
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Generalization strategies in reinforcement learning

Snel, M.

Publication date
2018
Document Version
Final published version
License
Other

Link to publication

Citation for published version (APA):
Snel, M. (2018). Generalization strategies in reinforcement learning. [Thesis, externally
prepared, Universiteit van Amsterdam].

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/generalization-strategies-in-reinforcement-learning(f84aeb6f-7a58-4c4f-a637-49fb007aeb4e).html

Generalization Strategies in
Reinforcement Learning

G
eneralization Strategies in Reinforcem

ent Learning
M

atthijs Snel Matthijs Snel

Generalization Strategies
in Reinforcement Learning

Matthijs Snel

Generalization Strategies
in Reinforcement Learning

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam

op gezag van de Rector Magnificus
prof. dr. ir. K. I. J. Maex

ten overstaan van een door het College voor Promoties ingestelde
commissie, in het openbaar te verdedigen in

de Aula der Universiteit
op vrijdag 20 april 2018, te 11.00 uur

door

Matthijs Snel

geboren te Utrecht

Promotiecommissie
Promotor:

Prof. dr. ir. B. J. A. Kröse Universiteit van Amsterdam
Co-promotores:

Prof. dr. ir. F. C. A. Groen Universiteit van Amsterdam
Dr. S. A. Whiteson University of Oxford

Overige leden:
Prof. dr. K. P. Tuyls University of Liverpool
Prof. dr. P. W. Adriaans Universiteit van Amsterdam
Prof. dr. M. Welling Universiteit van Amsterdam
Dr. M. A. Wiering Rijksuniversiteit Groningen
Dr. T. E. J. Mensink Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

c© 2018, Matthijs Snel, all rights reserved.

Contents

1 Introduction 1
1.1 Reinforcement Learning . 3
1.2 Recurrent Neural Networks . 4
1.3 Focus and Research Questions . 5
1.4 Overview . 7
1.5 List of Publications . 8

2 Background 9
2.1 Dynamical Systems . 9
2.2 Markov Decision Processes . 10
2.3 Solving Markov Decision Processes 11
2.4 Recurrent Neural Networks . 20

3 Learning Potential Functions for Multi-Task RL 23
3.1 Shaping . 25
3.2 Problem Setting . 26
3.3 Potential Functions for Multi-Task Learning 26
3.4 Potential Functions: Empirical Evaluations 32
3.5 Related Work . 37
3.6 Conclusion and Discussion . 39

4 Relevant Representations for Multi-Task RL 41
4.1 Relevance . 42
4.2 Feature Selection With k-Relevance 47
4.3 Representation Selection: Empirical Evaluations 52
4.4 Related Work . 59
4.5 Conclusion and Discussion . 60

5 Benchmarking Recurrent Architectures for Robust Continuous Control 63
5.1 Tasks . 64
5.2 Architectures . 66
5.3 Robustness . 70
5.4 Method . 70
5.5 Results . 71
5.6 Related Work . 78
5.7 Conclusion and Discussion . 79

6 Conclusions and Future Work 81
6.1 Evaluation of Research Questions . 81
6.2 Future Work . 84

A Stationary Memoryless Multi-Task Policies 87

iii

CONTENTS

B Proofs 91
B.1 Theorem 2 . 91
B.2 Theorem 3 . 94

C Full Test Results from Chapter 5 97

Bibliography 101

Samenvatting 109

Summary 111

Acknowledgements 113

iv

1
Introduction

Hermann, a German Shepherd dog, is being trained for search and rescue: he is tasked
with locating a human victim in a bounded area of terrain, and is rewarded with praise and
bits of food upon completion of the task. After several such exercises – all on different
terrains, with the victim in a new, unknown location each time – Hermann has figured
out that the overall goal is to follow the human scent to locate the victim as quickly as
possible. Using this knowledge, he is able to easily complete new tasks, possibly on
larger and more complex terrains, just by following his nose.

Hermann is an example of a learning agent. In this thesis, an agent is any entity that
perceives its environment through sensors (in Hermann’s case, eyes, nose, ears) and acts
upon it through effectors (paws, teeth). While Hermann is organic, this thesis concerns
itself with artificial agents such as robots and software agents. What does it mean for an
(artificial) agent to learn? A commonly cited quantifiable definition is that [92]

[An agent] is said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at tasks in T , as
measured by P, improves with experience E.

The crucial point is thus that the agent’s behavior or output, or whatever P applies to,
improves with experience.

The above example further illustrates the two central themes that this thesis focuses
on:

• Reinforcement learning. A reinforcement-learning agent learns through trial and
error by interacting with the world and observing the effect of its actions and the
reward or punishment that it receives after each action. Generally, the goal of the
agent is to identify the sequence(s) of actions that will lead to the maximal sum
of rewards. In the example, Hermann the dog is the agent, and the reward comes
in the form of praise and food. Note that reward can be significantly delayed
– Hermann only receives it after taking many actions. In the case of artificially
intelligent agents, the dog could be replaced by a robot equipped with appropriate
sensors. Among the many examples of tasks that artificial reinforcement learning
agents have succeeded at are helicopter control [1], playing the game of Go at and
beyond human expert level [120], and elevator system control [18].

• Multi-task reinforcement learning. Hermann the dog is engaged in a sequence of

1

1. Introduction

tasks; one task corresponds to the location of a given victim in a given terrain. Un-
knowingly, Hermann is using multi-task reinforcement learning (MTRL): he uses
knowledge gained in previous tasks to learn new tasks more efficiently. Efficiency
could be measured, for example, by measuring the time, energy, or amount of
experience (or data) required to learn the task. Hermann is doing this by abstract-
ing away sensory input and building a representation of the input that is relevant
across tasks, namely (mainly) smell, in this example1. This improves efficiency
since Hermann can now follow his nose instead of having to explore the terrain
semi-randomly. The first part of this work investigates methods for discovering
just such cross-task relevant sensory inputs.

Why should we care about the ability to learn or perform on new tasks efficiently (in
terms of time, energy / computing power, or data), when computing power and data are
so abundant nowadays? Consider the following factors:

• Data availability. Data is not ubiquitous in all application areas, and even if it
is, significant time may be involved in gathering it. For example, consider a trad-
ing agent that trades products on capital markets. As a new financial product is
launched, the trading agent would not like to wait weeks or even months until it
has gathered sufficient data to learn how to trade this new product, thereby in-
curring a potentially large opportunity cost. Instead, the agent would like to start
trading right away, using its knowledge of similar financial products. Its trading
strategy will likely not be optimal for this product from the start, but it may be good
enough to start making a profit early on. Indeed, one of the aims of the thesis is to
jumpstart performance on new tasks, rather than learning a better final solution.

• Online performance. The distinction between “offline” and “online” performance,
for the purpose of this thesis, is that the latter is measured while the agent is en-
gaged in the actual task, at a time when performance matters. For example, robot
controllers are often pre-trained in simulation (“offline”) before being deployed
to the real world, on the actual robot (“online”): It would be a risky and time-
consuming endeavor to learn from scratch on the real robot, since it might irrepara-
bly damage itself while learning. In contrast, during offline learning, performance
in terms of accrued reward is not critical, as long as the learning agent reaches
an acceptable performance threshold within an acceptable time. However, when
having to learn a new task online – for example, a Mars rover faces an unforeseen
terrain, or a household robot needs to learn a new domestic task –, performance
while learning is critical, and leveraging knowledge from previously encountered
tasks can help jumpstart or otherwise boost this performance.

• Generalization and robustness. Just as supervised learning agents should be able
to generalize from observed samples to new samples, so reinforcement learning
agents should be able to generalize from observed tasks to new tasks. In this case,
we would like the agent’s performance not to deteriorate significantly when it en-
counters tasks with slight variations on the tasks it has seen during learning. This is

1Of course, other sensory modalities such as vision also help in completing tasks efficiently. Those modal-
ities are, indeed, helpful for MTRL on an even larger scale: daily life. Smell, however, is idiosyncratic to this
particular example.

2

1.1. Reinforcement Learning

important for many real-world applications where, for example, the agent has been
trained in a simulator before being deployed to the real world, such as in robotics.

This thesis investigates strategies that reinforcement-learning agents can employ to
attempt to maximize a performance measure while engaging in a sequence of tasks. The
strategies this thesis discusses can broadly be divided into two approaches. The first of
these concerns agents that explicitly examine and leverage structure and knowledge that
is shared between tasks. Hermann is an example of this: the structure that is shared
between tasks is that following smell leads to reward.

The second approach investigates neural controllers that exhibit a degree of robust-
ness to changes in environment; a robust controller is here defined as a controller of
which performance, measured according to the objective function of the task on which
the agent was trained, does not significantly deteriorate in the face of dynamics changes.
This means that the agent needs to spend no or less time to learn to adjust to the change,
which improves efficiency. For example, Hermann’s performance would be mostly un-
affected by differences in terrain, up to a point.

In order to introduce the questions addressed in this thesis in more detail, some more
formal background on relevant concepts is discussed in the next section.

1.1 Reinforcement Learning
A dynamical system is a time-dependent system. The state of the system at any given
moment is modeled by a real-valued vector that contains all variables required to compute
the next state of the system. For example, a swinging pendulum can be completely
described by two variables: its angle, and its velocity.

It is often desirable to control a dynamical system in such a way as to achieve a
predetermined objective. For example, one may wish to balance a pendulum in a vertical
position; this requires applying small force pulses at appropriate moments in order to
prevent the pendulum from falling. More practical examples are as diverse as maintaining
a vat of chemicals in a reactor at the right temperature and concentrations, controlling
the growth of a population of an animal or plant species, controlling a mobile robot, and
adjusting a financial portfolio in order to maximize profit.

Control of dynamical systems lies at the heart of the field of optimal control. In an
optimal control problem, each state transition is assigned a utility or reward, or equiva-
lently a cost (negative reward). Transitions not only depend on the current state, but also
on actions or controls exerted by the agent controlling the system. The goal is to find
the sequence of actions that maximizes the sum of rewards, or return, for a given time
horizon; optimal control is thus concerned with solving sequential decision problems.

A typical assumption is that the (probability distribution over the) system’s next state
(and reward) can be fully determined given only its current state (and action) and the
transition rules. This implies that knowing the history of transitions and actions is of no
additional use in predicting the future. Systems for which this holds are said to possess
the Markov property, which turns the optimal control problem into a Markov decision
process (MDP). Since all that is needed is the current state, the Markov property per-
mits a solution that is a mapping from each state to the appropriate action, also called a
(memoryless) policy. Dynamic programming (DP) [8], pioneered by Richard Bellman in

3

1. Introduction

the 1950s, is a set of methods for solving MDPs. Bellman also realized that DP methods
suffer from the curse of dimensionality: in the worst case, the size of the state space, and
therefore the effort required to solve an MDP, increases exponentially with the state di-
mensionality, the number of variables used to describe the state. Nevertheless, dynamic
programming is the method of choice when a full model of transitions and rewards is
available.

When no model is available, it becomes essential to learn the dynamics of the system
to be controlled by interacting with it. Reinforcement learning [60, 135] is the unifica-
tion of ideas from the fields of optimal control and trial-and-error animal learning. In
reinforcement-learning terminology, the decision maker is called the agent and the con-
trolled system the environment. The agent learns about the unknown environment by
interacting with it and observing the transition and received reward after each action it
takes. The goal remains unchanged: find the policy that maximizes expected return.

A reinforcement-learning agent faces several fundamental challenges. Firstly, it re-
ceives a potentially delayed reward: reward may only be received after a long sequence
of actions has been taken (for example, consider a sequence of moves required for win-
ning a game of chess). Related to this is the credit assignment problem: how should
the agent distribute credit for the reward among all the actions comprising the sequence
leading up to it?

Secondly, the agent can only learn about the environment through trial and error.
This leads to an exploration/exploitation dilemma: at any given time step, the agent
needs to decide whether it chooses the action that is currently estimated as best for the
present state (exploitation), or choose to gain more information about the environment by
picking a different action that might lead to higher return, but might also have negative
consequences (exploration).

Traditionally, the aim has been to converge to the optimal policy, which maximizes
expected return. However, due to the curse of dimensionality, delayed reward, and the
exploration / exploitation dilemma, on some problems a naive RL agent can take a long
time to converge to a solution. Expected online return (return incurred while the agent
is learning and interacting with the environment), rather than convergence, is often more
important. By guiding the agent’s exploration strategy, the application of prior knowl-
edge, for example gained through experience of previous tasks, is one tool for improving
online return.

1.2 Recurrent Neural Networks
As mentioned earlier, the second generalization strategy this thesis investigates makes
use of neural controllers. A feedforward neural network (FNN) may, in the context of
reinforcement learning, be used to represent policies, taking states as input and producing
actions as output; or as value functions, taking states as input and producing expected
return as output. An FNN is a directed acyclic computation graph organized into layers
of nodes, where each node computes a (usually non-linear) transformation of its inputs in
order to produce a desired output. Layers in between the input and output layer are called
hidden layers. So-called deep FNNs typically use many hidden layers, while shallow
FNNs typically have only one hidden layer. Each edge in the graph has a weight, and

4

1.3. Focus and Research Questions

learning occurs by updating the weights based on a given objective function and learning
algorithm. Since FNNs produce outputs based solely on the current input state, they
implicitly assume inputs have the Markov property.

A recurrent neural network (RNN) is a popular tool for non-Markovian problems. It
is a directed cyclic graph that introduces recurrent connections, typically on the hidden
layer(s). This makes the net much more powerful, though generally harder to train; for
example, RNNs are universal Turing machines [118], and nonlinear dynamical systems
that can represent complex dynamics such as oscillatory and chaotic functions. In an
RNN with a single recurrent connection, the network essentially takes the current state
and a transformation of the previous state as input. This thus allows it to maintain an
internal state which summarizes the history of inputs seen so far.

Briefly, the following RNN architectures are used in this thesis (each will be de-
scribed in detail in section 5.2). The most basic, also known as an Elman network [30],
is a shallow network with a recurrent connection on the hidden layer, which we here call
a discrete-time RNN (DTRNN). Most RNNs assume time is discrete, but one can also
define continuous-time networks based on differential equations with respect to time,
and the one we use here is the direct continuous-time analog of the DTRNN, a CTRNN.
Basic RNNs can have trouble learning long-term dependencies between input and out-
put because of the vanishing gradients problem: propagating error gradients many steps
backward in time may cause dilution and eventually the disappearance of the (relevant)
gradient. Gated architectures, that allow activations and gradients to circulate in theory
indefinitely, were designed to address this problem and allow networks to learn long-term
dependencies. Two popular ones are the Long Short-Term Memory (LSTM) [40, 54] and
Gated Recurrent Units (GRU) [16]. Finally, Echo State Networks (ESN) [57] treat the
RNN explicitly as a dynamical system, and aim to create the desired dynamics prior to
learning by initializing it with a large number of hidden nodes and scaling the weights in
order to achieve rich dynamics, and subsequently only learn the output weights.

1.3 Focus and Research Questions

This thesis develops theory for, and empirically compares, several strategies for improv-
ing online return across multiple related reinforcement-learning tasks. These strategies
can be roughly divided into two categories. The first entails a form of transfer learning.
Here, prior knowledge is derived from previous tasks seen by the agent or other agents in
order to guide exploration and improve online return. More specifically, transfer learning
aims to improve return on a set of target tasks by leveraging experience from a set of
source tasks. Clearly, the target tasks must be related to the source tasks for transfer to
have an expected benefit. In multi-task reinforcement learning (MTRL), this relation-
ship is formalized through a domain, a distribution over tasks from which the source and
target tasks are independently drawn [140, 155]. In this thesis, agents capture domain
knowledge by learning a shaping function, which is a function that aims to guide the
agent with additional informative reward on top of the base reward of the MDP. Shaping
functions can be functions of state, state-action pairs, or transitions; they can be human-
designed, or learned by the agent itself. While they can be equivalent to value functions,
this does not have to be the case; for example, a human designer could choose to only

5

1. Introduction

provide additional reward in certain important regions of the state space.
While shaping functions and similar methods have been used in previous work on

multi-task learning [68, 122, 138], that work provided no theoretical motivation for the
target function the shaping function should approximate. Furthermore, previous work
relied on manually designed representations for shaping or other cross-task functions
[37, 38, 68, 122], or learned a representation but did not learn a cross-task function [36].

We propose and compare several different forms of shaping function, and in addition
develop a theoretical foundation and algorithm for learning the cross-task representation
the shaping function should be based on. The research questions addressed in this part
of the thesis are:

• What kind of targets could a cross-task shaping function approximate, and under
which settings do these targets perform well?

• What state representation should a cross-task shaping function be based on, and
what distinguishes this state representation from the representation that should be
used for the value function of each individual task?

• Is it possible to develop an algorithm for finding both kinds of representation?

While learning about dynamics changes – within or across tasks – is a natural ap-
proach, doing so may be expensive. On a real robot, for example, it may be both
time-consuming and risky. Therefore, the second part of the thesis investigates fixed
controllers that nonetheless exhibit a degree of robustness to dynamics changes, such as
variations in terrain and sensor noise. By virtue of their ability to exhibit rich dynamics
and maintain internal state, recurrent neural networks (RNNs) seem like an appropriate
class of parameterized, learnable architectures for creating fixed, robust controllers.

In supervised learning, RNNs, in particular the Long Short-Term Memory (LSTM, an
RNN designed specifically to learn about long-term dependencies, and explained in more
detail in Section 5.2.3) have achieved state-of-the-art results in for example machine
translation [133] and speech recognition [43]; in RL, most recent work that learns the
full RNN parameterization2 is also LSTM-based [5, 27, 53, 156].

The second part of the thesis benchmarks several modern RNN architectures, and
a deep and shallow FNN used as baseline, in RL for continuous control on a set of
simulated robotic locomotion tasks, and tests the resulting policies on robustness in the
face of dynamics changes. It addresses the following questions:

• How do the architectures relate to each other in terms of learning performance, and
why?

• How do the architectures relate to each other in terms of testing performance when
the policies are fixed, and why?

• How robust is each of the architectures to a change in dynamics in the form of
sensor noise and a terrain switch?

2This does not include the body of work that makes use of central pattern generators or other pre-designed
recurrent systems and learns a limited set of parameters, e.g. [31].

6

1.4. Overview

1.4 Overview
Chapter 2 provides a more detailed and formal overview of the concepts on which the new
material introduced in this thesis builds. Sections 2.1 to 2.3 review dynamical systems,
Markov decision processes, and basic reinforcement learning theory and algorithms, with
additional detail on partially observable MDPs (POMDPs), state abstraction, and shaping
functions. The second half of the chapter, starting in section 2.3.4, reviews material re-
quired for understanding Chapter 5, in particular policy gradient algorithms and recurrent
neural networks.

Our contributions start in Chapter 3, which proposes and empirically compares sev-
eral shaping functions for MTRL. We propose and provide arguments for three different
targets the shaping function should approximate, based on the optimal value function of
the encountered tasks, the approximate value function, and the value function of a single
cross-task policy. We evaluate each target empirically on a number of simulated domains.

Besides the target function the shaping function should approximate, another key
issue to address when learning shaping functions, as with any function, is which repre-
sentation it should be based on. Multi-task learning settings add another dimension to
this problem.

Chapter 4 distinguishes between task-relevant and domain-relevant representations.
A task-relevant representation is a single representation with which a different function
is learned in each task. Its power lies in its compactness, which makes each task easier to
learn. Domain-relevant representations can serve as a basis for a single cross-task func-
tion, such as a shaping function, that captures (approximately) invariant domain knowl-
edge. Roughly speaking, such a function obviates the need to re-learn task-invariant
knowledge and biases the agent’s behavior. We introduce the notion of k-relevance, the
expected relevance on a sequence of k tasks sampled from the domain, and argue that this
is a unifying definition of relevance of which both task and domain relevance are special
cases. We prove that, under certain assumptions, k-relevance is an approximately expo-
nential function of k, and use this property to derive Feature Selection Through Extrap-
olation of k-relevance (FS-TEK), a novel feature-selection algorithm. The key insight
behind FS-TEK is that change in relevance observed on task sequences of increasing
length can be extrapolated to more accurately predict domain relevance. Furthermore,
we demonstrate empirically the benefit of FS-TEK on three artificial domains.

Chapter 5 extends the study of Duan et al. [27] to benchmark five RNN architectures:
DTRNN, CTRNN, ESN, LSTM and GRU, and a deep and shallow FNN as baselines on
a set of OpenAI Gym [12] simulated locomotion tasks. Networks are trained under two
regimes: on flat terrain, corresponding to the regular OpenAI Gym tasks, and on a hilly
terrain variation that we introduce. After learning, the network policies are fixed, and
each architecture is tested on performance both on the learning task and on two types of
perturbation: sensor noise, and a switch from flat to hilly terrain. While the FNNs learn
fastest, no single architecture is best at test time. However, we show that the FNNs and
CTRNN are most robust to dynamics changes on average, with the CTRNN significantly
outperforming the others under noise perturbation. In addition, we show that training on
the hill task benefits the RNN, but not the FNN, performance on noise perturbation.

Finally, chapter 6 concludes with a discussion of the results and their implications,
and ideas for further work.

7

1. Introduction

1.5 List of Publications
Work that culminated in Chapter 3 and 4:

• Snel, M., & Whiteson, S. (2010). Multi-task evolutionary shaping without pre-
specified representations. In Proceedings of the 12th annual conference on Genetic
and Evolutionary Computation (GECCO) (pp. 1031-1038).

• Snel, M., & Whiteson, S. (2011). Multi-Task Reinforcement Learning: Shaping
and Feature Selection. In European Workshop on Reinforcement Learning (EWRL)
(pp. 237-248).

• Snel, M., & Whiteson, S. (2014). Learning potential functions and their represen-
tations for multi-task reinforcement learning. Autonomous Agents and Multi-Agent
Systems, 28(4), 637-681.

Work that culminated in Chapter 5:

• Snel, M., Whiteson, S., & Kuniyoshi, Y. (2011). Robust central pattern generators
for embodied hierarchical reinforcement learning. In 2011 IEEE International
Conference on Development and Learning (ICDL), (Vol. 2, pp. 1-6).

• Snel, M. (2017). Benchmarking Recurrent Networks for Robust Continuous Con-
trol. Submitted to International Conference on Robotics and Automation (ICRA).

8

2
Background

This chapter provides background on concepts required for understanding this thesis.
Section 2.1 discusses dynamical system theory, and section 2.3 discusses Markov deci-
sion processes and reinforcement learning.

2.1 Dynamical Systems
A dynamical system refers to a time-dependent system, or a mathematical model that
describes such a system – this latter interpretation is the one used in this thesis. The
model consists of (1) a state space, (2) a continuous or discrete measure of time and
(3) a time-evolution rule that governs how a given state transitions into the next. The
state the system is in at any given moment is commonly modeled by a real-valued vector
s ∈Rd , s = (s1,s2, . . . ,sd), where each si is the value of state variable Si (unless specified
otherwise, uppercase letters (S) denote random variables, and lowercase letters (s) denote
their values; similarly, lowercase boldface denotes vectors of values (s), and uppercase
boldface (S) denotes either a random vector, the set of all possible s, or a matrix). The
set of all possible states comprises the state or phase space S⊆ Rd .

The most general time-evolution rule determines the state of the system at time t from
its states at all previous times; it is therefore time-dependent and has infinite memory
[87]. It is common, however, to let the evolution of the system depend only on its current
state. While not usually explicitly mentioned in the dynamical systems literature, this
implies that the system’s state has the Markov property (section 2.2 will discuss this in
more detail).

Given the system’s current state, transitions to the next state are given by a set of
equations. For continuous-time models, these are differential equations; the system is
then called a flow and takes the form

ṡ = f(s), (2.1)

where ṡ is the derivative of the state vector s with respect to time, and f is the time-
evolution rule. Discrete-time models are described with difference equations; the system
is then called a map and takes the form

sk+1 = f(sk). (2.2)

9

2. Background

Starting from a given initial state and repeatedly applying the equations describing the
change of the system results in a trajectory through state space, also called an orbit. A
dynamical system is linear if f is linear in the state, and nonlinear otherwise.

2.2 Markov Decision Processes
It is often desirable to control a dynamical system in order to achieve a predetermined
objective. Prediction of how a system will change is essential to control. As mentioned
earlier, the assumption that the state of the system includes all information necessary to
predict the next state implies that it has the Markov property. A dynamical system that
has the Markov property is a Markov process. More formally, in a Markov process,

p(St |Ht) = p(St |St−1), (2.3)

where p(·) denotes probability and Ht = {St−1,St−2, . . . ,S0} is the history up to time t;
as in most of this thesis, we assume time is discrete here. In other words, in a Markov
process, the future is conditionally independent of the past given the present. Often,
a system that is not a Markov process can be converted into one by augmenting the
state representation such that it becomes a sufficient statistic for the system’s history; for
example, in the pendulum system, the inclusion of angular velocity in the state obviates
the need for the angle history (at the cost of a larger state space size).

Control of Markov processes lies at the heart of the field of optimal control. In an
optimal control problem, each state transition is assigned a utility or reward r, or equiv-
alently a cost (negative reward). Transitions not only depend on the current state, but
also on the action or control a exerted by the agent controlling the system; this turns the
process into a Markov decision process (MDP)[8, 102]. The goal is to find the sequence
of actions that maximizes the sum of rewards, or return, for a given time horizon. For
an MDP, the Markov property implies that p(St ,Rt |Ht) = p(St ,Rt |St−1,At−1), where the
history Ht now includes past states, actions, and rewards.

Formally, an MDP is defined by a tuple 〈S,A,P,R,γ〉 with

• set of states S.

• set of actions A.

• transition function P : S×A×S→ [0,1]; Psas′ = p(s′|s,a), the probability that the
system transitions to state s′ ∈ S from state s when action a ∈ A is taken.

• reward function R : S×A→R, giving the expected reward Rsa when taking action
a in state s.

• discount factor γ ∈ [0,1], which trades off the importance of future rewards versus
that of immediate reward.

The aim is to find the sequence of actions that maximizes the return Rt , the discounted
sum over rewards:

Rt = rt + γrt+1 + γ
2rt+2 + . . .=

T

∑
k=0

γ
krt+k (2.4)

10

2.3. Solving Markov Decision Processes

where rt is the immediate reward received at time t, and T is a time horizon. In the most
general case, the horizon can be either finite or infinite; for a finite horizon of T = 10, for
example, a solution would only “look ahead” ten steps, incurring a return that is maximal
for the next ten time steps. In this thesis, however, we focus purely on the infinite horizon
case, that is, T = ∞. Nevertheless, the discount factor γ is analogous to a time horizon,
given a threshold value for discarding future rewards of which the discounted value is
close enough to zero; for example, from (2.4) it follows that for γ = 0, an optimal solution
is “myopic” and maximizes only immediate reward.

MDPs can be further divided into episodic and continuing MDPs. An episodic MDP
contains an absorbing state; once the system enters such a state, it stays there indefi-
nitely. Formally, Ps∗as∗ = 1 for absorbing state s∗ and any action a; furthermore, Rs∗a = 0
for all a. For example, many games can be formulated as episodic MDPs; any state at
which the game ends, for example a checkmate in chess, transitions to the absorbing
state. A continuing MDP is, for the purposes of this thesis, one that is not episodic.

Because of the Markov property, a solution to an MDP need only be a mapping from
each state to the action(s) to take in that state, called a policy. In general, a policy π

is a function π : S×A→ [0,1]; π(s,a) = p(a|s), the probability of taking action a in
state s. An optimal policy π∗ achieves maximal expected return; that is, if E[Rt |π]1 is
the expected return from time t under policy π , then E[Rt |π∗]≥ E[Rt |π ′], for all t and π ′.
For MDPs, there always exists a greedy optimal policy, that is, one that chooses the best
action with probability 1 (breaking ties evenly when there is more than one best action).
Soft policies, on the other hand, assign a nonzero probability to suboptimal actions.

While there always exists a deterministic greedy optimal policy for MDPs, this may
not hold for partially observable MDPs (POMDPs). As the name suggests, in a POMDP
the state s is not fully observable: part of it is revealed in an observation o, and part
of it is hidden. Therefore, the Markov property may be lost – for example, if the an-
gular velocity in the pendulum system is hidden. Many methods for solving POMDPs
attempt to recover the Markov property by constructing a belief state, which represents a
Bayesian belief about the true underlying state and implicitly factors in the state history
[61]. Policies based on the belief state are non-stationary with respect to the observation;
they may take different actions given the same observation if the belief about the under-
lying state has changed. Singh et al. [124] propose POMDP solution methods that do not
incorporate history and learn stationary policies; they further show that for POMDPs, the
best stationary policy might be stochastic. We briefly return to this issue in section 3.3.5,
where we discuss a single stationary policy across multiple tasks.

For now, we stick to MDPs. Whenever we mention an optimal policy π∗, we mean
the deterministic greedy optimal policy for an MDP, unless mentioned otherwise. The
next section details strategies for computing π∗.

2.3 Solving Markov Decision Processes
There are two approaches for computing an optimal policy: value-function methods and
policy-search methods. The latter search directly in policy space, either by estimating a
gradient of the return with respect to the policy parameters [64, 113, 137], or by more

1E[Rt |π] = Eπ [Rt] = ∑Rt p(Rt |π)Rt

11

2. Background

direct search methods such as evolutionary algorithms [93, 154]. Value-function methods
estimate the value of each state or state-action pair, where value equals the return to be
expected from that state(-action pair) given a policy π . A better policy is then constructed
by choosing the action that maximizes value for each state. All value function methods
explicitly or implicitly iterate policy evaluation (estimation of the value of the policy)
and policy improvement until convergence.

The following subsection explains how value is calculated given a policy; the sec-
tions thereafter address policy improvement, reinforcement learning, and policy gradient
algorithms.

2.3.1 Value Functions
Unless specified otherwise, we will assume countable state and action spaces, which
allows table lookup of state(-action) values. We will refer to table-based value functions
and algorithms as tabular. The value V of state s under policy π is the expected return
from s when following π:

V π(s) = Eπ

[
∞

∑
k=0

γ
krt+k

∣∣∣ st = s

]
.

