
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

iRASPA: GPU-accelerated visualization software for materials scientists

Dubbeldam, D.; Calero, S.; Vlugt, T.J.H.
DOI
10.1080/08927022.2018.1426855
Publication date
2018
Document Version
Final published version
Published in
Molecular Simulation
License
CC BY-NC-ND

Link to publication

Citation for published version (APA):
Dubbeldam, D., Calero, S., & Vlugt, T. J. H. (2018). iRASPA: GPU-accelerated visualization
software for materials scientists. Molecular Simulation, 44(8), 653-676.
https://doi.org/10.1080/08927022.2018.1426855

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://doi.org/10.1080/08927022.2018.1426855
https://dare.uva.nl/personal/pure/en/publications/iraspa-gpuaccelerated-visualization-software-for-materials-scientists(6ed31040-4be8-457a-8e07-4f619699256e).html
https://doi.org/10.1080/08927022.2018.1426855

MOLECULAR SIMULATION, 2018
VOL. 44, NO. 8, 653–676
https://doi.org/10.1080/08927022.2018.1426855

 OPEN ACCESS

iRASPA: GPU-accelerated visualization software for materials scientists

David Dubbeldam , Sofía Calerob and Thijs J.H. Vlugtc

aVan ’t Hoff Institute of Molecular Sciences, University of Amsterdam, Science Park, The Netherlands; bDepartment of Physical, Chemical and Natural
Systems, University Pablo de Olavide, Sevilla, Spain; cProcess & Energy Department, Delft University of Technology, Delft, The Netherlands

ABSTRACT
A new macOS software package, iRASPA, for visualisation and editing of materials is presented. iRASPA is
a document-based app that manages multiple documents with each document containing a unique set
of data that is stored in a file located either in the application sandbox or in iCloud drive. The latter allows
collaboration on a shared document (on High Sierra). A document contains a gallery of projects that show
off the main features, a CloudKit-based access to the CoRE MOF database (approximately 8000 structures),
and local projects of the user. Each project contains a scene of one or more structures that can initially be
read from CIF, PDB or XYZ-files, or made from scratch. Main features of iRASPA are: structure creation and
editing, pictures and movies, ambient occlusion and high-dynamic range rendering, collage of structures,
(transparent) adsorption surfaces, cell replicas and supercells, symmetry operations like space group and
primitive cell detection, screening of structures using user-defined predicates, and GPU-computation of
helium void fraction and surface areas in a matter of seconds. Leveraging the latest graphics technologies
like Metal, iRASPA can render hundreds of thousands of atoms (including ambient occlusion) with stunning
performance. The software is freely available from the Mac App Store.

ARTICLE HISTORY
Received 27 October 2017
Accepted 8 January 2018

KEYWORDS
iRASPA; molecular
visualisation; software;
crystallography

1. Introduction

Molecular simulation is a powerful tool to conduct ‘in-silico’
experiments on atomic systems. Density Functional Theory
(DFT) is currently applicable to hundreds of atoms, but using
a classical formulation trillions of atoms can be used [1]. How-
ever, while the increase in computational power and algorithms
enable simulation of larger systems that can be run for longer
times, one simulation itself is just one typical reproduction of
the physics. To really get to the bottom of the physical, chemical
and biological phenomena that occur, it is vital to elucidate the
what, why and hows. Therefore, even if you could atomically
simulate the system on large space and time-scales, in many
cases it is preferable to simplify the system significantly to focus
on one particular aspect. For example, using transition state
theory for rare events, the reaction coordinate provides valuable
informationwhat exactly happensduring the transition andwhy
it occurs. Simulation methodology is not only to make simula-
tions more efficient, but rather it usually provides additional
information that is hard to obtain otherwise. Recently, we have
made our advanced Monte Carlo code called ‘RASPA’ open
source [2]. This software packages is well suited for simulating
adsorption and diffusion of molecules in flexible nanoporous
materials and to obtain molecular level information on these
systems.

In this paper we present the second part, iRASPA, a macOS
visualisation app formaterial scientists. Visualisation is another
crucial tool for obtaining molecular level insight. Staring at
the atomic positions in a CIF- or PDB-file for a long time
will not get you closer to understanding the molecular struc-

CONTACT David Dubbeldam D.Dubbeldam@uva.nl

ture. That is the job of ‘molecular visualizers’: to transform the
data for efficient perception by the human brain. The human
brain does not like tables of data, it likes graphs and plots, and
from these we visually observe trends, patterns, relationships
and exceptions. Here, we present a visualisation package aimed
at material science. Examples of materials are metals, metal-
oxides, ceramics, biomaterials, zeolites, clays andmetal-organic
frameworks (MOFs). For porous structures, like zeolites and
MOFs, sometimes it is more useful to visualise the pores of the
structures, rather than the atoms. That allows easy assessment
of network topology, connectivity and identification of possible
bottle-necks for diffusion. A static analysis of the energy land-
scape inside the pores allows examination of locations of large
attractive interactions with the framework, which are prime
candidates for adsorption and catalytic sites. Zeolites andMOFs
are usually reported with a unit cell and a space group in CIF-
file format [3]. It is very useful to be able to play around with
creating supercells and symmetry operations.

Kozlikova et al. reviewed the state of the art of visualisation
of biomolecular structures [4]. Some examples of molecular
viewers are pyMol [5], VMD [6], Chimera [7], JMOL [8], Mer-
cury [9], RASMOL [10], Materials Studio [11], Crystalmaker
[12], Avogadro [13], VESTA [14], cellVIEW [15], MegaMol
[16], and Qutemol [17]. Most visualisation packages are cross-
platform. iRASPA is exclusively for macOS (starting from 10.11
El Capitan) and as such can leverage the latest visualisation
technologies with stunning performance. iRASPA extensively
utilises GPU computing [18]. For example, void-fractions and

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/),
which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/08927022.2018.1426855&domain=pdf
http://orcid.org/0000-0002-4382-1509
http://orcid.org/0000-0001-9535-057X
http://orcid.org/0000-0003-3059-8712
http://creativecommons.org/licenses/by-nc-nd/4.0/

654 D. DUBBELDAM ET AL.

surface areas can be computed in a fraction of a second for
small/medium structures and in a few seconds for very large
unit cells. It can handle large structures (hundreds of thousands
of atoms), including ambient occlusion, with high frame rates.

The Metal framework provides near-direct access to the
graphics processing unit (GPU) and optimised for the hard-
ware available in Apple devices. It will in time replace OpenGL
[19–21] and OpenCL [22–26], but these are still available as
legacy/fall-back option. All Apple hardware sold from 2012 on-
ward supports Metal. Metal is designed very well and arguably
the most user-friendly next-generation graphical and compute
application programming interface (API) available.

Modern mac apps are based on Cocoa [27–29] and written
using the Xcode Integrated Development Environment (IDE)
[30]. iRASPA is written in Swift 4.0 [31], with over 100.000
lines of code. It is heavily multi-threaded, by making use of
Grand Central Dispatch (GCD) [32], to avoid blocking the user
interface when doing computational intensive operations. Ap-
ple’s Core Animation infrastructure provides a general purpose
system for animations. For example, when changing tabs the
transitions cross-fade, reordering a table view is animated, drag
and drop animations animate an opened gap for newly inserted
items, and the atomic selection can be made to ‘blink’ (can be
turned on and off in the user preferences).

iRASPA is different in philosophy from other existing soft-
ware packages. It is document-based, which groups all your
structures into a single document and allows collaborationusing
shared documents. On macOS High Sierra, you can place your
document in ‘iCloud Drive’ and invite someone to collaborate
on that document. iRASPA contains the CoRE MOF database
[33,34] and zeolites IZA structures [35], stored in iCloud. The
IZA (International Zeolite Association) Structure Commission
is the authority to assign framework type codes (consisting
of three capital letters) to all unique and confirmed frame-
work topologies. Over 232 Framework Type Codes have been
assigned to date. The CoRE MOF database contains approxi-
mately 8000 structures [33]. All the structures can be screened
(in real-time) using user-defined predicates. The cloud struc-
tures can be queried for surface areas, void fraction and other
pore structure properties.

iRASPA is available free of charge from the Mac App Store,
the safest and easiest way to install apps on macOS. In the
remainder we describe in Section 2 the capabilities of iRASPA
in detail, with typical use-cases illustrated in Section 3. In the
Appendix 1, we detail the visualisation technologies used in
the implementation and in the Appendix 2 the algorithms for
symmetry operations. We think this will be useful for readers
interested in developing similar packages and serves as a review
and summary of the literature.

2. Overview of iRASPA

iRASPA is a ‘document-based’ app managing ‘documents’.
Conceptually, a document is a container for a body of infor-
mation that can be named and stored in a file, locally and
in iCloud. Document-based apps handle multiple documents,
each in its own window, and often display more than one
document at a time. In macOS Sierra or higher, apps can merge
multiple windows into a row of tabs. To combine an app’s

open windows into single window with tabs, choose Window
> Merge All Windows. Document-based app offer many
benefits: integration with iCloud storage, background writing
and reading of document data, savelessmodel (autosaving), safe
saving, version conflict handling and multilevel undo support.

2.1. Main interface

The main interface of iRASPA is a master-detail view. In a
master-detail interface, the user can select projects from a list of
projects and inspect the selected project. The master interface
displays the collection of projects, and the detail interface imple-
ments an inspector of the selected project. Whenever the user
changes the selection in themaster interface, the detail interface
is updated to show the new selection. If no project is selected,
the detail interface displays nothing.

The main interface is shown in Figure 1. The project-view
(project navigator) is the master that drives changes of the sec-
ondary views. The project-navigator has three sections:
‘GALLERY’, ‘LOCAL PROJECTS’ and ‘ICLOUDPUBLIC’. The
gallery contains some examples to play aroundwith. In ‘LOCAL
PROJECTS’ you can store your own projects with editing capa-
bility, and the icloud-part contains cloud-stored databases. The
‘GALLERY’ and ‘ICLOUD PUBLIC’ sections are immutable,
but can be dragged and dropped or copy-and-pasted to your
‘LOCAL PROJECTS’-section, after which they can be edited for
content and appearance.

You can view and edit your own structures by importing
them. The most common formats for structures are CIF-files
[3] and PDB-files [36]. The easiest way of importing these types
of files is to drag them from the Finder and then drop them in
the project-navigator in the ‘LOCAL PROJECTS’-section. Al-
ternatively, you can use the menu options File > Import.

The secondary views differ depending on the type of the
selected project. Structures are viewed in a render-view with
accompanying detail-view, python-view and log-view. In the
detail-views, the atom and bond data are accessible in tabular
form.The detail-view, the project-view and the python/log-view
can be collapsed/uncollapsed using the show/hide toggles in the
top-right part of the toolbar. In addition, a full screen mode is
available using View > Enter Full Screen.

2.2. Render-view coordinate system andmouse controls

The chosen default coordinate system for the render-view is
right-handed: the positive x and y axes point right and up,
and the z points toward the viewer. This choice is consistent
with most math and physics text books. Positive rotation is
counterclockwise about the axis of rotation.

The mouse control is implemented as a ‘virtual trackball’
behavior which allows the user to define 3D rotation using
mouse operations in a 2D window. The trackball works by
assuming that a sphere encloses the 3D view. The user rolls this
virtual sphere with the mouse. For example, if you click on the
center of the sphere and move the mouse straight to the right,
you rotate the scene around the y-axis. Clicking more towards
the left edge of the centre and move the mouse straight to the
right, you rotate the scene around the y-axis with a higher speed.
You can click on the ‘edge’ of the sphere and roll it around in

MOLECULAR SIMULATION 655

Figure 1. (Colour online) In a master-detail interface, changes in the primary view controller (the master project-view) drive changes in a secondary view controller (the
detail views: render-, detail-, python- and log-views).

a circle to get a z-axis rotation. The trackball uses quaternions
under the hood (Euler angles are less convenient due to gimbal
lock problems) [37]. Themouse behaviour (with key-modifiers)
is listed in Table 1.

2.3. Selection, editing andmeasurement

Selection and picking are integral parts of structure edit-
ing. Mouse picking means that the user clicks an object in the
scene to select it, or interact with it otherwise. iRASPA provides
pixel-perfect mouse picking for objects and area-selection. The
selection of the render-view is in sync with the selection of
the data-views in tabular form (see Figure 2). For individual
picking, mouse-clicking an object selects it. If the modifier key
cmd is used, then the object is added to the selection. If that
atom was already selected, it would be deselected (‘toggling’).
In the render-view, the user can select a rectangular screen-
area using the modifier key cmd + dragging to add the
atoms in that frustum to the selection, or use the modifier key
shift + dragging to replace the selection. In the data-
views, the individual properties (e.g. position and charge) of
atoms can be edited. Note that the atom list can be reordered
and grouped together (the ‘outline-view’ is a type of table which
lets the user expand or collapse rows that contain hierarchical
data).

2.4. Adsorption surfaces

Examining the atomic positions of a molecular structure does
not immediately lead to a thorough understanding of the struc-
ture. Molecular Shape Surfaces and Molecular Surface Maps
[38] are used as a visual summarisation of a molecule’s inter-
face with its environment. For crystalline, periodic nanoporous

materials we use adsorption surfaces. Snurr et al. [39], at the
advent of computational zeolite research, already used visuali-
sation of energy contour plots and 3D density distributions of
benzene in silicalite to obtain siting information. Dubbeldam
et al. generated three-dimensional energy landscapes using the
free energy obtained from the Widom insertion method [40].
One would like to know the details of the topology of the
structure, and using iRASPA we can interpret and classify the
structure by computing adsorption surfaces. Note that this anal-
ysis also immediately reveals ‘pockets’ that are not accessible
from the main channel systems for the probe molecule.

