) = RT
[
ln p0

(
lnW

) + lnW
2

]
f1

(
W ,H

) = RT
[
ln p1

(
lnW

) − lnW
2

] (4)

H is the number of hydrogen bonds between the test molecule
(in the trial insertions or trial removals) and its surrounding
water molecules. The derivation of Equation (4) is provided in
the Supporting Information. The excess chemical potential for
a given number of hydrogen bonds H equals

μex (
H

) = f1
(
W ,H

) − f0
(
W ,H

)
(5)

In an attempt to quantify the limit at which the WTPI method
breaks down, thenumberdensity andvoid fractionof all systems
in this work are compared and shown in Table 1. The number
density is defined as

ρN = N
V

(6)

The void fraction (φ) is defined as

φ = 1 − ρN · Vmol (7)

Vmol is the volume of the molecular model. To compute the
volume, each interaction site in themolecule is considered to be
a sphere with diameter σ . Therefore, the volume of a molecule
with k interaction sites equals the sum of the volumes of all
spheres minus the intersection volume between the spheres

Vmol =
k∑

i=1

4
3
π

(
σ/2

)3 − Vintersection (8)

Vintersection is the total intersection volume between the spheres.
The value of σ of each molecule type can be found in the force
field data in the Supporting Information.

To make sure that the VLE is reached in GE simulations,
independent simulations are also performed using our formu-
lation of the CFCGE MC method which has a more efficient
molecule exchange [41] and allows for direct computation of
the chemical potential. The molecule swap trial move in the GE
is replaced by three types of trial moves to facilitate molecule
exchange between the simulation boxes in the CFCGE MC
method. (1): swapping the fractional molecule to a randomly
selected position in the other simulation box; (2): changing
the value of scaling parameter λ while the fractional molecule
stays at the same position; (3): changing the identity of the
fractional molecule with a whole molecule in the other box
while keeping the scalingparameter andpositionsfixed. Figure 1
shows a schematic representation of these types of trial moves.
The acceptance rules of these moves are derived in detail in
the original paper [41]. It is shown there that by sampling the
probability of λ approaching zero and one in each simulation
box, one can compute the chemical potential as an ensemble
average without any additional post processing. The chemical
potentials obtained in the CFCGE MC are identical to those in
the conventional GE [41]. The chemical potential for a single
component in box i in the CFCGE MC equals

μi, CFCGEMC = −kBT ln
〈
Vi/�

3

Ni + 1

〉
− kBT ln

〈
pi

(
λ ↑ 1

)
pi

(
λ ↓ 0

)
〉

(9)

pi(λ ↑ 1) and pi(λ ↓ 0) are the probability of λ approaching
one and zero in box i.

3. Simulation details

To compute the chemical potential of liquid and gas phases
of water, methanol, and carbon dioxide, at equilibrium, MC
simulations in the temperature range of T = 210K to T =
375K are performed in the CFCGE MC and GE.

All simulations are performed using the RASPA software
package[56,57]. The chemical potentials are computed directly
in the CFCGE MC simulations (Equation (9)). In the conven-
tional GE, the WTPI method is used to compute the chemical
potential of both phases (Equation (1)). Using the coexistence
density of the liquid phase fromGE simulations, theODMin the
NVT ensemble is performed to check independently at which
densities the WTPI method breaks down. Four different rigid
water models (SPC [32,58], TIP3P-EW [33], TIP4P-EW[34]
and TIP5P-EW [35]) were used for this study. Rigid methanol
OPLS-UA [36] and flexible TraPPE force fields were selected for
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Table 1. Number densities and void fractions of carbon dioxide, hydrogen sulphide, methanol and water in the coexisting liquid phase at different temperatures.

T /[K] ρn/[n:Å−3] φ/[-]
CO2

220 0.0160 0.51
230 0.0153 0.52
240 0.0150 0.54
250 0.0143 0.55

H2S
210 0.0167 0.54
230 0.0160 0.56
250 0.0155 0.57

CH3OH
240 0.0158 0.44
270 0.0152 0.46
300 0.0147 0.48
350 0.0138 0.51

H2O
300 0.0332 0.44
325 0.0327 0.45
350 0.0322 0.46

Change λ

Swap Molecule

Change Identity

Figure 1. (Colour online) MC trial moves facilitating molecule exchange in the CFCGE MC simulations [41]. The coupling parameter λ scales the interactions of the
fractional molecule with its surroundings. In this figure, the fractional molecule is marked with a line. These types of trial moves are: (Swap Move): the fractional molecule
is randomly moved from one box to a randomly selected position in the other box, while keeping the value of λ constant. (Change λ): random change of the coupling
parameter λ keeping the position of the fractional molecule constant. Trial moves that result in λ < 0 or λ > 1 are automatically rejected. (Change Identity): trial move to
change the fractional molecule into a whole molecule and changing a randomly selected whole molecule in the other box into the fractional molecule, while keeping all
positions fixed. For more details about the CFCGE MCmethod and the acceptance rules the reader is referred to the original publication [41].