Using the definition of the reward and transition functions of an MDP, one can calculate
the expected immediate reward at t by summing over all possible actions and the ex-
pected reward Rsa associated with each action. The expected return equals the expected
immediate reward plus the expected return at the next time step, which is, by the defini-
tion of value, the weighted (by the transition probabilities Psas′) average of the values of
all possible next states, discounted by γ . We therefore obtain:

V π(s) = ∑
a∈A

π(s,a)

[
Rsa + γ ∑

s′∈S
Psas′V π(s′)

]
, (2.5)

known as the Bellman equation [8], which is central to optimal control and reinforcement
learning.

Similarly, the value Q of state-action pair (s,a) equals the expected immediate reward
when taking a in s plus the expected return at the next time step when following π:

Qπ(s,a) = Rsa + γ ∑
s′∈S

Psas′V π(s′)

= Rs,a + γ ∑
s′∈S

Psas′
∑

a′∈A
π(s′,a′)Qπ(s′,a′). (2.6)

For an optimal policy π∗, it follows that V π∗(s) ≥ V π ′(s), for all s and π ′. Note
that there can be more than one policy that is optimal; however, they all share the same
optimal value function V ∗ = V π∗ . An optimal policy takes an action with maximum
expected return for each state; therefore, V ∗(s) = maxa∈A Q∗(s,a), and

Q∗(s,a) = Rsa + γ ∑
s′∈S

Psas′max
a′∈A

Q∗(s′,a′), (2.7)

the Bellman optimality equation.

12

2.3. Solving Markov Decision Processes

2.3.2 Dynamic Programming

Dynamic programming methods compute V ∗ and π∗ given a complete MDP model
〈S,A,P,R,γ〉. Given an initial policy π , the general idea behind these methods is to itera-
tively evaluate (compute the value of) π and improve π based on the new value function,
until convergence. Policy improvement occurs by “greedifying” the policy with respect
to the new value function: for every state, the new policy chooses the greedy action, that
is, the action that maximizes the newly estimated value. This idea is exemplified in the
policy iteration algorithm (Algorithm 1).

Algorithm 1 Policy Iteration

1: Initialize V (s) and π(s) arbitrarily, for all s
2:
3: //Policy Evaluation
4: repeat
5: ∆← 0
6: for all s ∈ S do
7: v←V (s)
8: V (s)← R(s,π(s))+ γ ∑s′∈S P(s,π(s),s′)V (s′)
9: ∆←max(∆, |v−V (s)|)

10: end for
11: until ∆ < θ (a threshold value)
12:
13: //Policy Improvement
14: policystable ← true
15: for all s ∈ S do
16: b← π(s)
17: π(s)← argmaxa [R(s,a)+ γ ∑s′∈S P(s,a,s′)V (s′)]
18: if b 6= π(s) then policystable ← f alse
19: end for
20: if policystable then stop; else go to 3

In the policy evaluation step, policy iteration approximates the value of the current
policy until convergence, which might require several passes (sweeps) through the whole
state space. Often, however, the policy can be improved after just one sweep of policy
evaluation. Value iteration effectively combines one step of policy evaluation and one of
policy improvement into a single sweep, as detailed in Algorithm 2. All value-function
methods work by the principle of generalized policy iteration, alternating or otherwise
interleaving steps of policy evaluation and improvement until convergence.

Dynamic programming methods require the full MDP model. Often, such a model is
not available and would be impossible or impractical to calculate. The next section pro-
vides background on learning algorithms that do not require a model to reach a solution.

13

2. Background

Algorithm 2 Value Iteration

1: Initialize V (s) arbitrarily, for all s
2: repeat
3: ∆← 0
4: for all s ∈ S do
5: v←V (s)
6: V (s)←maxa [R(s,a)+ γ ∑s′∈S P(s,a,s′)V (s′)]
7: ∆←max(∆, |v−V (s)|)
8: end for
9: until ∆ < θ (a threshold value)

2.3.3 Reinforcement Learning

Reinforcement learning (RL) methods are based on interaction of an agent with an ini-
tially unknown MDP, called the environment. The agent perceives the environment
through the state s, and acts upon it through one of the actions from A. After each
action, the agent receives a reward r and the environment transitions to the next state s′,
after which the process repeats.

Since agents can only learn about the environment through trial and error, they face
an exploration/exploitation dilemma: at any given time step, the agent needs to decide
whether it chooses the action that is currently estimated as best for the present state
(exploitation), or chooses to gain more information about the environment by picking
a different action that might lead to higher return, but might also have negative conse-
quences (exploration). Various behavioral strategies are available to deal with the ex-
ploration/exploitation dilemma; this thesis mainly employs ε-greedy behavior policies,
which choose the action that is currently estimated as best with probability 1− ε and a
random action with probability ε . Of course, the application of prior knowledge from
previously experienced tasks, the main subject of this thesis, also guides exploration.

Thus, the agent employs a specific policy for exploring the environment, but at the
same time tries to learn an optimal policy, which is by definition greedy. Hence, two
kinds of policies may be distinguished [135]: the estimation policy, which the agent
is learning about; and the behavior policy, which is used for interaction with the envi-
ronment, i.e., for generating experience samples. For example, the agent could employ
a random behavior policy to generate samples, but from these samples learn a correct
solution to the MDP, i.e., a correct estimation policy. Whether such an approach is vi-
able depends on the type of learning algorithm used: on-policy methods learn about the
agent’s behavior policy, that is, the estimation policy equals the behavior policy. In con-
trast, in off-policy methods the estimation policy differs from the behavior policy; such
methods can learn the optimal policy even though their behavior policy is not greedy. We
will shortly see two concrete examples of these two different methods.

In RL problems, no MDP model is available and the agent must learn about its en-
vironment by interacting with it. Model-based RL methods do so by learning a model
of the environment and improving the policy through dynamic programming on the es-
timated model [11, 136]; in contrast, model-free methods, which this thesis employs,
estimate a value function or policy directly from interaction with the environment [135].

14

2.3. Solving Markov Decision Processes

A widely used class of model-free methods is temporal-difference (TD) learning
[134]. When used for control, the TD update takes the form

Q(s,a)← Q(s,a)+αδ , (2.8)

where α is a learning rate and δ the TD error. There are various approaches to computing
the latter, depending on which TD control algorithm is used. Two of the most popular
are Sarsa [107, 121], and Q-learning [150]. For Sarsa,

δ = r+ γQ(s′,a′)−Q(s,a), (2.9)

where r is the reward incurred, s′ the next state and a′ the action the agent took at s′. For
Q-learning,

δ = r+ γ max
a∗

Q(s′,a∗)−Q(s,a). (2.10)

Algorithm 3 Sarsa

1: Initialize Q(s,a) arbitrarily, for all s,a
2: Initialize s
3: Choose action a from s based on Q
4: loop
5: Take action a, observe r and s′
6: Choose next action a′ from s′ based on Q
7: Q(s,a)← Q(s,a)+α [r+ γQ(s′,a′)−Q(s,a)]
8: s← s′; a← a′

9: end loop

Algorithm 4 Q-Learning

1: Initialize Q(s,a) arbitrarily, for all s,a
2: Initialize s
3: loop
4: Choose action a from s based on Q
5: Take action a, observe r and s′
6: Q(s,a)← Q(s,a)+α [r+ γ maxa∗Q(s′,a∗)−Q(s,a)]
7: s← s′
8: end loop

Algorithm 3 and 4 detail the Sarsa and Q-Learning algorithms. As explained earlier,
the main difference between Sarsa and Q-Learning is the difference in TD error estima-
tion: Sarsa uses the next action selected by the behavior policy, while Q-Learning uses
the maximum Q-value of the next state, as if the agent were following a greedy behav-
ior policy. This makes Sarsa an on-policy algorithm, and Q-Learning an off-policy one.
As a result, Q-Learning agents may employ a wide range of behavior policies, ensuring
sufficient exploration, while still converging to the optimal Q-values (belonging, by def-
inition, to an optimal greedy policy), under mild assumptions [150]. Sarsa, on the other

15

2. Background

hand, cannot converge to the optimal Q-values while exploring, since an optimal policy
is by definition greedy. However, Sarsa may have an advantage over Q-Learning, par-
ticularly in scenarios where online return is important. Because Q-Learning implicitly
assumes the agent is following a greedy policy, and therefore does not take the ran-
domness from exploration into account, it may be overly optimistic. The cliff-walking
domain in the next chapter provides a practical example of this difference between the
two methods.

2.3.4 Vanilla Policy Gradient
The preceding sections described techniques for solving MDPs using value functions.
When the MDP has continuous state and action spaces, such as for example in robotics
applications, the value function-based approach can be problematic. For example, it
might be difficult to compute argmaxa∈Rd Q(s,a), where d is the action dimensionality.
Therefore, in this setting, it is often simpler to parameterize the policy πθ directly with
parameter vector θ , and update the parameters based on the gradient of the return with
respect to the parameters.

The problem now boils down to finding the optimal parameter vector θ ∗:

θ
∗ = argmax

θ

E[R(τ)|πθ],

where τ is a trajectory (s0,a0,r0, . . . ,sT ,aT ,rT), generated by running πθ on the MDP,
and R(τ) = ∑

T
t=0 γ trt , as before.

The value of a given θ is then

V (θ) = E[R(τ)|πθ] =
∫

p(τ|θ)R(τ)dτ.

Policy gradient (PG) methods compute the gradient ∇θV (θ), after which one can use
a gradient ascent algorithm to approximate θ ∗. Of course, most work goes into, and
different PG flavors arise from, derivation of estimators for this gradient. Some key
points underlying a number of PG algorithms in general and the PG algorithm that this
thesis employs in particular, are the following.

1. From the definition of an MDP, the likelihood p(τ|θ) is given by

p(τ|θ) = p(s0)
T

∏
t=0

p(st+1|st ,at)πθ (at |st),

which involves both a sizable product term and the system dynamics p(st+1|st ,at),
which model-free RL methods do not have access to. The following paragraphs
will show how both these problems disappear through the use of a stochastic policy
combined with the score function estimator, also known as the likelihood ratio esti-
mator [41]. It also has a number of other useful properties, such as being unbiased,
and allowing sample-based approximations to ∇θV (θ).

2. In addition to ensuring system dynamics are not needed in the definition of the pol-
icy gradient, stochastic policies enable gradient-based methods for discrete action
spaces. Since the policy is stochastic, no separate exploration mechanism is used.

16

2.3. Solving Markov Decision Processes

3. The integral in the gradient expression is usually approximated using Monte-Carlo
rollouts. Particularly in the case of large T (long rollouts), the approximation can
suffer from high variance. One of the main mechanisms for variance reduction
employed by PG methods is to replace R(τ) with the advantage function Aπ(s,a)=
Qπ(s,a)−V π(s); that is, Aπ gives an indication of whether the action a is better or
worse than average, under π .

Application of the above points yields the vanilla policy gradient algorithm. The state-
of-the-art makes further improvements on this algorithm, mainly with respect to how
optimization on the gradient is carried out. This will be explained later in the section;
first, we will go through each of the above points in some more detail, although a full
derivation is beyond the scope of this thesis.

The score function is the gradient of the log-likelihood with respect to θ : ∇θ log p(x|θ)=
∇θ p(x|θ)

p(x|θ) . This identity can be used to derive2 the following expression for ∇θV (θ) =

∇θ E[R(τ)|θ]:

∇θ E [R(τ)|θ] = ∇θ

∫
p(τ|θ)R(τ)dτ

=
∫

∇θ p(τ|θ)R(τ)dτ =
∫

p(τ|θ)∇θ p(τ|θ)
p(τ|θ)

R(τ)dτ

=
∫

p(τ|θ)∇θ log p(τ|θ)R(τ)dτ = E [R(τ)∇θ log p(τ|θ)] .

Expanding the log-likelihood gives

∇θ log p(τ|θ) = ∇θ

[
log p(s0)+

T

∑
t=0

log p(st+1|st ,at)+
T

∑
t=0

logπθ (at |st)

]

=
T

∑
t=0

∇θ logπθ (at |st),

where the last line follows because the other terms do not depend on θ . Note that this
would not happen if the policy were deterministic, since then we would have p(st+1|st ,πθ (st)),
introducing a dependency of the system dynamics on θ . However, see Silver et al. [119]
for a different derivation that arrives at deterministic policy gradient algorithms (DPG).
Therefore,

∇θV (θ) = E

[
R(τ)

T

∑
t=0

∇θ logπθ (at |st)

]
, (2.11)

which can be approximated using sample averages. A central issue is that the variance of
these approximations tends to be high; for example, note the multiplication with the sum
of rewards of the full path R(τ). Three important variance reduction techniques (where
the first two come at the cost of increased bias) are to

1. Use discounting.

2The exchange of the order of differentiation and integration in line 2 is the operation that requires p(τ|θ)
to be continuous in θ .

17

2. Background

2. For each t, only use the (discounted) return from t onwards, since naturally a policy
decision at t does not influence rewards before t.

3. Subtract a baseline from R(τ), for example 〈R(τ)〉, the average over collected tra-
jectories. I.e., this indicates how a given trajectory compares to the average. In
general, the baseline can depend on the state, and a near-optimal baseline is the
state-value function V π(s) [44].

Putting all these together, we replace R(τ) with the advantage estimate

Ât =
T

∑
t ′=t

γ
t ′−trt ′ −b(st), (2.12)

where b(·) is the baseline. As an interesting side remark, note that when the baseline
is the state-value function this can also be written as rt + γ ∑

T
t ′=t+1 γ t ′−t+1rt ′ −V (st) =

rt + γV (st+1)−V (st): the TD error.
Putting everything together, the vanilla policy gradient estimate is given by

ĝV =

〈
∇θ

T

∑
t=0

logπθ (at |st)Ât

〉
, (2.13)

where 〈〉 is the average over trajectories. The vanilla policy gradient (VPG) algorithm is
given in Algorithm 5.

Algorithm 5 Vanilla policy gradient

1: Initialize policy parameters θ , baseline b
2: loop
3: Collect a set of trajectories by executing the current policy πθ

4: At each timestep t in each trajectory, compute
5: the return Rt = ∑

T
t ′=t γ t ′−trt ′

6: the advantage estimate Ât = Rt −b(st)
7: Update the baseline by regression on Rt : minimize ||Rt − b(st)||2, summed over

all trajectories and timesteps
8: Update the policy using gradient ascent on the vanilla policy gradient estimate ĝV
9: end loop

2.3.5 Trust Region Policy Optimization
This section introduces the state-of-the-art PG algorithm that will be employed in chapter
5 of the thesis: Trust Region Policy Optimization (TRPO) [114]. The main difference
with VPG is the significantly more sophisticated optimization machinery to update the
policy based on the policy gradient. TRPO has been shown to significantly outperform a
number of other PG methods on a benchmark set of continuous control tasks [27]; these
same benchmark tasks will be employed in Chapter 5.

18

2.3. Solving Markov Decision Processes

A central issue in RL that does not occur in supervised learning is that the data used
for optimization depends on the quantity being optimized (the policy). Therefore, taking
too large a gradient step could induce a “bad” policy, which will in turn generate bad data
for the next optimization step. It is typically difficult to recover from this. One could take
tiny gradient steps, but this would make the optimization process very inefficient. Ideally,
then, the step size should be as large as possible within certain bounds on how much the
policy can change.

TRPO and a class of related algorithms called natural policy gradient [62] algorithms
restrict the policy change by introducing a constraint on the divergence between the prob-
ability distributions induced by the old and the new policy; typically, this divergence is
measured using the Kullback-Leibler divergence DKL(p||q) =

∫
p(x) log p(x)

q(x)dx, where p
and q are probability densities.

Specifically, TRPO solves the following constrained optimization problem at each
iteration k:

maximizeθ Lθk−1(θ) =

〈
T

∑
t=0

πθ (at |st)

πθk−1(at |st)
Ât

〉
s.t.

〈
DKL(πθ (·|s)||πθk−1(·|s)

〉
≤ δKL,

(2.14)

where δKL is a tuning parameter of the algorithm. In summary, it makes the following
two main changes with respect to VPG:

1. It replaces the log-likelihood with an importance sampling ratio.

2. It places a hard constraint on the maximum KL divergence δKL between the old
and new policy.

Other classes of algorithms, such as the natural policy gradient mentioned earlier, can be
shown to be special cases of the TRPO formulation [114]. One main difference between
these two algorithms is that TRPO uses a fixed, hard constraint on δKL, while Natural
Policy Gradient uses a penalty. This turns out to make a significant difference [112],
and is where TRPO derives its name from: it restricts the search for θ ∗ to a trust region
around θk−1

3. (Recently however, Schulman et al. [115] proposed an improvement to
TRPO called proximal policy optimization (PPO), which uses a soft constraint that is
simpler to compute.)

In practice, TRPO uses a quadratic approximation to DKL:

DKL ≈ ∆θ
>Fθ ∆θ ,

where ∆θ is the change in parameters and F is the Fisher information matrix

Fθ =
〈

∇θ log p(τ|θ)∇θ log p(τ|θ)>
〉
.

The Natural Policy Gradient estimate is then given by [100]

ĝN = F−1ĝV , (2.15)

where TRPO uses ∇θ Lθk−1(θ) instead of ĝV , and uses the conjugate gradient algorithm
with Hessian vector products to approximate the inversion F−1. The algorithm is shown
in Algorithm 6.

3See Nocedal & Wright [96]for a general description of trust region optimization methods.

19

2. Background

Algorithm 6 Trust Region Policy Optimization

1: Initialize policy parameters θ , baseline b
2: loop
3: Collect a set of trajectories by executing the current policy πθ

4: At each timestep t in each trajectory, compute
5: the return Rt = ∑

T
t ′=t γ t ′−trt ′

6: the advantage estimate Ât = Rt −b(st)
7: Update the baseline by regression on Rt : minimize ||Rt − b(st)||2, summed over

all trajectories and timesteps
8: Use the conjugate gradient algorithm with Hessian vector products to compute the

step direction ĝN
9: Do a line search on Lθk−1(θ) and DKL to determine the step size

10: end loop

This concludes the background on MDPs and reinforcement learning methods. The
next section provides background on (recurrent) neural networks, which will be used as
policies in Chapter 5.

2.4 Recurrent Neural Networks
A neural network is a computation graph organized into layers of nodes, where each node
computes a (usually non-linear) transformation of its inputs. The feedforward pass from
one layer to the next can typically be written as

o = f(Wx),

where x is an n-dimensional vector of inputs (here taken to include the bias, which is
always 1), W is an m×n-dimensional matrix of connection weights where m equals the
number of nodes in the layer, f is a transfer or activation function, and o is the resulting
m-dimensional output vector. Often, f takes the form of a saturating nonlinearity such
as the hyperbolic tangent, which is the transfer function we will use in this thesis unless
specified otherwise. Layers i and j, j > i, can be chained together by setting x j = oi.
Layers in between the network input and output are called hidden layers. The left panel
of Fig. 2.1 shows the computation graph for one layer, where we have decomposed it into
o = f(z) and z = g(x) = Wx.

Commonly, feedforward neural networks (FNNs) are trained to approximate a given
target function. In order to do so, a loss function is defined to calculate the error on
data sample i between the FNN’s prediction ŷi and the desired output yi, for example

the mean-squared error L =
1
N

∑
N
i

1
2
(yi − ŷi)

2. The FNN is then trained using some
variant of the backpropagation (BP) algorithm [106, 151] (see also Schmidhuber [111]
for a detailed account of BP history). BP calculates the gradients of a layer’s weights
with respect to the error by using the chain rule from calculus to propagate the error
of a network’s output layer back through the hidden layers in the reverse order of the
feedforward pass, akin to dynamic programming algorithms.

20

2.4. Recurrent Neural Networks

z

o

x

W

(a)

∇zL

∇oL

∇xL ∇WL

do
dz

dz
dWdz

dx

(b)

Figure 2.1: (a) Computation graph corresponding to one layer in a feedforward neural
net. (b) The backward pass corresponding to chain rule operations.

This is demonstrated in Fig. 2.1b. Note that the derivatives on the edges can be
matrices or tensors (arrays with more than two axes). For example4,

∇WL =
dz

dW
∇zL = (∇zL)x>

and similarly for the other nodes. Weight updates take place by taking a small step down
the gradient, ∆W =−η∇WL, where η is a step size.

A recurrent neural network (RNN) introduces recurrent connections, typically on the
hidden layer, and thereby becomes a nonlinear dynamical system. One of the simplest
examples is a vanilla discrete-time RNN (DTRNN), also known as an Elman network
[30], which is the map

hn = f(Khn−1 +Wxn),

where K is a p× p square matrix of recurrent connections, and hn is the p-dimensional
output of the hidden layer at update n. See Figure 2.2a.

An RNN introduces dependencies that extend through time as well as through lay-
ers, since the layer at the end of a recurrent connection uses the outputs of the source
of the connection at the previous timestep. Weight gradients can be calculated using the
backpropagation through time (BPTT) algorithm [152]. Conceptually, BPTT “unrolls”
the cycles in the RNN graph by representing each time step as a layer. Using this repre-
sentation, we once again have a directed acyclic computation graph on which we can run
BP. Figure 2.2b illustrates the BPTT concept for calculation of the gradient of the input
weights with respect to the loss, ∇Wt L. As with regular BP, errors are propagated back-
wards through the layers, but BPTT also backpropagates through timesteps, introducing

4Taking some notational shortcuts for brevity, the product of the tensor A with the vector v is taken to be
the tensor dot product resulting in matrix B such that Bi, j = ∑k Ai, j,kvk .

21

2. Background

h

ŷ

x

O

W

K

(a)

∇ŷt−1Lt−1 ∇ŷt Lt ∇ŷt+1Lt+1

∇ht−1L ∇ht L ∇ht+1L· · · · · ·

∇Wt−1L ∇Wt L ∇Wt+1L

dŷ
dh

dht−1

dW

dŷ
dh

dht

dW

dŷ
dh

dht+1

dW

dht+1

dht

dht

dht−1

(b)

Figure 2.2: (a) A simple recurrent neural network, where a black square represents a one-
step time delay. (b) Slice of the unrolled graph representing the BPTT computation on
this network (not all computations are shown). Derivatives are propagated in the reverse
direction of the forward pass.

an edge between ht and ht−1. For example,

∇ht−1L =

(
dŷ
dh

)>
∇ŷt−1Lt−1 +

(
dht

dht−1

)>
∇ht L.

Training continuous-time RNNs, used in Chapter 5, works according to the same princi-
ples, but calculates the gradient using differential equations; see Pearlmutter [98] for an
overview.

22

3
Learning Potential Functions for

Multi-Task RL

Traditionally, the main aim of the reinforcement-learning algorithms discussed in the
previous chapter has been to converge to the optimal policy, which maximizes expected
return. However, due to the curse of dimensionality, delayed reward, and the exploration
/ exploitation dilemma, on some problems a naive RL agent can take a long time to
converge to a solution. Expected online return (return incurred while the agent is learning
and interacting with the environment), rather than convergence, is often equally or more
important. The application of prior knowledge can help improve return both by guiding
the agent’s exploration strategy (for example, by suggesting actions to take) and reducing
the related problem of delayed reward (by providing information on reward where in the
original task none is given). In real-world scenarios, agents of any kind frequently have
to deal with multiple related tasks. The detection of common patterns in these tasks is
therefore a natural way of deriving prior knowledge. Methods that transfer knowledge
from one task to another are called transfer learning methods.

In this chapter and the next, we consider how an RL agent facing a sequence of tasks
can best exploit its experience with previous tasks to improve its online return on new
tasks, via two complementary approaches. The first approach extracts knowledge from
previous experience in a way that can be leveraged by learning algorithms; this is the
subject of this chapter. The second approach automatically discovers good representa-
tions for the extracted knowledge; for example, a subset of the agent’s sensory features.
This is the subject of the next chapter.

Transfer learning aims to improve performance on a set of target tasks by leveraging
experience from a set of source tasks. Clearly, the target tasks must be related to the
source tasks for transfer to have an expected benefit. In multi-task reinforcement learn-
ing (MTRL), this relationship is formalized through a domain, a distribution over tasks
from which the source and target tasks are independently drawn [140, 155]. Even so,
relatedness can come in different forms. Here, we focus on discovering shared represen-
tational structure between tasks and the information captured by that structure. Roughly
speaking, shared information between tasks means that the meaning of the information
does not change from one task to the next.

This decomposes the multi-task learning problem into two separate (but related) sub-
problems: to learn a good policy for each separate task, and to capture which information

23

3. Learning Potential Functions for Multi-Task RL

does not change meaning from one task to the next. For example, consider a robot-
navigation domain. In each task, the robot is placed in a different building in which
it must locate a bomb. An optimal policy for a given task need condition only on the
robot’s position in the building. However, in each task, the robot must re-learn how po-
sition relates to the bomb’s location; the meaning of a particular position changes from
one task to the next. Since position is useful within tasks but not across tasks, we call
it a task-relevant feature. By contrast, while distance sensors are not needed in a task-
specific policy, they can be used to represent the task-invariant knowledge that crashing
into obstacles should be avoided; we call such features domain relevant. While the robot
must learn a new value function for each task, task-invariant knowledge could be cap-
tured in a single cross-task function or rule set, for example. This chapter and the next
focus on a scenario in which an agent, such as the robot, faces one task after the other;
for example, one building after the other. The goal is to update the cross-task function
and its representation after incorporating the knowledge from each newly observed task.

Some approaches to multi-task learning learn a single function that may combine
task-specific and domain-wide information [2, 6, 14, 74, 143]. For example, in super-
vised learning, instead of training a separate neural network per learning task, Caruana
[14] trains a single network on all tasks in parallel. Learning benefits from the shared
hidden layer between tasks, which captures task-invariant knowledge, but the network
can also represent task-specific solutions through the separate task weights. However,
such approaches have several limitations. First, task solutions may interfere with each
other and with the task-invariant knowledge [15]. Second, any penalty term for model
complexity [2, 74] affects both task and domain-relevant representations simultaneously.
Lastly, mapping the original problem representation to a new one makes it harder to
interpret the solutions and decipher which knowledge is task-invariant.

These problems can be avoided by maintaining separate functions for task-specific
and task-invariant knowledge. In each task, the agent learns a task-specific policy while
aided by a cross-task function that represents task-invariant knowledge. This approach
also makes it easier to override the bias of the cross-task function, which is important
when that bias proves incorrect [15]. The cross-task function can be represented as,
e.g., advice rules [145], or a shaping function [69, 94], the approach we focus on in this
chapter.

Shaping functions augment a task’s reward function with additional informative arti-
ficial rewards, and are typically functions of state, state-action pairs, or transitions. They
have proven effective in single-task [94], multi-agent [4] and multi-task [69, 126, 127]
problems, with applications to, e.g., foraging by real robots [28], robot soccer [21], and
real-time strategy games [90]. In MTRL, shaping functions can be learned automati-
cally by deriving them from the source tasks [69, 126, 127], e.g., the navigating robot
described above could learn a shaping function that discourages bumping into obstacles.

The primary aim of this chapter is to address a key issue that arises when deriving
shaping functions in MTRL: What target should the function approximate? This question
does not arise in supervised learning, since the targets are given and thus any single
cross-task function strives to minimize a loss function with respect to all tasks’ targets
simultaneously. An intuitive choice of target in MTRL is the optimal value function of
each task; approximating this target leads to the solution that is closest in expectation to
the optimal solution of the unknown next task. However, there is no guarantee that using

24

3.1. Shaping

a shaping function that approximates this target leads to the best online return.

After providing additional background on shaping functions and outlining the par-
ticular problem setting we are concerned with in sections 3.1 and 3.2, we propose three
different targets for the shaping function in section 3.3. Furthermore, in section 3.4, we
show empirically that which one is best depends critically on the domain and learning
parameters.

3.1 Shaping

The concept of shaping stems from the field of operant conditioning, where it denotes a
training procedure of rewarding successive approximations to a desired behavior [125].
In RL, it may refer either to training the agent on successive tasks of increasing com-
plexity, until the desired complexity is reached [32, 49, 104, 108, 116, 123], or, more
commonly, to supplementing the MDP’s reward function with additional, artificial re-
wards [3, 23, 28, 46, 72, 86, 88, 94, 153]. This chapter employs shaping functions in the
latter sense.

Because the shaping function modifies the rewards the agent receives, the shaped
agent may no longer learn an optimal policy for the original MDP (e.g. [104]). Ng et
al. [94] show that, in order to retain the optimal policy, a shaping function should be
based on a potential function over states. Like a value function, a potential function
Φ : S 7→ R specifies the desirability of a given state. Potential-based shaping functions
take the form Fs

s′ = γΦ(s′)−Φ(s); hence, a positive reward is received when the agent
moves from a low to a high potential, and a negative reward when moving in the opposite
direction. Similarly to potentials in physics and potential field methods in mobile robot
navigation [70], a shaping potential thus results in a “force” encouraging the agent in a
certain “direction”.

State potential functions might miss additional information provided by the actions
for a state. To address this, Wiewiora et al. [157, 158] introduced shaping functions of the
form Fsa

s′a′ = γΦ(s′,a′)−Φ(s,a), where a′ is defined as in the learning rule. In this form,
shaping functions closely resemble advice-giving methods [80, 145] in that they bias an
agent’s policy towards the actions that the shaping function estimates as most valuable1.
Wiewiora et al. show that using F is equivalent to initializing the agent’s Q-table to
the potential function, under the same experience history. However, some important
differences remain. Unlike shaping, initialization biases the agent’s actions before they
are taken. In addition, shaping can be applied to RL with function approximation and in
cases where the experimenter does not have access to the agent’s value function [158].
Either way, the results in this chapter apply equally well to shaping as to initialization
methods.

1The authors termed these potential-based advice; specifically, look-ahead advice for the formula intro-
duced here. We use the term “shaping” for both methods, and let function arguments resolve any ambiguity.