Figure 3 shows two unit cells of the atomic structure of
the CHA-type zeolite along with three isosurfaces of helium
at different energies: (1) energy zero to show the shape of the
pores (transparent grey colour), (2)medium low energy to show
the ‘diffusion paths’ (transparent magenta colour), and (3) the
lowest energy sites that correspond to adsorption sites (solid
blue colour). CHA has (for helium) small inaccessible pockets
located at (0,0,0).

2.5. Ambient occlusion

‘Ambient occlusion’ is the shadowing of ambient light [41].
In geometric-based rendering, the illumination model is local.
Ambient occlusion approximates the real-life radiation of light
by producing effects like contact shadows that are unattain-
able in the standard local lighting model. Ambient occlusion is
amongst the most powerful methods to improve depth percep-
tion, i.e. it darkens areas of the objects that light cannot access,
therefore giving amuch better perception of the 3D appearance.
To give users the best experience when visualising molecular
structures, ambient occlusion and shadowing methods should
be included into molecular graphics packages to enhance user

656 D. DUBBELDAM ET AL.

Table 1. Basic mouse and keyboard event definitions for interactive use.

Mouse drag left/right Rotate the scene left/right
Mouse drag up/down Rotate the scene up/down
Right mouse click Context menu
alt + right-mouse drag Pan the structure
Mouse scroll-wheel or pinch gesture Zoom in and out

Mouse click background Unselect all
Mouse click object Select the object
cmd +mouse click unselect object Add object to selection
cmd +mouse click selected object Remove object from selection
cmd +mouse drag Add object in rectangular area to selection
shift +mouse drag Replace selection by objects in rectangular area

alt + left mouse click background Clear/reset measurement
alt + left mouse clicking on atoms 1 and 2 Distance measurement
alt + left mouse clicking on atoms 1, 2 and 3 Angle measurement
alt + left mouse clicking on atoms 1, 2, 3 and 4 Dihedral angle measurement

Mouse hoovering over object shows tooltip

Figure 2. (Colour online) Editing structures and atomic selection using (i) the render-view or (ii) via the data-view, i.e. the atom-positions in tabular form.

interaction with the structure. Advanced, yet efficient, light-
ing techniques including ambient occlusion, and hard and soft
shadows, are key to improving the realismof themolecular visu-
alisation [42]. Figure 4 shows an ionic-liquid system comparing
standard VDW rendering versus adding ambient occlusion.
Ambient occlusiondrastically improves the perceptionof depth.

2.6. Cell replicas

The primitive cell is the smallest repeating unit of a crystalline
material. However, the efficiency of perceiving the structure

depends on the space scale. Building blocks are easiest shown at
the smallest scale, while the overall structure becomes apparent
on larger scales. In iRASPA, larger structures can be created by
increasing the number of cell replicas. For example, Figure 5
shows a super-cell of 3× 2× 2 unit cells of MIL-101 [43]. Each
MIL-101 unitcell (89Å×89Å×89Å) contains 14416 atoms. The
ambient occlusion depends on all replicas, and hence has to be
recomputed for every change of number of replicas. The overall
picture shows a more clear representation of the distribution of
the large cavities of size 32-33 Å.

MOLECULAR SIMULATION 657

Figure 3. (Colour online) The atomic positions of two unit cells of the CHA-type zeolite, and the energy surface at three different values. CHA has (for helium) small
inaccessible pockets located at (0,0,0).

Figure 4. (Colour online) Ambient occlusion is computed per scene, (left) the water, cations and anions in the ionic liquid do not see each other, (right) the cations and
anions occlude each other. The water is treated separately and drawn in ball-and-stick style.

2.7. Collages of structures

Scenes can be a combination of movies of the different com-
ponents of a system (for example: the cations, anions and the
water-solvent as three separate components), or they can be
completely unrelated and placed at any position relative to each
other. The latter can be used to make ‘collages’. The origin of
each movie (or frame) in world-coordinates is set in Cell >
Boundingbox-properties. Figure 6 shows an example of
placing IRMOF-1,-10 and -16 in one scene, so that their relative
sizes become apparent.

2.8. Picture andmovie creation

Making great pictures andmovies really helps to enhance scien-
tific content of presentations, teaching and publications. Pic-
tures can be made up to the resolution that the video-card
supports, in 8- or 16-bits RGB or CYMK TIFF format. By
default, the background colour is white, because this is most
suitable for journal and book publications. Background options
include uniform colours, linear or radial gradients, and images.
Figure 7 shows an example of a gradient background and the
details of the picture/movie-options.

2.9. Collaboration on a shared document

OnmacOSHigh Sierra (10.13), for documents that are stored on
‘iCloud Drive’, you can invite others to your iRASPA document
andwork on them together in real time.When you invite people
to collaborate on a document, the app creates an iCloud.com
link for you to send to them via e.g. email or messages. Edits
that you and others make to the document appear in real time.
You can open a shared document only when your device is
connected to the Internet. By default, people that you invite can
edit your document. You can change share options and limit
who can access it.

If you want to send a copy of a structure, you can send it
without collaborating via the ‘share-button’ (top-right) in the
toolbar. Structure received viamail can be opened directly using
double-clicking, or can be dragged from mail to the iRASPA
project-pane.

2.10. Public sharing data in the cloud

Public sharing of structures is available via the ’ICLOUD PUB-
LIC’ section in the project-view panel. The free Cloudkit storage
that Apple offers is up to 1PB. The amount of public free storage
and data transfer allocated will grow with every new active user

658 D. DUBBELDAM ET AL.

Figure 5. (Colour online) A super-cell of 3×2×2 unit cells of MIL-101; eachMIL-101 (89 Å×89 Å×89 Å) contains 14416 atoms. The ambient occlusion has to be computed
based on the super-cell because the outside cells receive more light than the interior cells.

Figure 6. (Colour online) Three structures, IRMOF-1, IRMOF-10, and IRMOF-16, placed at different positions relative to eachother. The unit cells increase in size as 25.832
Å, 34.2807 Å, and 42.9806 Å, respectively.

with very high limits, for storage 250MB and 2.5 MB per user
for the database (up to 10 TB), 10GB assets plus 250MB per
user (up to 1PB), and for asset data transfer 2GB plus 50MB per
user per month (up to 200 TB per month). The local projects
in iRASPA are compressed using an Apple-specific encoder.
This algorithm, called LZFSE, is faster than zlib and generally
compresses better. Cloud projects are compressed using the
Lempel–Ziv–Markov chain algorithm (LZMA) algorithm for
high compression ratios.

Cloud-structures can be viewed, but not edited to save band-
width. To play around, edit and/or modify the structure, drag
them into the local projects first. Figure 8 shows the UI when a
directory is selected in the project-view. The right detail-view is
a predicate editor allowing the user to create arbitrary complex

queries on the cloud-data. The middle content-view show a
collection view of all structures satisfying the query. Double-
clicking opens the structure for viewing.

2.11. Symmetry operations

Crystallography is the science of finding the symmetry and
positions of atoms in crystalline solids [44–48]. Any lattice can
be defined on the basis of a cell with the smallest possible volume
called a ‘primitive cell’, but many primitive cells are possible.
Niggli defined what was termed a ‘reduced cell’ which turned
out to be a unique cell [49–52]. Santoro developed an algorithm
to find the reduced cell starting from any cell of the lattice [53].
By classifying allmaterials using the reduced cell, oneobtains the

MOLECULAR SIMULATION 659

Figure 7. (Colour online) Example of a radial gradient as background. Alternatively, you can use a solid color, a linear gradient or a picture from file as background.

Figure 8. (Colour online) Screening the CoRE MOF and IZA database. All structures in the subtree under the selected directory in the left (project) pane can be queried (for
‘iCloud Public’ approximately 8000 structures). In the right panel the predicate can be edited, the results of the search are shown real-time in the central panel. Here, six
structures satisfy the query for structure with a helium void fraction≥ 0.9, geometric nitrogen surface area≥ 5000 m2/g, and restricting pore diameter≥ 10.0 Å.

basis for a powerful method for compound identification. The
reverse, i.e. finding the primitive cell e.g. from the conventional
cell, is very useful in quantum mechanical computations to
reduce the amount of atoms. iRASPA can perform various
symmetry finding operations on crystals, for example automatic
spacegroup determination of atomic structures and finding the
primitive cell (see Figure 9).

2.12. Atoms, bonds and cell boundaries

In molecular visualisation, usually atoms are drawn as spheres
and bonds as cylinders (ball-and-stick model). Ball-and-Stick is
the most fundamental and common representation. Atoms are
coloured according to their type. Alternatively, the space-filling
or VDW representation, renders the atoms with spheres whose
radius is the vanderWaals atomradius.Here, the representation
gives an idea of the molecular external surface and volume.

Figure 10 shows iRASPA’s High Dynamics Range (HDR) ren-
dering of atoms andbonds and the treatment of ‘external’-bonds
(bonds that cross periodic boundaries).

2.13. Property computation: void-fractions and surface
areas

Surface area is the most basic property of porous materials.
Along with pore volume, surface area has become the main
benchmark characterisation method for any porous material.
The most common experimental method for obtaining surface
areas involves measuring nitrogen gas adsorption isotherm on
the material at 77 K. The isotherm data are then fit by the
Brunauer–Emmett–Teller (BET) model, and the surface area is
then backed out of the BET parameters. A geometric accessible
surface areas can be calculated using a simpleMonte Carlo inte-
gration technique in which a nitrogen probe (3.681 Å)molecule

660 D. DUBBELDAM ET AL.

Figure 9. (Colour online) The HEXVEM structure (a) from the CoRE MOF database, (b) the conventional cell with spacegroup -F 2 2 3 (spacegroup number 203). The
primitive is four times smaller in volume than the conventional cell.

Figure 10. (Colour online) Atoms, bonds, cell boundaries: (a) zoom in showing the (near-)pixel-perfect, anti-aliased, HDR rendering of atoms and bonds, (b) the cut of
bonds that cross the unitcell boundary.

is rolled along the surface of the framework [54–56].Walton and
Snurr [57] found good agreement for MOFs of the geometric
calculation with the BET model, if the appropriate operating
range is used for the BET modelling. For small pore systems,
e.g. smaller than about 12–13 Å, BET values are questionable
because monolayer–multilayer formation and pore filling can-
not be distinguished [58]. iRASPA computes an extension of the
geometric surface area, i.e. the area of the adsorption surface
based on the VDW parameters for the framework and nitro-
gen as the probe molecule. By computing it on the GPU, the
computation can be performed in a matter of seconds.

iRASPA can also compute helium void fraction within sec-
onds on the GPU. Talu and Myers [60] proposed a simulation
methodology thatmimics the experimental procedure. For con-
sistency with experiment, the helium void fraction ξ is deter-
mined by probing the framework with a nonadsorbing helium
molecule using the Widom particle insertion method:

ξ =
∫

e−βU dr (1)

The available pore volume Vpore is simply Vpore = ξV , i.e.
the fraction of the total volume V of the cell that is empty. The

pore volume is usually normalised as units cm3/g (as empty vol-
ume per gram of framework). A reference temperature of 25◦C
(298 K) is chosen for the determination of the helium void
volume. Figure 11 lists the computed properties for MFI-type
zeolite and shows (a) the structure of MFI-type zeolite and the
pore system, and (b) the probability density of the diameter of
a probe size, i.e. the cumulative pore volume curve algorithm
of Gelb and Gubbins [56,61]. The derivative of this function
is the Pore Size Distribution (PSD). There is ambiguity in the
definition of ‘size’ of an atom; two possible definitions are (1)
σ , the size of the LJ potential at zero energy, (2) σ × 21/6, the
size of the well-depth of the LJ potential. These two extremes
provide a range of reasonable values. The helium void fraction,
using ε/kB = 10.9 K and σ = 2.64, produces a very consis-
tent value. The computed values are in general agreement with
experimental results for MFI nanocrystals: pore volumes in the
range 0.108-0.195 cm3/g, and BET surface area in the range
419-785 m2/g, depending on the details of the synthesis [62].
Another source gives pore volume 0.14 cm3/g and BET surface
area 389-467 m2/g [63].

The computed helium void fractions compare well to litera-
ture values for various zeolites (taken from Abrams and Corbin
[64]): RHO 0.465 vs. 0.447, CHA 0.451 vs. 0.407, LTA 0.498

MOLECULAR SIMULATION 661

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0 1 2 3 4 5 6

Pr
ob

ab
ilit

y
de

ns
ity

, P
(d
) /

 −

Diameter, d / Å

(b)

Figure 11. (Colour online) Pore-volume of MFI-type zeolite: (a) MFI structure with pore adsorption surface, (b) probability density P(d) as a function of the probe-diameter
d for MFI with positions taken from IZA; the derivative of this function is the Pore Size Distribution (PSD). The frameworkmodel is taken from TraPPE-zeo [59], and we have
used σ and theminimumof the LJ-potential σ ×21/6 as the upper- and lower-boundary, respectively, of the size of an atom and plot the area in between these as a range
of reasonable values. The value computed using the helium void fraction is 0.265 with σ of helium as 2.64 Å and this value is consistent with the probability density P(d)
at this probe diameter. Computed properties are, density 1838.0 kg/m3, helium void fraction 0.265, gravimetric surface area 657 m2/g, 1209 m2/cm3, specific volume
0.544 cm3/g, accessible pore volume 0.144 cm3/g.

vs. 0.466, ERI 0.411 vs. 0.359, FER 0.332 vs. 0.300, MFI 0.344
vs. 0.265, and FAU 0.522 vs. 0.494 for Abrams and Corbin vs.
iRASA helium void fractions, respectively. Abrams and Corbin
assume that each TO2 group occupies the same volume as in
quartz (≈ 37.6Å3). Subtracting the volume of the TO2 groups
from the total volume, and dividing by the total volume yields
the void fraction.