methanol [37]. For carbon dioxide, TraPPE force field param-
eters were used [38]. Details about the force field parameters,
truncation of intermolecular potentials, and tail corrections are
provided in the Supporting Information. For all water models
105 equilibration cycleswere carriedout followedby 2.3·106MC
cycles. Formethanol, carbondioxidemodels 2·105 equilibration
cycles were carried out followed by 1.2·106 MC cycles. EachMC
cycle in RASPA consists ofN Monte Carlo trial moves, whereN
equals the number of molecules. The Wang-Landau algorithm

[59,60] was used to compute the weight function in the CFCGE
MC simulations.

For CFCGE MC, trial moves were selected with the follow-
ing probabilities: probability of volume exchange between the
boxes: 1.0%. The rest of the trial moves were selected with an
equal probability of 19.8% including: translation, rotation, swap
molecules, change value of lambda and change identity trial
move. No biasing was used for molecule insertions or deletions
using CFCGE MC. However, it is possible to combine orien-



MOLECULAR SIMULATION 409

Figure 2. (Colour online) Comparison of chemical potentials of gas and liquid
phases using the CFCGE MC method and the WTPI method in GE. : computed
chemical potentials of water SPC, TIP3P-EW and TIP4P-EWmodels using the CFCMC
GE method, : computed chemicals potential of methanol models OPLS-UA
and TraPPE using CFCGE MC method, : computed chemical potentials of water
SPC, TIP3P-EW and TIP4P-EW models using the WTPI method, and : computed
chemical potentials of the methanol models OPLS-UA and TraPPE using the WTPI
method. The line is a guide to the eye to indicate the equal chemical potentials
between the gas and liquid phase at coexistence. Error bars are smaller than symbol
sizes. The raw data are listed in tables S1, S2 and S5 in the Supporting Information.

Figure 3. (Colour online) Molecule exchange efficiencies in the GE and CFCGE MC.
Efficiency of the swap trial move in the GE, defined as the ratio between accepted
molecule insertions and the total attempted swap trial moves (closed symbols).
Efficiency of the identity change move in the CFCGE MC, defined as ratio between
accepted change identity trial moves and total number of trial moves to facilitate
molecule transfers [41]. (open symbols). : SPC, TIP3P-EW and TIP4P-EW water
(CFCGEMC) : OPLS-UA and TraPPEmethanol (CFCGEMC), : SPC, TIP3P-EW and
TIP4P-EW water (GE), : OPLS-UA and TraPPE methanol (GE).

tational biasing with CFCGE MC for a higher computational
efficiency [61]. For conventional GE simulations, trial moves
were selected with the following probabilities: probability of
volume exchange between the boxes: 1.2%. The rest of the trial
moves were selected with an equal probability of 24.7% includ-
ing: translation, rotation, swap. For insertion ofmolecules in the

conventional GE, orientational biasing was used with 10 trial
directions. For flexible methanol in CFCGE MC simulations,
the probability of volume exchange was 0.8%. The probabilities
of selecting other moves were evenly distributed between the
aforementioned trial moves above and an additional molecule
reinsertion trial move. For flexible methanol in GE simulations,
probabilities of selecting volume exchangewas 1.0%.Theproba-
bilities of selecting othermoveswere evenly distributed between
the aforementioned moves above and an additional molecule
reinsertion trial move.

4. Results

Simulation results show that computed chemical potentials of
hydrogen sulphide and carbon dioxide using theWTPI method
are in excellent agreement in the gas and liquid phases at coexis-
tence. However, this is not the case for water andmethanol. Fig-
ure 2 compares the computed chemical potentials of water and
methanol at coexistence using bothmethods. It is clearly shown
that computed chemical potentials of water and methanol in
the gas phase and the liquid phase at coexistence are only in
excellent agreement when using the CFCGE MC method. The
inability to accurately compute the chemical potentials of the
liquid phase at coexistence can be either due to inefficiency of
the GE simulations to reach equilibrium, or the inefficiency
of the WTPI for the chemical potential in the dense liquid
phase. The molecule exchange efficiency in the conventional
GE simulations is up to orders of magnitude lower than for
the CFCGE MC simulations as shown in Figure 3 (efficiencies
defined in the caption). Despite the lower efficiency of molecule
exchanges in the GE, the coexistence densities obtained from
CFCGE MC and GE simulations are in excellent agreement
for all components (coexistence liquid densities are listed in the
Supporting Information).Hence, bothmethods have converged
to the same equilibrium densities. Since identical equilibrium
densities are obtained using both methods, any difference be-
tween in computed chemical potentials can only be attributed
to inefficient computation of excess part of the chemical po-
tential. The contribution of excess chemical potential in the
dense liquid phase is significant due to strong interactions of
the test molecule with its surroundings, while in the gas phase,
the inserted test molecule has limited interactions with its sur-
roundings which means that the chemical potential of the gas
phase is mainly determined by the ideal part. Since chemical
potentials in the liquid and gas phases are equal in CFCGEMC
simulations, it can be concluded that the CFCGE MC method
computes the excess part of the chemical potential correctly for
water and methanol in the liquid phase, and the WTPI method
does not. Computed chemical potentials of coexisting phases of
all systems using both methods are shown in Figures 4 and 5 as
a function of temperature.