25

3. Learning Potential Functions for Multi-Task RL

3.2 Problem Setting
We define a multi-task domain d to be a pair d = 〈D,M〉, where D is a distribution over
tasks D(m) = p(m), and D(m) > 0 for all m ∈ M, the set of all MDPs in the domain.
This definition matches the generalized environment proposed in [155]. Since we are
now dealing with multiple MDPs, we define an MDP to be a tuple m = 〈Xm,Pm,Rm,γ〉;
i.e., the state-action space Xm = Sm×Am, transition function Pm, and expected reward
function Rm are task-dependent and therefore subscripted by m. The action set A and the
discount factor γ are the same for all tasks in a given domain. The domain state space is
Sd =

⋃
m∈M Sm, and similarly Xd =

⋃
m∈M Xm. As noted previously, we assume the same

feature and action set for all tasks. However, results presented here can be extended to
different feature and action sets through the use of inter-task mappings: functions that
map states and/or actions from one task to the equivalent state and/or action in another
(see [140] for an overview of these methods).

Given a domain d and one or more source tasks drawn with replacement from d, the
agent’s goal is to maximize expected online return on an unknown target task sampled
from d; this measure also implicitly captures the time to reach a good policy. In general,
we are interested in a scenario in which the agent is “interacting sequentially” with the
domain, similar to lifelong learning [143]. That is, starting with an empty history h and
potential function Φ : Xd → 0, it goes through the following steps:

1. Receive a task m sampled with replacement from the domain according to D(m).
The task model is unknown.

2. Learn the solution to m with a model-free learning algorithm, aided by Φ. Add the
solution to the solution history h.

3. Update Φ based on h.

4. Go to step 1.

Nonetheless, this chapter applies equally well to batch scenarios in which the agent re-
ceives a sequence of source tasks sampled from the domain up front; the solutions to this
sequence then just become the history h.

For the moment, we assume the agent has perfect knowledge of each domain and thus
computes each potential function using all tasks in the domain. Our goal is to demon-
strate the theoretical advantages of each type of potential function. Assuming perfect do-
main knowledge enables comparisons of the potential functions’ maximum performance,
untainted by sampling error. From Chapter 4 onward, we consider the more realistic set-
ting in which only a sample sequence of tasks is available. In this case, generalization to
unseen next tasks, and thus learning a good representation for the potential function, is
important.

3.3 Potential Functions for Multi-Task Learning
In this section, we formulate a definition of an optimal potential-based shaping function
and, since we cannot solve this expression exactly, derive three approximations to this

26

3.3. Potential Functions for Multi-Task Learning

function for the learning case. For simplicity, we assume a tabular learning algorithm L.
Since we are interested in maximizing online return, an optimal shaping function is one
based on a potential function that maximizes expected online return across target tasks:

Φ
∗
L = argmax

Φ

E [Rm|Φ,L] = argmax
Φ

∑
m∈M

D(m)E

[
∞

∑
t=0

γ
trt,m

∣∣Φ,L

]
, (3.1)

where Rm is the return accrued in task m and rt,m is the immediate reward obtained on
timestep t in task m. Note that the task is essentially a hidden variable since the potential
function does not take it as input. Thus the potential function that satisfies (3.1) may
perform poorly in some tasks, though it performs best in expectation across tasks.

Since shaping with Φ is equivalent to initializing the Q-table with it, solving (3.1)
is equivalent to finding the best cross-task initialization of the Q-table. Unfortunately,
because of interacting unknown task and learning dynamics, there is no obvious way to
compute such a solution efficiently in the learning case, and search approaches quickly
become impractical. However, it is possible to derive a solution for the planning case
that provides the lowest bounds on the number of iterations needed to converge.

In the following sections, we first derive an expression for the optimal value table
initialization given that the task models are available and solved using value iteration. We
show that the optimal initialization in this case minimizes, in expectation, the weighted
geometric mean max-norm with the optimal value function in the target task. We then
discuss three strategies for efficiently approximating Φ∗L for the learning case.

3.3.1 Optimal Initialization For Value Iteration

In the planning case, an optimal initialization is one that minimizes the expected number
of iterations to solve the target task.

Theorem 1. The initial value function Q∗0 that in expectation minimizes the number of
iterations needed to solve a given task m from a domain d by value iteration is, for
γ ∈ (0,1),

Q∗0 = argmax
Q0

∑
m

D(m) logγ ‖Q∗m−Q0‖∞

= argmin
Q0

logγ ∏
m
‖Q∗m−Q0‖D(m)

∞

Proof. By Banach’s theorem, the value iteration sequence for a single task converges at
a geometric rate [9]:

‖Q∗m−Qn
m‖∞ ≤ γ

n‖Q∗m−Q0‖∞,

where Qn
m is the value function on task m after n iterations and ‖ · ‖∞ denotes the max-

norm. This equation provides a lower bound on the number of iterations n needed to get
within an arbitrary distance of Q∗m, in terms of γ and the initial value function Q0. That
is, to get within ε of Q∗m, then ‖Q∗m−Qn

m‖∞ ≤ ε , which is satisfied if γn‖Q∗m−Q0‖∞ ≤ ε.

27

3. Learning Potential Functions for Multi-Task RL

Let δm = ‖Q∗m−Q0‖∞. Assuming δm > 0 and ε < δm, then

γnδm ≤ ε

n ≥ logγ

ε

δm
= logγ ε− logγ δm.

For multiple tasks the expected lower bound is

n̄≥∑
m

D(m)
[
logγ ε− logγ δm

]
= logγ ε−∑

m
D(m) logγ δm. (3.2)

Thus n̄ can be minimized by maximizing ∑m D(m) logγ δm = ∑m D(m) logγ ‖Q∗m−Q0‖∞.

Note that ∑m D(m) logγ ‖Q∗m−Q0‖∞ = logγ ∏m ‖Q∗m−Q0‖D(m)
∞ , which equals the log

weighted geometric mean of the max-norm between Q0 and Q∗m. Therefore, since γ < 1,
the optimal Q0 minimizes the weighted geometric mean of the max-norm.

Unfortunately, this expression is in general non-linear and non-convex. However, it
seems that good approximations are obtainable by simply minimizing the average dis-
tance, according to some norm, between Q∗m and Q0. We exploit this intuition in the
heuristic approaches to initialization for the learning setting that we propose below.

3.3.2 Initialization for the Learning Case
Intuitively, a good initialization of the Q-function is the one closest in expectation, ac-
cording to some norm, to some desired target value function Qm of the unknown next
task m the agent will face. This can be seen as a definition of a cross-task value function
Qd that predicts the expected value of a given state-action pair x on an unknown new task
sampled from the domain, given the target values observed for x on previous tasks. If the
norm is Euclidean, Qd gives the least-squared-error prediction of the value of x on the
new task. That is, it minimizes the mean squared error (MSE) across tasks:

Qd = argmin
Q0

(
∑

m∈M
D(m) ∑

x∈Xm

p(x|m)
[
Qm(x)−Q0(x)

]2
)
, (3.3)

where p(x|m) is a task-dependent weighting over state-action pairs that determines how
much each pair contributes to the error. As is common in least squares, one may want
to weight non-uniformly, in our case for example if some state-action pairs occur more
often than others. It is not immediately clear how to define p(x|m). In section 3.3.6, we
discuss four possible options for this distribution. For now, we assume p(x|m) is given.
By setting the gradient of (3.3) to zero and solving, we obtain:

Qd(x) = ∑
m∈M

p(m|x)Qm(x). (3.4)

28

3.3. Potential Functions for Multi-Task Learning

Note that p(m|x) is a natural way of selecting the right tasks to average over for a given
pair: it is zero for any (x) /∈ Xm, leaving such pairs out of the average.

For linear binary function approximators, solving (3.3) leads to

wi
d = ∑

m∈M
p(m|fi = 1)wi

m, (3.5)

where wi
d and wi

m are the weight of feature i across tasks and in task m respectively, and
fi is the value of feature i (either 0 or 1). Thus, instead of averaging per state-action pair
as in (3.4), Eq. 3.5 averages per binary feature. In the following sections, we follow the
format of (3.4) and use table-based value functions, unless mentioned otherwise.

In supervised learning, the targets Qm are given. In reinforcement learning, an intu-
itive choice of target might be the optimal value function of each task. However, there is
no guarantee that using a potential function that approximates this target leads to the best
online return. In the following three subsections, we propose three different types of Qm
to use as target, each leading to a different potential function.

3.3.3 Least Squared Error Prediction of Q∗m
By setting the target to be the optimal value function Q∗m of each task, we obtain:

Q∗d(x) = ∑
m∈M

p(m|x)Q∗m(x). (3.6)

While approaches equivalent to (3.6) have been used successfully as potential func-
tions or initializations in previous work [126, 138], they are not guaranteed to be optimal.
Since they make a prediction based on the optimal policy, they may be too optimistic dur-
ing learning, which the shaping function is meant to guide. Consequently, they may cause
the agent to over-explore the target task to the detriment of online return, a phenomenon
that we observe experimentally in section 3.4.

3.3.4 Least Squared Error Prediction of Q̃m

In some cases, the agent’s Q-function on a task m may never reach Q∗m, even after learn-
ing. This may happen, for example, when using function approximation or an on-policy
algorithm with a soft policy. When this occurs, it may be better to use a less optimistic
potential function based on an average over Q̃m, the value function to which the learning
algorithm converges. The derivation is the same as for the previous section, yielding:

Q̃d(x) = ∑
m∈M

p(m|x)Q̃m(x). (3.7)

3.3.5 Value of the Optimal Cross-Task Policy
The previous two approaches to defining cross-task value for the potential function both
rely on value function for tasks that have already been solved. Such approaches may be
too optimistic, even if (3.7) is used instead of (3.6), since they are based on the result of
learning and implicitly assume a (near-) optimal policy will be followed from the next
time step onward, which is not typically the case during learning.

29

3. Learning Potential Functions for Multi-Task RL

In this section, we propose another definition which, in a sense, more closely resem-
bles the traditional definition of value in that it estimates the value Qµ

d of a single fixed
cross-task policy µ : Xd → [0,1], µ(x) = p(a|s) that assigns the same probability to a
given state-action pair, regardless of the current task. This definition might also be more
suitable for use as potential function since, like a potential function, it is fixed across
tasks. The value function of the best possible cross-task policy, µ∗, will typically make
more conservative estimates than either Q∗d or Q̃d , since µ∗ is usually not optimal in every
(or any) task. For example, consider a domain with a goal location in an otherwise empty
room. If the distribution over goal locations is uniform, and the state provides no clue as
to the goal position, then µ∗ is a uniform distribution over actions in every state, which is
suboptimal in any task. We define the cross-task value of a state under a stationary policy
µ as

Qµ

d (x) = ∑
m∈M

p(m|x)Qµ
m(x). (3.8)

Like (3.6) and (3.7), this follows (3.4), except that it averages over the values of a single
policy instead of multiple task-dependent ones.

The fact that µ is task-independent makes the task essentially a hidden variable and
MTRL similar to a POMDP for which µ is a memoryless policy that conditions only
on the current observation and Qµ

d is similar to the value of such a policy as defined
in [124]. Singh et al. [124] showed that for POMDPs, the best stationary stochastic
policy may be better than the best stationary deterministic policy and there need not
exist a stationary policy (stochastic or deterministic) that maximizes the value of each
state simultaneously. The same facts apply to the multi-task case; since the proofs from
Singh et al. do not translate without modification to the multi-task case, we have modified
their proofs to fit the multi-task case in Appendix A. Because of these facts, traditional
dynamic programming methods may not apply. One way to overcome this problem is to
assign a scalar, i.e. state-independent, value to each possible policy:

V µ

d = ∑
s∈Sd

p(s)V µ

d (s) (3.9)

V µ

d (s) = ∑
a∈A

µ(x)Qµ

d (x) (3.10)

where V µ

d is the domain-wide value of µ and p(s) is a distribution that assigns an ap-
propriate measure of weight to each state s. Two options for p(s) are the start-state
distribution or the occupation probability of s, p(s|µ). For the POMDP case, Singh et al.
[124] show that defining the optimal policy as

µ
∗ = argmax

µ
∑
s

p(s|µ)V µ

d (s) (3.11)

is equivalent to maximizing the average payoff per time step.

3.3.6 Choosing p(x|m)

All three proposed potential function types take the general form

Qd(x) = ∑
m∈M

p(m|x)Qm(x),

30

3.3. Potential Functions for Multi-Task Learning

where p(m|x) = p(x|m)D(m)/p(x). As indicated in section 3.3.2, it is not immediately
clear how to define p(x|m). Four options are:

1. The stationary distribution induced by the policy corresponding to each Qm.
For Q∗d and Qµ

d , this would be π∗m and µ∗, respectively. For Q̃d it would be the
soft policy (e.g. ε-greedy). Since Qd averages over all Qm, this seems a good
option. However, it may be problematic for Q∗d and Q̃m as it represents only the
distribution over (x) after learning. There may be state-action pairs that the policy
never, or rarely, visits in some tasks, but clearly the values in these tasks should
still be included in the average.

2. The distribution induced by the learning process. Since we are interested in
improving performance during learning, another choice may be a distribution over
(x) during learning. However, it is unclear how to define this distribution, since it
depends, among other things, on when learning is halted and the trajectory through
state-action space taken during learning. One possibility is to take one sample from
all possible such trajectories and define

p(x|m) =
T

∑
t=1

p(x|m,πt)p(πt |m),

where p(πt |m) = 1/T for the soft policy the agent was following at time step t
when learning task m, p(x|m,πt) is the stationary distribution over (x) given πt ,
and T is a predetermined stopping criterion, such as a fixed number of learning
steps or a convergence threshold. Clearly, this option does not apply to Qµ

d .

3. The start-state distribution and uniform random policy. This defines

p(x|m) = p(s0 = s|m)p(a),

where p(s0 = s|m) is the start-state distribution of m and p(a) = 1/|A| for all
a. This definition appropriately captures the distribution over (x) when the agent
enters a new task without prior knowledge.

4. The uniform distribution. This defines p(x|m) = 1/|Xm| for all (x) ∈ Xm.

For Q∗d and Q̃d , the latter option seems the most sensible one. Under the first and third
definitions, a probability of zero might be assigned to a state-action pair in some tasks,
or even in all, which is clearly not desirable. Also, since (3.6) and (3.7) are concerned
with prediction of the optimal (approximate) value of a pair (x) in a new target task, the
underlying assumption is that after taking a in x, the optimal (soft) policy for that task
will be followed. However, the first two definitions in the list above make assumptions
about the policy that has been followed so far, which is irrelevant in this context. Empir-
ical comparison of the options revealed no significant difference for Q∗d and Q̃d . For Qµ

d ,
the stationary distribution induced by µ was found to work best in most cases.

31

3. Learning Potential Functions for Multi-Task RL

3.4 Potential Functions: Empirical Evaluations
This section empirically compares agents applying the three potential functions proposed
above to a baseline agent that does not use shaping, and introduces the three domains
used throughout this chapter and the next. While these domains are simple, they make it
feasible to illustrate critical factors in the performance of shaping functions in MTRL.

For comparison purposes, we assume the agent has perfect knowledge of each do-
main and thus computes each potential function using all tasks in the domain. Our goal
is to demonstrate the theoretical advantages of each type of potential function. Assum-
ing perfect domain knowledge enables comparisons of the potential functions’ maximum
performance, untainted by sampling error. From Chapter 4 onward, we consider the more
realistic setting in which only a sample sequence of tasks is available, and in which gen-
eralization to unseen next tasks, and thus learning a good representation for the potential
function, is important.

3.4.1 Episodic Cliff Domain

To illustrate a scenario in which Q∗d , the average over optimal value functions, is not the
optimal potential function, we define a cliff domain based on the episodic cliff-walking
grid world from Sutton and Barto [135]. The agent starts in one corner of the grid and
needs to reach a goal location in the corner that is in the same row or column as the start
state, while avoiding stepping into the cliff that lies in between the start and goal.

The domain contains all permutations with the goal and start state in opposite corners
of the same row or column with a cliff between them (8 tasks in total). Each task is a
4x4 grid world with deterministic actions N, E, S, W, states (x,y), and a -1 step penalty.
Falling down the cliff results in -1000 reward and teleportation to the start state. The
distribution over tasks is uniform. We compute each potential function according to the
definitions given in section 3.3. Finding the cross-task policy µ∗ has been shown to be
NP-hard for POMDPs [148]. We use a genetic algorithm (GA) to approximate it2.

To illustrate how performance of a given Φ depends on the learning algorithm, we
use two standard RL algorithms, Sarsa and Q-Learning. Since for Q-Learning, Q∗d = Q̃d ,
we use Sarsa’s solution for Q̃d for both algorithms. Both algorithms use an ε-greedy
policy with ε = 0.1, γ = 1, and the learning rate α = 1 for Q-Learning and α = 0.4 for
Sarsa, maximizing the performance of both algorithms for the given ε .

We also run an additional set of experiments in which the agent is given a cliff sensor
that indicates the direction of the cliff (N, E, S, W) if the agent is standing right next to
it. Note that the addition of this sensor makes no difference for learning a single task,
since the information it provides is already deducible from the agent’s position and the
number of states per task is not affected. However, the number of states in the domain
does increase: one result of adding the sensor is that tasks no longer have identical state
spaces.3

2We employ a standard real-valued GA with population size 100, no crossover and mutation with p = 0.5;
mutation adds a random value δ ∈ [−0.05,0.05]. Policies are constructed by a softmax distribution over the
chromosome values.

3Note that the addition of this sensor is not the same as the manual separation of state features for the value
and potential function as done in [68, 122] – see related work (section 3.5). In the experiments reported in this

32

3.4. Potential Functions: Empirical Evaluations

Q-Learning Sarsa
Qµ

d −19.77±2.43 −512±130
No shaping −5.86±0.12 −3.86±0.10
Q∗d −5.13±0.17 −3.96±0.11
Q̃d −4.74±0.19 −3.93±0.11

(a) Without sensor

Q-Learning Sarsa
Qµ

d – –
No shaping −5.85±0.13 −3.96±0.11
Q∗d −5.44±0.12 −3.67±0.12
Q̃d −4.75±0.17 −3.37±0.13

(b) With sensor

Table 3.1: Mean total reward and 95% confidence interval for various shaping configu-
rations and learning algorithms on the cliff domain. All numbers ×104.

For each potential function, we report the mean total reward incurred by sampling a
task from the domain, running the agent for 500 episodes, and repeating this 100 times.
Table 3.1a shows performance without the cliff sensor. On this domain, Qµ

d performs
very poorly; one reason may be that the GA did not find µ∗, but a more likely one is
that, due to the structure of the domain, even µ∗ would incur low return for each state,
yielding a pessimistic potential function.

As expected, Sarsa outperforms Q-Learning on this domain due to its on-policy na-
ture: because Q-Learning learns the optimal policy directly, it tends to take the path right
next to the cliff and is thus more likely to fall in. For Q-Learning, Q∗d and Q̃d do better
than the baseline, with the latter doing significantly better.

The situation changes when the cliff sensor is added (we did not retest the potential
function that did worse than the baseline), as shown in table 3.1b. Though the sensor does
not speed learning within a task, it provides useful information across tasks: whenever
the cliff sensor activates, the agent should not step in that direction. This information is
reflected in the average of the value functions and thus in the potential function, More
precisely, the state-action space X+

d is enlarged and fewer state-action pairs are shared
between tasks. Under these circumstances, both Q∗d and Q̃d significantly outperform
baseline Sarsa, with the latter, again, doing best. The picture for Q-Learning remains
largely the same.

3.4.2 Continuing Cliff Domain

The continuing cliff domain is the same as the episodic version with the cliff sensor,
except that there are no terminal states. Instead there is a reward of 0 on every step and
10 for passing through the goal state and teleporting to the start state. We hypothesized an
additional benefit for shaping here, since the reward function is sparser (see e.g. [73] for
a formal relation between the benefit of shaping and sparsity of reward). To our surprise,
however, this was not always the case. Ironically, one main reason seems to be the sparse
reward function. In addition, the presence of an area of large negative reward next to the
goal state makes the task even more difficult to learn. For increasing exploration rate ε ,
the optimal ε-greedy agent takes ever larger detours around the cliff, partly because of
the sparse reward function; from around ε = 0.05, it huddles in the corner of the grid

section, both functions use the exact same set of features.

33

3. Learning Potential Functions for Multi-Task RL

1 3 5 7 9 15 20 25 30 35 40 45 50 55 60
−8

−6

−4

−2

0

2

4

6

8

10

x 10
4

alpha

M
e
a
n
 r

e
tu

rn

No shaping
Q*

d

Q~
d
(exact)

Q
µ

d

Q
~

d
(sarsa)

x 10
−2

(a) Sarsa

1 3 5 7 9 15 20 25 30 35 40 45 50 55 60
−8

−6

−4

−2

0

2

4

6

8

10

x 10
4

alpha

x 10
−2

(b) Q-Learning

Figure 3.1: Mean return and 95% confidence intervals of Sarsa and Q-learning on the
continuing cliff domain, under various shaping regimes. Return is cumulative reward
over 105 steps and averaged over all tasks in the domain (i.e. 8 runs).

indefinitely, without ever attempting to reach the goal. For this reason, we used ε = 0.01
for all experiments.

Figure 3.1 shows the mean cumulative reward of Sarsa and Q-learning under various
learning rates and shaping regimes. Here, we used two different methods for computing
Q̃d : one uses the exact values of the optimal ε-greedy policy for each task for ε = 0.01, as
computed by a soft version of policy iteration4, and the other uses solutions as computed
by Sarsa run on each task in the domain with ε = 0.01, α = 0.07, for 107 steps. These two
value functions are different since, as it turns out, Sarsa converges to the wrong solution.

The figure shows a markedly different picture from the episodic cliff world results.
Even at its optimal setting, Sarsa does not significantly outperform Q-learning on this
domain. Perhaps even more surprising, especially since Sarsa converges to the wrong
solution, is that unshaped Sarsa at its optimal learning rate outperforms shaped Sarsa
at its optimal setting; the shaped version dominates only from around α = 0.15, and
generally not significantly.

Fig. 3.2 reveals what is happening. Fig. 3.2a makes clear that, even though shaping
has a disadvantage when measured over a large number of timesteps, it does provide
an initial performance boost which lasts up to around 104 steps. However, as the two
rightmost graphs show, the long-term learning dynamics of shaped Sarsa ultimately result
in inferior performance: it is plagued by long periods of stasis, in which it keeps far from
the cliff and thus the goal, and no reward is incurred. The likely reason is the same as for
the eventual stasis of unshaped Sarsa (not shown), which results from Sarsa’s inability,
under the low exploration rate, to escape from the strong local optimum in the corner of
the grid (recall that under higher exploration rates, the corner of the grid becomes the
global optimum). Since shaped Sarsa is closer to convergence than unshaped Sarsa, it
discourages the agent from approaching any location that might contain a cliff, resulting
in an initial performance boost but also earlier onsets of stasis.

4In the policy improvement step, the policy is made only ε-greedy w.r.t. the value function.

34

3.4. Potential Functions: Empirical Evaluations

0 5 10 15
−4

−3

−2

−1

0

1

2

3

4

5

Steps

C
u
m

u
la

ti
v
e
 r

e
w

a
rd

No shaping
Q~

d
 (exact) shaping

x 10
3

x 10
3

Q
~

d

No shaping

(a) Shaped vs unshaped Sarsa

0 0.5 1 1.5 2

x 10
5

0

2

4

6

8

10

12
x 10

4

Steps

Mean cum. reward

Cum. reward (single run)

TD error (single run)

Mean

Single

TD Error

(b) No shaping

0 0.5 1 1.5 2

x 10
5

0

2

4

6

8

10

12
x 10

4

Steps

Mean cum. reward

Cum. reward (single run)

TD error (single run)

MeanSingle

TD Error

(c) Q̃d (exact) shaping

Figure 3.2: Cumulative reward of unshaped and shaped Sarsa on the continuing cliff
domain. Mean curve (light gray, dashed) represents average over 100 runs; also shown
are example cumulative reward (black,solid) and TD error from a single run.

3.4.3 Triangle Domain

Each task in the episodic Triangle domain consists of three non-terminal states, in which
three actions can be taken (Fig. 3.3a), and one terminal state. In addition to feature
x1, which corresponds to the state numbers shown, the agent perceives two additional
features x2 and x3. Feature x2 is the inverse of the square of the shortest distance to
the goal, i.e. in the figure, the states would be (1,0.25),(2,1),(3,0.25). Feature x3 is a
binary feature that indicates task color: red (1) or green (0); if red, the agent receives a
-10 penalty for self-transitions, in addition to the -1 step reward that is default in every
task. x3 is constant within a task, but may change from one task to the next. The goal
may be at any state and the effect of actions L (dashed) and R (solid) may be reversed.
Action U (dotted) always results in either a self-transition or a goal-transition (when the
goal is next to the current state). There are thus 12 tasks in total.

We compare performance of the different shaping regimes on this domain with a
Q-learning agent with discount factor γ = 1. Not surprisingly, there is no significant dif-
ference between the potentials in this domain: while Q∗d estimates values higher than Q̃d ,
which estimates higher than Qµ

d , differences in estimates are minimal and the ordering of
actions is the same.

3.4.4 Stock-Trading Domain

The binary stock-trading domain is an attractive domain for comparison since it is an
established benchmark [22, 71, 130], is stochastic, and has an easily varied number of
states and tasks. An example task is displayed in Fig. 3.4a. The domain consists of a
number of sectors S, such as telecom (s1 in the example) and pharmaceuticals (s2). Each
contains E items of equity (stock). Each stock is either rising (1) or falling (0). An agent
can buy or sell all stocks of one whole sector at a time; sector ownership is indicated by
a 1 (owned) or 0 (not owned) in the state vector. Therefore, if the agent owns pharma
but not telecom, the part of the state vector pertaining to stock in the example would

35

3. Learning Potential Functions for Multi-Task RL

1

2

3

R

L

U

(a) Example triangle task

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−90

−80

−70

−60

−50

−40

−30

−20

−10

alpha

M
e

a
n

 r
e

tu
rn

No shaping
Q*

d

Q~
d

Q
µ

d

(b) Performance

Figure 3.3: Example task and mean return of q-learning on the triangle domain, under
various shaping regimes. Return is cumulative reward over 10 episodes and averaged
over all tasks in the domain (i.e. 12 runs). All differences between the shaping methods
are significant, except between q̃d and qµ

d . Points shown are for ε = 0.01, the best-
performing setting.

be (0,1,1,1,0,1,0): the first two elements indicate sector ownership, the next two what
telecom stocks are doing, the two thereafter what pharma stocks are doing, and the final
entry what the global factor is doing (explained in the next paragraph). At each timestep,
for each sector that it owns, the agent receives a reward of +1 for each stock that is rising
and -1 for each stock that is falling. Thus in the example, the agent would earn a reward
of 1, since there is 1 stock rising in pharma.

The probability of stocks rising in a given sector s, Ps, depends on two factors: the
number of stocks rising in s in the previous timestep, and the influence of G global factors
(in the example, oil is the only global factor). How stocks and globals influence Ps is task-
dependent. In the example, the only telecom stock of influence is e2; in pharma, it is e1.
In a given task, stocks within a sector may be influenced by any combination of stocks in
that sector. Stocks that are rising increase Ps; stocks that are falling decrease it.

Globals behave just like stocks in that they can rise (1) or fall (0). However, globals
always affect all sectors simultaneously. The effect of a global varies per task; for a given
rising global, it increases Ps in half the tasks, and decreases it in the other half, making its
net cross-task effect zero. The exact formula for determining the probability that stocks
in a given sector s will rise in a given task m is:

Pm
s = 0.1+0.8

Rm
s +3Rm

g

Im
s +3G

,

36

3.5. Related Work

S1

S2

E1

E2

E1

E2

G1

Buy / Sell

Buy / Sell

(a) Stock domain

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
55

60

65

70

75

80

alpha

M
e
a
n
 r

e
tu

rn

No shaping

Q
µ

d

Q
~

d

Q
*

d

(b) Performance

Figure 3.4: Schematic overview of, and mean Q-learning return on, the stock-trading
domain under various shaping regimes. a) See main text. b) Return is cumulative reward
over 300 learning steps and averaged over 20 runs for all tasks in the domain (i.e. 240
runs). Differences between the methods are generally significant, except between Q̃d and
Q∗d .

where

Im
s = number of stocks of influence in s in m

G = number of globals
Rm

s = number of stocks of influence in s in m that are rising
Rm

g = number of globals that are rising and increase Pm
s in m when rising, plus

number of globals that are falling and increase Pm
s in m when falling.

Thus, in the example, assuming that oil prices are on the rise and increase the proba-
bility that stocks rise when falling, for s = telecom,

Pm
s = 0.1+0.8

1+3×0
1+3×1

= 0.3.

A domain is defined by the tuple 〈S,E,G〉; the number of tasks in the domain is
(2E − 1)2G. A state is represented by S+ SE +G binary features, so |Sm| = 2(S+SE+G),
and |A|= 2S.

We ran a Q-Learning agent on a domain with S = 1, E = 3, and G = 2. As shown
in Fig. 3.4, Q∗d and Q̃d perform best in this domain; once again Q̃d seems to be slightly
superior, although the difference is not significant. Qµ

d lags behind, although its perfor-
mance seems more resistant to changes in α; for higher learning rates, the difference
with the other two shaping functions disappears.

3.5 Related Work
The two main research areas that relate to this chapter are shaping and multi-task (rein-
forcement) learning. This section reviews work done in these areas and discusses their
relationship to our own work.