3. Case studies

3.1. Fast screening

Each year, the synthesis of several hundred new structures is
reported and this has created the urgent need to screen these
efficiently. Molecular simulations advanced in both speed and
accuracy to allow rapid evaluation of (hypothetical-)structures
for storage and/or separation devices[65,66]. Screening poses
the question: ‘Assuming certain requirements for an given in-
dustrial application, what nanoporous material would be most
suitable?’ Some examples of screening are: CO2 screening,
screening for CO2 capture, selective CO2 adsorption [67,68],
alkanes separation [69,70], xylene separation [71], ethylbezene/
styrene separation [72], CO2/N2 separation [73], SO2, CO2 and
CO separation [74], and CH4/H2 separation [75]. iRASPA con-
tains a command-line utility to facilitate rapid screening. Figure
12 shows computed property relation-ships: the gravimetric and
volumetric surface areas as a function of helium void fraction.
The CoRE-MOF data encompasses the IZA data, i.e. the variety
inMOF-structures ismuch greater than zeolites, but there exists
manyMOFs that have similar properties as zeolites. The zeolites
form a small subset, with helium void fractions typically lying in
the range 0.15 to 0.45. Figure 8 showed theUI that can be used to
narrow and track down the structures that result from database
queries. It allows the user to see and visualise the typical atomic
structures that correspond to a selected helium void fraction
and surface area-range.

Figure 13 shows the performance of the iRASPA command-
line utility. The timing results are performed on a 2009Mac Pro,

2.4 GHz Intel Xeon using a NVIDIA GeForce GTX 970 video-
card. Significant improvements are expected with the new 2017
iMac pro and 2018 Mac pro. The 4764 structures in the CoRE-
MOF database can be screened for helium void fractions and
surface areas in less than 1.5 h in total, the 233 IZA structures
in less than 4 minutes. The vast majority of structures can be
screened in less than halve a second per property, and this GPU
implementation is typically 1-2 orders ofmagnitude faster com-
pared to CPU implementations. As a worst case for nanoporous
materials, we selected MIL-101 andMIL-100 with, respectively,
14,416 and 11,152 atoms in the unit cell. The computation-
time is less than two seconds for the surface-area, and less than
a second for the helium void fraction. These numbers can be
further improved with more advanced code optimisation.

3.2. Examining adsorption sites

Visualization is an important tool to elucidate molecular mech-
anisms by connecting the macroscopic results (e.g. adsorption
isotherms) to the microscopic molecular-level information.
Studying the potential energy landscape for a chosen probe
molecule allows quick identification of adsorption sites and
diffusion path ways. Metal-organic frameworks (MOFs) consist
of building blocks that can be easily modified in silico (on the
computer). The judicious selection of building blocks allows
the pore volume and functionality to be tailored in a rational
manner. Because of the design-principle underlying the syn-
thesis, it is important to understand MOF structure–properties
relationships.

Figure 14 shows theCu-BTC (also known asHKUST-1) [76],
a copper-based benzene-tricarboxylate MOF. The unit cell is
cubicwith edge-lengths a = b = c = 26.343Å, and space group
-F 4 2 3. Helium is a good probe molecule to identify possible
adsorption sites of small molecules. Any surface location with a
high concave curvature is a likely adsorption site while convex
surfaces are not. At a concave position, the dispersion interac-
tion with the wall is high. Three surfaces are shown at particular

662 D. DUBBELDAM ET AL.

Figure 12. CoRE-MOF and IZA structure property relationships, (left) gravimetric surface area, and (right) volumetric surface area, as a function of helium void fraction.

Figure 13. (Colour online) Screening performance of the iRASPA command-line utility, (left) time for a single evaluation of the surface area, (right) time for a single
evaluation of the helium void fraction, both as a function of the number of atoms in the unit cell. Smaller values are better.

Figure 14. (Colour online) Cu-BTC with helium energy iso-contour levels: 0 (grey, opacity 0.1), -300 K (plum purple, opacity 0.3), and -410 K (spring green, opacity 1.0):
(left) front-view, (right) side-view.

energies (in typical simulation units of Kelvin by converting
using Boltzmann’s constant; mulitply by R/1000 to convert to
kJ/mol, where R = 8.3133621 J/K/mol) are shown:

• Energy 0 K, grey colour.
This is the most common choice to visualise the pore
‘walls’. The visualised wall reveals the pore connectivity
of the system. The channel system is now apparent and
any bottle necks for diffusion are easy to identify. Note
that, in general, it also immediately reveals ‘pockets’ that
are not accessible from the main channel systems. These

should be removed and blocked during the simulations.
In Cu-BTC, we find small side pockets that are accessible
(for small molecules) from the main channel.

• Energy -300 K, plum purple colour.
A progressively lower energy surface zooms in on the ad-
sorption sites and diffusion path-ways. The purple surface
at -300K shows that small molecules prefer the concave
surface parallel to the Cu–Cu dimer and the small side-
pockets. The former disappears when the energy is low-
ered, so the small side-pockets are the dominant adsorp-
tion sites for small adsorbates.

MOLECULAR SIMULATION 663

Figure 15. (Colour online) Visualisation of an aqueous solution of ionic liquids: (a) full system, (b) [Tf2N]− anion, (c) [C4MIM]+ cation, (d) water solvent. The computed
helium void fraction are 0.141, 0.162 and 0.685, respectively, for the anion, cation and water solvent. The individual contributions add up to 0.988, which is close to unity.

• Energy -410 K, spring green colour.
An energy close to the lowest energy visualises the shape,
topology and connectivity of the adsorption site within
the small side-pockets. The adsorption takes place is small
green bands in a threefold symmetry from the perspective
of the entrance of the pocket. The four exists of the pockets
are directed towards the vertices of a regular tetrahedron.
At low energy the adsorption sites form a band that is
spread out, indicating a fast diffusion path-way within
the small pockets. There are however large bottlenecks in
between the small pockets as the adsorbates needs to exit
the small pocket, cross the main channel, and re-adsorb at
another small pocket.

The energy landscapes are crucial to understand the structure.
They reflect the viewpoint of the probe molecule, and the pic-
tures are different for each type of adsorbate. For example,
for ethane the adsorption sites in the small pockets, but for
ethene the adsorption site is at the copper-site. In a mixture, the
molecules are adsorbing at different sites (segregation) which
differ strongly in interaction energy and Ideal Adsorption Solu-
tion Theory (IAST) therefore fails in this case [77].

3.3. Void fractions of liquids

Figure 15 shows an aqueous solution of ionic liquids (cation-
anion-water system). Here, hydrogen-bond reduction is the

664 D. DUBBELDAM ET AL.

Figure 16. (Colour online) Structure of the liquid at the same geometric void fraction φ ≈ 0.52: (left) CO2 at 230K and (right) methanol at 350K. The chemical potential of
CO2 is -15.9 kJ/mol, and -30.6 kJ/mol for methanol.

Figure 17. (Colour online) Visualising adsorption: BTEX mixture at 433K in the CoBDP MOF, (top) side view of the channel, (left) front view, (right) front view with
adsorbates in stick-style. CoBDP is a rectangular copper-MOF based on a 1,4-benzenedipyrazolate linker: 2 × 2 × 3 unit cells; unit cell a = 13.253Å, b = 13.253Å,
c = 13.995Å, α = β = γ = 90◦ .

MOLECULAR SIMULATION 665

result of anion-water interactions rather than steric effects caused
by long alkyl chains of cations [78]. The density of the compo-
nents is always the same when the volume is fixed: 328, 163
and 659 kg/m3, respectively, for the anion, cation and water
solvent. Often one would like to knowmore about the structure
of the fluid andwhat the effective volume and interaction surface
is. The computed helium void fraction are 0.141, 0.162 and
0.685, respectively, for the anion, cation, and water solvent. The
individual contributions add up to 0.988, which is close to unity.
The interaction surface areas are 2642.4, 2863.2 and 1449.2
m2/cm3, respectively, for the anion, cation, and water solvent.
The helium void fraction and interactions surfaces depend on
the structure and packing of the molecules.

We previously used this methodology to study the break-
downof theWidom test-particle insert (WTPI)method inwater
and methanol at low temperature [79]. Consider the geometric
void fraction φ defined as

φ = 1 − ρNVmol (2)

with ρN = N/V the number density, and Vmol is the volume
of the molecular model. Rahbari et al. found that the WTPI
method breaks down when the geometric void fraction φ of the
system drops below approximately 0.50, and is independent
of the number of hydrogen bonds and the number density.
To compute the volume, each interaction site in the molecule
is considered to be a sphere with diameter σ . Therefore, the
volume of a molecule with k interaction sites equals the sum
of the volumes of all spheres minus the intersection volume
between the spheres

Vmol =
k∑

i=1

4
3
π

(
σ/2

)3 − Vintersection (3)

where Vintersection is the total intersection volume between the
spheres. We can then compare CO2 at 230K and methanol at
350K at the same geometric void fraction φ ≈ 0.52. Figure 16
shows that the cavities (probed with helium) in the methanol
box are larger and more abundant inside methanol liquid box
when compared to CO2 (12.0% vs. 5.8% void). However, the
size of methanol (Vmol = 34.98 Å3) is larger than CO2 (Vmol =
31.0122 Å3). To analysis how difficult it is to insert a probe
molecule one cannot use the cavity size alone. It is more difficult
to insert a methanol into liquid methanol at φ ≈ 0.52 than a
CO2 molecule in to liquid CO2 at φ ≈ 0.52 because methanol
is a larger molecule and inserted into irregularly shaped cavi-
ties. The shape of the cavities is determined by the degree of
clustering and details of the packing of the molecules and for
example affected by temperature and hydrogen-bonding. The
lowest Van der Waals insertion energy of the helium probe in
the CO2 liquid is −410K, while for a helium probe in liquid
methanol the lowest insertion energy is −300K.

3.4. Adsorption

Adsorption is usually described through isotherms, i.e. the
amount of adsorbate on the adsorbent at constant temperature
as a function of pressure or fugacity. Visualisation can help
understand themicroscopic origin of adsorption and separation

Figure 18. (Colour online) Visualising diffusion path-ways: The path of a single CO2
molecule inside the pores of the IRMOF-1 nanoporous material. The adsorption
surface has been drawn with a transparent blue colour. (integration step 0.5 fs,
snapshot taken every 200 steps, temperature 298 K).

phenomena. In particular, at low pressure the adsorption is
dominated by the affinity of the adsorbates with the frame-
work, while at high loadings the adsorption is dominated by
entropy. Figure 17 shows a snapshot from a MC-simulation
of a 6-component BTEX mixture (ortho-, meta-, and para-
xylene, together with benzene, toluene, and ethylbenzene) in
the rectangular Co-BDP MOF [80]. The adsorbates are found
at the wall and rarely at the centre of the channel.

The packing is the channel at this high pressure is tight,
and the ethylbenzene fits less well since its tail is disturbing the
packing. Separation mechanisms that are effective at saturation
conditions have (in general) to be entropic in nature (saturation
corresponds to the high-pressure part of adsorption isotherms).
For molecules that have a bulky size and shape (relative to the
framework) it is possible to exploit entropy effects to induce a
difference in saturation loading [72,81,82].

3.5. Diffusion pathways

Inmanyapplicationsof nanoporousmaterials, the rate ofmolec-
ular transport inside the pores plays a key role in the overall
process. Amembrane or adsorption separation process exploits
differences in rates of diffusion and/or adsorbed-phase concen-
trations to differentiate between the different molecular species
and separate them. Diffusion properties of guest molecules in
microporousmaterials can be quite sensitive to small differences
between different hostmaterials, andmolecular-levelmodelling
has, therefore, come to be a useful tool for gaining a better
understanding of diffusion in nanoporous materials.

Figure 18 shows a typical path of a rigid CO2 molecule inside
IRMOF-1. The adsorption surface has been drawn with a trans-
parent blue colour. The molecules tumble and swirl from ad-
sorption site to adsorption site (the adsorption sites in IRMOF-1
for small molecules are the sites near the metal-clusters [83]).
Diffusion and adsorption are intimately related: the molecules

666 D. DUBBELDAM ET AL.

move while staying adsorbed by ‘crawling along the wall’ [84].
Only very rarely molecules are found in the open centre of the
cavity.

Availability

iRASPA is available free of charge from the App Store and runs
on macOS El Capitan (10.11), Sierra (10.12), and High Sierra
(10.13).

Acknowledgements

We thank Randall Q. Snurr for access to the CoRE-MOF Database, and
Krista S. Walton, Nick C. Burtch, Ariana Torres-Knoop, and Jurn Heinen
for valuable suggestions and comments. This workwas sponsored byNWO
Exacte Wetenschappen (Physical Sciences) for the use of supercomputer
facilities, with financial support from the Nederlandse Organisatie voor
Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Re-
search, NWO). T.J.H.V. would like to thank NWO-CW (Chemical Sci-
ences) for a VICI grant.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was sponsored by NWO Exacte Wetenschappen (Physical Sci-
ences) for the use of supercomputer facilities, with financial support from
the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Nether-
lands Organisation for Scientific Research, NWO). T.J.H.V. acknowledges
NWO-CW for a VICI grant.