The inability of the WTPI method to compute the excess
chemical potentials of water and methanol accurately may be
due to the existence of a strong hydrogen bonding network. A
two-dimensional overlapping distribution method in the NVT
ensemble at the coexisting liquid densities was used to verify
whether certain orientations of the test molecule can be ener-
getically unfavourable such that the performance of the WTPI
method is affected. The number of hydrogen bonds that test
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Figure 4. (Colour online) Chemical potentials of coexisting phases of water models for temperature range T = 300 K to T = 350 K: (a) SPC; (b) TIP3P-EW; (c) TIP4P-EW
and; (d) TIP5P-EW (left: WTPI method in the conventional GE, right: CFCGEMCmethod). In all subfigures: : computed chemical potentials in the gas phase, : computed
chemical potentials in the liquid phase, ( ): computed chemical potentials from the Helmholtz EoS based on empirical data [31]. The raw data are listed in table S5
in the Supporting Information.

molecule formswith its adjacentmolecules follows from the ori-
entation of the test molecule in the hydrogen bonding network.
Figure 6 shows results of implementing the two-dimensional
ODM for TIP4P-EW water model at 300K as a function of
number of formed hydrogen bonds between the test molecule
and its surrounding molecules. ForH � 4, the overlap between
functions f0(W ,H) and f1(W ,H)becomes smallerwhich results
in poor statistics and therefore these are not shown in Figure 6.
It is shown in Figure 6 that excess chemical potentials computed
using the two-dimensional ODMand theWTPImethod are not
equal for any value of H . This observation does not depend on
the number of hydrogen bonds the test molecule forms with its

surroundingmolecules in the present system at T = 300K. The
two-dimensional ODM method was also used to show that the
chemical potential of water at T = 500K was computed accu-
rately using the WTPI method, for all values of H . Simulation
results of the two-dimensional ODM for TIP4P-EW water at
T = 500K are provided in the Supporting Information.

Table 1 shows number densities and void fractions of all
systems in the liquid phase at coexistence in the temperature
range of T = 250K to T = 350K. It can be seen that water has
the largest number density (around 0.03) between T = 300K to
T = 350K, while number densities of other systems are much
smaller (around 0.015) in the temperature range of T = 220K
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Figure 5. (Colour online) Chemical potentials of coexisting phases of methanol, hydrogen sulphide and carbon dioxide (liquid and gas) in the temperature range
T = 220 K to T = 375 K: (a) methanol TraPPE; (b) methanol OPLS-UA; (c)H2S TraPPE; (d) CO2 TraPPE force field (left: WTPI method in the conventional GE, right: CFCGE
MC method). In all subfigures: : computed chemical potential in the gas phase, : computed chemical potentials in the liquid phase, ( ): computed chemical
potentials from the Helmholtz EoS based on empirical data [63–65]. The raw data are listed in tables S1, S2, S3 and S4 in the Supporting Information.

and T = 350K. Therefore, the number density cannot consis-
tently offer a criterion for limitation of the WTPI method for
water andmethanol. For systems studied in this work, efficiency
of the WTPI method appears to be correlated with the void
fraction of the system. There is a clear distinction between
void fractions of water and methanol systems (where WTPI
method fails) compared to void fractions of carbon dioxide
and hydrogen sulphide systems (where WTPI method works).
It seems that for all systems in this study, the WTPI method
fails when the void fraction of the system drops approximately
below 0.50. This has also been independently tested using the
ODM in the NVT ensemble as can be seen in the Supporting
Information. Figure 7 shows the relative difference between the

chemical potentials in the coexisting gas and liquid phases as a
function of void fraction of the liquid system. It can be seen in
Figure 7 that as the void fraction drops below 0.5, the relative
difference increases rapidly. A similar conclusion can be drawn
for a LJ liquid, which is shown in the Supporting Information.
Providing a more accurate criterion on the limitations of the
WTPI method requires studying several other components.