37

3. Learning Potential Functions for Multi-Task RL

3.5.1 Potential-Based Shaping

The theoretical result of Ng et al. [94], which showed that potential-based shaping func-
tions preserve the optimal policy of the ground MDP for model-free RL, has been ex-
tended in various ways. Grześ and Kudenko [47] demonstrate empirically that scaling
the potential can affect learning performance, and relate performance of a distance-to-
goal-based potential to the discount factor γ and task size, showing that as task size
increases, so should γ . Asmuth et al. [3] show that R-max, a popular model-based RL
method, is still PAC-MDP [63] when combined with an admissable potential function
Φ(x) ≥ Q∗(x). In multi-agent RL, potential-based shaping provably preserves the Nash
equilibrium in stochastic games [19, 79], and improves approximations to the Pareto
front [83]. Preservation of optimal policy and Nash equilibrium have also been shown to
hold for potential functions that change while the agent is learning[20]. Harutyunyan et
al. [52] provide an algorithm that allows a human designer to express advice in an intu-
itive fashion while retaining the theoretical guarantees of potential-based shaping. Brys
et al. [13] extract a shaping reward from human demonstrations, and Suay et al. [131]
improve on this by using inverse reinforcement learning (IRL) [95] to create a general
encoding of a demonstrator’s policy (by learning a reward function), instead of using the
observed demonstration samples directly. The theory underlying potential-based shaping
has implications for IRL in general: IRL approaches that try to recover a reward function
from an expert’s policy may recover a potential-based shaping function instead. This
directly follows from the result of Ng et al. [94]. Fu et al. [39] argue that IRL algorithms
that learn a shaping function may not be robust to changes in dynamics, and propose an
algorithm that can avoid learning a shaped reward in domains where the ground-truth
reward only depends on state, and not on transitions.

In practice, potential-based shaping has also been shown to improve strategies for
the iterated Prisoner’s dilemma [4], robot soccer [21], Dynamic Economic Emissions
Dispatch problems [82], and mapping visual observations and text instructions to actions
[91].

There have been a number of successes in learning potentials automatically. In single-
task RL, one approach is to construct an initial shaping function based on intuition [72]
or an initial task model [46], and refine it through interaction with the task. Elfwing et al.
[28, 29] evolve a shaping function that, when transferred to a real robot, results in better
performance than when transferring Q-values. Other work has learned a shaping function
on abstractions that are either provided [48] or also learned [86]. As we will see in the
next chapter, which contains results on learning potential function representations, this
work is related to ours in that it explores different representations for the potential and
value function. However, our work benefits from the MTRL setting in that it learns the
abstractions offline, in between tasks, and therefore does not incur a cost while interacting
with the next task.

Konidaris and Barto [68] were the first to learn a shaping function automatically in
a multi-task environment by estimating the value function based on optimal solutions of
previously experienced tasks. They base the value function on the problem space, the
Markov representation necessary for optimally solving tasks, and the potential function
on the agent space, the representation that retains the same semantics across tasks. How-
ever, they pre-specify both spaces. Similar pre-designed separate representations were

38

3.6. Conclusion and Discussion

employed in [122], in which an optimal reward function is searched on a distribution of
tasks. This thesis substantially extends this work by comparing different potential func-
tions and, in the next chapter, proposing a method for automatically discovering both
task and domain-relevant representations.

3.5.2 Multi-Task Reinforcement Learning
The field of multi-task reinforcement learning has rapidly developed in recent years and
is too large to survey comprehensively. Instead, we focus on approaches most similar to
ours; see Taylor and Stone [140] for an extensive survey of the field.

In [141], the value function of the single source task is transformed via inter-task
mappings and then copied to the value function of the target task. In [138], the average
optimal Q-function of previously experienced tasks is used to initialize the model of a
new task. Although the authors state that the average optimal Q-function is always the
best initialization, this chapter has shown otherwise. Mehta et al. [89] assume fixed task
dynamics and reward features, but different reward feature weights in each task. Given
the reward weights of a target task, they initialize the task with the value function of the
best stored source task policy given the new reward weights.

Under a broader interpretation, initialization can also be performed by transferring
source task experience samples to a batch-learning method in the target task [76]. Sim-
ilar to other initialization methods, bias towards the source task knowledge decreases as
experience with the target task accumulates. Other forms of initialization are to use a
population of evolved source task policies as initial population for an evolutionary al-
gorithm in the target task [142], or to use source task information to set the prior for
Bayesian RL [75, 159].

Advice-giving methods, which suggest an action to the agent given a state, are closely
related to potential-based shaping. Torrey et al. [145] identify actions in source tasks with
higher Q-values than others, and use this information to construct rules on action pref-
erences that are added as constraints to a linear program for batch-learning Q-function
weights in the target task. In [146], this work is extended by using inductive logic pro-
gramming to extract the rules. Tayor and Stone [142] learn rules that summarize a learned
source task policy and incorporate these as an extra action in the target task, to be learned
by a policy-search method. All these approaches are flexible in that they can deal with
different state features and actions between tasks by a set of provided inter-task map-
pings. However, these mappings have to be provided by humans, except in [142], where
they can be learned if provided with a description of task-independent state clusters that
describe different objects in the domain. As we will see in the next chapter, these clusters
are similar to our notion of domain-relevant abstractions, which we discover automati-
cally with the algorithm proposed in the next chapter.

3.6 Conclusion and Discussion
Given full domain knowledge, we have shown that the initial value function that results
in the lowest number of value iterations on an unknown task sampled from the domain
minimizes the weighted geometric mean max-norm between the initial value function

39

3. Learning Potential Functions for Multi-Task RL

and optimal value functions. For the learning case, we argue that a sensible potential
function minimizes the expected Euclidean norm between it and the solutions to tasks in
the domain; i.e., it is the weighted average over task solutions. Previous work has not
made this argument explicit, nor has it specified what kind of task solutions are best. One
contribution of this chapter is to define three potential function types, based on the use of
three different kinds of task solutions. The first, Q∗d , is based on optimal task solutions.
The second, Q̃d , is based on approximate solutions or solutions that are optimal with
respect to a soft policy, which is what the agent is usually using while learning. The
third, Qµ

d , is based on the value functions of the optimal cross-task policy µ∗.
Experiments showed that which type is best depends highly on the domain, learning

algorithm, and learning parameters. This disproves the assumption made elsewhere [138]
that the average optimal Q-function is always the best initialization. Since the values
of Q̃d and Qµ

d are inherently lower than those of Q∗d , this may seem to contradict the
assumption that optimistic initialization is a good heuristic [33, 135]. However, it is
more likely that each potential type recommends a different policy, depending on the
domain. In addition, relative differences between Q-values, which matter for shaping,
are likely to play a role. Nonetheless, it is possible that scaling the potentials could have
a positive effect on performance, as has been demonstrated for the single-task case [47].
Scaling might also improve performance of one potential type relative to another. One
possibility for future work would be to try to derive a scaling factor from source tasks,
e.g., based on maximum observed Q-values.

In some of the domains discussed in this chapter, the best potential function is based
on solutions that are not produced by the learning algorithm5. For example, in two of
the three domains, a Q-learning agent was helped more by Q̃d than by Q∗d , and in the
remaining domain there was no significant difference. Using Q̃d with a Q-learning agent
would, in practice, entail having to solve each task twice, and using Qµ

d is similarly
problematic. One solution could be to learn a model of each encountered task, and use
that to compute Q̃d or Qµ

d offline, in between tasks; another idea is to learn two value
functions simultaneously. While this would result in a slight increase in time and space
requirements, neither idea increases the number of experience samples required.

It is well known that transfer learning in supervised learning and RL can hurt perfor-
mance if tasks are not sufficiently related [14, 140, 143]. This chapter identified another
potential source of negative transfer. On the continuing cliff domain, shaped Sarsa was
outperformed by non-shaped Sarsa for low learning rates, showing that not only task
relatedness, but also the learning algorithm and parameters may affect the benefit of
transfer.

5We obtained them by running another agent with the appropriate learning algorithm for the potential func-
tion type.

40

4
Relevant Representations for Multi-Task

RL

We now turn to the setting in which only a sample sequence of tasks is available to the
agent. A central aim is to generalize well from the sample to new data. As in supervised
learning, representation is key for generalization. This chapter proposes a definition of
relevance that can be used for learning representations in MTRL.

In MTRL, new data may consist of both new state-action pairs and new tasks. Our
central objective, therefore, is to discover which information is relevant across tasks,
which we call domain-relevant information. While our definition also captures which
information is relevant within tasks (task relevant), this subject has been extensively
addressed in existing research. Therefore, we focus primarily on discovering domain-
relevant representations.

The Triangle domain from section 3.4 illustrates the distinction between task and
domain relevance. To describe an optimal policy for each task, only position, which has
the Markov property, is needed to represent state. However, the value of a given position
needs to be re-learned in every task. Since position does not represent information that
can be retained between tasks, this feature is task relevant. Task color is not useful within
a given task, since its value is constant. However, across tasks it represents information
about self-transitions, which receive additional punishment in red tasks. Therefore, this
feature is domain relevant, but not task relevant. Finally, distance to goal is useful both
within and across tasks, and is therefore both task and domain relevant, as is the cliff
sensor in the cliff domain.

Projecting the full feature set onto a subset of the task-relevant features may create
an abstract state space that is smaller than the original state space, and can therefore help
learn the task more quickly, under certain conditions on the projection [77]. In the multi-
task setting, it is possible to define this abstract space before entering a new task, by
identifying valid abstractions (task-relevant representations) of previously experienced
tasks and transferring these to the new task (e.g. [35, 71, 74, 149]).

Domain-relevant features also allow for a higher level of abstraction, but in addition
allow the agent to deduce rules from the abstract representation and reason with them,
right from the start of a new task, thereby obviating the need to re-learn this task-invariant
knowledge. Of course, it should be possible for the agent to override the heuristic rules
given new information garnered from interaction with a specific task. Shaping functions

41

4. Relevant Representations for Multi-Task RL

are a good candidate for these kind of rules, endowing the agent with prior knowledge
that gradually degrades as the agent accumulates experience of a task.

In the following sections, we propose a definition of relevance that is based on a
state representation’s ability to predict expected return within tasks (for task-relevant
features) or across tasks (for domain-relevant features). We argue that task and domain
relevance are special cases of a single underlying concept, k-relevance, the expected
relevance on a sequence of k tasks sampled from the domain. We show formally that
k-relevance converges to a fixed point in the limit, and under certain assumptions does
so monotonically. We use this property to introduce FS-TEK, a novel feature selection
algorithm. The key insight behind FS-TEK is that change in relevance observed on task
sequences of increasing length can be extrapolated to more accurately predict domain
relevance.

4.1 Relevance
The notion of relevance that this section introduces applies generally, not just to se-
quences of tasks. Therefore, we start out by discussing abstraction and relevance in
general, for any Q-function, and then extend the concept to sequences of tasks.

Several notions of predictive power on a given Q-function Q are possible. For exam-
ple, the Kullback-Leibler divergence between the marginal distribution over Q and the
distribution conditioned on the representation of which we wish to measure relevance
[126], or the related measures of conditional mutual information [51] or correlation [84].
The disadvantage of these measures is that they do not take the magnitude of the im-
pact of a representation into account; for example, two representations may cause equal
divergence, but the difference in expected return associated with one set may be much
larger than the other. To address this problem, we propose a measure of relevance1 that
is proportional to the squared error in predicting Q.

Li et al. [77] provide an overview and classification of several state abstraction schemes
in reinforcement learning. We employ their definition of an abstraction function:

Definition 1 (Abstraction function). An abstraction function φ : X 7→Y induces a parti-
tion on the vector space X; φ(x) ∈Y is the abstract vector y corresponding to x, and the
inverse image φ−1(y) is the set of ground vectors that corresponds to y under abstraction
function φ .

Here and in the following, by ground vectors or state-action pairs we mean those from
the original vector space. Using this definition, we can define a Q-function on abstract
state-action pairs:

Definition 2 (Abstract Q-function). Given abstraction φ : X→ Y and any Q-function
Q : X→ R, the abstract Q-function Q̄(Φ) : Y→ R is defined as the weighted average of
the Q-values of ground pairs x corresponding to abstract pair y:

Q̄φ (y) = ∑
x∈φ−1(y)

p(x|y)Q(x). (4.1)

1Relevance is not a measure in the strict mathematical sense; because of dependence between feature sets,
ρ(F∪G) 6= ρ(F)+ρ(G) for some disjoint feature sets F and G and relevance ρ .

42

4.1. Relevance

The Q-value of a given abstract state-action pair y generally differs from those of at
least some ground state-action pairs corresponding to y. Call this difference the abstrac-
tion error εφ (y,Q). One example is to choose the weighted mean squared error (MSE)
of ground pairs with respect to y as abstraction error:

Definition 3 (MSE Abstraction error εφ (y,Q)). Given abstraction φ and any Q-function
Q, the MSE of a given abstract state-action pair y with respect to its corresponding
ground pairs is given by

εφ (y,Q) = ∑
x∈φ−1(y)

p(x|y)
[
Q(x)− Q̄φ (y)

]2
. (4.2)

Whatever the choice of εφ (y,Q), it follows naturally that the relevance of an abstrac-
tion with respect to a function Q is the total error incurred by applying the abstraction to
Q.

Definition 4 (Relevance). Given abstraction φ and any Q-function Q, the relevance
ρ(φ ,Q) of φ with respect to Q is defined as the abstraction error on Q that results from
applying φ :

ρφ (Q) = ∑
y∈Y

p(y)εφ (y,Q). (4.3)

When using an abstract Q-function as defined in (4.1) and MSE as abstraction error
(4.2), this equals the sum of weighted variances of the Q-values of ground state-action
pairs corresponding to a given y:

ρφ (Q) = ∑
y∈Y

p(y)Var(Q(φ−1(y))). (4.4)

Note that the aim is therefore to find an abstraction with low relevance: this abstracts
away non-relevant parts of the original representation and keeps the relevant parts. This
is in line with the terminology employed by Li et al. [77], who designate the abstraction
that preserves Q∗ as a Q∗-irrelevance abstraction. Similarly, an abstraction with low
relevance on Q should be thought of as a Q-irrelevance abstraction.

4.1.1 k-Relevance
Now we are ready to expand the above to sequences of tasks. Since our main goal is to
find good representations for potential functions, our targets for abstraction are Q∗d , Q̃d ,
or Qµ

d , the three types of potential function proposed in section 3.3. Which of these is
used does not matter for the theory, as any Q-function can serve as a basis for relevance.
Therefore, in what follows, we remain agnostic to the target for relevance.

Since the agent has only experienced a sample sequence of tasks from the domain, it
cannot compute this target Qd exactly. Instead, it can approximate Qd by computing a
cross-task value function based on the sequence. Let c = (c1,c2, ...,ck) be a sequence of
|c| tasks sampled from M, and Xc =

⋃
ci∈c Xci .

Let Qc be a cross-task Q-function computed on a sequence of tasks c, Qc : Xc 7→ R.
If |c|= 1, Qc = Qm. All of the definitions for Qd in section 3.3 follow the general form

Qd(x) = ∑
m∈M

p(m|x)Qm(x).

43

4. Relevant Representations for Multi-Task RL

Thus, we have for Qc:

Qc(x) =
|c|

∑
i=1

p(ci|x,c)Qci(x). (4.5)

Naturally, relevance often depends on both the length of the task sequence over which
it is computed and on the tasks that the sequence contains. For example, in the Triangle
domain as a whole, the position feature is irrelevant since, given a certain position, there
is no way to know what direction to go. In other words, in Qd , the average value function
computed over the whole domain, Q-values will not vary with the position feature, and
therefore the position feature will not result in any error on Qd if it is discarded.

However, given a sample sequence of two Triangle tasks, it is likely that position
is still relevant, e.g., if the goal is in the same direction in both tasks. In practice, the
agent, while interacting with the domain, will have at its disposal a growing sequence
of tasks based on which it must construct a domain-relevant representation. Doing so
is challenging because representations may appear relevant given the observed sequence
but actually not be domain irrelevant. Intuitively, the longer the sequence, the better
sequence relevance approximates domain relevance. Therefore, instead of just computing
relevance on the currently observed sequence, we should try to predict how it changes
with increasing sequence length. Decreasing relevance could mean that the feature, while
relevant on the current sequence, is not relevant in the long run.

However, it is not enough to simply observe that the relevance of a given represen-
tation is decreasing because it may plateau above zero. For example, Fig. 4.1 shows
how average relevance of single features in the Triangle domain changes with increasing
sequence length. While the relevance of the action a and distance feature x2 decreases,
these features remain domain relevant. Relevance of the position feature x1, on the other
hand, disappears completely. This implies that in this domain, it is desirable to abstract
away x1.

To predict how relevance changes as more tasks are observed, we use the defini-
tions in the previous section to define the k-relevance of a representation as the expected
relevance ρk over all possible sequences of length k. Let Ck be the set of all possible
sequences c of length k, i.e., |Ck|= |M|k. The probability of sampling a given sequence
c from Ck is p(c) = ∏

|c|
i=1 D(ci). Then we have the following definition for k-relevance:

Definition 5 (k-relevance). The k-relevance of an abstraction φ : Xd → Yd in a domain
d = 〈D,M〉 is the expected relevance of φ on a given Q-function computed from a task
sequence of length k sampled from M according to D

ρk(φ) = E[ρ(φ ,Qc)|c ∈ Ck] = ∑
c∈Ck

p(c)ρφ (Qc). (4.6)

Given this definition, an abstraction φ is strictly domain relevant, DR(φ), if and only
if its k-relevance ρk remains positive as k goes to infinity:

DR(φ)⇔ lim
k→∞

ρk(φ)> 0, (4.7)

and strictly domain irrelevant otherwise:

¬DR(φ)⇔ lim
k→∞

ρk(φ) = 0. (4.8)

44

4.1. Relevance

2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

N

F
e
a
tu

re
 r

e
le

v
a
n
c
e

x1

x2

x3

a

Figure 4.1: Average relevance of single features in the Triangle domain based on task
sequences of length N. Relevance is averaged over a sample of all possible sequences of
length N.

Our goal is thus to find a domain-irrelevant abstraction, as applying such an abstraction
yields a domain-relevant representation. In section 4.1.2, we show that ρk converges to
the true domain relevance as k goes to infinity.

As k tends to infinity, the average over all sample sequences of length k will approach
the true distribution over tasks in the domain ever more closely. However, the value of k
at which k-relevance is a reasonably accurate approximation of the true domain relevance
depends largely on the number of tasks in the domain: for example, the relevance of the
position feature in Fig. 4.1 is practically 0 from around k = 12.

Similarly, an abstraction may be called task relevant, TR(φ), if and only if its 1-
relevance is greater than 0:

TR(φ)⇔ ρ1(φ)> 0. (4.9)

Thus, a sensible abstraction to use in the domain for the value function or policy would
be one that is (near-)irrelevant according to this definition and thus the expected error on
the value function of a task introduced by the abstraction is negligible. We believe this is
a more natural definition than, e.g., preserving any feature that has been found relevant
in any task in the domain [149].

Thus, k-relevance is a unifying notion of relevance that naturally captures both task
and domain relevance and can therefore be used for finding abstractions for both the value
function of a new task and the potential function to use on that task. In the next section,
we show that k-relevance converges to a fixed point as k tends to infinity, a result which
makes it possible to extrapolate domain relevance from observed tasks, as we show in
section 4.2.

45

4. Relevant Representations for Multi-Task RL

Figure 4.2: Left three columns (k = 1..3): probability of each sequence as k increases,
shown as portions of a rectangle with area 1, on a 3-task domain with p1 = 0.5, p2 =
p3 = 0.25. Probability of sequence (1,2) is indicated as p12. For each k+ 1, the area
of each sequence for k is split into new sequences with area proportional to D. Right
column: covariance matrices for the sequences marked in bold on the left. The weight of
each matrix element is equal, namely 1/k2. Relevance on a given sequence is the sum of
all matrix elements. In turn, k-relevance is the sum over all sequences.

4.1.2 Properties of k-Relevance

Fig. 4.2 illustrates how k-relevance changes with k. Relevance of a given φ is the same on
each single-task sequence for a given task m, i.e. sequences for which each element ci =
m. For k = 1, k-relevance comprises only single-task sequences, but the share of these
sequences decreases exponentially with k; in the example, it is (p1)k +(p2)k +(p3)k. In
general, the sequences represent the true distribution over tasks ever more closely.

For k = 2, every task is combined with every task in the domain. Hence for k > 2,
no new task combinations arise; however, we need a way to quantify relevance on, e.g.,
c = (1,2,3) given the relevance on (1,2), (1,3), and (2,3). We show in Appendix B that
it follows, from the expression of relevance in terms of variance (Eq. 4.4) that relevance
on any sequence equals the sum of covariances between the Q-functions of all task pairs
involved in the sequence. The right column of Fig. 4.2 visualizes this; the highlighted
areas correspond to the covariance matrix (and hence relevance) for k− 1; therefore,
k+1-relevance is a function of k-relevance. The following two theorems follow directly
from this, together with the fact that sequences approximate the true distribution over
tasks ever more closely.

Theorem 2. Let φ be an abstraction with abstract Q-function as in definition 2. Let
ρk = ρk(φ) for any k, based on the MSE abstraction error as in definition 3. Let d(x,y) =

46

4.2. Feature Selection With k-Relevance

|x− y| be a metric on R, and let f (ρk) = ρk+1 map k-relevance to k+1-relevance. Then
f is a strict contraction; that is, for k > 1 there is a constant κ ∈ (0,1) such that

d(f (ρk), f (ρk−1))≤ κd(ρk,ρk−1).

Proof. See Appendix B.

Corollary 1. The sequence (ρk)
∞
k=1, k = 1,2, . . ., converges to a fixed point, namely the

domain relevance of φ .

Proof. Since (R,d) is a complete metric space and f is a contraction, f has a unique
fixed point by Banach’s fixed-point theorem.

Theorem 3. If all tasks share the same distribution over state-action pairs p(x|m), then
ρk, as defined in Theorem 2, is monotone.

Proof. See Appendix B.

Note that having the exact same distribution over state-action pairs also implies hav-
ing the exact same state-action space. By these two theorems, ρk can be approximated by
an exponential or power law function, as also suggested by Fig. 4.1. Even when tasks do
not share the same distribution over state-action pairs, an exponential function can still
approximate where the sequence (ρk)

∞
k=1 will converge to, given sufficient k.

4.2 Feature Selection With k-Relevance
We now introduce FS-TEK (Feature Selection Through Extrapolation of k-relevance), a
novel algorithm for finding relevant abstractions in multi-task reinforcement learning that
exploits the notion of k-relevance introduced in the previous sections. FS-TEK focuses
on finding domain-relevant representations, since determining task-relevant representa-
tions using k-relevance is relatively straightforward. As mentioned previously, the key
idea behind FS-TEK is to fit an exponential function to a candidate representation’s rel-
evance based on an observed sequence of tasks and then extrapolate it to estimate the
representation’s domain relevance.

Since it is a feature selection algorithm, FS-TEK constructs abstractions of the form
φ(x) = x[Y] = y, where Y ⊆ X and x[Y] denotes the values of the features Y in vector
x. That is, the abstract state y to which a state x is mapped consists of the values of the
features in some relevant set Y. Viewed another way, Y is the result of removing some
irrelevant set F= X−Y from X. In the following, when we refer to the relevance of a set
F, we mean the relevance of the abstraction that removes F from X.

FS-TEK’s main loop is based on an iterative backward elimination procedure (e.g.
[50, 66]). Because of interdependence between features, it is not always sufficient to
select features based on their relevance in isolation. Features may be irrelevant on their
own, but relevant together with another feature; similarly, a feature that seems irrele-
vant may become relevant once another feature is removed. Backward elimination starts
with the full feature set and iteratively removes features according to a measure of rele-
vance. In contrast, forward selection methods start with the empty set and iteratively add

47

4. Relevant Representations for Multi-Task RL

features. While forward selection may yield a smaller final feature set, it may miss in-
terdependencies between features (e.g. [50]). Therefore, FS-TEK’s main procedure uses
backward elimination. Nonetheless, it tries to combine the advantages of both methods
by using forward selection to decide which feature to remove when more than one feature
is marked for elimination.

Naturally, FS-TEK’s measure of relevance is extrapolated k-relevance. Computing
this involves two main steps:

1. For an observed sequence c of tasks of length |c|, compute k-relevance of each
feature set for k ∈ {1,2, . . . , |c|}

2. For each feature set, fit an exponential function f (k) to the relevance computed in
step 1 and extrapolate to the point where d f

dk = 0.

Theoretically, in step 1, k-relevance is the expected relevance taken over all possible
sequences of length k given the tasks in the domain. In practice, the domain is unknown
and computing relevance over all |c|k possible task sequences is infeasible. Therefore,
the domain is assumed to consist of the tasks seen so far, and for each k, a sample of
sequences is used to compute the k-relevance.

In step 2, a feature set’s extrapolated relevance will often not be 0, even if it is truly
domain irrelevant. Therefore, the algorithm conducts a statistical test in which the null
hypothesis is that the feature set is not domain relevant. The set classified is as domain
relevant only if the estimated relevance deviates significantly from 0.

Since applying steps 1 and 2 to each feature set in the powerset of X+ is impossible,
backward elimination adds features one at the time to the set R of features to be removed.
In each iteration, each remaining feature is tested in conjunction with R. This process
repeats until no more feature sets are judged domain irrelevant.

Algorithm 7 specifies the main body of FS-TEK. It takes as input the sequence s of
solutions to observed tasks, a parameter max seqs that specifies the maximum number of
sequences the algorithm should sample for computing k-relevance, and a parameter α(k)
that specifies the confidence level for the statistical test on relevance, possibly depending
on sample sequence length k.

In each iteration, FS-TEK starts by computing the k-relevance of each feature united
with the current set of features to be removed, with k ranging from 1 to the current number
of observed tasks (line 6-9; the details of BKR, Backward-k-Relevance, are provided in
algorithm 8 below). For each feature, this results in a dataset with k as input and relevance
as output (each column of the matrix D). The algorithm subsequently does a nonlinear
least-squares fit of the exponential function f (k;θ) to each feature’s relevance data (line
13).

If the estimated function is increasing, the feature is kept (lines 14-16). Otherwise,
the function value and confidence interval are computed for the point where the function
asymptotes (lines 17-19; in line 19, CI(a,α(|s|) is the confidence interval at point a for
the length of the current observed sequence of tasks). If the confidence interval’s lower
bound is less than or equal to 0, the feature is classified as domain irrelevant and added
to the set of features to be removed (line 20).

This procedure often marks more than one feature for removal. In order to detect
interactions between features, it is not desirable to remove more than one feature at the

48

4.2. Feature Selection With k-Relevance

Algorithm 7 FS-TEK

Require: a sequence s of task solutions Qsi , i∈{1,2, . . . , |s|}; max seqs, maximum num-
ber of sequences to sample; α(k), the confidence level

Ensure: A set R of features to remove
1:
2: R← /0
3: f (k;θ) = θ1 +θ2 exp(−θ3k)
4: repeat
5: F← /0
6: D← empty |s| × |X+−R| matrix, i.e. a row per k-relevance and a column per

feature
7: for k = 1 to |s| do
8: D(k) = BKR(s,R,max seqs,k)
9: end for

10:
11: // Each feature for which extrapolated function of relevance does not differ
12: // significantly from 0 is marked for removal
13: for all Xi ∈ X+−R do
14: θ̂ = argmin

θ̂ ∑
|s|
k=1

[
f (k; θ̂)−D(k, i)

]2

15: if f (2, θ̂)− f (1, θ̂)> 0 then
16: Continue to next Xi
17: end if
18: a≈min{a : d f (k;θ̂)

dk (a) = 0} //least-squares fit
19: if f (a, θ̂)−CI(a,α(|s|))≤ 0 then
20: F← F∪Xi
21: end if
22: end for
23:
24: // Of all marked features, the one with weakest forward relevance is removed
25: for all Xi ∈ F do
26: G← R∪Xi
27: r(i) = FR(s,G)
28: end for
29: R← R∪ argmini r(i)
30: until F= /0

49

4. Relevant Representations for Multi-Task RL

time. FS-TEK uses forward selection to decide which feature to remove (lines 24-26;
in practice this step is skipped if F contains fewer than 2 features). In this check, the
relevance of the set of features to remove is tested in isolation, without taking into account
the features that remain. Contrary to BKR, which computes relevance for a range of k,
FR (Forward Relevance) computes relevance only on the currently observed sequence of
tasks. Using forward selection can enable FS-TEK to select a smaller subset of relevant
features 2 and provides a “second opinion” to supplement the noisy estimate of BKR.

The forward and backward relevance methods operate essentially according to similar
principles. Algorithm 8 describes BKR, which computes, for each feature not yet marked
for removal, the k-relevance for the given k. To compute relevance, it uses either

(|s|
k

)
task

combinations, or a sample of max seqs of those combinations, whichever is smaller (lines
2-3). While k-relevance is defined in terms of sequences, the number of combinations is
smaller and, for small sample sizes, more accurately reflects the distribution over tasks
(since tasks are not repeated).

Given a set of task sequences Ck, the average Q-function for each sequence is com-
puted according to equation 4.5 (lines 6-8). Each feature’s k-relevance is then the average
relevance taken over those Q-functions, as defined in (4.6) (lines 11-15). Relevance is
computed for the abstraction φi that removes from the full feature set a feature set con-
sisting of the features removed in previous iterations united with the given feature (lines
12-13).

FR (algorithm 9) is similar but only computes relevance based on the current task
sequence. In addition, it adds features to the empty set instead of removing them from
the full set. It first computes an abstract function based on the set G of features to be
removed (lines 2-4). Forward relevance is then the relevance of the null abstraction (the
empty set of features) with respect to the Q-function based on G: i.e., the difference
between the error made by using G and that made by using no features.

Not taking into account the complexity of the nonlinear least-squares optimization
procedure, FS-TEK’s complexity is mainly determined by BKR. Let the number of fea-
tures |X+|= P, the size of the state-action space |Xs|= N, and the maximum number of
sequences max seqs=M. BKR’s worst-case time complexity is O(MkN+(P−|R|)(N+
MN)). However, in practice FS-TEK does not re-sample the sequences at each iteration
and computes the average Q-functions based on the sequences only once at the start
of the algorithm, so the MkN term can be removed. This results in a complexity of
O(N(P−|R|)(1+M)) for BKR when used by FS-TEK.