ORCID

David Dubbeldam http://orcid.org/0000-0002-4382-1509
Sofía Calero http://orcid.org/0000-0001-9535-057X
Thijs J.H. Vlugt http://orcid.org/0000-0003-3059-8712

References

[1] Germann TC, Kadau K. Trillion-atommolecular dynamics becomes
a reality. J Mod Phys C. 2008;19(9):1315–1319.

[2] DubbeldamD,Calero S, EllisDE, et al. RASPA:molecular simulation
software for adsorption and diffusion in flexible nanoporous
materials. Mol Simul. 2016;42(2):81–101.

[3] Hall SR, Allen FH, Brown ID. The crystallographic information
file (CIF) – a new standard archive file for crystallography. Acta
Crystallogr A. 1991;47:655–685.

[4] Kozlkova B, Krone M, Falk M, et al. Visualization of biomolecular
structures: State of the art revisited. Comput Graph Forum.
2017;36(8):178–204.

[5] Schrödinger LLC. The PyMOL molecular graphics system, version
1.8; 2015 Nov.

[6] Humphrey W, Dalke A, Schulten K. VMD: visual molecular
dynamics. J Mol Graphics. 1996;14(1):33–38.

[7] Pettersen EF, Goddard TD, Huang CC, et al. UCSF chimera-a
visualization system for exploratory research and analysis. J Comput
Chem. 2004;25(13):1605–1612.

[8] Herraez A. Biomolecules in the computer: Jmol to the rescue.
BiochemMol Biol Educ. 2006;34(4):255–261.

[9] Macrae CF, Edgington PR, McCabe P, et al. Mercury: visualization
and analysis of crystal structures. J Appl Crystallogr. 2006;39(3):453–
457.

[10] Sayle RA,Milner-White EJ. RASMOL: biomolecular graphics for all.
Trends Biochem Sci. 1995;20(9):374–376.

[11] Akkermans RLC, Spenley NA, Robertson SH. Monte carlo methods
in materials studio. Mol Simulat. 2013;39(14–15):1153–1164.

[12] Palmer D, Conley M. Crystalmaker; 2007.
[13] Hanwell MD, Curtis DE, Lonie DC, et al. Avogadro: an advanced

semantic chemical editor, visualization, and analysis platform. J
Cheminform. 2012;4(1):1–17.

[14] Momma K, Izumi F. Vesta 3 for three-dimensional visualization
of crystal, volumetric and morphology data. J Appl Crystallogr.
2011;44(6):1272–1276.

[15] LeMuzicM, Autin L, Parulek J, et al. cellVIEW: a tool for illustrative
and multi-scale rendering of large biomolecular datasets. In: Bühler
K, Linsen L, John NW, editors. Eurographics workshop on visual
computing for biology and medicine; 2015. p. 61–70.

[16] Grottel S, krone M, Muller C, et al. Megamol-a prototyping
framework for particle-based visualization. IEEE Trans Vis Comput
Graph. 2015;21(2):201–214.

[17] TariniM,Cignoni P,MontaniC.Ambient occlusion and edge cueing
for enhancing real time molecular visualization. IEEE Trans Visual
Comput Graphics. 2006;12:1237–1244.

[18] Stone JE, Hardy DJ, Ufimtsev IS, et al. Gpu-accelerated molecular
modeling coming of age. JMolGraphicsModel. 2010;29(2):116–125.

[19] Wright RS, Haemel N, Sellers G, et al. OpenGL superbible:
comprehensive tutorial and reference. 5th ed. Boston,MA: Addison-
Wesley Professional; 2011.

[20] Movania MM. OpenGL development Cookbook. Birmingham, UK:
Packt Publishing; 2013.

[21] Lo RCH, Lo WCY. OpenGL data visualization Cookbook.
Birmingham, UK: Packt Publishing; 2015.

[22] Scarpino M. OpenCL in action: how to accelerate graphics and
computation. Shelter Island (NY): Manning Publications; 2011.

[23] Munshi A, Gaster BR, Mattson TG, et al. OpenCL programming
guide. Boston, MA: Pearson Education Inc; 2012.

[24] Gaster BR, Howes L, Kaeli DR, et al. Heterogeneous computing with
OpenCL. Waltham (MA): Elsevier; 2013.

[25] Tay R. OpenCL parallel programming development Cookbook.
Birmingham, UK: Packt Publishing; 2013.

[26] Kaeli D, Mistry P, Schaa D, et al. Heterogeneous computing with
OpenCL 2.0. Waltham (MA): Elsevier; 2015.

[27] Buck EM, Yacktman DA. Cocoa design patterns. Boston (MA):
Pearson Education Inc; 2010.

[28] Chisnall D. Cocoa programming developer’s handbook. Ann Arbor
(MA): Pearson Education Inc; 2010.

[29] Hillegass A, Preble A, Chandler N. Cocoa programming for OSX.
5th ed. Indianapolis (IN): Pearson Education Inc.; 2015.

[30] Anderson F. XCode 6 start to finish: iOS and OS X development.
Ann Arbor (MA): Pearson Education Inc.; 2015.

[31] Mathias M, Gallagher J. Swift programming: the Big Nerd Ranch
guide. Indianapolis (IN): Pearson Education; 2016.

[32] Nahavandipoor V. Concurrent programming in Mac OS X and iOS.
Sebastopol (CA): O’Reilly Media Inc.; 2011.

[33] Chung YG, Camp J, Haranczyk M, et al. Computation-ready,
experimental metal-organic frameworks: a tool to enable high-
throughput computation of nanoporous crystals. Chem Mater.
2014;26(21):6185–6192.

[34] Nazarian D, Camp JS, Sholl DS. A comprehensive set of high-quality
point charges for simulations of metal-organic frameworks. Chem
Mat. 2016;28(3):785–793.

[35] Baerlocher Ch, McCusker LB, Olson DH. Atlas of zeolite framework
types. 6th ed. Amsterdam: Elsevier Science; 2007.

[36] Callaway J, Cummings M, Deroski B, et al. Protein data bank
contents guide: atomic coordinate entry format description. New
York (NY): Brookhaven National Laboratory; 1996.

[37] Kuipers JB. Quaternions and rotation sequences. New Jersey, USA:
Princeton University Press; 2002.

[38] Krone M, Friess F, Scharnowski K, et al. Molecular surface maps.
IEEE Trans Visual Comput Graphics. 2017;23(1):701–710.

[39] Snurr RQ, Bell AT, Theodorou DN. Prediction of adsorption
of aromatic-hydrocarbons in silicalite from grand-canonical
monte-carlo simulations with biased insertions. J Phys Chem.
1993;97(51):13742–13752.

http://orcid.org
http://orcid.org/0000-0002-4382-1509
http://orcid.org
http://orcid.org/0000-0001-9535-057X
http://orcid.org
http://orcid.org/0000-0003-3059-8712

MOLECULAR SIMULATION 667

[40] Dubbeldam D, Calero S, Maesen TLM, Smit B. Understanding
the window effect in zeolite catalysis. Angew Chem Int Ed.
2003;42(31):3624–3626.

[41] Akenine-Müller T, Haines E, HoffmanN. Real-time rendering. Boca
Raton (FL): CRC Press; 2008.

[42] Easdon R. Ambient occlusion and shadows for molecular graphics
[PhD thesis]. Norwich, UK: University of East Anglia; 2013.

[43] FereyG,Mellot-Draznieks C, Serre C,Millange F, Dutour J, Surble S,
Margiolaki I. A chromium terephthalate-based solid with unusually
large pore volumes and surface area. Science. 2005;309:2040–2042.

[44] Giacovazzo C, Monaco HL, Artioli G, et al. Fundamentals of
crystallography. New York (NY): Oxford University Press; 2002.

[45] Hahn T. International tables for crystallography. In: Volume A:
space group symmetry: space group symmetry v.A. IUCr Series.
International tables of crystallography. Wiley-Blackwell; Corrected
Reprint 2005.

[46] Rhodes G. Crystallography made crystal clear. Burlington (MA):
Elsevier; 2006.

[47] Rupp B. Biomolecular crystallography: principles, practice and
application to structural biology.NewYork (NY): Taylor andFrancis
group; 2010.

[48] Julian MM. Foundations of crystallography with computer
applications. Boca Raton (FL): Taylor and Francis group; 2015.

[49] Niggli P. Krystallographische und strukturtheoretische Grundbe-
griffe. Vol. 1. Krauchenwies, Germany: Akademische verlagsge-
sellschaft mbh; 1928.

[50] Burgers WG. On the process of transition of the cubic-body-
centeredmodification into the hexagonal-close-packedmodification
of zirconium. Physica. 1934;1(7–12):561–586.

[51] Krivy I, Gruber B. A unified algorithm for determining the reduced
(niggli) cell. Acta Crystallogra Sect A: Crystal Phys Diffr Theor
General Crystallogr. 1976;32(2):297–298.

[52] Grosse-Kunstleve RW, Sauter NK, Adams PD. Numerically stable
algorithms for the computation of reduced unit cells. Acta
Crystallogr A. 2004;60:1–6.

[53] Santoro A, Mighell AD. Determination of reduced cells. Acta
Crystallogra Sect A: Crystal Phys Diffr Theor General Crystallogr.
1970;26(1):124–127.

[54] Düren T, Sarkisov L, Yaghi OM, et al. Design of new materials for
methane storage. Langmuir. 2004;20:2683–2689.

[55] Duren T, Millange F, Ferey G, et al. Calculating geometric surface
areas as a characterization tool for metal-organic frameworks. J Phys
Chem C. 2007;111(42):15350–15356.

[56] Sarkisov L, Harrison A. Computational structure characterisation
tools in application to ordered and disordered porousmaterials. Mol
Phys. 2011;37(15):1248–1257.

[57] Walton KS, Snurr RQ. Applicability of the bet method for
determining surface areas of metal-organic frameworks. J AmChem
Soc. 2007;129:8552–8556.

[58] de Lange MF, Lin L-C, Gascon J, et al. Assessing the surface
area of porous solids: Limitations, probe molecules, and methods.
Langmuir. 2016;32(48):12664–12675.

[59] Bai P, TsapatsisM, Siepmann JI. TraPPE-zeo: transferable potentials
for phase equilibria force field for all-silica zeolites. J Phys Chem C.
2013;117:24375–24387.

[60] Talu O, Myers AL. Molecular simulation of adsorption: gibbs
dividing surface and comparison with experiment. AIChE J.
2001;47:1160–1168.

[61] Gelb LD, Gubbins KE. Pore size distributions in porous glasses: a
computer simulation study. Langmuir. 1999;15:305–308.

[62] Serrano DP, Aguado J, Morales G, et al. Molecular and meso-and
macroscopic properties of hierarchical nanocrystalline zsm-5 zeolite
prepared by seed silanization. ChemMater. 2009;21(4):641–654.

[63] Wang H, Pinnavaia TJ. Zsm-5 with intracrystal mesopores for
catalytic cracking. Stud Surface Sci Catal. 2007;170:1529–1534.

[64] Probing Intrazeolite Space, Abrams L, Corbin DR. J Incl Phenom
Mol Recognit Chem. 1995;21:1–46.

[65] Wilmer CE, Leaf M, Lee CY, et al. Large-scale screening of
hypothetical metal-organic frameworks. Nat Chem. 2012;4(2):83–
89.

[66] Colon YJ, Snurr RQ. High-throughput computational screening of
metal-organic frameworks. Chem. Soc. Rev. 2014;43:5735–5749.

[67] Yazaydin AO, Snurr RQ, Park T-H, et al. Screening of metal-
organic frameworks for carbon dioxide capture from flue gas using
a combined experimental and modeling approach. J Am Chem Soc.
2009;131(51):18198–18199.

[68] Bae YS, Snurr RQ. Development and evaluation of porous materials
for carbon dioxide separation and capture. Angew Chem Int Ed.
2011;50(49):11586–11596.

[69] Krishna R, Calero S, Smit B. Investigation of entropy effects during
sorption of mixtures of alkanes in MFI zeolite. Chem Eng J.
2002;88(1–3):81–94.

[70] DubbeldamD, Krishna R, Calero S, et al. Computer-assisted screen-
ing of ordered crystalline nanoporous adsorbents for separation of
alkane isomers. Angew Chem Int Ed. 2012;51(47):11867–11871.

[71] Torres-Knoop A, Krishna R, Dubbeldam D. Separating xylene
isomers by commensurate stacking of p-xylene within channels of
MAF-X8. Angew Chem Int Ed. 2014;53(30):7774–7778.

[72] Torres-Knoop A, Heinen J, Krishna R, et al. Entropic separation of
styrene/ethylbenzene mixtures by exploitation of subtle differences
in molecular configurations in ordered crystalline nanoporous
adsorbents. Langmuir. 2015;31(12):3771–3778.

[73] Haldoupis E, Nair S, Sholl DS. Finding MOFs for highly
selective CO2/N2 adsorption using materials screening based on
efficient assignment of atomic point charges. J Am Chem Soc.
2012;134(9):4313–4323.

[74] Matito-Martos I, Martin-Calvo A, Gutiérrez-Sevillano JJ, et al.
Zeolite screening for the separation of gas mixtures containing so2,
co2 and co. Phys Chem Chem Phys. 2014;16:19884–19893.

[75] Wu D, Wang C, liu B, et al. Large-scale computational screening
of metal-organic frameworks for CH4/H2 separation. AIChE J.
2012;58(7):2078–2084.

[76] Chui SS-Y, Lo SM-F, Charmant JPH, et al. A chemically
functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n.
Science. 1999;283(5405):1148–1150.