Although the failure of the WTPI method is explained for
all systems based on the void fraction, the computed chemical
potentials of water using the CFCGE MC method deviate from
the empirical EoS in case of four-site and five-site models. This
is most probably a limitation of the force field since chemical
potentials of the two phases are equal using the CFCGE MC
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Figure 6. (Colour online) Two-dimensional overlapping distribution method (Equation (5)) applied to the TIP4P-EW liquid water model in the NVT ensemble with a void
fraction of φ = 0.45, based on the computed coexistence densities at T = 300 K. The sampled hydrogen bond count in each subfigure equals: (a) H = 0; (b) H = 1; (c)
H = 2; (d) H = 3. In all sub-figures: ( ): f1(W ,H), ( ): f0(W ,H), ( ):μex

WTPI , ( ): f0(W ,H) − f1(W ,H).

Figure 7. (Colour online) Relative difference between the chemical potentials in the
coexisting gas and liquid phases using the WTPI method as a function of the void
fraction. : Water (SPC, TIP3P-EW, TIP4P-EW, TIP4P-EW, TIP5P-EW); : Methanol
TraPPE; : Methanol OPLS-UA; : carbon dioxide TraPPE; : hydrogen sulphide.

method. Figure 8 shows computed excess chemical potentials of
the aforementioned water models in the CFCGE MC together
with those reported by Coskuner and Deiters [29] who used a
five-site water model. Moreover, the excess chemical potential
of water at different temperatures was computed using IAPWS
empirical EoS [31] and shown in Figure 8. Similar to the EoS, the
excess chemical potentials of water obtained from CFCGE MC
method increase linearly in the temperature range ofT = 300K
and T = 350K. Since the water models were not fitted to
experimental chemical potential data, some deviation from the
empirical data is expected depending on the model. It is shown
in Figure 8 that other test particle methods (Theodorou dele-
tion method [17], Widom’s test particle deletion method [62])
fails to compute the chemical potentials of water accurately as

Figure 8. (Colour online) Comparison of computed excess chemical potentials of
differentwatermodels for differentmethods at VL coexistence. Chemical potentials
of water computed by Coskuner and Deiters [29] at different temperatures with a
modified TIP5P model with different methods are shown with closed symbols: :
Widom’s test particle insertion method, : Widom’s test particle deletion method,
: Theodorou deletion method [17]. Excess chemical potentials of different water

models using CFCGE MC simulations are shown with open symbols: : TIP5P-EW
water model, : SPC water model, : TIP3P-EW water model, : TIP4P-EW,
( ): based on empirical Helmholtz equation of state [31] provided by NIST,
REFPROP [30].

well. Excess chemical potentials ofmethanol, hydrogen sulphide
and carbon dioxide are also listed and compared to data using
an empirical equation of state in the Supporting Information
[63–65].

5. Conclusions

Despite the lower molecule exchange efficiency of the GE sim-
ulations, equal densities from CFCGE MC and GE simulations
were obtained for all systems in this study. Computed chemical
potentials using CFCGE MC for all systems in study are equal
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in both phases at coexistence. This is not the case for computed
chemical potentials of water and methanol in the two phases
using the WTPI method. However, for all cases the chemical
potential of the gas phase using the WTPI method agrees well
with the chemical potentials computed using the CFCGE MC
method. Therefore, it is concluded that WTPI method is un-
able to compute the chemical potential of water and methanol
accurately in the liquid phase. Since all densities computed in
CFCGEMCare in very good agreementwith theGE simulations
in this study, any inefficiency of the WTPI method comes from
sampling the excess part of the chemical potential. By gradual
molecule insertion and removal during the MC simulations,
the CFCGE MC method has resolved the sampling issue of
the WTPI method. Using the CFCGE MC method, one would
be able to compute the chemical potentials of the two phases
directly without any further calculations which provides an
independent check for the condition of chemical equilibrium.
Computed chemical potentials of water using three-site models
are in better agreement with IAPWS empirical EoS [31,64].
Chemical potentials of methanol computed using both TraPPE
and OPLS-UA force fields and hydrogen sulphide force fields
are in excellent agreement with the empirical EoS [63,64]. Slight
deviations in the chemical potential of carbon dioxide relative
to the experimental EoS [65] are observed. Inefficiency of the
WTPI method in water with a strong hydrogen bonding net-
work is independent on the number of hydrogen bonds the test
molecule forms with its surrounding molecules. For all systems
in this study, it is shown consistently that efficiency of theWTPI
method strongly depends on the void fraction of the system and
reduces significantly for void fractions smaller than 0.50. More
data will be needed to determine a more accurate limit for void
fraction where the WTPI works.
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