In the worst case, all features in X+ need to be removed. FS-TEK’s first iteration
incurs a cost of O(|s|NP(1+M)), since R is empty. On the second iteration, |R|= 1, and
thus the cost is O(|s|N(P−1)(1+M)). Since a total of P iterations is needed, the cost in
terms of P progresses as P+P−1+P−2+ · · ·+1=P(P+1)/2. Therefore, the total cost
is O(|s|N(P2 +P)(1+M)), i.e., quadratic in the number of features. Also, while the cost
is linear in the size of the state-action space N, in the worst case N scales exponentially
with the number of features P. In practice, however, usually not all features need to be
removed, and features frequently covary such that N does not scale exponentially with P.

2Imagine a set of features {A,B,C,D}. The target function can either be represented by {A,B} or {A,C,D}.
Since {C,D} covers the same information as {B}, C and D are likely to be weaker in isolation and thus to be
removed by forward selection; in addition, using backward elimination, B, C, and D would have relevance 0
since the information each feature provides is already covered.

50

4.2. Feature Selection With k-Relevance

Algorithm 8 BKR: Backward-k-Relevance

Require: a sequence s of task solutions Qsi , i ∈ {1,2, . . . , |s|}; R the set of features
currently marked for removal (possibly empty); max seqs, maximum number of se-
quences to sample; k

Ensure: ρk, a row vector with the k-relevance of each Xi ∈ X+−R
1:
2: N←min

(
max seqs,

(|s|
k

))
3: Ck← N sample combinations from the

(|s|
k

)
possible combinations of length k from

s
4:
5: // Compute the average Q-function Qc for each sequence
6: for all c ∈ Ck do
7: Qc(X) = ∑

|c|
i=1 p(ci|X,c)Qci(X) // Equation 4.5

8: end for
9:

10: // Compute k-relevance of each feature
11: for all Xi ∈ X+−R do
12: Y = X+− (R∪Xi)
13: φi : X→ X[Y]
14: ρk(φi) =

1
N ∑c∈Ck

ρ(φi,Qc) // Equation 4.6
15: end for

Algorithm 9 FR: Forward Relevance

Require: a sequence s of task solutions Qsi , i ∈ {1,2, . . . , |s|}; the set of features to be
tested G

1:
2: Qs(X) = ∑

|s|
i=1 p(si|X,s)Qsi(X) // Equation 4.5

3: φ : Xs→ Ys, where Ys = Xs[G]
4: Q̄s(y) = ∑x∈Xy

s
p(x|y)Qs(x) // Abstract function based on G, according to (4.1)

5: φ /0 : Xs→ /0
6: return ρ(φ /0, Q̄s)

51

4. Relevant Representations for Multi-Task RL

4.3 Representation Selection: Empirical Evaluations
In this section, we test FS-TEK on the three domains of section 3.4. We compare to
another backward elimination algorithm that also uses our definition of relevance, but
does not make use of the multi-task information by extrapolating. This algorithm, IBKR
(Iterated BKR) is identical to FS-TEK, except that it only computes relevance for k = |s|,
the length of the sequence of experienced tasks. In addition to IBKR, we compare FS-
TEK to shaping functions constructed without FS; with randomly selected features; and
with fixed features, in which only the true domain-relevant features are used.

In each experiment, a Q-learning agent interacts sequentially with each domain. Af-
ter each task, the agent constructs a new potential function based on the solutions of the
tasks solved so far. Since the agent uses Q-learning, the potential function is based on
Q∗c as defined in (4.5), i.e., the sample sequence analogue of Q∗d ; likewise, relevance is
computed based on Q∗c . Although section 3.4 showed that, in some domains, using a po-
tential based on Q̃d works better, doing so is impractical here as it would require solving
each task twice (once using Q-learning, and then again using, e.g., Sarsa to compute the
potential function).

For each domain, we use a fixed learning rate α and ε-greedy exploration, where α

and ε are set to the best values found in section 3.4. For each new potential function (i.e.,
for each number of tasks seen), we test the agent on 10 tasks sampled from the domain;
the whole procedure is repeated for 500 runs. Performance is measured only after three
tasks, since FS-TEK requires at least this many tasks (since the exponential function to
be estimated has three parameters).

While our implementation of FS-TEK largely corresponds to that outlined in algo-
rithms 7 and 8, there are some practical tweaks. Especially for a small number of ex-
perienced tasks, the Jacobian of the estimated exponential may be ill-conditioned, often
preventing reliable extrapolation and computation of the confidence interval. When this
happens, we mark the feature as “unsure” until reliable estimates can be made in a subse-
quent iteration. In addition, for a given call to FS-TEK, any feature that is neither marked
for removal nor “unsure” in any iteration, is kept indefinitely and not re-checked on sub-
sequent iterations. This greatly improves speed and yields equal or better performance
on the domains under consideration. We use the Levenberg-Marquardt algorithm [85]
for the nonlinear least-squares fit.

Triangle Domain

For this domain, we set the confidence level for IBKR to α = 0.15, while for FS-TEK,
we used α(k) = min(max(k−4,0)×0.06+10−4,0.3), i.e., it is 10−4 up to k = 5, from
which point it linearly increases with k until a maximum of 0.3. An increasing confidence
level for FS-TEK of this kind, and a constant level for IBKR, were found to work best
by a coarse parameter search on this domain. Recall that higher confidence means that
features are more easily marked as relevant. Increasing α makes sense since as more
tasks are observed, estimates become more certain and the confidence interval can be
tightened.

The left panel of Fig. 4.3 shows the mean return of shaping functions constructed
using the various FS methods. FS-TEK achieves a significant performance improvement

52

4.3. Representation Selection: Empirical Evaluations

3 4 5 6 7 8 9 10 11 12 13 14 15
−40

−35

−30

−25

−20

Tasks seen

M
e

a
n

 t
o

ta
l
re

tu
rn

 o
n

 n
e

w
 t

a
s
k

IBKR

FS−TEK

No FS

Fixed FS

Random FS

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3

3

4
45 56 67 78 89 910 1011 1112 1213 1314 1415 15

FPR

T
P

R

IBKR

FS−TEK

FS−TEK 5−15 IBKR 4−15

Figure 4.3: Performance of shaping functions constructed using various FS methods
(left) and ROC space (right) of the BKR and FS-TEK methods.

over both regular shaping and shaping with IBKR and is the first to match the perfor-
mance of fixed FS, in which the correct features were hard-coded. The other methods
also eventually reach that performance since, once the experienced tasks and their ob-
served frequency approach the true set of tasks and distribution, the need for generaliza-
tion disappears.

The right panel shows the ROC (Receiver Operating Characteristic) space of the
IBKR and FS-TEK method, plotting the False Positive Rate (FPR) against the True
Positive Rate (TPR). In the context of this chapter, the TPR indicates the ratio of fea-
tures correctly classified as domain relevant out of all domain relevant features, while
the FPR indicates the ratio of features incorrectly classified as domain relevant out of all
domain irrelevant features. Ideally, TPR=1 and FPR=0. From here on, we denote ROC
by FPR/TPR, e.g., 0/1 in the ideal case. In the plot, the numbers next to the markers
indicate the number of tasks seen.

The triangle domain contains one domain-irrelevant feature, namely the state num-
ber. The other three features are DR. In this domain, IBKR mostly achieves an ROC
of 1/1, which amounts to never removing any features and is equivalent to the vanilla
shaping function – indeed, their performance is nearly identical. FS-TEK does a better
job, achieving an ROC of around 0.45/1 after five tasks seen, meaning it nearly always
identifies the right DR features (as did IBKR), and in addition removes the irrelevant
feature 55% of the time.

Cliff Domain

While the cliff domain contains no domain-irrelevant features, the first two features (en-
coding position) are only very weakly domain relevant. For the ROC space plot, there-
fore, we marked the position features as domain irrelevant; this shows that FS-TEK re-
moves the position features about 40% of the time (Fig. 4.4), which explains its slight
performance gain.

Because of the peculiar progress of performance with the number of observed tasks,
we plotted performance from 1 observed task onward. The initial increase and subse-

53

4. Relevant Representations for Multi-Task RL

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

Tasks seen

M
e

a
n

 t
o

ta
l
re

tu
rn

 o
n

 n
e

w
 t

a
s
k

IBKR

FS−TEK

No FS

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 112

2

3 34 45 56 67 78 89 910 1011 1112 1213 1314 1415 15

FPR

T
P

R

IBKR

FS−TEK

IBKR 3−15
FS−TEK 4−15

Figure 4.4: Cliff domain when Q∗d is used as potential. No fixed FS is shown since there
are no features to remove; random FS is not shown because of its inferior performance.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Tasks seen

M
e

a
n

 t
o

ta
l
re

tu
rn

 o
n

 n
e

w
 t

a
s
k

IBKR

FS−TEK

No FS

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 112

2

3 34 45 56 67 78 89 910 1011 1112 1213 1314 1415 15

FPR

T
P

R

IBKR

FS−TEK

FS−TEK 3−15
IBKR 3−15

Figure 4.5: Cliff domain when Q̃d is used as potential. No fixed FS is shown since there
are no features to remove; random FS is not shown because of its inferior performance.

quent decrease in performance with number of observed tasks for all methods is interest-
ing. Since using Q̃d as potential was found to work better on this domain (section 3.4),
we were curious if the same trend would happen for Q̃d . Fig. 4.5 shows the results.

Clearly, the same trend does not happen for Q̃d , and the benefit of FS-TEK is greater
with this potential type. Moreover, while Q̃d does better than Q∗d in the long run, as
shown in section 3.4, Q∗d outperforms Q̃d for a low number of observed tasks. The
explanation must therefore be sought in the difference between Q̃d and Q∗d . With respect
to the cliff sensor, Q̃d encourages the agent to move away from the cliff, while Q∗d does
not. Of course, when a cliff direction has not been encountered yet in previous tasks, both
potentials have uniform preference over actions. With respect to position (i.e. when the
cliff sensor shows no reading), Q∗d pushes the agent towards the center of the grid; Q̃d , on
the other hand, pushes the agent towards the edges of the world. In short, Q̃d encourages
exploration, but to shy away from a cliff once one is encountered; Q∗d encourages sitting
in the center, but to stay near a cliff once one is encountered.

54

4.3. Representation Selection: Empirical Evaluations

The likelihood that the agent has encountered a given cliff increases with k. There-
fore, for Q∗d the likelihood that the agent will stick close to a cliff and fall into it increases
with k. At some point, this likelihood together with the tendency to push the agent to-
wards the center gains critical mass and performance declines. For Q̃d , performance
increases, since as the agent encounters more cliffs it is less likely to fall into them; in
addition, this potential function increasingly encourages exploring the edges of the world
and thus discovering the cliff in the current task sooner.

Stock Domain

For the stock domain, we used the settings S = 1, E = 2 as detailed in section 3.4.4, but
tested for G ranging from 1 to 5. For G = 1, the size of the state-action space |X| =
32 and |M| = 6; these numbers double every value of G until for G = 5, |X| = 512
and |M| = 96. Recall from section 3.4.4 that S represents sector ownership features,
E represents the number of stocks per sector and G represents task-dependent global
variables that positively or negatively (depending on the task) affect the probability that
stocks rise. For the current settings, stock ownership is completely irrelevant, while the
stock features and action are domain relevant. The domain is challenging because the
G features are strongly task relevant, much more so than the other features, but domain
irrelevant (across all tasks their effect cancels out). In addition, the stock and action
features are only weakly domain relevant. This means that the G features appear strongly
domain relevant when an insufficient number of tasks have been experienced; moreover,
they add noise to the shaping function when selected.

For G< 4, we used a confidence level α = 10−4 for FS-TEK and α = 10−3 for IBKR.
For higher G, we used an α(k) that increases with k for FS-TEK; this was found to result
in better performance. On the other hand, IBKR performed equally well for varying and
constant α , so we kept it constant at α = 10−2 for G≥ 4.

The results are shown in Fig. 4.6. Generally, FS-TEK significantly outperforms all
other methods, but its performance deteriorates until, for G = 4 and higher, it performs
about as well as IBKR and vanilla shaping. It may seem that this is caused by the change
in ROC from G = 4 onward, which in turn is caused by the change in the confidence
level setting. However, the opposite is true: earlier experiments showed that a constant
α = 10−4 resulted in a similar ROC as for lower G, but also in a mean return that was sig-
nificantly worse than any other method. Instead, the constant performance of FS-TEK in
terms of ROC versus the deteriorating performance shows that the task dynamics, rather
than FS-TEK’s ability to identify the correct features, are the cause of the performance
decline. These dynamics are such that for low G, it is more important to not mistak-
enly select domain irrelevant features than to select the relevant ones (this also explains
why FS-TEK does better than fixed FS for G = 1); for higher G, having a low FPR de-
creases in importance while a high TPR increases in importance. This makes sense since
the more G variables there are, the more their effect is diluted, and the more important
(relatively) the domain relevant features become.

55

4. Relevant Representations for Multi-Task RL

80

85

90

95

100

105

110

115

120

35

40

45

50

55

60

65

70

75

25

30

35

40

45

50

55

15

20

25

30

35

40

3 4 5 6 7 8 9 10 12 14 16 18 20
5

10

15

20

25

30

Tasks seen

Random FS

Fixed FS

No FS

FS−TEK

IBKR

0.2

0.4

0.6

0.8

1

33

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

FPR

FS−TEK

IBKR

0.2

0.4

0.6

0.8

1

3
3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

FPR

FS−TEK

IBKR

0.2

0.4

0.6

0.8

1

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

FPR

FS−TEK

IBKR

0.2

0.4

0.6

0.8

1

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9
10

101111 1212131314141515161617171818

FPR

FS−TEK

IBKR

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1

1

2

2

3

3

4

4

5

5

6

67 7 8 89 9101011111212131314141515161617171818

FPR

FS−TEK

IBKR

Figure 4.6: Stock domain for G = 1 (top) to 5 (bottom). Left column plots tasks seen
versus mean total return. Right column plots FPR versus TPR.

56

4.3. Representation Selection: Empirical Evaluations

3 5 7 9
−500

0

500

1000

k

∆
 t

o
ta

l
re

tu
rn

 0

0.01

0.02

0.04

0.06

(a) Improvement in total return per k

0 5 10 15 20
−200

0

200

400

600

Episode

∆
 r

e
tu

rn

k=4

k=6
k=8

k=10

(b) Improvement per episode, for σsensor = 0.02

Figure 4.7: Heat domain for σslip = 0.1. On the left the improvement in total return
that FS-TEK achieves over regular shaping for the first five episodes, per k. Each line
represents a different value for σsensor. On the right the improvement in return that FS-
TEK achieves over regular shaping per episode, for σsensor = 0.02.

Heat Domain

To assess FS-TEK’s ability to perform in a more challenging setting requiring function
approximation, we also consider the heat domain, in which a circular agent with a radius
of 1 learns to find a heat source in a 10x10 walled-off area. Note that here, we are using
Eq. (3.5) to compute the potential function, and are using an abstraction function φ(·)
that computes abstractions directly in feature space.

State is continuous and consists of (x,y) position, the robot’s heading in radians, and
the intensity of the heat emitted by the source. The agent moves by going forward or
backward, or turning left or right by a small amount.

Reward per step is −10/
√
(10× 10 + 10× 10) = −0.71. An episode terminates

when the heat source is within the agent’s radius. The agent employs a jointly tile-coded
Q-function approximator with 4 overlapping tilings, resulting in a total of 1664 features.
We run a Sarsa(λ) agent with λ = 0.9 and ε = 0.05 for 500 episodes, and compare the
performance of FS-TEK to regular shaping under various levels of noise. Transition noise
adds ξ ∼N (0,σslip) to the agent’s action and sensor noise adds ξ ∼N (0,σsensor) to
all state features. Since noise increases the chance of overfitting, our hypothesis is that
FS-TEK should result in a greater benefit for higher levels of noise.

Fig. 4.7 shows results for σslip = 0.1 and varying sensor noise. The left panel shows
that FS-TEK achieves a significant jump in performance over the initial episodes for
lower k, and as expected this benefit increases to some extent with the noise level. As
observed previously, FS performs on par with regular shaping for higher k. The reason
that FS has less benefit for noise levels above 0.02 seems to be that removing the right
features becomes more difficult. This is confirmed by the ROC plots (Fig. 4.8), which
show that FS-TEK’s false positive rate increases as noise increases.

The right panel of Fig. 4.7 shows the benefit of FS per episode, for σsensor = 0.02 and

57

4. Relevant Representations for Multi-Task RL

0

0.5

1 3456789

T
P

R

345689

0 0.5 1

3
4 5
6

89

FPR

0 0.5 1
0

0.5

1
3

45 67 89

FPR

T
P

R

Figure 4.8: FS-TEK ROC space for various noise levels on the Heat domain. Clockwise
starting in the top left, noise levels σsensor are 0.01, 0.02, 0.04, 0.06.

various k. As k increases, there is a dip for early episodes; this dip is also the reason that
FS and no FS perform on par for higher k. The likely explanation is that there is some
small amount of information contained in the features that FS-TEK discards; therefore
the regular potential function is based on more information. The fact that this happens for
higher k stems from the fact that there is less overfitting because of the larger amount of
data (previous experience) available. Since only the potential function and not the value
function has a reduced feature set, this slightly wrong bias is quickly overcome.

4.3.1 Summary

We have derived a single definition of relevance of representations that captures both task
relevance (useful for value function and policy representations) and domain relevance
(useful for capturing properties of the domain in a single function, for example a shaping
function). In addition, we have formally defined how relevance changes with sample
task sequences of increasing length k, and have shown that relevance converges to a fixed
point in the limit. This property is exploited by the novel feature selection algorithm
FS-TEK introduced here, which extrapolates change in relevance to predict true domain
relevance.

Experiments have shown that FS-TEK compares favorably to selection methods that
do not explicitly exploit the history of experienced tasks. As expected, the benefit is
greatest when few tasks have been experienced, which is important in practice for jump-
starting performance on new tasks. Although changes in potential function and increases
in task and state space size affect the relative online return of FS-TEK compared to other

58

4.4. Related Work

methods, FS-TEK’s performance in terms of ROC remained constant. Results further-
more suggest that FS-TEK can be flexibly tuned for a low FPR or high TPR, according
to what is best for the domain; IBKR, on the other hand, has more trouble in filtering out
domain irrelevant features, as expected.

4.4 Related Work

Both feature selection (FS) and state abstraction methods have been applied to single-task
RL, with especially FS seeing a recent surge in interest [51, 67, 81, 97, 101]. Although
similar methods have also been applied to transfer learning, most of these learn task-
relevant representations for supervised learning [2, 6] or reinforcement learning [34, 58,
71, 74, 129, 139, 147, 149]; the latter aim to reduce the state space of the target task,
or find good representations for value functions or policies. However, none of these
approaches learn domain-relevant representations.

In the supervised learning literature, work that does learn such representations in-
cludes lifelong [143] and multitask [14] learning. Both paradigms develop a representa-
tion that is shared between tasks by using training examples from a set of tasks instead
of a single task, and show that this representation can improve performance by general-
izing over tasks, if tasks are sufficiently similar. In RL, Foster and Dayan [36] identify
shared task subspaces by identifying shared structure between task value functions; by
augmenting the value function and policy representation with these subspaces, new tasks
can be learned more quickly. While the idea of shared structure in task value functions
is similar to ours, a limitation of this method is that it requires a single transfer function
between tasks and only allows changes in the reward function. Similar to the domain-
relevant features defined in this chapter and to the agent space of Konidaris and Barto
[68], Frommberger and Wolter [38] define structure space as the feature space that re-
tains the same semantics across tasks, and learn a structure space policy between tasks.
Frommberger [37] applies the same concept to tile-coding functions for generalization
within and across tasks. However, in both cases the structure space is hand-designed, as
in [68].

While not explicitly concerned with representation learning, Sherstov and Stone [117]
construct a task-independent model of the transition and reward dynamics by identify-
ing shared outcomes and state classes between tasks, and using this for action transfer.
This can be viewed as a kind of model-based domain relevance, and thus an interesting
direction for future work on model-based MTRL.

There are two primary characteristics distinguishing our approach from the other
cross-task methods discussed here. First, it captures within-task and cross-task relevance
within a single definition. Second, it exploits multi-task structure by considering how
representation relevance changes with increasing task sequence length and using that to
predict relevance on the entire domain.

59

4. Relevant Representations for Multi-Task RL

4.5 Conclusion and Discussion
We presented a unifying measure of relevance of MTRL representations based on the
squared error in predicting cross-task value. This single definition can be used for finding
both task-relevant and domain-relevant representations, and allows for approximately
relevant representations that trade off error with compactness. It can also be used for
context-dependent representations (abstractions that cluster based on feature values).

We captured the expected relevance of a representation on a sequence of k tasks in
k-relevance, and showed formally that this converges to the domain relevance as k in-
creases, and under certain conditions does so monotonically. This property can serve
as a basis for more powerful multi-task representation learning algorithms. This chap-
ter presents the first such algorithm, FS-TEK, which selects features by extrapolating
k-relevance from the observed source sequence to form a better estimate of domain rele-
vance. Using the algorithm for finding representations for the potential function generally
benefited performance, although in the stock domain performance declined with increas-
ing task space size. While this seemed due to the changing task dynamics rather than
scalability, further studies on other domains are needed to verify this.

In our experience, FS-TEK’s sole parameter, the confidence level, is an important
tool for improving performance by tuning how aggressively FS-TEK discards features.
In this sense, it is more an “aggressiveness” parameter than a confidence level, since
setting this parameter to values near 10−3 is not uncommon. How to set the parameter is
domain-dependent; increasing it tends to increase FPR but decrease TPR, and vice versa.
Thus, the parameter setting should depend on whether it is more important to retain true
positives or discard true negatives.

It is not immediately clear how to extend FS-TEK to non-binary linear or nonlin-
ear value function approximators, since the abstractions that FS-TEK relies upon may
not be well defined there. One approach could be to learn these approximators using
supervised regression on multiple task solutions simultaneously on task sequences of in-
creasing length, and extrapolate changes in feature weights to obtain a measure similar
to k-relevance. Extending k-relevance and FS-TEK to these domains is an important
direction for future work.

While FS-TEK is an algorithm for feature selection, our definition of relevance ap-
plies to more general abstractions, i.e., including context-dependent ones. Therefore, a
promising direction for future work is to extend FS-TEK to discover such abstractions.
One approach would be to employ multi-task regression trees, with extrapolated rele-
vance as a measure for creating splits.

While we tested our algorithm and definition of domain-relevance on potential func-
tions, it is likely that the definition is equally applicable to other related transfer ap-
proaches, such as advice and rule-based methods [145]. The hand-coded task-independent
state-clusters that Taylor et al. [142] use for discovering rules are exactly the type of
domain-relevant abstractions that an FS-TEK-like algorithm can discover. Another pos-
sible application is to function approximators such as cross-task tile coding [37], which
is based on a structure space defined by domain-relevant features. Our definition and
algorithm could therefore enable the automatic discovery and construction of the appro-
priate coding, instead of hand-designing it. Domain relevance might also be useful for
constructing informed priors in Bayesian MTRL. For example, Wilson et al. [159] use a

60

4.5. Conclusion and Discussion

hierarchical Bayesian approach in which distributions over tasks are drawn from a distri-
bution over classes of tasks. Since purely domain-relevant features (i.e., features that are
not task-relevant) similarly define task classes, they could form a useful basis for a prior.

61

5
Benchmarking Recurrent Architectures

for Robust Continuous Control

This chapter comprises the second part of the thesis, which explores a conceptually dif-
ferent approach to multi-task adaptivity. The previous two chapters focused on a setting
in which tasks are MDPs sampled i.i.d. from an unknown distribution, and the agent is
given the opportunity to learn each task to its best ability. While learning about dynamics
changes – within or across tasks – is a natural approach, doing so may be expensive. On
a real robot, for example, it may be both time-consuming and risky. Therefore, this chap-
ter’s approach to task generalization deviates from the previous ones, and from the rest
of the literature on transfer learning, by investigating fixed controllers that nonetheless
exhibit a degree of robustness to dynamics changes.

Fixed controllers, in the context of this chapter, are parameterized model-free policies
πθ of which the parameters θ are not updated after the agent is deployed for production
purposes (θ may have been previously learned or designed offline). A robust controller is
here defined as a controller of which performance, measured according to the objective
function of the task on which the agent was trained, does not significantly deteriorate
in the face of dynamics changes. Note that by model-free policy, we mean that the
controllers we focus on are different from controllers in the control theory sense, which
maintain a model of system dynamics. This is also what sets the work in this chapter
apart from the control theory literature on robust control.

As an example application, imagine a robot controller trained to walk as quickly
as possible in a given direction on a given terrain. At deployment, the learned policy
is fixed, but the robot might have to deal with unforeseen circumstances: variations in
terrain, sensor noise, failing actuators, etc. In this example, a controller is considered
robust if it maintains speed and direction of locomotion, despite, for example, the terrain
variations.

By virtue of their ability to exhibit rich dynamics and maintain internal state, re-
current neural networks (RNNs; see section 2.4) seem like an appropriate class of pa-
rameterized, learnable architectures for creating fixed, robust controllers. In supervised
learning, RNNs, in particular the Long Short-Term Memory (LSTM, an RNN designed
specifically to learn about long-term dependencies, and explained in more detail in Sec-
tion 5.2.3) have achieved state-of-the-art results in for example machine translation [133]
and speech recognition [43]; in RL, most recent work that learns the full RNN parame-

63

5. Benchmarking Recurrent Architectures for Robust Continuous Control

(a) Swimmer (b) Hopper (c) Half-Cheetah (d) Walker (e) Ant

Figure 5.1: Tasks. The ant is depicted on the hill task with difficulty 0.5.

terization1 is also LSTM-based [5, 27, 53, 156].
This chapter makes the following contributions. Firstly, it presents the first bench-

mark study of modern RNNs in RL for continuous control, by extending the work of
Duan et al. [27], on deep RL for continuous control, to a range of RNN architectures: an
Elman network, continuous-time RNN (CTRNN), LSTM, GRU, and echo state network
(these architecture will be explained in more detail in Section 5.2). While Duan’s study
benchmarked RL algorithms using a single FNN architecture, we benchmark RNN ar-
chitectures using a single RL algorithm. We focus on a set of simulated locomotion tasks
based on the MuJoCo simulator [144], using Trust Region Policy Optimization (TRPO)
[114], which was found to perform best overall in Duan’s study. We also include the deep
FNN used by Duan, and an additional shallow feedforward neural network, as baselines.
Results show that FNNs learn fastest, but test performance results using fixed, greedy
policies show no single architecture outperforms the others.

Secondly, in addition to the regular tasks, controllers are also trained on a variation
with rugged terrain. To test robustness, the best learned controller of each architecture is
fixed and greedified, and tested on two types of perturbation: added sensor noise, and a
switch from flat to rugged terrain. Here, the FNNs and CTRNN significantly outperform
other architectures in terms of average robustness. Results also show that training on a
hill task decreases the expected drop in performance due to perturbation for the RNNs,
but not the FNNs.

Thirdly, all the RNN implementations and additional benchmark tasks constructed
for this study are available at github.com/sytham/rnn-benchmark.

The remainder of the chapter is structured as follows. We start with sections that
present the benchmarks tasks and architectures, followed by experimental results. The
chapter concludes with a summary, discussion of findings, and suggestions for further
work.

5.1 Tasks
Base tasks, used for learning without dynamics change, are the following five OpenAI
Gym [12] environments2, adopted and adapted from the study of Duan et al. [27]: Swim-
mer, Hopper, Half-Cheetah, Walker, and Ant. Agents are rewarded for moving forward

1This does not include the body of work that makes use of central pattern generators or other pre-designed
recurrent systems and learns a limited set of parameters, e.g. [31].

2https://gym.openai.com/envs#mujoco

64

5.1. Tasks

as quickly as possible, and penalized for energy expenditure (joint torque magnitude).
Underlying dynamics are simulated by the MuJoCo engine [144]. See Figure 5.1.

In addition, we use the following variations on the base tasks to introduce changing
dynamics.

Hills A hilly terrain parameterized by a difficulty parameter d, see Figure 5.1e for an
example. The terrain is generated by a mixture of Gaussians with an average of 0.3
hilltops per unit square, each Gaussian with variance randomly sampled between
0.1 and 0.2 and 0 covariance. Height of the hills equals difficulty (note that higher
difficulty implies both larger height and steepness). The hill tasks are used for both
learning and testing fixed policies; in the latter case, terrain switches from flat to
hilly at a given position.

Sensor noise Used for testing fixed policies, the noisy tasks inject white noise with σ =
1.0 into all sensors from a given timestep onwards. The effect of this depends
on the sensor; for example, joint angles take values in [−0.5π,0.5π], while joint
angular velocities have wider ranges. For simplicity, we chose a single noise value
that represents a significant perturbation for most sensors.

5.1.1 Task details
Descriptions from Duan et al. [27], except the Swimmer, which me modified in order to
also work on the hilly environment, and the Hopper, for which we used a lower “alive
coefficient” (see description for more details).

Swimmer: The swimmer is a robot with 3 links and 2 actuated joints. Fluid is
simulated through viscosity forces, which apply drag on each link, allowing the swimmer
to move forward. This task is the simplest of all locomotion tasks, since there are no
irrecoverable states in which the swimmer can get stuck, unlike other robots which may
fall down or flip over. This places less burden on exploration. In the original task, the
swimmer floats; we replaced this with what is perhaps more aptly called a glider: a
swimmer on a frictionless plane (or frictionless hills for the hill environment). The 22-
dim observation includes the robot’s translation and rotation in three dimensions, joint
angles, joint velocities, as well as the coordinates of the center of mass. The reward
is given by r(s,a) = vx0.005||a||22, where vx is the forward velocity. No termination
condition is applied.