[77] Heinen J, Burtch N, Guerra CF, et al. Predicting multicomponent
adsorption isotherms in open-metal site materials using force field
calculations based on energy decomposed density functional theory.
Chem - A Eur J. 2016;22(50):18045–18050.

[78] Vicent-Luna JM, Dubbeldam D, Gomez-Alvarez P, et al.
Microscopic assembly of aqueous solutions of ionic liquids. Chem
Phys Chem. 2016;17(3):380–386.

[79] Rahbari A, Poursaeidesfahani A, Torres-Knoop A, et al. Chemical
potentials of water, methanol, carbon dioxide, and hydrogen sulfide
at low temperatures using continuous fractional component gibbs
ensemble Monte Carlo. Mol Simulat. 2017;44(5):405–414.

[80] Dinca M, Choi HJ, Long JR. Broadly hysteretic H2 ad-
sorption in the microporous metal-organic framework Co(1,4-
benzenedipyrazolate). J Am Chem Soc. 2008;130:7848–7850.

[81] Torres-KnoopA, Balestra SRG,KrishnaR, et al. Entropic separations
of mixtures of aromatics by selective face-to-face molecular stacking
in one-dimensional channels of metal-organic frameworks and
zeolites. Chem Phys Chem. 2015;16(3):532–535.

[82] Torres-Knoop A, Dubbeldam D. Exploiting large-pore metal-
organic frameworks for separations using entropic molecular
mechanisms. Chem Phys Chem. 2015;16(10):2046–2067.

[83] Dubbeldam D, Snurr RQ. Recent developments in the molecular
modeling of diffusion in nanoporous materials. Mol Simulat.
2007;33(4–5):305–325.

[84] Clark LA, Ye GT, Gupta A, et al. Diffusion mechanisms of normal
alkanes in faujasite zeolites. J Chem Phys. 1999;111(3):1209–1222.

[85] Rost RJ, Licea-Kane B. OpenGL shading language. Boston (MA):
Pearson Education Inc.; 2010.

[86] BaileyM,CunninghamS.Graphics shaders: theory and practice. 2nd
ed. Boca Raton (FL): Taylor and Francis group; 2012.

[87] Wolf D. OpenGL 4 shading language Cookbook. Birmingham, UK:
Packt Publishing; 2013.

[88] Pharr M, JakobW, Humphreys G. Physically based rendering: from
theory to implementation. Burlington (MA): Morgan Kaufmann;
2016.

668 D. DUBBELDAM ET AL.

[89] Phong BT. Illumination for computer-generated images [PhD
thesis]. The University of Utah; 1973. AAI7402100.

[90] McReynolds T, Blythe D. Advanced graphics programming using
OpenGL. San Francisco (CA): Elsevier; 2005.

[91] Maciel PWC, Shirley P. Visual navigation of large environments
using textured clusters. Proceedings of the 1995 symposium on
Interactive 3D graphics. Monterey, CA, USA: ACM; 1995. p. 95–
102.

[92] Shade J, Lischinski D, Salesin DH, et al. Hierarchical image caching
for acceleratedwalkthroughs of complex environments. Proceedings
of the 23rd annual conference on Computer graphics and interactive
techniques; New York, USA: ACM; 1996.

[93] Bajaj C, Djeu P, Siddavanahalli V, et al. Texmol: interactive visual
exploration of large flexible multi-component molecular complexes.
Visualization, 2004. IEEE; Austin, TX, USA: IEEE; 2004.

[94] Lengyel E. Mathematics for 3D game programming & computer
graphics. Boston (MA): Charles River Media; 2004.

[95] Roth SD. Ray casting for modeling solids. Computer graphics and
image processing. 1982;18(2):109–144.

[96] Gumhold S. Splatting illuminated ellipsoids with depth correction.
In: Proceedings of International Workshop on Vision, Modeling,
and Visualization; Munich, Germany; 2003. p. 245–252.

[97] Sigg C, Weyrich T, Botsch M, et al. GPU-based ray-casting of
quadratic surfaces. In: Proceedings of the 3rd Eurographics/IEEE
VGTC Conference on Point-Based Graphics, pages 59–65, Aire-la-
Ville, Switzerland; Switzerland: Eurographics Association; 2006.

[98] Bagur PD, Shivashankar N, Natarajan V. Improved quadric surface
impostors for large bio-molecular visualization. In: The Eighth
Indian Conference on Vision, Graphics and Image Processing,
ICVGIP ’12, Mumbai, India, 16–19 December, 2012; 2012. p. 33.

[99] Falk M, Grottel S, Krone M, et al. Interactive GPU-based
visualization of large dynamic particle data. Synthesis Lectures on
Visualization. October 2016;4(3):1–121.

[100] Toledo R, Lévy B. Extending the graphic pipeline with new gpu-
accelerated primitives. Technical report. INRIA-ALICE; 2004.

[101] de Toledo R, Levy B, Paul JC. Iterative methods for visualization of
implicit surfaces on GPU. In: Bebis G, Boyle R, Parvin B, Koracin
D, Paragios N, Tanveer S-M, Ju T, Liu Z, Coquillart S, Cruz-Neira
C, Müller T, Malzbender T, editors. Advances in visual computing.
ISVC 2007. Vol. 4841, Lecture notes in computer science. Berlin,
Heidelberg: Springer; 2007.

[102] Loop C, Blinn J. Real-time GPU rendering of piecewise algebraic
surfaces. ACM Trans Graphics. 2006;25(3):664–670.

[103] Grottel S, Reina G, Ertl T. Optimized data transfer for time-
dependent, GPU-based glyphs. Proc IEEE Pac Visual Symp.
2009;2009:65–72.

[104] Zhukov S, Iones A, Kronin G. An ambient light illumination
model. In: Drettakis G, Max N, editors. Rendering techniques ’98.
Eurographics. Vienna: Springer; 1998. p. 45–55.

[105] Landis H. Production-ready global illumination. Course notes on
Renderman in production. SIGGRAPH 2002; 2002 Jul.

[106] Praun E, Hoppe H. Spherical parametrization and remeshing. ACM
Trans Graphics. 2003;22(3):340–349.

[107] Lorensen WE, Cline HE. Marching cubes: a high resolution 3D
surface construction algorithm. ACM Siggraph Comput Graphics.
1987;21(4):163–169.

[108] Montani C, Scateni R, Scopigno R. A modified look-up table
for implicit disambiguation of marching cubes. Visual Comput.
1994;10(6):353–355.

[109] Smistad E, Elster AC, Lindseth F. Fast surface extraction and
visualization of medical images using opencl and GPUs. The Joint
Workshop on High Performance and Distributed Computing for
Medical Imaging; 2011.

[110] Ziegler G, Tevs A, Theobalt C, et al. On-the-fly point clouds through
histogram pyramids. 11th International Fall Workshop on Vision,
Modeling and Visualization 2006 (VMV2006); 2006. p. 137–144.

[111] Dyken C, Ziegler G, Theobalt C, et al. High-speed marching cubes
using histopyramids. Comput Graphics Forum. 2008;27(8):2028–
2039.

[112] Cozzi P, Riccio C. OpenGL insights. Boca Raton (FL): Taylor and
Francis group; 2012.

[113] Green C. Improved alpha-tested magnification for vector textures
and special effects. ACM SIGGRAPH 2007 courses; New York (NY):
ACM; 2007. p. 9–18.

[114] HannemannA, Hundt R, Schon JC, et al. A new algorithm for space-
group determination. J Appl Crystallogr. 1998;31:922–928.

[115] Delaunay B. Neue darstellung der geometrischen kristallographie. Z
Kristallographie-Cryst Mater. 1933;84(1–6):109–149.

[116] Le Page Y. Computer derivation of the symmetry elements implied
in a structure description. J Appl CrystallogR. 1987;20(3):264–
269.

[117] Lebedev AA, Vagin AA, Murshudov GN. Intensity statistics in
twinned crystals with examples from the PDB. Acta Crystallogra
Sect D: Biol Crystallogr. 2006;62(1):83–95.

[118] Grosse-Kunstleve RW. Algorithms for deriving crystallographic
space-group information. Acta Crystallogr A. 1999;55(2):383–
395.

[119] Storjohann A. Computation of Hermite and Smith normal forms
of matrices [PhD thesis]. Waterloo (ON): University of Waterloo;
1994.

[120] Wan Z. Computing the smith forms of integer matrices and solving
related problems [PhD thesis]. Newark, Delaware, USA: University
of Delaware; 2005.

[121] Fontein F. Aspects of computer algebra. Zurich, Switzerland: Spring
Semester; 2013.

Appendix 1. Visualisation and implementation
details

A.1. Primitives

Metal and OpenGL/OpenCL are APIs for encoding and queueing render
and compute commands to be submitted to the GPU for execution. The
scene is specified imperatively and follows froma sequence of drawing com-
mands. Applications render primitives by specifying a primitive type and
a sequence of vertices with associated data. The available basic geometrical
primitives are points, lines and triangle, and triangle-strips. Triangle strips
start with a triangle, but every additional vertex forms another triangle
with the previous two vertices. The number of vertices stored in memory
is reduced from 3N to N + 2, where N is the number of triangles to be
drawn. A list of vertices ‘A,B,C,D,E,F’ would be drawn as ABC, CBD, CDE,
and EDF triangles. More complex objects such as discs, spheres, cylinder,
cones, and surfaces, must be constructed out of the basis primitives.

A.2. The render pipeline

The rendering pipeline is a computer graphics model that describes the
conceptual rendering steps of a 3D graphics system. A simplified version
of the pipeline is depicted in Figure A1. On modern hardware, many parts
of this pipeline are programmable using what are called ‘shaders’ [85–87].

• Vertex shader. The vertex shaders handle the processing of individ-
ual vertices along with vertex attribute data, e.g. normals and colour.
In the vertex shader, the vertices and normals are converted from
world-coordinates to clip-coordinates.

• Tesselation shaders (optional). After the vertex shader, an optional
tesselation stage can be performed. This stage consists of 3 steps: the
tessellation control shader, tesselation, and the tessellation evalua-
tion shader (the first and third are programmable). The shaders can
see all vertices of a primitive (a form of primitive assembly happens
before the shader executes) and subdivide patches of vertex data into
smaller primitives, e.g. to smooth a surface.

• Geometry shaders (optional). Just like the tesselation shaders, the
optional geometry shader can treat all the vertices of primitive at
once, and produce a new primitive or create additional primitives
based on the input.

MOLECULAR SIMULATION 669

Figure A1. The rendering pipeline is a computer graphics model that describes the conceptual rendering steps of a 3D graphics system from the input vertices to pixels
on the screen.

• Primitive assembly. Primitive assembly combines the clip-space ver-
tices into a sequence of primitives. The primitives are classified into
points, lines, and triangles. Once the primitives have been assembled,
these primitives are tested if they fall within the view-volume. If they
do not pass this test, they are ignored in subsequent steps. This test
is called ‘clipping’. Primitives that are partially visible (which means
that they cross one of the frustum planes) must be handled specially.
Triangle primitives can be culled (i.e. discarded without rendering)
based on the triangle’s facing in window space. This allows you to
avoid rendering triangles facing away from the viewer.

• Rasterisation. Rasterisation determines a bounding box for the tri-
angle in window coordinates and test every fragment inside it to
determine whether it is inside or outside the triangle. A fragment is
a set of state that is used to compute the final data for a pixel (or
sample if multisampling is enabled) in the output framebuffer. The
state for a fragment includes its position in screen-space, the sample
coverage if multisampling is enabled, and a list of arbitrary data that
was output from the previous vertex or geometry shader. This last set
of data is computed by interpolating between the data values in the
vertices for the fragment. The style of interpolation is defined by the
shader that outputs those values. The default provides perspective-
correct values of the interpolants to each instance of the fragment
shader.

• Fragment shader. The data for each fragment from the rasterisation
stage is processed by a fragment shader. The output from a fragment
shader is a list of colours for each of the colour buffers being written
to, a depth value, and a stencil value. Fragment shaders are not able
to set the stencil data for a fragment, but they do have control over
the colour and depth values. Applications of the fragment shader
are per-pixel lighting, texture mapping, and ray-casting through a
volumetric data set.

The fragment data output from the fragment processor is then passed
through a sequence of steps.

• Stencil test. When enabled, the test fails if the stencil value provided
by the test does not compare as the user specifies against the stencil
value from the underlying sample in the stencil buffer. Note that
the stencil value in the framebuffer can still be modified even if the
stencil test fails (and even if the depth test fails).

• Depth test. When enabled, the test fails if the fragment’s depth
does not compare as the user specifies against the depth value from
the underlying sample in the depth buffer. Note: though these are
specified to happen after the fragment shader, they can be made to
happen before the fragment shader under certain conditions. If they
happen before the fragment shader, then any culling of the fragment
will also prevent the fragment shader from executing.

• Blending. After this, colour blending happens. For each fragment
colour value, there is a specific blending operation between it and the
colour already in the framebuffer at that location. Logical operations,
performing bitwise operations between the fragment colours and
framebuffer colours, may also take place.

• Masking. Lastly, the fragment data is written to the framebuffer.
Masking operations allow the user to prevent writes to certain values.
Colour, depth, and stencilwrites canbemaskedonandoff; individual
colour channels can be masked as well.

A framebuffer stores information on each pixel (like colour and depth) and
can be used as the destination for rendering (either for display or for offline
rendering).