Hopper: The hopper is a planar monopod robot with 4 rigid links, corresponding to
the torso, upper leg, lower leg, and foot, along with 3 actuated joints. More exploration
is needed than the swimmer task, since a stable hopping gait has to be learned without
falling. Otherwise, it may get stuck in a local optimum of diving forward. The 20-dim
observation includes joint angles, joint velocities, the coordinates of center of mass, and
constraint forces. The reward is given by r(s,a) = vx0.005||a||22 + 0.1, where the last
term is a bonus for being “alive”. Duan et al. used an alive bonus of 1, but we found this
to frequently result in networks that would learn to just stand upright without hopping.
The episode is terminated when zbody < 0.7, where zbody is the z-coordinate of the body,
or when |θy|> 0.2, where θy is the forward pitch of the body.

Walker: The walker is a planar biped robot consisting of 7 links, corresponding to
two legs and a torso, along with 6 actuated joints. This task is more challenging than

65

5. Benchmarking Recurrent Architectures for Robust Continuous Control

hopper, since it has more degrees of freedom, and is also prone to falling. The 21-
dim observation includes joint angles, joint velocities, and the coordinates of center of
mass. The reward is given by r(s,a) = vx0.005||a||22. The episode is terminated when
zbody < 0.8, zbody > 2.0, or when |θy|> 1.0.

Half-Cheetah: The half-cheetah is a planar biped robot with 9 rigid links, including
two legs and a torso, along with 6 actuated joints. The 20-dim observation includes joint
angles, joint velocities, and the coordinates of the center of mass. The reward is given by
r(s,a) = vx0.005||a||22. No termination condition is applied.

Ant: The ant is a quadruped with 13 rigid links, including four legs and a torso,
along with 8 actuated joints. This task is more challenging than the previous tasks
due to the higher degrees of freedom. The 125-dim observation includes joint angles,
joint velocities, coordinates of the center of mass, a (usually sparse) vector of contact
forces, as well as the rotation matrix for the body. The reward is given by r(s,a) =
vx0.005||a||22Ccontact +0.05, where Ccontact penalizes contacts to the ground, and is given
by 5 ·104 · ||Fcontact ||22, where Fcontact is the contact force vector clipped to values between
1 and 1. The episode is terminated when zbody < 0.2 or when zbody > 1.0.

5.2 Architectures

This section describes the architectures used for comparison. We only provide the equa-
tions describing the input and hidden layers; the output layer for all architectures is the
same as in Duan et al. [27] and the TRPO paper of Schulman et al. [114]: a linear map
from the (last) hidden layer to the mean of a Gaussian distribution with zero covari-
ance. The standard deviation of each element is specified by a separate parameter vector.
Gradients for all architectures are calculated using the TRPO gradient definition (sec-
tion 2.3.5) and the BPTT algorithm (section 2.4), except the continuous-time RNNs, for
which continuous-time BPTT (section 2.4) is used.

5.2.1 DTRNN

A vanilla discrete-time RNN (DTRNN), also known as an Elman network [30], is the
map

hn = f(Khn−1 +Wxn), (5.1)

where K is a pxp square matrix of recurrent connections, and hn is the p-dimensional
output of the hidden layer at update n. See Figure 5.2, panel A for a schematic represen-
tation of an example RNN.

This network architecture is included in the study because, as the “vanilla” architec-
ture, it serves as a useful benchmark. In addition, we suspect that for the class of robotic
locomotion tasks used for evaluation, long-term dependencies might be absent, and the
more sophisticated machinery of the GRU and LSTM networks (explained below) might
not be required.

66

5.2. Architectures

Figure 5.2: Schematic representation of architectures. A black square represents a time
delay of one step; a wavy node represents nonlinearity. A: vanilla recurrent net. The
recurrence is fully laterally and self-connected. An ESN has the same layout, but with
the recurrent and input connections fixed (no learning). B: LSTM Cell. See main text.
C: GRU Cell, where the input connections are dashed to highlight the distinction with
the hidden recurrent connections. See main text for further details.

5.2.2 CTRNN
A vanilla continuous-time RNN (CTRNN) is a flow that in this chapter takes the form

τḣ =−h+ f(Kh+Wx), (5.2)

where τ is a time constant. This is a standard leaky integrator model (see e.g. [7, 26, 45]):
it integrates input f(·) over time and leaks activation through−h. See Figure 5.2, panel A.
Note that this is the exact continuous-time analog of the DTRNN; the first-order discrete-
time approximation with timestep ∆t comes down to ht+∆t = ht − ∆t

τ
ht +

∆t
τ

f(·), which
for ∆t = τ reduces to (5.1).

Simulating continuous-time systems requires numerical integration of the differen-
tial equations, for example using an Euler or midpoint approximation. One can verify
that taking the gradient of such an approximation for the forward equations results in
the same updates as numerical integration of the differential equations for the gradient
(see also Pearlmutter [98])3. This is therefore straightforward to implement in symbolic
differentiation software (we used Theano): all that is needed is to include the numerical
integration steps in the computation graph.

The vector of timeconstants τ is learned as well, constrained to be greater than or
equal to the simulation timestep4. It is not immediately clear how to incorporate this
constraint into TRPO, since it is fundamentally different from the KL constraint (for

3This is not always the case, though; for example, when using advanced numerical integration schemes that
use an adaptive step size [99]. However, we use no such methods here.

4Theoretically, timeconstants need only be greater than 0, but a timeconstant smaller than the timestep leads
to instability. Note that we set integration timestep = simulation timestep.

67

5. Benchmarking Recurrent Architectures for Robust Continuous Control

example, it does not make sense to incorporate it in the inverse Fisher matrix). We
experimented with a number of approaches (one approach used a reparameterization of
τ , another added a penalty to the loss), and in the end settled on the crudest one, which
is equivalent to a rough gradient projection:

τ = max(∆t,τ +∆τ),

where ∆τ is the update suggested by the learning algorithm. While this changes the
descent direction, this approach surprisingly led to the best results.

We include CTRNNs because they seem particularly fit for this problem type, with its
naturally smooth and continuous dynamics. In addition, CTRNNs allow to learn hidden
node timeconstants explicitly, which may provide a simpler alternative to the dynamic
gating provided by GRU and LSTM. Finally, because of their smoothness they may be
more robust to disturbances.

5.2.3 LSTM
To date, one of the most successful recurrent architectures applied to sequential machine
learning problems is the long short-term memory (LSTM) [40, 54] network. Explicitly
designed to handle both long and short-term dependencies between input and desired
output, it consists of “memory cells” where the recurrent connection is gated and depen-
dent on input, allowing the network to adjust timescales dynamically. In addition, it has
input and output gates to control propagation of input and output. Numerous variations
on the basic theme exist; we use the same implementation as the one used by Duan et al.5

[27]. See Figure 5.2, panel B. In the following it is convenient to think of the gating units
arranged in their own layers, i.e., an input gate layer, a forget gate layer, and an output
gate layer. For brevity, we also define the cell as a “gate layer”, since it is updated by the
same equation. Then output of each gate layer type is given by the usual

gi
n = f(Kihn−1 +Wixn),

where i is the gate type. Here, f is the logistic activation function 1/(1+ e−x). Cell state
is given by

cn = gforget
n ◦ cn−1 +ginput

n ◦gcell
n , (5.3)

where ◦ is the entrywise product, and hidden layer output by

hn = tanh(cn)◦goutput
n .

Thus, the forget gate learns to decide when to “soft-clear” the current cell state, and the
input gate learns to decide when to “soft-replace” cell content with new input. The idea
is that in this way, the LSTM can hold on to interesting state features for arbitrarily long
times, thereby allowing to learn long-term dependencies.

We included LSTMs since they are becoming the de-facto recurrent architecture for
sequential tasks (together with GRU), and it should be enlightening to see how they fare
on continuous control tasks.

5Duan did not use what are known as “peepholes”; neither do we, and to avoid clutter we do not explain
them here.

68

5.2. Architectures

One may wonder why the forget and input gate are separate, since it may seem that
forgetting and replacing are related operations. This, indeed, is one of the ideas behind
the GRU network.

5.2.4 GRU
The gated recurrent unit (GRU) network [16] is similar to the LSTM in its use of gating
units. The two main differences with LSTM are that 1) a single unit does the job of
LSTM’s forget and input gate, by defining a weighted average between previous and
“candidate” hidden state; and 2) it does not have a separate memory cell. See Figure 5.2,
panel C. The GRU analog to (5.3) is

hn = gupdate
n ◦hn−1 +(1−gupdate

n)◦ h̃n,

with the candidate hidden state

h̃n = tanh
(
greset

n ◦Khn−1 +Wxn
)
,

and the update and reset gate updated as in (5.2.3).

5.2.5 ESN
Echo state networks (ESNs; [57]) have the same architecture as vanilla recurrent net-
works, but with fixed input and hidden connections; only the (linear) output connections
are subject to learning. ESN training views the network explicitly as a dynamical system
and relies on creating the RNN dynamics by typically using a large number of hidden
nodes (the “‘reservoir”), and initializing the fixed connections in a way that is prone
to creating rich dynamics. One way to view this approach [42] is as a kernel machine
that transforms sequences of arbitrary length into a fixed-sized state vector h; the linear
transform from h to the output can then be learned with a simple learning algorithm.

ESN randomly initializes the hidden weights, possibly sparsely, and then scales them
to obtain a given spectral radius: the largest absolute eigenvalue of the matrix of recurrent
weights. I.e., it scales the weight matrix by r

|λmax| , where r is the desired spectral radius
and λmax is the largest current eigenvalue. On a high level, recall that the eigenvalues of
a matrix are a measure of how much it contracts or stretches space; a λ < 1 contracts
space along its corresponding eigenvector, while a λ > 1 stretches it. When λmax < 1,
the mapping encoded by the network will tend to be contractive (“tend to” because the
network’s nonlinearities interfere with this), and the network will tend towards a fixed
point, and quickly forget information about the past. On the other hand, with λmax > 1,
the network will tend to magnify differences in input, and exhibit possibly oscillatory
and/or chaotic dynamics. Because it is designed to exhibit rich dynamics from the start,
and does not update the input and hidden weights, it hopefully remedies the “bifurcation
issue” [24] in RNN training, where with a tiny parameter update a sudden, qualitative
shift in network behavior occurs.

This network type is included in the study because of its growing popularity, and
simplicity combined with its supposedly rich dynamics, which could enable it to adjust
more easily to changing environmental dynamics.

69

5. Benchmarking Recurrent Architectures for Robust Continuous Control

In the learning experiments that follow, the spectral radius and layer density of the
ESN are treated as hyperparameters.

5.3 Robustness
Controller robustness is measured per task pair t = {tb, tp}: on the one hand, greedy per-
formance on the base task tb, on the other hand, greedy performance on the corresponding
perturbed task tp (noise or terrain switch). Let Rc(m) be the greedy return of controller
c on task m ∈ t, and Rmax(t) = maxRc{Rc(m) : c ∈ C,m ∈ t} be the best performance
across controllers on the task pair (essentially, just a benchmark score that could also be
set manually). Then scaled return rc(m) = Rc(m)/Rmax(t). Controller score sc(t) ∈ [0,1]
on a given task pair is

sc(t) = rc(tb)
[
1−
∣∣∣rc(tp)− rc(tb)

∣∣∣], (5.4)

where the absolute difference is the performance gap caused by the dynamics change. A
score of 1 would be achieved by the controller that performs best on this task pair (either
on the base or perturbed version), and is unaffected by the perturbation. Averaging this

measure across tasks, sc =
1
T

∑t∈T sc(t) is probably most informative.
Of course, this is just one of several possible “robustness” scores. In our eyes, the

advantages are that it balances base performance with the performance delta caused by
the dynamics change, that it can be averaged across tasks with different return ranges,
and that it measures robustness in terms of the task’s objective (for example, changing
gait is in itself neither penalized nor incentivized). A possible downside is that controller
score partially depends on other controllers. However, scoring a controller relative to
itself has the downside that if it performs very poorly on the base task and equally poorly
on the perturbed task, it nonetheless gets a high robustness score. Finally, note that this
scoring method, combined with the reward criterion of the benchmark tasks, assigns a
better score to a controller that e.g. significantly slows down when faced with a hill than
to one that continues moving smoothly but in a perpendicular or reverse direction. In
some scenarios, the latter may be preferred behavior. Nevertheless, this way of scoring
is, again, in line with the task’s objective.

5.4 Method
During learning, each controller is run on each of the base tasks for 1000 iterations of
the learning algorithm. Results are averaged over 5 randomized runs, and performance
is measured as the average of the average return per learning iteration. In addition to the
RNNs, we also include the deep NN (“DFFWD”) used by Duan et al.6, and a shallow
NN (“FFWD”) with one hidden layer.

Number of hidden units N is fixed as follows. For LSTM and GRU, N = dim(a), the
task action dimensionality; for DTRNN and CTRNN N = 3×dim(a), roughly the same

6Duan’s study benchmarked algorithms, not architectures; they used the same deep NN architecture for the
whole study, and one single LSTM architecture for POMDP experiments.

70

5.5. Results

CTRNN DTRNN GRU ESN

Ant 0.3 0.2 0.05 0.09
Halfcheetah 0.5 0.1 0.07 0.02
Hopper 0.1 0.35 0.07 0.02
Swimmer 0.1 0.1 0.1 0.02
Walker 0.5 0.2 0.05 0.02

Table 5.1: Step sizes δKL; see Section 2.3.5 for further details. ESN spectral radius and
hidden layer weight density were 1.1 and 1.0 respectively, except for Ant, where they
were set to 1.5 and 0.7. For the Hopper and Swimmer tasks, all RNNs use a feature
subset that does not include angular velocities (FNNs always use the full feature set for
all tasks.)

number of free parameters as LSTM. For the same reason, for ESN N = 3× dim(o)×
dim(a)+4×dim(a)2. DFFWD uses the same architecture reported by Duan et al. [27]
(100×50×25); FFWD gets the same number as DTRNN. Further hyperparameters are
tuned by running a coarse search, averaging over 2 randomized runs per set of hyperpa-
rameter values. The exception to this are the FNNs and LSTM, for which the settings
reported by Duan et al. were used. In addition, for each task we test whether RNNs
perform better with a subset of features. See Table 5.1 for detailed settings.

Next to the base tasks, each architecture is also trained on the hill version of each task
with difficulty 0.5, with the same hyperparameters as for the base task.

Testing uses the best learned policy for each architecture and sets the standard de-
viation of the output layer to 0. Thus, for each architecture there are 2 controllers to
be tested: one that was trained under regular conditions (flat terrain), and one that was
trained on hill terrain. Each controller is tested on 3 conditions: 1 “regular” test, running
the greedy policy on the task it was trained on; and 2 robustness tests, 1 for noise per-
turbation, and 1 for a terrain switch. Each test consists of 20 randomized runs of 1000
steps; for the hill environments, testing difficulty is set to 1.0, each network is tested on
the same 20 randomly generated terrains, and terrain switches from flat to rugged at a
task-dependent position. For the sensor noise test, white noise with σ = 1 is introduced
at step 100.

5.5 Results
This section presents and discusses the results of training and testing the RNNs on the set
of tasks described in section 5.1. It is divided in two sections; the first one discusses the
learning results, and the second one the testing of fixed, greedy policies under changing
dynamics.

5.5.1 Learning

71

5. Benchmarking Recurrent Architectures for Robust Continuous Control

0

500

1000

1500

2000

an
t

Return on flat terrain

0

200

400

600

800

1000

Return on hill terrain

0

1000

2000

ha
lfc

he
et

ah

ctrnn
dtrnn
esn
dwffd

ffwd
gru
lstm 0

500

1000

1500

0

500

1000

ho
pp

er

0

250

500

750

1000

0

50

100

150

sw
im

m
er

0

20

40

60

0 1000
Iteration

0

500

1000

1500

w
al

ke
r2

d

0 1000
Iteration

0

250

500

750

1000

1250

Figure 5.3: Mean learning curves. Left: learning on flat terrain. Right: learning on hilly
terrain with difficulty=0.5. See Table 5.2 for quantitative data. The swimmer was run for
only 500 iterations.

72

5.5. Results

C
T

R
N

N
D

T
R

N
N

E
SN

D
FF

W
D

FF
W

D
G

R
U

L
ST

M

A
nt

10
72

.5
(1

09
.4

)
10

72
.9

(3
0.

1)
54

4.
9*

(0
.0

)
12

12
.1

(4
1.

9)
11

18
.9

(3
8.

2)
99

9.
2

(6
2.

0)
55

1.
4

(1
09

.4
)

H
al

fc
he

et
ah

15
33

.7
(1

67
.3

)
18

92
.6

(6
2.

9)
11

41
.2

(1
30

.9
)

17
87

.7
(7

6.
6)

17
65

.8
(1

56
.9

)
12

75
.3

(1
56

.0
)

12
05

.2
(2

52
.4

)
H

op
pe

r
26

6.
9

(2
5.

0)
27

3.
4

(6
0.

8)
13

4.
3

(1
8.

8)
79

2.
1

(7
3.

4)
60

1.
6

(5
5.

4)
14

3.
4

(4
1.

9)
69

.4
(2

1.
4)

Sw
im

m
er

11
8.

8
(2

2.
7)

13
7.

4
(2

4.
7)

11
7.

0
(2

7.
9)

16
7.

8
(0

.2
)

12
0.

1
(2

6.
4)

10
9.

2
(3

1.
3)

13
5.

2
(2

6.
3)

W
al

ke
r2

d
36

2.
3

(1
20

.2
)

39
2.

0
(1

34
.8

)
46

9.
7

(1
38

.3
)

74
8.

3
(2

56
.9

)
36

4.
0

(1
71

.8
)

23
3.

4
(1

20
.1

)
51

7.
3

(6
1.

3)

A
nt

hi
ll

36
2.

0
(3

0.
6)

44
3.

4
(5

2.
0)

13
5.

6*
(0

.0
)

39
3.

3
(6

9.
8)

47
6.

1
(4

5.
8)

22
2.

7
(3

7.
2)

23
3.

7
(5

1.
4)

H
al

fc
he

et
ah

hi
ll

10
94

.3
(1

09
.7

)
10

53
.4

(2
02

.1
)

64
9.

6
(1

06
.2

)
99

1.
8

(9
6.

0)
11

77
.9

(1
42

.1
)

93
4.

1
(1

09
.3

)
91

6.
4

(1
45

.2
)

H
op

pe
rh

ill
95

.7
(2

2.
5)

13
9.

1
(4

7.
1)

54
.9

(2
8.

4)
70

4.
8

(9
0.

3)
54

2.
8

(5
0.

1)
10

8.
5

(3
8.

5)
34

.8
(3

.4
)

Sw
im

m
er

hi
ll

47
.1

(9
.8

)
46

.4
(8

.9
)

50
.7

(1
3.

3)
51

.8
(6

.5
)

48
.8

(4
.2

)
43

.3
(8

.6
)

37
.4

(0
.0

)
W

al
ke

r2
d

hi
ll

28
2.

8
(8

6.
4)

33
6.

0
(1

07
.5

)
25

5.
4

(9
2.

2)
59

5.
0

(1
28

.1
)

61
9.

0
(1

61
.3

)
36

2.
3

(6
7.

3)
37

4.
1

(6
7.

6)

Ta
bl

e
5.

2:
M

ea
n

re
tu

rn
pe

rl
ea

rn
in

g
ite

ra
tio

n
st

ep
,u

p
to

th
e

50
0t

h
ite

ra
tio

n
to

be
co

ns
is

te
nt

w
ith

D
ua

n
et

al
..

B
ol

d
en

tr
ie

s
ar

e
si

gn
ifi

ca
nt

ly
be

tte
rt

ha
n

ot
he

rs
(K

ru
sk

al
-W

al
lis

fo
llo

w
ed

by
W

el
ch

t-
te

st
w

ith
p
<

0.
05

).
*R

un
co

ul
d

no
tb

e
co

m
pl

et
ed

be
ca

us
e

m
ac

hi
ne

ra
n

ou
to

fd
is

k
sp

ac
e.

C
T

R
N

N
D

T
R

N
N

E
SN

D
FF

W
D

FF
W

D
G

R
U

L
ST

M

A
nt

32
14

.6
(5

1.
7)

31
55

.4
(6

4.
3)

93
4.

3
(3

6)
23

07
.7

(3
9.

4)
23

29
.8

(2
1.

7)
35

67
.1

(5
2.

3)
18

43
.1

(3
5.

8)
H

al
fc

he
et

ah
43

82
.4

(4
1.

9)
48

88
.9

(6
9.

0)
31

05
.1

(5
7.

9)
32

56
.9

(8
.9

)
36

92
.0

(3
1.

2)
34

23
.1

(4
5.

1)
25

10
.1

(7
0.

8)
H

op
pe

r
23

31
.4

(6
4.

8)
21

49
.7

(9
8.

2)
28

0.
5

(8
.7

)
16

65
.3

(4
0.

4)
17

62
.9

(2
3.

4)
35

0.
2

(6
.8

)
26

5.
1

(3
)

Sw
im

m
er

34
9.

8
(0

.3
)

35
3.

5
(0

.2
)

35
5.

5
(0

.2
)

34
6.

4
(0

.2
)

31
8.

8
(0

.8
)

35
1.

6
(0

.2
)

35
5.

3
(0

.3
)

W
al

ke
r

14
09

.2
(3

2.
3)

18
95

.5
(2

1.
1)

17
17

.6
(1

6.
4)

20
75

.1
(3

4.
0)

21
52

.4
(4

3.
8)

15
96

.6
(7

9.
5)

11
48

.1
(2

6.
9)

A
nt

hi
ll

10
41

.7
(4

7.
3)

14
82

.9
(4

4.
4)

19
6.

9
(5

.7
)

12
34

.3
(6

1.
8)

18
72

.0
(6

3.
1)

22
45

.3
(2

2.
6)

95
5.

0
(1

2.
8)

H
al

fc
he

et
ah

hi
ll

39
23

.1
(2

2.
6)

35
30

.8
(5

5.
1)

23
96

.0
(4

9.
7)

20
97

.8
(1

9.
3)

26
13

.0
(8

3.
1)

19
53

.0
(1

5.
9)

31
10

.6
(3

8.
9)

H
op

pe
rh

ill
11

57
.6

(5
5)

42
0.

8
(2

4.
4)

26
5.

8
(1

9)
13

95
.0

(5
6.

9)
19

39
.0

(2
4.

4)
84

.1
(1

1.
8)

13
6.

8
(5

.6
)

Sw
im

m
er

hi
ll

23
1.

9
(2

.1
)

27
5.

6
(1

.4
)

24
0.

0
(1

.2
)

11
3.

7
(1

.5
)

17
7.

0
(1

.8
)

13
7.

2
(2

.8
)

22
5.

3
(2

.2
)

W
al

ke
rh

ill
14

82
.1

(7
0.

6)
11

95
.6

(3
4.

2)
11

84
.6

(2
9.

4)
14

00
.2

(4
.8

)
25

55
.8

(7
7.

4)
11

15
.8

(3
1.

2)
97

4.
4

(3
1.

5)

Ta
bl

e
5.

3:
M

ea
n

an
d

st
de

rr
of

10
00

-s
te

p
re

tu
rn

ov
er

20
ra

nd
om

iz
ed

ru
ns

w
ith

fix
ed

w
ei

gh
ts

on
fla

tt
er

ra
in

.

73

5. Benchmarking Recurrent Architectures for Robust Continuous Control

Overall learning performance is presented in Table 5.2, which shows the mean and
standard error of the mean return per training iteration. Figure 5.3 plots the mean learning
curves. Unfortunately, DFFWD results cannot be directly compared to those of Duan et
al.[27]: on two of the tasks, we made modifications (Swimmer and Hopper), and on
others, changes have since been made to the robot model and/or software. Overall, the
feedforward architecture learns fastest, while the DTRNN is on average the best RNN.
The relatively strong performance of the two vanilla architectures compared to the two
gated architectures is likely due to the fact that on this class of tasks the influence of long-
term dependencies is minor, partly because of the cyclic nature of the task, and partly
because of the reward density (an informative reward is received at every timestep).

The CTRNN results shown here were obtained with the midpoint numerical integra-
tion method; we found this to perform significantly better than simple Euler on most
tasks, for the cost of increased training time.

Given that it only learns the output weights, the ESN performance, while mostly un-
derperforming, may be called impressive. Contrary to what one may expect, a downside
of this method used in conjunction with TRPO is that space and computation require-
ments are significant, due to its large reservoir. On the Ant task, where the network has
3328 hidden units, this caused the machine to run out of disk space after a wallclock
time of about 38 hours. We also briefly attempted to train the ESN with SGD and vanilla
policy gradient, but this led to significantly worse results.

Sutskever et al. [132] applied the ESN spectral radius initialization method to ini-
tialize the weights of a vanilla DTRNN with 100 hidden units and found that this, in
combination with the Nesterov momentum, significantly improved performance on a set
of tasks with long-range dependencies. We experimented with ESN initialization on the
DTRNN as well, but did not find an improvement in performance on this set of tasks,
possibly because the network is too small (see Section 5.4 for a description of network
size depending on task; maximum DTRNN size is 24 hidden units).

Finally, it appears that the Hopper task is particularly difficult for RNNs to learn, with
only the vanilla architectures showing some promise. One reason may be that the mixed
dynamics (cyclic foot movement with an upper body that mostly needs to be kept upright
and still) present difficulties. This would be interesting to further investigate as a class of
dynamics that is difficult to learn for RNNs.

5.5.2 Testing
Overall results of running the fixed, greedy policies on each base task are presented in
Table 5.3. For results on all tasks, see Appendix C. Due to the fact that the RNNs are
more difficult to train, but narrow the gap near the end of training, relative performance of
the FNN drops significantly. In addition, RNNs exhibit somewhat greater variance during
learning, so the best RNN run may outperform the best FNN run, even though average
learning performance is lower. Contrary to expectations (due to partial observability), the
FNN performance on rugged terrain is still more or less on par with that of the RNNs.

Fig. 5.4 displays results of the robustness tests. Note that scores can not be compared
across quadrants, only per quadrant, since robustness is a relative score per task pair
(see Section 5.3). Noise perturbation results show that while there is no single best
architecture on all tasks, the flat-trained CTRNN and DFFWD significantly outperform

74

5.5. Results

0.00.6

ant
che
hop
swi
wal

Flat-trained Hill-trained 0.0 0.7

No
ise

-te
ste

d

ct
rn

n

dt
rn

n es
n

df
fw

d

ffw
d

gr
u

lst
m

0.3

0.4

0.5

0.6

ct
rn

n

dt
rn

n es
n

df
fw

d

ffw
d

gr
u

lst
m

0.3

0.4

0.5

0.6

0.00.7

ant
che
hop
swi
wal

0.0 0.6

Hi
ll-

te
ste

d

0.3

0.4

0.5

0.6

0.3

0.4

0.5

0.6

Figure 5.4: Test results on perturbation tasks. In each quadrant, the heatmap shows
robustness per controller per task (darker is higher); bottom panel is average score per
controller, side panel is average score per task. Note that scores can not be compared
across quadrants, since robustness is a relative score per task pair (see Section 5.3). Left
(right) half: controllers trained on flat (rugged) terrain. Top half: results on tasks with
noise perturbation. Bottom half: results on tasks with a switch from flat to rugged terrain.
Confidence intervals obtained by a bootstrap with N = 1000.

75

5. Benchmarking Recurrent Architectures for Robust Continuous Control

ctrnn dffwd dffwd-sp ffwd ffwd-wide
0.35

0.40

0.45

0.50

0.55

R
ob

us
tn

es
s

Figure 5.5: Robustness of flat-trained controller on noise perturbation, comparing to a
deep FNN with softplus activation (“dffwd-sp”) and a wide, shallow FNN (“ffwd-wide”)

the other networks on average. The superior performance of the deep network with
respect to the shallow network is somewhat surprising; in order to determine whether this
is due to network depth or higher number of parameters, we trained a one-layer network
with 400 nodes and tested it on robustness. We further compared DFFWD to a deep FNN
with the same architecture but the softplus activation function f (x) = log(1+ exp(x)),
resulting in the score shown in Fig. 5.5. While the truth seems to be somewhere in the
middle, it appears that the benefit is in network depth combined with the hyperbolic
tangent transfer function, perhaps due the squashing properties of the latter.

When trained on rugged terrain, the CTRNN significantly outperforms all others. We
hypothesize that by training on rugged terrain, the networks encounter a larger selection
of states, which reduces overfitting and increases robustness; beneficial results of noise
injection and/or wider initial state distribution have been shown before [65, 103]. In
addition, RNNs trained on flat terrain have little incentive to learn to maintain internal
state; training on rugged (or any kind of POMDP) terrain might provide this incentive,
which carries over to other types of tasks where this is useful. Training on rugged terrain
also helps the gated RNNs, which perform quite poorly when trained on flat terrain.
Superior performance of the CTRNN over the others can be explained by the fact that
the CTRNN is stiff in time7, and thus acts as a more efficient low-pass filter for the
high-frequency perturbation that white noise represents.

One can see the effect of hill-training more clearly as follows. If hill training would
have no effect, one would expect noise perturbation to cause the same relative drop in
performance on flat-trained controllers as on hill-trained controllers. Therefore, the ratio
of the drops should show how much effect hill-training has had; if it is 1, there is no
discernible effect. Table 5.6a shows bootstrap estimates of this ratio per controller; for

7I.e., it imposes a certain smoothness on its output in the sense that, loosely speaking, outputs that are close
in time should also be close to each other

76

5.5. Results

2.5 pct 97.5 pct

CTRNN 1.31 1.68
DTRNN 1.97 2.64
ESN 1.02 1.33
DFFWD 0.85 1.19
FFWD 0.95 1.20
GRU 1.55 2.59
LSTM 1.82 2.54

(a) Bootstrap estimate (N = 1000) of mean
improvement ratio on noise perturbation.