A.3. Coordinate systems and the virtual camera

By default, OpenGL and Metal work in a left-handed coordinate system
called Normal Device Coordinates (NDC), positive x ∈ [−1, 1] axis points
right, positive y ∈ [−1, 1] axis points up, and positive depth is further from
the viewer. The z-range differs between OpenGL and Metal: OpenGL uses
x ∈ [−1, 1], while metal uses z ∈ [0, 1] which has advantages on recent
hardware when using floating point z-buffers. Inverting the depth-range
allows a right-handed system if desired. This volume is often referred to
as the unit cube (although it not really is) or the canonical view volume.
By default, objects will appear to have the same size everywhere (called
orthographic projection). Everything we intend to draw must be defined
in the NDC coordinate system. However, it is much more convenient to
specify the objects in some world coordinate system by constructing a
(virtual) camera.

The most common implementation sets the camera fixed at the origin
0, 0, 0 and looks towards the negative z-axis. Changing the view of the
camera is performed by actually doing the opposite transformation: the
world is translation and rotated. The matrix that performs this operation
is called the view matrix which is based on three choices:

(1) The eye position of the virtual camera (where do you want to
pretend your camera is?),

(2) The location of the centre of the scene (what is your camera looking
at?),

(3) The up-vector of the camera (how are you holding your camera?).

The defaults are: the eye at (0, 0, 0); the centre at (0, 0,−1) and the up is
given by the positive direction of the y-axis (0, 1, 0).

A change of basis of one coordinate system to another ismathematically
conveniently described by a matrix operation. The three column vectors
of the basis B′ must be orthonormal. To create the coordinate system of
the camera we can make use of (i) the eye position, (ii) the centre of the
scene, and (iii) the up-vector. The first vector we can construct as n =∣∣eye − centre

∣∣, i.e. the vector from the eye to where we are looking at. This
vector is in the direction of the camera view and normalised. To create the
second vector we make use of the up-vector. Note that the up-vector is
not orthogonal to the vector n, but we can still use the vector n and the up
vector to create a vector orthonormal to the first vector using s = ∣∣up × n

∣∣.
Now that we have two orthonormal vectors s and n we can recompute the
up-vector and force it to be orthonormal u = |n × s|. The vector n is in
the view direction and associated with the z direction and therefore the
3th column; the up-vector u is universally chosen as 0, 1, 0 and associated
with the 2nd column (being a y-direction), and the remaining direction
forms the 1st column. A rotation matrix can be described as a 3× 3 matrix,
but in order to incorporate both rotation and translation mathematically
a 4 × 4 matrix is required. The 4 × 4 matrix operates on vectors of size
4 called ‘homogeneous coordinates’. This vector consists of a x, y, x-triple
and a additional dimension called w (for now, w = 1). The view-matrix V
transforms world coordinates to camera space andV−1 transforms camera
coordinates to world coordinates

670 D. DUBBELDAM ET AL.

Figure A2. Coordinate systems for graphics rendering. The natural coordinate system for the hardware is the Normalised Device Coordinates (NDC) which range from
[−1, 1] in all 3 axes. The steps before are used to simulate a virtual camera. It transform the model-space to world-space and then applies a projection matrix to get
camera coordinates. Points outside the viewing frustum are clipped in clip coordinates, and using perspective divide the clip coordinates are transformed to NDC. The last
step scales and translates the NDC in order to fit into the rendering screen viewport.

V =

⎛
⎜⎜⎝
sx sy sz −eyex
ux uy uz −eyey
nx ny nz −eyez
0 0 0 1

⎞
⎟⎟⎠ V−1 =

⎛
⎜⎜⎝
sx ux nx eyex
sy uy ny eyey
sz uz nz eyez
0 0 0 1

⎞
⎟⎟⎠ (A1)

The view-matrix works on objects in the scene. But what if the objects
themselves can also rotate and have an orientation? Traditionally the ‘world
matrix’ is used to move individual models from ‘model space’ to ‘world
space’. Then the ‘view matrix’ is used to move all the models from world
space into their relative positions in front of the camera (which, in effect,
‘moves the camera’). The view matrix, V, multiplies the model matrix M
and, basically aligns the world (the objects from a scene) to the camera.
For a generic vertex, v, this is the way we apply the view and model
transformations:

v′ = V · M · v (A2)
To remap all coordinates contained within a certain bounding box

in 3D space into the canonical viewing volume a projection matrix is
used. The bounding box, also called the viewing frustum, determines what
is contained in you scene and what gets clipped. The projection matrix
transforms from camera space to clip space. If part of a triangle sticks out
of the frustum then only the part that sticks out is chopped off. Clipping is
performed in homogeneous coordinates so that interpolated attributes are
calculated correctly. Two different ways of mapping are orthographic and
perspective transformations.

Orthographic projection rectangular box is defined by 6 planes: the
left- and right-planes, the top-and bottom planes, and the front face, called
near-plane) and far-plane. The orthographic projection will not modify
the size of the objects no matter where the camera is positioned (useful in
CAD, molecular viewers and 2D games). An often used OpenGL matrix
definition is:

Portho =

⎛
⎜⎜⎜⎝

2
right−left 0 0 − right+left

right−left

0 2
top−bottom 0 − top+bottom

top−bottom
0 0 − 2

far−near − far+near
far−near

0 0 0 1

⎞
⎟⎟⎟⎠ (A3)

For perspective projection, it is more convenient to define the projection
matrix through:

(1) viewing angle or field of view (fov)
(2) aspect ratio
(3) near and far

where near and far specify the near and far clipping planes. Perspective
transformation can be achieved by dividing the vertices by their z-value. If
we defined f as

f = 1
tan (12 × fovy)

(A4)

then the y and z are related by

y = −z
f

(A5)

At depth z, a y eye coordinate value of y should map on to the viewport
coordinate y = 1, as it is at the very top of the screen. Similarly, a y eye

coordinate value of y should map onto viewport coordinate y = −1, and
all intermediate y values should map linearly across that range (because
perspective projection is linear for all values at the same depth). However,
the transformation equation turns out to be non-linear and cannot be
represented directly by a matrix. Thus, we invent ‘clip coordinates’ which
factor z out of the equations and rather than setting w = 1 as usual, we set
w = −z.

xclip = f × xeye
aspect

(A6)

yclip = f × yeye (A7)

zclip = far + near
near − far

× zeye + 2 × far × near
near − far

(A8)

wclip = −z (A9)

The w = −z leads to a right-handed coordinate system before projection
and left-handed coordinate system after projection.

We can now redefine the NDC coordinates in terms of the clip coordi-
nates:

xNDC = xclip/wclip [−1, 1] (A10)
yNDC = yclip/wclip [−1, 1] (A11)
zNDC = zclip/wclip [−1, 1] (A12)

The advantage of separating these two steps is that the first step can now
be achieved with a matrix, while the second step is extremely simple. In
OpenGL, the projection matrix transforms camera coordinates to clip co-
ordinates (notNDC coordinates).We can rewrite camera-to-clip equations
as a matrix (assuming that the w eye coordinate is always 1):

Ppersp. =

⎛
⎜⎜⎝

f
aspect 0 0 0
0 f 0 0
0 0 far+near

near−far
2×far×near
near−far

0 0 −1 0

⎞
⎟⎟⎠ (A13)

which is exactly the perspective projectionmatrix. The projectionmatrix,P,
multiplies the product viewmatrix model matrix and, basically projects the
world coordinates to the unit cube (after perspective divide). For a generic
vertex, v, this is the way we apply the view and model transformations:

v′
clip = P · V · M · v (A14)

The NDC are scaled and translated to window/screen-coordinates in
order to fit into the rendering screen.

⎛
⎝Xw
yw
zw

⎞
⎠ =

⎛
⎜⎝

w
2 xNDC + (

x + w
2
)

h
2 yNDC +

(
y + h

2

)
f−n
2 zNDC + f+n

2

⎞
⎟⎠ (A15)

In the fragment-shaderwe can access an attribute specifier[[position]]
in Metal shaders and GLSL variable called gl_FragCoord for OpenGL,
respectively. It contains the window relative coordinate (x, y, z, 1/w) values
for the fragment. The first two values (x, y) contain the pixel’s centre
coordinates where the fragment is being rendered. For instance, with a

MOLECULAR SIMULATION 671

frame buffer resolution of 800 × 600, a fragment being rendered in the
bottom-left corner would fall over the pixel position (0.5, 0.5); a fragment
rendered into the most top-right corner would have coordinates (799.5,
599.5). For applications that use multi-sampling these values may fall
elsewhere on the pixel area.

A.4. Depth-buffer

Z-buffering is a way of keeping track of the depth of every pixel on
the screen. The depth is an increasing function of the distance between
the screen plane and a fragment that has been drawn. That means that
the fragments on the sides of the cube further away from the viewer have
a higher depth value, whereas fragments closer have a lower depth value.
If this depth is stored along with the colour when a fragment is written,
fragments drawn later can compare their depth to the existing depth to
determine if the new fragment is closer to the viewer than the old fragment.
If that is the case, it should be drawn over and otherwise it can simply be
discarded. This is known as depth testing.

The value stored in the depth buffer is a value that maps linearly to
the near and far plane. In a perspective projection, the z-buffer value is
non-linear in camera space. In short, depth values are proportional to the
reciprocal of the z value is camera space. There is more precision close to
the camera (or eye) and less precision far from the eye. But z values are
linear in clip space. Note that the value stored in the depth buffer by default
is actually in the range [0, 1], so the depth buffer value zdepth is:

zdepth =
{

1
2 × zNDC + 1

2 for OpenGL
zNDC for Metal

(A16)

A.5. Colourmodel

In ray-tracing, light is the primitive rendering basis, which leads to
photo-realistic images [88]. However, on current hardware ray-tracing, is
deemed too expensive for real-time rendering [41], because each pixel can
potentially be influenced by all objects in the scene. For real-time rendering
like OpenGL and Metal, the most suitable rending primitive is geometry,
because each piece of geometry can be handled separately (parallel and
independently). The price to pay is that object interaction, like shadows,
transparency, and ambient occlusion, must be handled by ad-hoc, special
techniques.

The light sources have an effect only when there are surfaces that absorb
and reflect light. Each surface is assumed to be composed of a material with
various properties. A material might emit its own light (like headlights on
an automobile), it might scatter some incoming light in all directions, and it
might reflect some portion of the incoming light in a preferential direction
like a mirror or other shiny surface.

The OpenGL lighting model considers the lighting to be divided into
four independent components: emissive, ambient, diffuse, and specular. All
four components are computed independently and then added together:

Cfinal = Ambientmat. × Ambientscene
+ Ambientmat. × Ambientlight × Iamb.

+ Diffusemat. × Diffuselight × Idiff.
+ Specularmat. × Specularlight × Ispec.
+ Emmisionmat.

(A17)

In the Phong reflectionmodel the colour is calculated for arbitrary points p
on a surface usingmaterial properties (Ambient kA, diffuse kD , and specular
kS), light components for each colour (AmbientLA, diffuseLD , and specular
LS) and various vectors as input [89]:

I = 1
a + bq + cq2

[
kDLD

(
l · n) + kSLS

(
r · v)α] + kALA (A18)

where l is the vector to the light source, n is the surface normal, v the
vector to the viewer, r the reflection of l at p (determined by l and n), and
q the distance for surface point p from the light source. These equations
are typically modelled separately for R, G and B intensities and different

light sources (e.g. directional, point-, and spot-lights) are added. The overall
colour is clamped to [0.0,1.0] and then divided into only 256 possible colour
values.

The clamping of colours can result in artefacts. Also, if lighting is too
dim, the details in the scene are lost.High-dynamic-range (HDR) rendering
using floating points buffers allows values greater than 1.0 [19,90] Tone
mapping is the process of transforming floating point colour values to the
expected [0,1] range, known as Low Dynamic Range (LDR), range without
losing too much detail:

colourLDR = 1.0 − 2−colourHDR∗exposure (A19)

Low ‘exposures’ shows the details in the very bright sections of the screen;
high exposures allow you to see details in the dark areas, but washed out
the bright parts.

The red, green, and blue (RGB) colour space is common on graph-
ics hardware. However, in printing the CMYK colour space is common.
CMYK is a transmissive model, created by subtracting colour components
from white [86]. Other used colour models are HLS and HSV. The latter
is useful for example to half-desaturate colours [90] like is done in the
Qutemole-look [17].

Transparency can be achieved by alpha compositing, i.e. the process
of combining an image with a background to create the appearance of
partial or full transparency. The interpolation of textures with transparency
can be corrected using premultiplied alpha: before interpolation, all RGB
colour components are multiplied by that colour’s corresponding alpha
value. The blending or compositing of colours is then performed using:
Result.rgb = Source.rgb + Dest.rgb ∗ (1 − Source.alpha).

A.6. Billboarding and imposters

Billboards are precomputed 2D textures that always drawn facing the
camera. An imposter is defined as anything that replaces actual geometry
[91]. This approach renders geometry to an image with a fixed view di-
rection, perspective and shading [92]. Camera-space is very convenient for
billboarding because xy-billboards at fixed z automatically face the camera
by construction. Any quadric element can be approximated by linear ele-
ments called ‘impostors’, quads in the case of spheres and hexahedrons in
the case of cylinders and helices (see Figure A3).

For every atom at world coordinate v we can get the position in camera-
space using:

v′
cam = V · M · v (A20)

In camera space, x and y are left/right and up/down and hence this place
always face the camera. We can then easily use this to create a ‘billboard’
of size [-1,+1] and [-1,+1] for the x- and y-axes. Next we scale this square
by the size of the atom. However, for perspective view, the actual atom can
extend beyond this square so depending on the angle of view this square
needs to be made a bit larger.

For orthogonal view, we immediately get the z position from the (x, y)
local coordinates as z2 = 1 − x2 − y2. We can then discard all pixels with
z2 < 0 and get the sphere shape. Note that we now have not only the
position of each visible pixel as (x, y, z) position, but also the normal since
we know the location of the centre of the sphere. However, the depth-buffer
contains the depth of the billboard, not yet the depth of the sphere [93].We
can explicitly write the depth to the depth-buffer in the fragment shader as

p(x, y, z,w) = P ·
(
v′
cam,x + r × x, v′

cam,y + r × y, v′
cam,z

+ r ×
√
z2, v′

cam,w

)
(A21)

normal = (
x, y, z

)
(A22)

depth(x, y) =
{

1
2

(
pz/pw

) + 1
2 for OpenGL

pz/pw for Metal
(A23)

Note that this makes use of the properties of orthographic projection.
For perspective projection, we need to explicitly compute the z-position
using ray-intersection of a rayP(t) = S+tV and a sphere: [94]. Ray casting,
first coined by Scott Roth in 1982 [95], is a technique for generating an im-
age by casting a ray through each pixel in an image plane, then intersecting

672 D. DUBBELDAM ET AL.

these rays with objects in the scene. Once the nearest intersection point has
been found, the final pixel colour is determined based on the incoming light
and material properties of the object. Instead of performing the ray casting
algorithm for each pixel of the screen, we perform it on each billboard.
Since we’re in camera space, the camera is at the origin (so the origin can
be eliminated from the equations).

a = V2 (A24)
b = 2

(
S · V)

(A25)
c = S2 − r2 (A26)
D = b2 − 4ac (A27)

t = −b − √
D

2a
(A28)

p(x, y, z,w) = P · (
tVx , tVy , tVz , 1

)
(A29)

After this procedure, we are in the same situation as when drawing a
sphere made up frommany, many individual triangles. However, we did it
with 2 triangles (making up a square). We can, based on the position and
normal, draw the imposter-sphere using for example the Phong reflection
model. It looks like a sphere, eventhough it is really drawing a square
in a clever way. The vertex-shader is run for these 4 vertices only, the
fragment shader for each pixel in the square. One minor downside is
that we explicitly have to set the depth-value which on many hardware-
type disables ‘early depth’-optimisation (since z-buffer is computed in the
fragment shader). Despite this, drawing spheres using imposters is 1 or
2 orders of magnitude faster than drawing it is using many individual
triangles or using tesselation shaders. Many imposter algorithms have been
developed for spheres, ellipsoids, cylinders, cones, and helixes [17,93,96–
99], generic quadratic [100], cubic and quadratic [101], piecewise algebraic
surfaces [102], and compound imposters [103]. Note that a small angle of
view can lead to large numerical errors [99].

A.7. Instanced rendering

Drawing atoms is a typical case suitable for ‘instanced rendering’. The
same object is drawn over and over again in different places. Instanced
rendering is a method to specify that you want to draw many copies of the
same geometry with a single function call. Only the geometry of a single
sphere is needed (for sphere-imposters two triangles forming a quad), along
with a array of positions for the ‘instances’ of the sphere. For large amount
of amounts of atoms, this provides a significant saving of the overhead of
many function calls.

In iRASPA also the bonds are treated using instanced rendering of
cylinders. However, bonds have an orientations and the cylinders need to
be oriented along the distance vectors connecting two atoms. The geometry
data is a single cylinder, the instance data is an array of positions for
both atoms forming the bond. From the two positions of atoms A and
B, the distance vector dr = posB − posA is computed. Next, we create two
additional, perpendicular axes:

v1 =
{

|drx | > |drz | normalize(− dry , drx , 0)
|drx | <= |drz | normalize(0,−drz , dry)

(A30)

v2 = normalize(dr × v1) (A31)

The vectors v2, dr, and v1 form a transformationmatrix to rotate the single
cylinder (aligned in the y-direction) to the bond between atom A and B.
Since this is done in the vertex-shader it is very cheap to do.

A.8. Picking and selection

3D picking is the process of finding objects of a scene located at a
specified point indicated by the mouse. A mouse click on a pixel in the 2D
window is matched to the object that is projected to the exact same pixel.
The is useful for various interactive uses such as selection, deletion, etc.
Picking is implemented by attaching indices to each triangle, object, and
structure and use the fragment shader to output the indices at the pixel they
belong to. Basically, the ‘color’ buffer is now used not for colours, but only
for identifiers of objects. Because no illumination is needed, the picking

rendering is cheap (especially when imposters are used), and picking is
pixel-perfect by construction. On each mouse click we will read back the
identifiers for the clicked pixel. The use of the depth-buffer guarantees we
get the index of the top-most object (closest to the camera).

To select atoms in a frustum defined by a rectangular window section
(see Figure 2) we need another approach, called ‘unprojecting’. In order to
perform the conversion from gl_FragCoord units to NDC, we must
convert gl_FragCoord values to the range [0, 1] and then compute
a simple scale and bias operation to convert them to normalised device
coordinates.Depth value ingl_FragCoord already comes in range [0, 1],
but (x, y) values come in screen pixel coordinates, soweneed to divide them
by the screen size for normalisation. The conversion from window space
	W to NDC-space 	N , clip-space 	C and eye-space 	P is

	N =

⎛
⎜⎜⎜⎜⎜⎝

2×(
Wx−Vx

)
Vwidth

− 1
2×(

Wy−Vy
)

Vheight
− 1(

2×Wz
)−Df −Dn

Df −Dn

1

⎞
⎟⎟⎟⎟⎟⎠ (A32)

	C =

⎛
⎜⎜⎝
Nx/W .w
Ny/W .w
Nz/W .w
1/W .w

⎞
⎟⎟⎠ (A33)

	P = M−1 	C (A34)

where M is the projection matrix, Vx,y the offset of the viewport (usually
zero), Vw,h the width and height of the viewport, and Dn,f the near and far
values passed to glDepthRange. To construct the frustum for selection,
for each of the four corners of the selection rectangle we convert to world-
space twice: once with z = 0 and once with z = 1. The resulting four
vectors form the bounding box to search for objects that are contained
within.

A.9. Ambient occlusion using textures

Ambient occlusion (AO) is a technique that approximates the amount
of indirect light reaching a point on the surface of an object [104,105]. The
amount of light reaching the surface is based on how much light is being
occluded by other objects in the world. One of the first applications of
ambient occlusion in production renderingwas for spatial effects inmotion
pictures [105]. Unlike local lighting effects where only light coming directly
from a light source is taken into account, ambient occlusion is a global
method, taking into account other geometry in a scene. It can therefore
produce effects otherwise unattainable to standard lighting methods, such
as contact shadows. Although it is a very basic approximation to full global
illumination, it can be calculated far faster, and is still able to enhance the
visual quality of the scene.

For static objects we can precompute the ambient occlusion (because it
does not depend on the light direction), leading to fast real-time AO after
precomputation. Tarini et al. proposed to stored the pre-computed AO in
a global texture [17]. The mapping from texels to x, y, z is [17,106]:

M
(
x, y, z

) =
{(x

d ,
y
d
)

if z ≤ 0(
sign

(
x
) (

1 − |y|
d

)
, sign

(
y
) (

1 − |x|
d

))
if z > 0

(A35)
where d = |x| + ∣∣y∣∣ + |z|. The mapping from x, y, z to texels, up to a
normalisation is:

M−1 (
x, y, z

) =
{(

u, v, h
)

if h ≥ 0(
sign

(
u
) (
1 − |v|) , sign (

u
) (
1 − |v|) , h) if h < 0

(A36)
where h = 1 − |u| − |v|. The mapping is gnomonic and hence does not
needs its argument to be normalised prior to use. The details of the texture-
mapping are shown in Figures A4 and A5.

The ambient occlusion for a structure can be stored in an texture atlas,
see Figure A6. The IRMOF-1 structure consists of 424 atoms. We can use
a 1024 × 1024 texture atlas containing 424 patches of 48 × 48 pixels. The
maximum texture size that is supported on all macs is 16384 × 16384,

MOLECULAR SIMULATION 673

Figure A3. (Colour online) Drawing atoms with imposters: (a) first draw a quad that extends the size of the atom taking perspective projection into account, (b) discard all
pixels that are outside a circle the size of the atom, (c) colour each pixel appropriately using the position and normal.

Figure A4. (Colour online) Illustration showing the mapping of a square texture on a sphere: (a) the folding of the texture around the texture, (d) the front of the sphere,
and (g) the result of bi-linear interpolation which shows artefacts where the four corners of the texture patch meet. Tarini et al. solved the continuity problem using
periodic boundary conditions on the texture [17]; we now get (b), (e) and (h). Indeed, (h) is continuous, but (e) shows the overall area of the edge is now twice as large.
Therefore, a second change is needed: the texture patch is shrunk in texture space by half a texel in every direction [17].

which means that for such a texture atlas for a million atoms we still have
a sufficiently large ambient occlusion patch per atom of 16×16 pixels. The
ambient occlusion is computed by randomly rotating the structure 512
times and accumulating the light per pixel. After normalisation the global
texture looks like Figure A6(c).

A.10. Glow (bloom) effect

A glow effect is achieved with a post-processing effect called ‘bloom’.
iRASPAuses this to differentiate selected atoms fromunselected atoms (see
Figure A7). First, we render the original image to a temporary buffer. At
the same time, we render any glowing parts of the image to a glow buffer.

We use an optimised Gaussian filter process on each of the glow textures.
To make it fast, we blur in two passes: horizontally to a temporary buffer,
and then vertically back to the previous buffer. The temporary buffer and
the glow buffer are combined together into the final result. Because the
bright regions are extended in both width and height due to the blur filter
the bright regions of the scene appear to glow light.

A.11. Fast surface extraction

Marching Cubes (MC) is an algorithm for extracting a polygonal mesh
of an isosurface from a three-dimensional discrete scalar field [107]. The
original method could lead tomeshings with holes and was improved upon

674 D. DUBBELDAM ET AL.

Figure A5. (Colour online) Illustration of ambient occlusion of four spheres: (a) the ambient occlusion texture, (b) ambient occlusion added together with a blue ambient
and white specular color, and (c) using texture bi-linear interpolation.

Figure A6. (Colour online) Storing ambient occlusion in a texture atlas: (a) the IRMOF-1 structure (424 atoms) shown with ambient occlusion, (b) typical depth-texture of
a randomly rotated structure showing which pixels receive light (from the camera direction, (c) storage the floating point ambient occlusion in the red-component of a
large global texture. Each local texture per atom is 48 × 48 pixels, the global texture is of size 1024 × 1024.

Figure A7. (Colour online) Glow effect: (a) the selected atoms drawn with a glow effect, (b) the selected atoms smeared out using Gaussian blur, (c) the original structure.
Adding contribution (b) to (c) leads to figure (a) where the selected atoms appear to ‘glow’.

to construct topologically correct isosurfaces [108]. MC is a completely
data parallel algorithm since each cube can be calculated independently on
the other cubes and thus ideal for running on GPUs. However, the main
problem is that each cube output a different amount of surface triangles
(between 0 and 5 triangles). This is a commonproblem inGPUapplications
and the solution is often termed ‘Stream Compaction’, which refers to
removing unwanted elements from a stream of elements. Smistad et al.
solved the compaction problemusing a 3D texture version of theHistogram
Pyramids (HP) compaction method [109–111]. Suppose the raw data is a

256× 256× 256 texture. The first step is to compute the number of output
triangles per texel. Next, the texture is ‘reduced’ using textures halved in
size in all dimensions (256× 256× 256, 128× 128× 128, . . . , 1 × 1 × 1).
Each substep sums 2 × 2 × 2 texels into a single value into the next step.
Note, the storage per texel is only an 8-bit value for the larger textures
(because the maximum output is 5 triangles per texel), up to 16-bits for the
smaller textures (for this case). The final texture outputs the total amount
of triangles. Importantly, by traversing theHP in Z-pattern, with a criterion
described inRefs. [109–111], eachpossible output indexof a surface triangle

MOLECULAR SIMULATION 675

can be uniquely associated with a 3D texel. So, first the amount of output
triangles is computed; next the appropriate GPU memory is allocated to
store the triangles, and then for GPU computation proceeded in parallel
over all the possible output triangles computing the vertices and normals
for the surface triangle based on the raw input data and the constructed
HP levels. The 3D texture HP algorithm processes large datasets faster
than previous implementations because temporary data is stored in a more
efficient format [109].

A.12. Capped cylinders

Mac GPUs only support combined depth and stencil formats, the
‘depth32Float_stencil8’ format is supported on all metal devices: A 64-bit
combined depth and stencil pixel format with two floating-point compo-
nents: 32 bits, used for a depth render target, and 8 bits, used for a stencil
render target. Stenciling implements a simple state machine in every pixel
which can be used to implement capping. Enabling stencil testing adds an
additional condition in the fragment pipeline. If stencil testing is enabled,
after passing the depth test each fragment will then go through the stencil
test. If the fragment passes the stencil test it will be written to the frame
buffer, otherwise it will be discarded. The stencil test is very similar to the
depth test. In both cases you have a per fragment test used in conjunction
with a dedicated buffer. The main difference between the two is the test
functions. The stencil buffer can be used to cap clipped solids that intersect
with a clipping plane. To draw a cap on a clipped cylinder a three-step
process is used [90]: (1) render the front-facing triangles (with clipping
enabled) only and clear the stencil to 0, (2) render the back-facing triangles
(with clipping enabled) and set the stencil to 1, (3) draw the cap only when
the stencil is 1. The stencil buffer is used to track all pixels that make up the
interior of the cylinder.