2.5 pct 97.5 pct

CTRNN 1.14 1.61
DTRNN 1.76 2.57
ESN 1.04 1.49
DFFWD 1.00 1.39
FFWD 0.76 0.99
GRU 1.12 1.76
LSTM 1.03 1.33

(b) Bootstrap estimate (N = 1000) of mean
improvement ratio on hill perturbation.

Figure 5.6: Mean improvement ratios on perturbation tasks by training on hills.

the feedforward architectures, there is no significant effect, providing evidence for the
hypothesis that RNNs are helped by learning to maintain internal state. The ESN im-
provement is also low, since this architecture only learns the output weights and not the
recurrent weights.

On the hill-test scenario, the FNNs trained on flat terrain performs surprisingly well
(lower left quadrant of Fig. 5.4). Partly based on visualization of rollouts, we speculate
that on the hill test, the quality of the original gait learned by the controller is more
important than on the noise test, and perhaps more important than the controller itself.
Another supporting argument for this idea is that the hill environment is locally flat;
(some limbs of) the robot body may be inclined at an angle, but correlations between joint
angles and velocities should be largely preserved, and more similar to observations seen
during training than for sensor noise, which decorrelates inputs. Since FNNs learning
results are quite stable, this may give it an edge over the other controllers. For the hill-
trained networks, results on this scenario are less distinct, with the FNN and CTRNN
nonetheless significantly outperforming the rest. The strong performance of the FNN
could be due to the limited information contained in the information history. If this is
the case, then training networks on noisy tasks or other “stronger” partially observable
MDPs should result in a larger performance difference. Hill training has similar effects
on hill perturbation as on noise perturbation; see Table 5.6b.

It is also clear, however, that some tasks lend themselves much more readily to learn-
ing robust policies; for example, Halfcheetah scores highly in this regard, while Hopper
proves particularly difficult. As mentioned before, one reason that sets Hopper apart
may be that the mixed dynamics (cyclic foot movement with an upper body that mostly
needs to be kept upright and still) present difficulties. We can think of no obvious reason
why Halfcheetah controllers should be more robust than on other robots. Ant controllers
trained on hills seem robust as well (ESN performance may be considered an outlier due
to the technical issues there), which may make sense given the Ant body morphology.

77

5. Benchmarking Recurrent Architectures for Robust Continuous Control

5.6 Related Work

There has been an explosion of work on RNNs, especially LSTM and GRU, in the su-
pervised learning literature. We pick a few key works and ones that are similar to ours.
Chung et al. [17] compared performance of GRU, LSTM and DTRNNs on sequence
modeling tasks, specifically music and raw speech signal modeling. They found that
the architectures perform similarly on the music task, but in raw speech signal model-
ing, where long-term dependencies supposedly play a larger role, the gated units outper-
formed the DTRNN. Jozefowicz et al. [59] performed an evolutionary search over RNN
architectures and an ablative study of LSTM in order to find out which components are
required, and found that adding a bias of 1 closes the performance gap between GRU
and LSTM. Sutskever et al. [132] use an initialization method inspired by echo state
networks (ESNs), a network type also included in this comparison study, to improve the
performance of vanilla RNNs (see Section 5.2.5 for further details).

One of the earliest works that employed RNNs in RL8 was performed by Robinson
and Fallside [105], who use a recurrent neural network to provide a reinforcement signal
to another network encoding the policy, akin to an actor-critic setup. However, their
method only takes into account the dependency of reward on past inputs and outputs,
i.e., it ignores state transitions. Schmidhuber [109, 110] builds upon this by using a
similar setup with two (recurrent) networks, but by employing an adaptive state transition
model in order to compute reward gradients, and applying this architecture to a partially
observable pole-balancing task. Lin and Mitchell [78] compared Q-learning with an
Elman RNN, history window and model on two partially observable tasks and found
that the recurrent approach outperformed the others for tasks with relatively short-term
dependencies and reward delay.

Bakker [5] was the first to use the LSTM introduced by Hochreiter and Schmidhuber
[54] for reinforcement learning to memorize important past observations. Wierstra et
al. [156] develop an LSTM-based recurrent policy gradient, and Hausknecht and Stone
[53] use it in a value function-based approach. Huh and Todorov [55] use a CTRNN for
optimal control of a robot arm in a reaching and drawing task. For a more comprehensive
overview of RNNs and deep FNNs in RL, see Schmidhuber [111]. We are not aware of a
comparative study of modern RNNs in RL for continuous control (not considering work
on central pattern generators and other fully or partly pre-designed recurrent systems).

Finally, our work builds on, and is closely related to, the benchmark study of Duan et
al. [27], who benchmark deep reinforcement learning algorithms on a large set of tasks
that also includes the robotic locomotion tasks studied in this chapter. While Duan et al.
study only feedforward architectures and the LSTM, this chapter extended the study (and
the software) to additional RNN types, and studied the robustness of the fixed, greedified
policies represented by the networks under various changes in dynamics.

8As pointed out by Schmidhuber [111], two separate networks feeding into each other, as used by some
earlier works in RL, are essentially also an RNN. Nonetheless, we do not review that work here. We also do
not review search-based methods, such as using evolutionary algorithms to evolve RNN weights.

78

5.7. Conclusion and Discussion

5.7 Conclusion and Discussion
There are a few key conclusions from the results presented here.

Simple architectures seem more robust. While certainly powerful, gated RNNs are
not a panacea. In line with the case made by Rajeswaran et al. [103], simpler architec-
tures, such as the vanilla RNNs and FNNs used here, may perform equally well and/or be
more robust, depending on the task at hand; this certainly seems to hold for “pure” loco-
motion tasks with a limited amount of features and no requirement for more higher-level
planning, where long-term dependencies might come into play.

CTRNNs perform well. CTRNNs perform well on this class of tasks, are fairly ro-
bust to changing dynamics, and can readily be combined with state-of-the-art policy gra-
dient methods. Implementation in symbolic differentiation software is relatively straight-
forward if a fixed stepsize for numerical integration is used. We think this is exciting and
worthy of further study, since we did not spend a significant amount of time on finding
the best possible integration with TRPO.

Training on one class of POMDPs may help RNNs perform better on another
class of POMDPs. Results on noise perturbation showed that training on hills helped all
RNN architectures, while not helpful to FNNs, supposedly by providing the RNNs with
an “incentive” to learn recurrent connections that capture history. This may be especially
useful to cheaply train RNNs to be more robust to situations that are expensive or difficult
to train on. For example, injecting noise during training may be a cheap method to make
RNNs more robust to different terrain types.

One should be careful with generalizing the conclusions from this chapter, however,
since a number of caveats apply. Firstly, as also pointed out by Islam et al. [56], hyper-
parameters used here can significantly affect performance, and even though having an
openly accessible set of benchmark tasks greatly helps objectivity, comparison of results
is made difficult by this sensitivity. In addition, and perhaps more importantly, each ar-
chitecture this work studied can be tweaked in numerous ways (LSTM, in particular). It
is impractical to explore and compare all of these in a single study. Indeed, an important
open question seems how to carry out such a comparison efficiently across studies. Fur-
thermore, as discussed in Section 5.5.2, there is significant variance in both performance
and robustness across tasks. Therefore, either an as wide as possible range of tasks should
be used, or one should resort to optimizing algorithms and architectures geared towards
a particular task. Hopper, in particular, seemed to represent a special class of dynamics
in this study. One reason for that may be that the mixed dynamics (cyclic foot movement
with an upper body that mostly needs to be kept upright and still) present difficulties.

Secondly, as discussed in Section 5.3, the measure of robustness employed here
places particular emphasis on balancing robustness with raw performance, and staying in
line with the task objective. While we believe this is useful, other measures, which might
for example place stronger emphasis on gait stability, might lead to different results and
insights.

Lastly, it is difficult to say how well these results generalize to transfer to a real
robot, or indeed to other simulators. RL methods have a way of exploiting simulator
idiosyncrasies [65], and we have on occasion observed behavior that to the eye seemed
unrealistic (see video for an example).

These caveats notwithstanding, we are convinced that this work sheds some much-

79

5. Benchmarking Recurrent Architectures for Robust Continuous Control

needed light on performance of different RNN architectures in RL for continuous control,
and hope that these results and the reference implementation at github.com/sytham/rnn-benchmark
will form the basis for further discussion and study.

80

6
Conclusions and Future Work

A reinforcement-learning agent learns through trial and error by interacting with the
environment and observing the effect of its actions and the reward that it receives after
each action. Generally, the goal of the agent is to identify the sequence(s) of actions
that lead to the maximal sum of rewards, or maximal return. For practical purposes, it
is useful if the agent can generalize from tasks it has solved to new, but similar, tasks it
might encounter in the future. This thesis investigates two strategies for generalization in
reinforcement learning.

In the first, we automatically learn a shaping function that captures invariant proper-
ties of the domain. We empirically evaluated three different approaches to learning the
shaping function, and show that which is best depends highly on the domain, learning
algorithm, and learning parameters. In addition, we presented a novel feature selection
algorithm, FS-TEK, that extracts the invariant properties of the domain that the shaping
function can be based on. We demonstrate empirically the benefit of FS-TEK on four
artificial domains.

The second generalization strategy focuses on neural controllers that exhibit robust-
ness to changes in task dynamics. We show that feedforward neural networks (FNNs) and
a continuous-time recurrent neural network (RNN) are most robust to dynamics changes
on average, with the CTRNN significantly outperforming the others under sensor noise
perturbation. In addition, we show that training on a hill task decreases the expected drop
in performance due to dynamics changes for the RNNs, but not the FNNs.

The following sections answer the research questions posed in Chapter 1 of the thesis,
and propose directions for future work.

6.1 Evaluation of Research Questions

What kind of targets could a cross-task shaping function approximate, and under
which settings do these targets perform well?
We evaluated three target choices:

• The optimal value function of each task. While this choice may seem natural, it
did not outperform the other choices on the domains we evaluated. One pitfall of
this target that we observed empirically is that it may be too optimistic; this may

81

6. Conclusions and Future Work

cause the agent to over-explore the task, which is detrimental in high-risk tasks
where some actions lead to large negative reward.

• The approximate value function of each task. This may be a value function
approximator, or the value function based on a soft policy, such as in Sarsa. On the
domains we evaluated, this choice performed roughly on par with or better than the
other choices. However, in high-risk domains such as the continuing cliff domain,
on-policy methods such as Sarsa may converge to the wrong value function, in
which case this choice may be detrimental.

• The value function of the optimal cross-task policy. Fundamentally different
from the other two choices, this option is the value function corresponding to a
single cross-task policy, which is analogous to the value function of a memoryless
policy on a POMDP. While it is in line with a cross-task shaping function, this
option did worse on average. However, on a high-risk domain we observed it to
perform well, because it is more risk-averse than the other two choices.

These choices of target, while not the only possible ones, are natural: the first two con-
stitute the actual solutions to the tasks that a value-function based agent will produce,
depending on its learning algorithm; and the last is, just like the shaping function, a sin-
gle cross-task function.

What state representation should a cross-task shaping function be based on, and
what distinguishes this state representation from the representation that should be
used for the value function of each individual task?
What we call task-relevant representations are representations that, when used for the
value function of a task, incur low or zero expected error with respect to the true value
function of the task (i.e., the one based on the full state representation). That is, the
features in this representation are predictive of return within a task. Therefore, the value
function or policy of an individual task should be based on a task-relevant representation.

Domain-relevant representations are predictive of return across tasks in the domain.
In other words, when given a task from the domain, it is possible to predict how return
on that task is expected to vary with the domain-relevant representation before seeing the
task. This is not possible with a representation that is not domain relevant. Being a cross-
task function, the shaping function should be based on a domain-relevant representation:
its main goal is to help the agent learn a given task more quickly, by providing the agent
with synthetic rewards right from the start of the task.

Is it possible to develop an algorithm for finding both kinds of representation?
Yes. We introduce k-relevance, ρk, which unifies task and domain relevance: it is the ex-
pected relevance of a representation on a sequence of k tasks sampled from the domain.
Task relevant representations have ρk > 0 for k = 1, and domain relevant representa-
tions have ρk > 0 as k tends to infinity; we have shown formally that k-relevance does
indeed converge asymptotically. Using this property, we have devised a novel feature se-
lection algorithm, FS-TEK (Feature Selection Through Extrapolated k-relevance), which
looks at how representation relevance changes with growing task sequence length, and

82

6.1. Evaluation of Research Questions

uses that to select a domain relevant representation after observing each new sampled
task. Empirical results demonstrate that FS-TEK significantly outperforms the other fea-
ture selection methods we studied for a small number of observed tasks. It therefore
improves the agent’s generalization ability with limited data (tasks). While FS-TEK fo-
cuses on domain relevant representations, one can use the concept of k-relevance equally
well for finding task relevant representations, by averaging over relevance on each indi-
vidual task observed so far.

How do RNN architectures relate to each other in terms of learning perfor-
mance, and why?
Of the neural network architectures evaluated in Chapter 5 of this thesis, on the robotic
locomotion tasks we studied, a deep feedforward network has the best learning perfor-
mance in terms of mean return per learning iteration step. A shallow feedforward archi-
tecture is a close second. These networks have better learning performance than RNN
architectures due to the inherent challenge of training RNNs: since they share a sin-
gle weight matrix across many timesteps, an update to the weights can have undesired
consequences many timesteps later (or earlier). On the tasks we studied, long-range
dependencies and partial observability are limited, allowing FNNs to do better during
learning.

Of the RNN architectures, the simplest architecture, the DTRNN, has on average the
best learning performance. Since long-range dependencies and partial observability are
limited, and the DTRNN has the simplest gradient of all architectures except the ESN,
it learns fastest. While ESN has a simpler gradient (only based on the output layer), it
implicitly needs to learn about the dynamics of the high-dimensional state space repre-
sented by its hidden nodes.

How do RNN architectures relate to each other in terms of testing performance
when the policies are fixed, and why?
Testing the fixed, greedified policies showed mixed results, with no single architecture
(RNN or FNN) outperforming the others. The reason that this is different from the learn-
ing results is that, as mentioned, RNNs are harder to train, but the result of training might
be equivalent or better than an FNN network. As of yet, it is unclear what task properties
cause one network type to do better than another. This is an interesting direction for
future work.

How robust is each of the RNN architectures to a change in dynamics in the form
of sensor noise and a terrain switch?
On average, the FNN architectures and the continuous-time RNN are most robust, ac-
cording to our measure of robustness. In addition, we show that training on a hill task
decreases the expected drop in performance due to perturbation for the RNNs, but not
the FNNs, by providing the RNNs with more incentive to learn to maintain internal state.
The two types of perturbation represent different classes of dynamics: sensor noise is
high-frequency, and decorrelates inputs, while hill terrain varies more slowly and is lo-
cally flat. Since continuous-time RNNs are stiff in time, they appear to be better-equipped
than the other networks for smoothing sensor noise, provided they have been trained ap-
propriately. On the hill perturbation task, the FNNs showed strong performance. The

83

6. Conclusions and Future Work

CTRNN was only able to match this when trained on the hill task. Due to the more
slowly varying nature of the hill perturbation, the quality of the original gait learned on
the task is more important, and since FNNs learn faster, with more stable gaits on aver-
age, they do well on this class of dynamics change.

6.2 Future Work
This section presents a few of the directions for future work we think are most important.

• Multi-task shaping in practice. As Chapter 3 has shown, the choice of target
for the cross-task shaping function to approximate can have a significant impact
on learning performance. Applying this insight in practice comes with some chal-
lenges. For example, a Q-Learning agent outputs Q∗ as task solutions, so using
these as target will present no additional overhead. Future research could address
efficient methods for using as target a value function that is not produced by the
learning agent; one idea could be for the agent to learn multiple value functions
simultaneously.

In addition, the domains used in the chapter, while useful to demonstrating the
idea, are artificial and small-scale. Future work should investigate how well these
ideas scale up to larger domains.

• “Universal” cross-task representation learning. Chapter 4 demonstrated the
benefit of our definitions of relevance and FS-TEK on cross-task shaping func-
tions for table-based and linear value functions. There are at least two areas of
research for making this work more generally applicable: other types of cross-task
functions, and other function approximators.

In the first category, we think it is likely that our definition of domain relevance
also applies to related transfer approaches, such as advice and rule-based methods.
In addition, shaping is closely related to inverse reinforcement learning (e.g. [39]),
in which a reward function to guide the agent is inferred from demonstrations.
Learning reward functions that are robust to changes in task is challenging; for
example, Fu et al. [39] observed the problem of learning a reward function that is
robust to changes in the transition function. Using better cross-task representations
could help alleviate this problem. Future work could investigate if and how our
definition of relevance generalizes to these other applications.

With regards to the second category, it is not yet clear how well our definition of
relevance generalizes to for example nonlinear function approximators. In addi-
tion, FS-TEK in its current form discards features as a whole, whereas our defini-
tion of relevance also applied to context-dependent abstractions such as for exam-
ple used in trees.

• Continuous-time RNNs for RL. Chapter 5 demonstrated that continuous-time
RNNs (CTRNNs) perform strongly on simulated locomotion tasks, and are fairly
robust to task perturbations, in particular sensor noise. While there is work on

84

6.2. Future Work

continuous-time systems in RL, for example for solving continuous-time MDPs
[10, 25], or using central pattern generators [31], most of these approaches require
specialized algorithms. If a fixed stepsize for numerical integration is used, a sim-
pler approach can be taken, which is the one we have implemented in the chapter:
adding the numerical integration steps to the computation graph, which can then be
differentiated using symbolic differentiation software. While this is not as general
as other approaches, it does allow one to easily integrate CTRNNs with state-of-
the-art policy gradient algorithms. We think it would be exciting to further study
the use of CTRNNs in RL, and explore other domains in which they can be useful.

• Robust controllers in hierarchical RL. A potential benefit of robust controllers
that this thesis has not explored yet is their use in hierarchical learning systems:
a robust low-level controller could (partially) shield high-level learning modules
from changes in task dynamics. For example, in a task where a robot needs to
navigate a maze, locomotion could be controller by a low-level controller, while
the higher-level module learns to navigate the maze by modulating the low-level
controller. We explored such an application previously in the context of central
pattern generators [128], but the RNNs investigated here could provide a simpler
alternative.

85

A
Stationary Memoryless Multi-Task

Policies

Section 3.3.5 derived a value function for a stationary memoryless cross-task policy µ .
Such a policy assigns the same probability to a given state-action pair, regardless of the
current task or history. In this sense, it is similar to a stationary memoryless policy for a
POMDP where tasks serve as hidden states, or to such a policy for a fixed belief. Singh et
al. [124] analyzed stationary memoryless policies for POMDPs, and showed that the best
stationary stochastic policy may be better than the best stationary deterministic policy
and there need not exist a stationary policy (stochastic or deterministic) that maximizes
the value of each state simultaneously. This is important for defining what it means for
a stationary memoryless cross-task policy to be optimal. The same facts apply to the
multi-task case; however, since the proofs from Singh et al. do not translate without
modification to the multi-task case, we have modified those proofs appropriately and
reproduce them here. Recall from Section 3.3.5, Eq. 3.8 that the cross-task value of a
state under a stationary policy µ is defined as

Qµ

d (x) = ∑
m∈M

p(m|x)Qµ
m(x).

Fact 1. : In a multi-task scenario, the best stationary stochastic policy can be arbitrarily
better than the best stationary deterministic policy. (Fact 2 from [124]).

Proof. : Consider Fig. A.1. We denote by Vm(s) and V (s) the value of state s in task m
and in the domain, respectively. Without loss of generality, consider the deterministic

1 2
B

A

−R 1 2
A

B

−R

Figure A.1: A domain with two tasks, both with absorbing state 2. In the leftmost task,
action A in state 1 transitions to state 1 and incurs reward −R. In the rightmost task, the
effects of actions A and B are swapped with respect to task 1.

87

A. Stationary Memoryless Multi-Task Policies

32

1

A B

-1

(a) Task 1

2

1

A B

+100

(b) Task 2a

2

1

A B

+100

3

(c) Task 2b

2

1

A
B

+100

3

A

A

p=0.99

p=0.01

(d) Task 2c

Figure A.2: Two-task domains. Each domain is composed of task 1 and a variation of
task 2. In each of these, there need not exist a stationary policy that maximizes the value
of each state simultaneously. The only policy decision, between action A (solid) and
B (dashed), is taken in state 1. +x and −x denotes reward. p = x denotes transition
probability.

policy µ that always chooses action A, and assume both tasks are equally likely. Then
the domain value of state 1, V µ(1) =− 1

2
R

1−γ
+ 1

2 ·0 =− R
2−2γ

. Under a stochastic policy
π(A|1) = π(B|1) = 0.5, for a single task V π

m (1) =− 1
2 R+ 1

2 γV π
m (1). Therefore for both a

single task and for the domain, V π(1) =− R
2−γ

>V µ(1) for γ > 0.

Fact 2. For each of the following cases:

1. domains where tasks need not have the same state spaces;

2. domains where tasks need not be ergodic;

3. the distribution p(x|m) is uniform, except where x /∈ Xm, in which cases it is 0;

4. the distribution d(m|s) is policy-dependent,

there need not exist a stationary policy that maximizes the value of each state simultane-
ously.

Proof. : See Figure A.2. The only policy decision is made in state 1, where either action
A or B can be chosen. In Fig. A.2a and A.2b, the tasks have dissimilar state spaces: state
3 does not occur in task 2a. Increasing the probability of choosing action B in state 1
increases the value of state 1 but decreases the value of state 3; increasing the probability
of choosing action A in state 1 has the opposite effect. Therefore, in this particular
example there is no policy that maximizes the value of all states simultaneously. So in
general in domains where tasks may have dissimilar state spaces there may not be such a
policy.

In Fig. A.2c, the tasks have the same state spaces, but task 2b is not ergodic. The
same effect as in Fig. A.2a can be observed. Lastly, in Fig. A.2d the tasks have the same
state space, and are ergodic (for any policy). If we now define d(m|s) to be uniform and

88

32

1

A B

-1

4

(a) Task 1

2

1

A
B

+100

3

p=0.99

p=0.01

4

(b) Task 2

s1 s2 s3 s4
−4

−2

0

2

4

6

8

State

V
d
(
s
)

A=0,B=1

A=0.25,B=0.75

A=0.5,B=0.5

A=0.75,B=0.25

A=1,B=0

(c) Some policies

Figure A.3: Domain composed of task 1 and 2 for which there does not exist a stationary
policy that maximizes the value of each state simultaneously, given that value is averaged
over tasks using a policy-dependent distribution.

policy-independent, increasing the probability of choosing action B or A in state 1 has
the same effect as before.

The last case is slightly less straightforward. See Fig. A.3. Values for five policies
are plotted in Fig. A.3c. For the policy that always takes action A in state 1, values are
flat at 0. Increasing the probability of taking B decreases the values of all states but
increases the value of state 4. This happens because in task 2, the value of s4 increases
because of the (large) increase in s1. Since d(m2|s4,µ)� d(m1|s4,µ), V µ

d (s4) increases;
V µ

d (s1) decreases since d(m2|s1,µ)� d(m1|s1,µ). Further increasing the probability of
B increases s4 further. From around p(B) = 0.95, V µ

d (s2)> 0, since d(m1|s2,µ) goes to
0; however, V µ

d (s3) keeps decreasing.

89

B
Proofs

B.1 Theorem 2
Theorem 2. Let φ be an abstraction with abstract Q-function as in definition 2. Let
ρk = ρk(φ) for any k, based on the MSE abstraction error as in definition 3. Let d(x,y) =
|x− y| be a metric on R, and let f (ρk) = ρk+1 map k-relevance to k+1-relevance. Then
f is a strict contraction; that is, for k > 1 there is a constant κ ∈ (0,1) such that

d(f (ρk), f (ρk−1))≤ κd(ρk,ρk−1).

B.1.1 Preliminaries

As stated in Theorem 2, we are concerned with the case where the abstract Q-function
is defined as in (4.1), i.e., the weighted average over state-action pairs in a given cluster.
In this case, relevance equals the sum of weighted variances of the Q-values of ground
state-action pairs corresponding to a given cluster y (4.4). Before proving the theorems,
we show how relevance can be rewritten as a sum of covariances between Q-functions.

Variance of a weighted sum of n correlated random variables equals the weighted sum
of covariances. We start by showing that any Qc is a weighted sum of random variables
(namely the Q-functions of each task in the sequence), and that therefore relevance can be
written in terms of a weighted sum over covariances. Equation 4.5 is already a weighted
sum, but we require a constant weight per random variable (task). Thus we rewrite (4.5)
as

Qc(x) =
k

∑
i=1

p(ci|c)Qc
ci
(x) (B.1)

Qc
ci
(x) =

p(x|ci)

p(x|c)
Qci(x), (B.2)

where the last line is just a rescaling of Qci depending on c, and k = |c|, the sequence
length. Similarly, we define

Qc
y,ci

(x) =
p(x|y,ci)

p(x|y,c)
Qci(x), (B.3)

91

B. Proofs

where p(x|y,ci) = 0 for all x /∈ Xy
ci , as the values of Qc

ci
on the domain Xy

ci .
For ease of notation, we write Var(Qc) for the variance Var(Qc(Xc)), leaving the do-

main implicit, and similarly for the covariance. Note that p(ci|c) = 1/k. Then relevance
(4.4) can be written as

ρ(φ ,Qc) = ∑
y∈Yc

p(y|c)Var

(
1
k

k

∑
i=1

Qc
y,ci

)

=
1
k2 ∑

y∈Yc

p(y|c)
k

∑
i=1

k

∑
j=1

Cov
(

Qc
y,ci

,Qc
y,c j

)
(B.4)

To see how relevance changes from one sequence to the next, we need to know how
the covariance between two given tasks changes. For this purpose it is easier to write
the covariance as Cov(Xi,X j) = E[XiX j]−E[Xi]E[X j]; then all we need to do is quantify
both expectations. Let (c,m) be the new sequence formed by appending a task m ∈M
to a given sequence c. In the following, for ease of notation, assume an abstraction
that leaves the original Q-function intact, i.e. Qc

y,ci
= Qc

ci
. The results can be extended to

general abstractions by substituting Xc =Xy
c , Xm =Xy

m, p(x|c)= p(x|y,c), and p(x|m)=
p(x|y,m).

B.1.2 Change in E[Qc
ci
]

Lemma 1. The expected value of a given Q-function for a given task ci in any sequence
c is the same as the expected value of the original Q-function on ci. That is,

E[Qc
ci
] = E[Qci]. (B.5)

Proof. The expected value of any Qc
ci

is

E[Qc
ci
] = ∑

x∈Xc

p(x|c)Qc
ci
(x)

= ∑
x∈Xci

p(x|c)Qc
ci
(x)+ ∑

x∈Xc/Xci

p(x|c)Qc
ci
(x)

= ∑
x∈Xci

p(x|c) p(x|m)

p(x|c)
Qci(x) (Since Qc

ci
= 0 ∀x /∈ Xci)

= ∑
x∈Xci

p(x|m)Qci(x) = E[Qci].

B.1.3 Change in E[Qc
ci

Qc
c j
]

To put bounds on the change in E[Qc
ci

Qc
c j
], we have

Lemma 2. For a given sequence c and new sequence (c,m) formed by appending a task
m ∈M to c,

0≤
∣∣∣E[Q(c,m)

ci Q(c,m)
c j

]∣∣∣≤ k+1
k

∣∣∣E[Qc
ci

Qc
c j

]∣∣∣ ,
92

B.1. Theorem 2

where | · | denotes absolute value.

Proof. Let Qi· j(x) = Qci(x)Qc j(x). Then

E[Qc
ci

Qc
c j
] = ∑

x∈Xc

p(x|c)Qc
ci
(x)Qc

c j
(x)

= ∑
x∈Xc

p(x|ci)p(x|c j)

p(x|c)
Qi· j(x).

For a given task pair, the only quantity that changes from one sequence to the next is
p(x|c). Let f c

i, j(x) = p(x|ci)p(x|c j)/p(x|c), and recall that, for a sequence of length k,
p(x|c) = 1/k ∑

k
i=1 p(x|ci). Therefore, on a new sequence (c,m):

f (c,m)
i, j (x) =

p(x|ci)p(x|c j)

(∑k
i=1 p(x|ci)+ p(x|m))/(k+1)

=
(k+1)p(x|ci)p(x|c j)

kp(x|c)+ p(x|m)
.

Taking the ratio of f (c,m)
i, j and f c

i, j:

f (c,m)
i, j (x)/ f c

i, j(x) =
(k+1)p(x|ci)p(x|c j)

kp(x|c)+ p(x|m)
× p(x|c)

p(x|ci)p(x|c j)

=
kp(x|c)+ p(x|c)
kp(x|c)+ p(x|m)

. (B.6)

If p(x|m) is larger (smaller) than p(x|c), this ratio is smaller (larger) than 1. It is largest
when p(x|m) = 0, namely (k+1)/k, and at its smallest it is

lim
p(x|c)↓0

kp(x|c)+ p(x|c)
kp(x|c)+ p(x|m)

= 0.

Since Qi· j(x) is constant from one sequence to the next, this leads to the bounds as stated
in the lemma.

Note that especially the lower bound is quite loose, since usually p(x|c) will not be
that close to 0. However, for our present purposes this is sufficient.

B.1.4 Proof of Theorem 2
We need to show that |ρk+1−ρk| < |ρk−ρk−1| for any k > 1. The relevance of a given
sequence consists of the sum of the elements of the covariance matrix for that sequence,
where each element has weight 1/k2. As illustrated in Fig. 4.2, from one sequence c to a
new sequence (c,m), the ratio of additional covariances formed by the new task m with
the tasks already present in c is (2k−1)/k2 and thus rapidly decreases with k. The same
figure also shows that change in relevance is caused by two factors: the expansion of the
covariance matrices as sequence length increases coupled with the change in sequence

93

B. Proofs

probability, and change in the covariance between a given task pair from one sequence to
the next. Suppose that the covariance of any task pair does not change from one sequence
to the next. Then clearly, since the ratio of new covariance matrix elements changes with
k as (2k−1)/k2 and in addition the probability of all new sequences (c,m) formed from
a given c sums up to the probability of c, |ρk+1−ρk| ≤ |ρk−ρk−1| for any k > 1.