A.13. Text

2D overlays of text can be done in Cocoa using CALayers (CAText-
Layer). This produces high-quality textual overlays. However, 3D annota-
tion has to be done from within Metal/OpenGL (the annotation could be
occluded by objects in the scene). Text drawn on billboard using textures
are fast, but the text relies on texture interpolation for zooming in and
out. A crisp text-boundary cannot be sampled and reconstructed properly
using standard texture images (like font-atlases). Recent approaches on
high-quality text therefore are based on ‘vector textures’, i.e. 2D surface
patterns built from distinct shapes [112].

Signed-distance fields precomputes a representation of a font atlas that
stores the glyph outlines implicitly [113]. Specifically, the texel values of a
signed-distance field texture correspond to the distance of the texel to the
nearest glyph edge, where texels outside the glyph take on negative values.
Because the texture data is smoothly varying it will behave nicely under
magnification andminification using ordinary bi-linear interpolation. This
technique allows quick generation of font atlases which can then be used
to draw text on the GPU extremely fast.

Appendix 2. Symmetry and spacegroups

B.1. Finding a primitive cell

The fractional positions of all the atoms in a structure are given in some
basis B with basis vectors a, b, c. This might be a P1 structure with all
symmetry removed or a supercell with additional translation symmetries
and the structure could have been displaced and have an arbitrary rotation.
Therefore, we have to first find the full translational symmetry from the
translations of the atomic configuration. Hanneman et al. presented the
following algorithm for finding the primitive cell [114]:

(1) Starting from each atom i of the configuration, difference vectors
dij to atoms j (j > i) of the same type are calculated. Only those
difference vectors whose coordinates relative to the basis B do not
exceed 1/2 need to be considered.

(2) Next, each difference vector dij is added to the position vectors
of the other atoms belonging to the configuration. If all resulting
vectors ax = al ±dij are elements of the set of vectors representing
the atoms of the configuration, a translation has been found and it

is added to the set T of possible translations (vectors representing
the basis B are also included in the set T).

(3) In the next step, test cells are generated by choosing all possible
triplets of vectors from the set T . If such a triplet is linearly inde-
pendent and the volume of the spanned parallelepiped does not
exceed the volume of the simulation cell, the test cell is acceptable,
in principle.

(4) Finally, one of the cells with the smallest volume is chosen as the
representative primitive cell.

Note that this choice may result in unconventional cell constants.
Therefore, the chosen primitive cell is reduced using the algorithm of
Delaunay [115] and the necessary transformation of the chosen primitive
cell to its reduced form is performed.

B.2. transforming to another basis

Symmetry operations are usually described in the
(
W,w

)
formalism,

where W is the
(
3 × 3

)
rotation matrix and w is the

(
3 × 1

)
. A point

X(x, y, z) transforms as:

(
X′) = (

P, p
)−1 (

X
) = (

P−1,−P−1p
) (
X

)
(B1)

and a symmetry operation
(
W,w

)
as [45]:

(
W′,w′) = (

P, p
)−1 (

W,w
) (
P, p

) = (
P−1WP,P−1 (

w + (
W − I

)
p
))
(B2)

B.3. Find symmetry of the lattice

Thenext step is to find the rotational symmetry of the reducedDelaunay
cellh. A brute force algorithmwould loopover all possible rotationmatrices
R and check that the metric tensor of the transformed cell h′ = hR is
numerically equal to themetric tensor of h. Themetric tensorG, computed
from the cell matrix h, is given by

G = hTh (B3)

=
⎛
⎝ a2 ab cos

(
γ
)
ac cos

(
β
)

ab cos
(
γ
)

b2 bc cos
(
α
)

ac cos
(
β
)
bc cos

(
α
)

c2

⎞
⎠ (B4)

It is sufficient to search for twofold axes to determine the full symmetry.
Subjecting the twofolds to group multiplication produces the higher-order
symmetry elements, if present [116]. Lebedev et al. introduced the idea of
simply enumerating all 3x3 matrices with elements -1,0,1 and determinant
one [117]. As an additional requirement group multiplication based on
eachmatrix individually has toproducematrices exclusivelywith elements -
1,0,1. There are only 480matrices that conform to all requirements. Lebedev
et al. argue that this set covers all possible symmetry operations for reduced
cells. Only 81 of the 480 selectedmatrices correspond to twofolds. These are
easily detected by establishing which of the matrices produce the identity
matrix when multiplied with themselves (and are not the identity matrix
to start out with).
B.4. Find symmetry of the atomic configuration

Next we find the rotational and translational symmetries for the atomic
configuration in the reduced Delaunay cell. The point group of the lattice
cannot be lower than the point group of the crystal. Therefore the symmetry
of the lattice can be used as a starting point omitting the ones that are
not compatible. The resulting symmetry set can be converted to a point
group by a count of the number of N-fold symmetries (see Table B1). To
find the symmetry operation set of the spacegroup we need to include the
translation symmetry into the symmetry elements.

B.5. Determine spacegroup from symmetry operations

Any arbitrary set of symmetry operations obtained from the previous
steps must belong to one of the 230 spacegroup types, and can be trans-
formed to corresponding standard representation by some change of basis
matrix

(
C, c

)
with det

(
C

)
> 0 [118]. The algorithm by Grosse-KunstLeve

676 D. DUBBELDAM ET AL.

Table B1. Look-up table of the point-group using the number of occurrences of symmetries (6̄, 4̄, 3̄, 2̄, 1̄, 1, 2, 3, 4, 6). |N| is the Laue group dependent rotation-part to be
used in the construction of a conventional basis.

Centro- Enantio-
(6̄, 4̄, 3̄, 2̄, 1̄, 1, 2, 3, 4, 6) name holohedry Laue symmetric morphic |N|

1 (0, 0, 0, 0, 0, 1, 0, 0, 0, 0) 1 Triclinic 1 false true 0
2 (0, 0, 0, 0, 1, 1, 0, 0, 0, 0) −1 Triclinic 1 true false 0
3 (0, 0, 0, 0, 0, 1, 1, 0, 0, 0) 2 Monoclinic 2m false true 2
4 (0, 0, 0, 1, 0, 1, 0, 0, 0, 0) m Monoclinic 2m false false 2
5 (0, 0, 0, 1, 1, 1, 1, 0, 0, 0) 2/m Monoclinic 2m true false 2
6 (0, 0, 0, 0, 0, 1, 3, 0, 0, 0) 222 Orthorhombic mmm false true 2
7 (0, 0, 0, 2, 0, 1, 1, 0, 0, 0) mm2 Orthorhombic mmm false false 2
8 (0, 0, 0, 3, 1, 1, 3, 0, 0, 0) mmm Orthorhombic mmm true false 2
9 (0, 0, 0, 0, 0, 1, 1, 0, 2, 0) 4 Tetragonal 4m false true 4
10 (0, 2, 0, 0, 0, 1, 1, 0, 0, 0) −4 Tetragonal 4m false false 4
11 (0, 2, 0, 1, 1, 1, 1, 0, 2, 0) 4/m Tetragonal 4m true false 4
12 (0, 0, 0, 0, 0, 1, 5, 0, 2, 0) 422 Tetragonal 4mmm false true 4
13 (0, 0, 0, 4, 0, 1, 1, 0, 2, 0) 4mm Tetragonal 4mmm false false 4
14 (0, 2, 0, 2, 0, 1, 3, 0, 0, 0) −42m Tetragonal 4mmm false false 4
15 (0, 2, 0, 5, 1, 1, 5, 0, 2, 0) 4/mmm Tetragonal 4mmm true false 4
16 (0, 0, 0, 0, 0, 1, 0, 2, 0, 0) 3 Trigonal 3 false true 3
17 (0, 0, 2, 0, 1, 1, 0, 2, 0, 0) −3 Trigonal 3 true false 3
18 (0, 0, 0, 0, 0, 1, 3, 2, 0, 0) 32 Trigonal 3m false true 3
19 (0, 0, 0, 3, 0, 1, 0, 2, 0, 0) 3m Trigonal 3m false false 3
20 (0, 0, 2, 3, 1, 1, 3, 2, 0, 0) −3m Trigonal 3m true false 3
21 (0, 0, 0, 0, 0, 1, 1, 2, 0, 2) 6 Hexagonal 6m false true 3
22 (2, 0, 0, 1, 0, 1, 0, 2, 0, 0) −6 Hexagonal 6m false false 3
23 (2, 0, 2, 1, 1, 1, 1, 2, 0, 2) 6/m Hexagonal 6m true false 3
24 (0, 0, 0, 0, 0, 1, 7, 2, 0, 2) 622 Hexagonal 6mmm false true 3
25 (0, 0, 0, 6, 0, 1, 1, 2, 0, 2) 6mm Hexagonal 6mmm false false 3
26 (2, 0, 0, 4, 0, 1, 3, 2, 0, 0) −6m Hexagonal 6mmm false false 3
27 (2, 0, 2, 7, 1, 1, 7, 2, 0, 2) 6/mmm Hexagonal 6mmm true false 3
28 (0, 0, 0, 0, 0, 1, 3, 8, 0, 0) 23 Cubic m3 false true 2
29 (0, 0, 8, 3, 1, 1, 3, 8, 0, 0) m-3 Cubic m3 true false 2
30 (0, 0, 0, 0, 0, 1, 9, 8, 6, 0) 432 Cubic m3m false true 4
31 (0, 6, 0, 6, 0, 1, 3, 8, 0, 0) −43m Cubic m3m false false 4
32 (0, 6, 8, 9, 1, 1, 9, 8, 6, 0) m-3m Cubic m3m true false 4

determines the space group by trying to construct
(
C, c

)
for each of the

230 standard settings. Only one of the trials can succeed. All computations
can be performed with symmetry elements alone (no metric is needed).
The first step is to find a conventional basis for the atomic configuration.
The axes’ direction of Laue-group-specific symmetry operations serve as a
new basis. A list of all possible eigenvectors of the rotation matrices serves
as a lookup. A rotation axis is the eigenvector with eigenvalue unity. For
triclinic, no axes are available and the identity matrix is used. But in general
at least one axis direction is available, namely a rotation matrix with the
Laue-dependent rotation-part |N | listed in Table B1. Theorem TA4.1 in
Boisen en Gibbs (1990) states that a vector x is in the plane perpendicular
to the axis direction e of a proper rotation matrixWp with rotational order
n if and only if S.x = 0 where S = Wp+W2

p +· · ·+Wn
p . Hence, to get a list

of perpendicular rotation axes, we construct S and check S.x = 0 for the
stored list of all possible axes directions. Once we have 3 axes, we construct
a matrixM from the 3 vectors and check det

(
M

)
> 0 (if not, we swap two

vectors to correct). Next, we determine the shift of the origin, which we
attempt for each trial transformation

(
C, 0

) = (
A, 0

) (
M, 0

) (
P, 0

)
. Here,

(
P, 0

)
transforms the set of symmetry operations in the original settingGO

to the set in the primitive settingGP , and
(
A, 0

)
are 6 additional trial loops

over transformations for alternative cell choices (needed for monoclinic
and orthorhombic space groups). Any space group can be generated from
at most 3 generators plus centring operations. For computing the origin, it
is sufficient to find and

(
I, c

)
that transforms the generators of the group

of symmetry operations of the previous steps GC to the generators of the
group of symmetry operations in one of the 230 standard setting GT . The
resulting equations are

⎛
⎝

(
W1 − I

)(
W2 − I

)(
W3 − I

)
⎞
⎠ cp =

⎛
⎝wC,1 − wT ,1
wC,2 − wT ,2
wC,3 − wT ,3

⎞
⎠ = b

(
modZ

)
(B5)

which can be conveniently solved using the Smith normal form over in-
tegers [119–121]. A space group determination typically takes less than a
second.

	1. Introduction
	2. Overview of iRASPA
	2.1. Main interface
	2.2. Render-view coordinate system and mouse controls
	2.3. Selection, editing and measurement
	2.4. Adsorption surfaces
	2.5. Ambient occlusion
	2.6. Cell replicas
	2.7. Collages of structures
	2.8. Picture and movie creation
	2.9. Collaboration on a shared document
	2.10. Public sharing data in the cloud
	2.11. Symmetry operations
	2.12. Atoms, bonds and cell boundaries
	2.13. Property computation: void-fractions and surface areas

	3. Case studies
	3.1. Fast screening
	3.2. Examining adsorption sites
	3.3. Void fractions of liquids
	3.4. Adsorption
	3.5. Diffusion pathways

	Acknowledgements
	Disclosure statement
	Funding
	ORCID
	References
	Appendix 1. Visualisation and implementation details
	Appendix A.1. Primitives
	Appendix A.2. The render pipeline
	Appendix A.3. Coordinate systems and the virtual camera
	Appendix A.4. Depth-buffer
	Appendix A.5. Colour model
	Appendix A.6. Billboarding and imposters
	Appendix A.7. Instanced rendering
	Appendix A.8. Picking and selection
	Appendix A.9. Ambient occlusion using textures
	Appendix A.10. Glow (bloom) effect
	Appendix A.11. Fast surface extraction
	Appendix A.12. Capped cylinders
	Appendix A.13. Text

	Appendix 2. Symmetry and spacegroups
	Appendix B.1. Finding a primitive cell
	Appendix B.2. transforming to another basis
	Appendix B.3. Find symmetry of the lattice
	Appendix B.4. Find symmetry of the atomic configuration
	Appendix B.5. Determine spacegroup from symmetry operations