Now suppose that covariances do change from one sequence to the next. As Lemma
1 and 2 show, the maximum change in covariance from any sequence c of length k to the
next is (k+ 1)Cov(Qc

ci
,Qc

c j
)/k for any i and j. This change also decreases with k, and

therefore |ρk+1−ρk| ≤ |ρk−ρk−1| for any k > 1. If |ρ2−ρ1|= 0, then by this property
the difference must stay 0 and |ρk+1−ρk|= 0 for any k. In all other cases, the change in
relevance is a strict contraction, |ρk+1−ρk|< |ρk−ρk−1|, by the above arguments.

B.2 Theorem 3

Theorem 3. If all tasks share the same distribution over state-action pairs p(x|m), then
ρk, as defined in Theorem 2, is monotone.

B.2.1 Ratio of Variances to Covariances

In the following lemma, for clarity we distinguish between variance and covariance by
calling variance type 1 covariance, i.e. Cov(Qc

ci
,Qc

c j
), ci = c j, and covariance type 2

covariance, i.e. Cov(Qc
ci
,Qc

c j
), ci 6= c j. For k = 1, k-relevance consists solely of type 1

covariances.

Lemma 3. The ratio of the number of type 1 covariances to the number of type 2 covari-
ances decreases with k. For a given sequence c of length k− 1, the ratio of new type 1
covariances in all new sequences of length k formed from c is

2(k−1)+N
N(2k−1)

(B.7)

where N = |M|.

Proof. Let c be any sequence on a domain with N = |M| tasks. Assume task m ∈
{1,2, . . . ,N}, occurs om ∈ {0,1, . . . ,k} times in c. Then any c can be represented by
an N-dimensional vector o: o = (o1,o2, . . . ,oN). Note that for a given sample size k,
∑i oi = k for any c. Lastly, denote by σ the sum of elements in the last column and row
of the covariance matrix – as shown in Fig. 4.2, these are the elements added from one
sequence c to the next (c,m).

Now take any sequence c of length k−1, with task counts in vector o. Form N new
sequences of length k, where each sequence is formed by adding a task from M to c. To
see how the ratio of covariances changes between k−1 and k, all that matters is the ratio
in σ . For any new sequence formed by adding task m to sequence c, there will be 2om+1
type 1 covariances in σ . Hence, in total, taken over the N new sequences formed from c,
there will be 2(o1 +o2 + . . .+oN)+N = 2(k−1)+N new type 1 covariances. In total,

94

B.2. Theorem 3

taken over the N new sequences, there are N(2k−1) covariances. So the ratio of type 1
covariances in σ for a given sample size k is

2(k−1)+N
N(2k−1)

(B.8)

This ratio decreases with k. Therefore the ratio of type 2 covariances increases with
k.

B.2.2 Proof of Theorem 3
The assumption of a single distribution over state-action pairs implies that covariances
do not change from one sequence to the next. This follows from Lemma 1 and Eq. B.6:
since p(x|m) = p(x|c), the ratio resolves to 1 and E

[
Q(c,m)

ci Q(c,m)
c j

]
= E

[
Qc

ci
Qc

c j

]
.

The rest of the proof is by cases. Given k = 1, ρk+1 can either be smaller than, greater
than, or equal to ρk.

Case 1: ρ2 < ρ1.
Since ρ2 < ρ1, it follows that the expected value of a type 2 covariance is lower than that
of a type 1 covariance: ρ1 is made up of all possible type 1 covariances in the domain,
while ρ2 in addition consists of all possible type 2 covariances. Since covariances do
not change from one k to the next, type 2 covariances must be lower on average. From
Lemma 3, the ratio of type 2 covariances increases with k. Within the type 2 covariances,
the frequency of a given task pair does not change, and the same holds for the type 1
covariances. Therefore, since covariances do not change with k, ρk must get ever lower
with k, and ρk is monotonically decreasing with k.

Case 2: ρ2 > ρ1.
By a similar argument to that for case 1, ρk is a monotonically increasing function of k.

Case 3: ρ2 = ρ1.
Therefore |ρ2−ρ1|= 0, and |ρk+1−ρk| must stay 0 by Theorem 2, which shows that ρk
is constant.

95

C
Full Test Results from Chapter 5

97

C. Full Test Results from Chapter 5

C
T

R
N

N
D

T
R

N
N

E
SN

D
FF

W
D

FF
W

D
G

R
U

L
ST

M

A
nt

32
14

.6
(5

1.
7)

31
55

.4
(6

4.
3)

93
4.

3
(3

6)
23

07
.7

(3
9.

4)
23

29
.8

(2
1.

7)
35

67
.1

(5
2.

3)
18

43
.1

(3
5.

8)
H

al
fc

he
et

ah
43

82
.4

(4
1.

9)
48

88
.9

(6
9.

0)
31

05
.1

(5
7.

9)
32

56
.9

(8
.9

)
36

92
.0

(3
1.

2)
34

23
.1

(4
5.

1)
25

10
.1

(7
0.

8)
H

op
pe

r
23

31
.4

(6
4.

8)
21

49
.7

(9
8.

2)
28

0.
5

(8
.7

)
16

65
.3

(4
0.

4)
17

62
.9

(2
3.

4)
35

0.
2

(6
.8

)
26

5.
1

(3
)

Sw
im

m
er

34
9.

8
(0

.3
)

35
3.

5
(0

.2
)

35
5.

5
(0

.2
)

34
6.

4
(0

.2
)

31
8.

8
(0

.8
)

35
1.

6
(0

.2
)

35
5.

3
(0

.3
)

W
al

ke
r

14
09

.2
(3

2.
3)

18
95

.5
(2

1.
1)

17
17

.6
(1

6.
4)

20
75

.1
(3

4.
0)

21
52

.4
(4

3.
8)

15
96

.6
(7

9.
5)

11
48

.1
(2

6.
9)

A
nt

hi
ll

10
41

.7
(4

7.
3)

14
82

.9
(4

4.
4)

19
6.

9
(5

.7
)

12
34

.3
(6

1.
8)

18
72

.0
(6

3.
1)

22
45

.3
(2

2.
6)

95
5.

0
(1

2.
8)

H
al

fc
he

et
ah

hi
ll

39
23

.1
(2

2.
6)

35
30

.8
(5

5.
1)

23
96

.0
(4

9.
7)

20
97

.8
(1

9.
3)

26
13

.0
(8

3.
1)

19
53

.0
(1

5.
9)

31
10

.6
(3

8.
9)

H
op

pe
rh

ill
11

57
.6

(5
5)

42
0.

8
(2

4.
4)

26
5.

8
(1

9)
13

95
.0

(5
6.

9)
19

39
.0

(2
4.

4)
84

.1
(1

1.
8)

13
6.

8
(5

.6
)

Sw
im

m
er

hi
ll

23
1.

9
(2

.1
)

27
5.

6
(1

.4
)

24
0.

0
(1

.2
)

11
3.

7
(1

.5
)

17
7.

0
(1

.8
)

13
7.

2
(2

.8
)

22
5.

3
(2

.2
)

W
al

ke
rh

ill
14

82
.1

(7
0.

6)
11

95
.6

(3
4.

2)
11

84
.6

(2
9.

4)
14

00
.2

(4
.8

)
25

55
.8

(7
7.

4)
11

15
.8

(3
1.

2)
97

4.
4

(3
1.

5)

Ta
bl

e
C

.1
:M

ea
n

an
d

st
de

rr
of

10
00

-s
te

p
re

tu
rn

ov
er

20
ra

nd
om

iz
ed

ru
ns

w
ith

fix
ed

w
ei

gh
ts

on
fla

tt
er

ra
in

.

C
T

R
N

N
D

T
R

N
N

E
SN

D
FF

W
D

FF
W

D
G

R
U

L
ST

M

A
nt

13
09

.3
(4

0.
2)

16
51

.7
(5

8.
1)

33
4.

4
(5

.7
)

89
9.

0
(4

9.
7)

13
93

.4
(3

7.
6)

68
2.

0
(2

9.
3)

78
2.

4
(2

7)
H

al
fc

he
et

ah
37

74
.2

(1
21

.8
)

32
61

.5
(1

61
.1

)
25

31
.1

(8
5.

9)
27

90
.4

(5
5.

5)
17

25
.1

(4
6.

7)
17

85
.1

(6
0.

1)
18

86
.3

(7
0.

8)
H

op
pe

r
15

1.
7

(7
.4

)
11

2.
2

(4
.3

)
15

2.
8

(7
.9

)
15

1.
8

(2
.4

)
14

2.
5

(2
.2

)
86

.8
(2

.3
)

14
8.

8
(4

.2
)

Sw
im

m
er

17
6.

8
(2

)
15

0.
6

(2
.2

)
19

7.
7

(1
.6

)
21

3.
9

(1
.4

)
17

3.
3

(1
.2

)
69

.3
(1

.3
)

51
.9

(3
.5

)
W

al
ke

r
13

05
.4

(3
0.

7)
19

9.
2

(3
.6

)
13

02
.5

(4
0.

7)
17

43
.9

(6
9.

8)
60

3.
7

(4
1.

3)
61

5.
0

(3
0.

8)
23

1.
8

(2
0.

5)

A
nt

hi
ll

58
4.

7
(2

5.
1)

95
5.

7
(3

0.
6)

16
2.

1
(5

.5
)

85
5.

9
(3

9.
8)

68
1.

3
(3

7)
87

5.
8

(3
3.

1)
99

7.
6

(1
5.

9)
H

al
fc

he
et

ah
hi

ll
35

59
.6

(8
2)

30
40

.9
(3

8.
6)

23
59

.0
(6

3.
2)

18
38

.6
(6

3.
2)

25
69

.7
(4

4.
2)

14
88

.1
(4

0)
29

11
.0

(3
2.

6)
H

op
pe

rh
ill

15
4.

7
(6

.5
)

69
.1

(3
.5

)
97

.1
(6

.8
)

15
4.

2
(3

.7
)

13
1.

9
(2

.4
)

44
.6

(6
.2

)
88

.0
(3

.8
)

Sw
im

m
er

hi
ll

21
8.

6
(2

)
38

.3
(2

)
12

6.
8

(1
.7

)
46

.6
(1

.2
)

51
.6

(1
.9

)
57

.4
(1

.5
)

84
.7

(2
.4

)
W

al
ke

rh
ill

13
78

.8
(4

0.
7)

67
1.

9
(1

9.
9)

64
0.

0
(4

5.
1)

31
9.

9
(1

3.
2)

85
7.

2
(2

8.
2)

67
3.

6
(1

6.
4)

58
6.

6
(1

5.
7)

Ta
bl

e
C

.2
:M

ea
n

an
d

st
de

rr
of

10
00

-s
te

p
re

tu
rn

ov
er

20
ra

nd
om

iz
ed

ru
ns

w
ith

fix
ed

w
ei

gh
ts

on
no

is
e

pe
rt

ur
ba

tio
n.

98

C
T

R
N

N
D

T
R

N
N

E
SN

D
FF

W
D

FF
W

D
G

R
U

L
ST

M

A
nt

10
76

.0
(6

3.
4)

96
1.

2
(4

1.
7)

62
1.

9
(4

5.
2)

10
71

.8
(4

6.
3)

12
09

.2
(4

4.
1)

87
7.

3
(4

3.
2)

80
7.

6
(2

8.
3)

H
al

fc
he

et
ah

22
90

.8
(8

4.
2)

14
99

.5
(4

2.
5)

13
75

.4
(5

7.
7)

19
78

.5
(6

5.
9)

16
39

.7
(5

5.
7)

13
06

.6
(3

0.
7)

13
59

.7
(4

8.
5)

H
op

pe
r

47
6.

2
(1

4.
7)

44
3.

0
(1

0.
1)

30
0.

4
(1

0.
3)

73
0.

3
(3

6.
9)

74
6.

4
(1

5.
5)

31
9.

0
(1

0.
5)

31
8.

8
(1

1.
9)

Sw
im

m
er

19
5.

6
(5

.7
)

18
1.

2
(6

)
18

8.
7

(5
.7

)
19

7.
2

(6
.2

)
19

3.
7

(4
.7

)
19

3.
7

(5
.2

)
18

5.
9

(7
)

W
al

ke
r

14
44

.7
(3

3.
4)

17
79

.8
(3

6.
2)

18
17

.0
(2

9.
1)

19
68

.4
(4

1.
9)

20
63

.0
(4

4.
6)

16
38

.0
(6

0.
8)

12
12

.7
(2

0.
1)

A
nt

hi
ll

83
2.

9
(4

0.
5)

14
34

.8
(6

0.
1)

20
4.

2
(1

1.
9)

14
03

.2
(4

5.
2)

10
94

.8
(4

2.
1)

16
03

.4
(5

9.
1)

83
5.

9
(2

3.
4)

H
al

fc
he

et
ah

hi
ll

31
38

.3
(5

6.
3)

22
68

.9
(1

13
.3

)
19

24
.8

(6
9.

6)
14

71
.3

(7
7.

6)
20

25
.7

(7
5.

8)
13

04
.1

(5
5.

5)
25

87
.5

(7
7.

1)
H

op
pe

rh
ill

35
4.

4
(2

1.
1)

35
0.

7
(1

4)
33

8.
8

(1
3.

4)
61

2.
1

(3
1.

9)
59

9.
5

(1
7.

9)
80

.7
(1

3.
1)

20
0.

6
(9

.6
)

Sw
im

m
er

hi
ll

43
.2

(2
.9

)
47

.4
(2

.4
)

28
.9

(2
.2

)
19

.7
(2

.6
)

4.
8

(3
.3

)
8.

5
(2

.3
)

29
.3

(2
.2

)
W

al
ke

rh
ill

14
13

.5
(5

8.
7)

85
7.

0
(3

3.
2)

16
08

.8
(3

7.
5)

12
14

.6
(4

4.
8)

16
32

.7
(4

9.
1)

98
2.

2
(3

6.
1)

82
9.

8
(3

1.
1)

Ta
bl

e
C

.3
:M

ea
n

an
d

st
de

rr
of

10
00

-s
te

p
re

tu
rn

ov
er

20
ra

nd
om

iz
ed

ru
ns

w
ith

fix
ed

w
ei

gh
ts

on
hi

ll
pe

rt
ur

ba
tio

n.

99

Bibliography

[1] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng. An application of reinforcement learning to aerobatic
helicopter flight. In NIPS, pages 1–8, 2006.

[2] A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learning, 73
(3):243–272, 2008.

[3] J. Asmuth, M. Littman, and R. Zinkov. Potential-based shaping in model-based reinforcement learning.
In Proceedings of the 23rd AAAI Conference on Artificial Intelligence, pages 604–609. The AAAI Press,
2008.

[4] M. Babes, E. M. de Cote, and M. L. Littman. Social reward shaping in the prisoner’s dilemma. In 7th
International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2008), pages
1389–1392, 2008.

[5] B. Bakker. Reinforcement learning with long short-term memory. In Advances in neural information
processing systems, pages 1475–1482, 2002.

[6] J. Baxter. A model of inductive bias learning. J. Artif. Intell. Res. (JAIR), 12:149–198, 2000.
[7] R. D. Beer. On the dynamics of small continuous-time recurrent neural networks. Adaptive Behavior, 3

(4):469–509, 1995.
[8] R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, 1957.
[9] D. P. Bertsekas. Dynamic programming and optimal control. Athena, 1995.

[10] S. J. Bradtke and M. O. Duff. Reinforcement learning methods for continuous-time markov decision
problems. In Advances in neural information processing systems, pages 393–400, 1995.

[11] R. I. Brafman and M. Tennenholtz. R-max - a general polynomial time algorithm for near-optimal
reinforcement learning. Journal of Machine Learning Research, 3:213–231, 2002.

[12] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. Openai
gym. arXiv:1606.01540, 2016.

[13] T. Brys, A. Harutyunyan, H. B. Suay, S. Chernova, M. E. Taylor, and A. Nowé. Reinforcement learning
from demonstration through shaping. In Proceedings of the 24th International Conference on Artifi-
cial Intelligence, IJCAI’15, pages 3352–3358. AAAI Press, 2015. ISBN 978-1-57735-738-4. URL
http://dl.acm.org/citation.cfm?id=2832581.2832716.

[14] R. Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.
[15] R. Caruana. Inductive transfer retrospective and review. In NIPS 2005 Workshop on Inductive Transfer:

10 Years Later, 2005.
[16] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio.

Learning phrase representations using rnn encoder–decoder for statistical machine translation. In Pro-
ceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 1724–1734, Doha, Qatar, October 2014. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/D14-1179.

[17] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural networks
on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

[18] R. H. Crites and A. G. Barto. Improving elevator performance using reinforcement learning. In NIPS,
pages 1017–1023, 1995.

[19] S. Devlin and D. Kudenko. Theoretical considerations of potential-based reward shaping for multi-agent
systems. In The 10th International Conference on Autonomous Agents and Multiagent Systems - Volume
1, AAMAS ’11, pages 225–232, Richland, SC, 2011. International Foundation for Autonomous Agents
and Multiagent Systems. ISBN 0-9826571-5-3, 978-0-9826571-5-7.

[20] S. Devlin and D. Kudenko. Dynamic potential-based reward shaping. In Proceedings of the 11th
International Conference on Autonomous Agents and Multiagent Systems-Volume 1, pages 433–440.
International Foundation for Autonomous Agents and Multiagent Systems, 2012.

[21] S. Devlin, M. Grzes, and D. Kudenko. Multi-agent, reward shaping for robocup keepaway. In AAMAS,
pages 1227–1228, 2011.

[22] C. Diuk, L. Li, and B. R. Leffler. The adaptive k-meteorologists problem and its application to structure
learning and feature selection in reinforcement learning. In ICML, page 32, 2009.

[23] M. Dorigo and M. Colombetti. Robot shaping: developing autonomous agents through learning. Artifi-
cial Intelligence, 71(2):321–370, 1994.

[24] K. Doya. Bifurcations in the learning of recurrent neural networks. In Circuits and Systems, 1992.
ISCAS’92. Proceedings., 1992 IEEE International Symposium on, volume 6, pages 2777–2780. IEEE,
1992.

[25] K. Doya. Reinforcement learning in continuous time and space. Neural computation, 12(1):219–245,

101

Bibliography

2000.
[26] K. Doya and S. Yoshizawa. Adaptive neural oscillator using continuous-time back-propagation learning.

Neural Networks, 2(5):375–385, 1989.
[27] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking deep reinforcement learn-

ing for continous control. In International Conference on Machine Learning (ICML-16), 2016.
[28] S. Elfwing, E. Uchibe, K. Doya, and H. Christensen. Co-evolution of shaping: Rewards and meta-

parameters in reinforcement learning. Adaptive Behavior, 16(6):400–412, 2008.
[29] S. Elfwing, E. Uchibe, K. Doya, and H. I. Christensen. Darwinian embodied evolution of the learning

ability for survival. Adaptive Behavior, 19(2):101–120, 2011.
[30] J. L. Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.
[31] G. Endo, J. Morimoto, T. Matsubara, J. Nakanishi, and G. Cheng. Learning CPG-based biped loco-

motion with a policy gradient method: Application to a humanoid robot. The International Journal of
Robotics Research, 27(2):213–228, 2008.

[32] T. Erez and W. Smart. What does shaping mean for computational reinforcement learning? In Devel-
opment and Learning, 2008. ICDL 2008. 7th IEEE International Conference on, pages 215 –219, aug.
2008. doi: 10.1109/DEVLRN.2008.4640832.

[33] E. Even-Dar and Y. Mansour. Convergence of optimistic and incremental q-learning. In NIPS, pages
1499–1506, 2001.

[34] K. Ferguson and S. Mahadevan. Proto-transfer learning in markov decision processes using spectral
methods. In ICML Workshop on Structural Knowledge Transfer for Machine Learning, 2006.

[35] E. Ferrante, A. Lazaric, and M. Restelli. Transfer of task representation in reinforcement learning
using policy-based proto-value functions. In Proceedings of the 7th international joint conference on
Autonomous agents and multiagent systems - Volume 3, AAMAS ’08, pages 1329–1332, Richland, SC,
2008. International Foundation for Autonomous Agents and Multiagent Systems. ISBN 978-0-9817381-
2-3.

[36] D. J. Foster and P. Dayan. Structure in the space of value functions. Machine Learning, 49(2-3):325–
346, 2002.

[37] L. Frommberger. Task space tile coding: In-task and cross-task generalization in reinforcement learning.
In Proceedings of the 9th European Workshop on Reinforcement Learning (EWRL9), 2011.

[38] L. Frommberger and D. Wolter. Structural knowledge transfer by spatial abstraction for reinforcement
learning agents. Adaptive Behavior, 18(6):507–525, 2010.

[39] J. Fu, K. Luo, and S. Levine. Learning robust rewards with adversarial inverse reinforcement learning.
arXiv preprint arXiv:1710.11248, 2017.

[40] F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Continual prediction with lstm. Neural
computation, 12(10):2451–2471, 2000.

[41] P. W. Glynn. Likelilood ratio gradient estimation: an overview. In Proceedings of the 19th conference
on Winter simulation, pages 366–375. ACM, 1987.

[42] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT Press, 2016.
[43] A. Graves and N. Jaitly. Towards end-to-end speech recognition with recurrent neural networks. In

Proceedings of the 31st International Conference on Machine Learning (ICML-14), pages 1764–1772,
2014.

[44] E. Greensmith, P. L. Bartlett, and J. Baxter. Variance reduction techniques for gradient estimates in
reinforcement learning. Journal of Machine Learning Research, 5(Nov):1471–1530, 2004.

[45] S. Grossberg. Nonlinear neural networks: Principles, mechanisms, and architectures. Neural Networks,
1(1):17 – 61, 1988. ISSN 0893-6080. doi: http://dx.doi.org/10.1016/0893-6080(88)90021-4. URL
http://www.sciencedirect.com/science/article/pii/0893608088900214.

[46] M. Grześ and D. Kudenko. Learning shaping rewards in model-based reinforcement learning. In Proc.
AAMAS 2009 Workshop on Adaptive Learning Agents, 2009.

[47] M. Grzes and D. Kudenko. Theoretical and empirical analysis of reward shaping in reinforcement
learning. In ICMLA, pages 337–344, 2009.

[48] M. Grześ and D. Kudenko. Online learning of shaping rewards in reinforcement learning. Neural
Networks, 23(4):541 – 550, 2010. ISSN 0893-6080. doi: 10.1016/j.neunet.2010.01.001.

[49] V. Gullapalli and A. G. Barto. Shaping as a method for accelerating reinforcement learning. In Proc.
IEEE International Symposium on Intelligent Control, pages 554–559, 1992.

[50] I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of Machine
Learning Research, 3:1157–1182, 2003.

[51] H. Hachiya and M. Sugiyama. Feature selection for reinforcement learning: Evaluating implicit state-
reward dependency via conditional mutual information. In ECML/PKDD, pages 474–489, 2010.

102

Bibliography

[52] A. Harutyunyan, S. Devlin, P. Vrancx, and A. Nowé. Expressing arbitrary reward functions as potential-
based advice. In Proceedings of the 29th AAAI Conference on Artificial Intelligence, 2015.

[53] M. Hausknecht and P. Stone. Deep recurrent Q-learning for partially observable MDPs. In 2015 AAAI
Fall Symposium Series, 2015.

[54] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

[55] D. Huh and E. Todorov. Real-time motor control using recurrent neural networks. In Adaptive Dynamic
Programming and Reinforcement Learning, 2009. ADPRL’09. IEEE Symposium on, pages 42–49, 2009.

[56] R. Islam, P. Henderson, M. Gomrokchi, and D. Precup. Reproducibility of benchmarked deep reinforce-
ment learning tasks for continuous control. In Reproducibility in Machine Learning Workshop, ICML
2017, 2017.

[57] H. Jaeger. The echo state approach to analysing and training recurrent neural networks-with an erratum
note. Bonn, Germany: German National Research Center for Information Technology GMD Technical
Report, 148(34):13, 2001.

[58] N. K. Jong and P. Stone. State abstraction discovery from irrelevant state variables. In IJCAI-05, 2005.
[59] R. Jozefowicz, W. Zaremba, and I. Sutskever. An empirical exploration of recurrent network architec-

tures. In Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pages
2342–2350, 2015.

[60] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey. Journal of
Artificial Intelligence Research (JAIR), 4:237–285, 1996.

[61] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable stochas-
tic domains. Artif. Intell., 101(1-2):99–134, 1998.

[62] S. M. Kakade. A natural policy gradient. In Advances in Neural Information Processing Systems, pages
1531–1538, 2002.

[63] S. M. Kakade. On the Sample Complexity of Reinforcement Learning. PhD thesis, University College
London, 2003.

[64] J. Kober and J. Peters. Policy search for motor primitives in robotics. Machine Learning,
pages 1–33, 2010. ISSN 0885-6125. URL http://dx.doi.org/10.1007/s10994-010-5223-6.
10.1007/s10994-010-5223-6.

[65] J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics: A survey. The International
Journal of Robotics Research, 32(11):1238–1274, 2013.

[66] D. Koller and M. Sahami. Toward optimal feature selection. In L. Saitta, editor, Proceedings of the
Thirteenth International Conference on Machine Learning (ICML), pages 284–292. Morgan Kaufmann
Publishers, 1996.

[67] J. Z. Kolter and A. Y. Ng. Regularization and feature selection in least-squares temporal difference
learning. In ICML, page 66, 2009.

[68] G. Konidaris and A. Barto. Autonomous shaping: Knowledge transfer in reinforcement learning. In
Proc. 23rd International Conference on Machine Learning, pages 489–496, 2006.

[69] G. Konidaris, I. Scheidwasser, and A. G. Barto. Transfer in reinforcement learning via shared features.
Journal of Machine Learning Research, 13:1333–1371, 2012.

[70] Y. Koren and J. Borenstein. Potential field methods and their inherent limitations for mobile robot
navigation. In Proc. IEEE Conference on Robotics and Automation, pages 1398–1404, 1991.

[71] M. Kroon and S. Whiteson. Automatic feature selection for model-based reinforcement learning in
factored MDPs. In ICMLA 2009: Proceedings of the Eighth International Conference on Machine
Learning and Applications, pages 324–330, December 2009.

[72] A. Laud and G. DeJong. Reinforcement learning and shaping: Encouraging intended behaviors. In
Proc. 19th International Conference on Machine Learning, pages 355–362, 2002.

[73] A. Laud and G. DeJong. The influence of reward on the speed of reinforcement learning: An analysis
of shaping. In ICML, pages 440–447, 2003.

[74] A. Lazaric. Knowledge Transfer in Reinforcement Learning. PhD thesis, Politecnico di Milano, 2008.
[75] A. Lazaric and M. Ghavamzadeh. Bayesian multi-task reinforcement learning. In ICML, pages 599–606,

2010.
[76] A. Lazaric, M. Restelli, and A. Bonarini. Transfer of samples in batch reinforcement learning. In ICML,

pages 544–551, 2008.
[77] L. Li, T. J. Walsh, and M. L. Littman. Towards a unified theory of state abstraction for mdps. In

Aritificial Intelligence and Mathematics, 2006.
[78] L.-J. Lin and T. M. Mitchell. Reinforcement learning with hidden states. In Proceedings of the second

international conference on From animals to animats 2: simulation of adaptive behavior: simulation of

103

Bibliography

adaptive behavior, pages 271–280. MIT Press, 1993.
[79] X. Lu, H. M. Schwartz, and S. N. Givigi. Policy invariance under reward transformations for general-

sum stochastic games. Journal of Artificial Intelligence Research (JAIR), 41:397–406, 2011.
[80] R. Maclin and J. W. Shavlik. Creating advice-taking reinforcement learners. Machine Learning, 22

(1-3):251–281, 1996.
[81] S. Mahadevan. Representation discovery in sequential decision making. In AAAI, 2010.
[82] P. Mannion, K. Mason, S. Devlin, J. Duggan, and E. Howley. Multi-objective dynamic dispatch optimi-

sation using multi-agent reinforcement learning. In Proceedings of the 2016 International Conference on
Autonomous Agents & Multiagent Systems, pages 1345–1346. International Foundation for Autonomous
Agents and Multiagent Systems, 2016.

[83] P. Mannion, J. Duggan, and E. Howley. A theoretical and empirical analysis of reward transformations in
multi-objective stochastic games. In Proceedings of the 2017 International Conference on Autonomous
Agents & Multiagent Systems. International Foundation for Autonomous Agents and Multiagent Sys-
tems, 2017.

[84] P. Manoonpong, F. Wörgötter, and J. Morimoto. Extraction of reward-related feature space using
correlation-based and reward-based learning methods. In ICONIP (1), pages 414–421, 2010.

[85] D. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal of
Applied Mathematics, 11:431–441, 1963.

[86] B. Marthi. Automatic shaping and decomposition of reward functions. In Proc. 24th International
Conference on Machine Learning, pages 601–608, 2007.

[87] N. Marwan, M. C. Romano, M. Thiel, and J. Kurths. Recurrence plots for the analysis of complex
systems. Physics Reports, 438:237–329, 2007.

[88] M. J. Matarić. Reward functions for accelerated learning. In Proc. 11th International Conference on
Machine Learning, 1994.

[89] N. Mehta, S. Natarajan, P. Tadepalli, and A. Fern. Transfer in variable-reward hierarchical reinforcement
learning. Machine Learning, 73(3):289–312, 2008.

[90] M. Midtgaard, L. Vinther, J. R. Christiansen, A. M. Christensen, and Y. Zeng. Time-based reward
shaping in real-time strategy games. In Proceedings of the 6th international conference on Agents and
data mining interaction, ADMI’10, pages 115–125, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN
3-642-15419-0, 978-3-642-15419-5.

[91] D. K. Misra, J. Langford, and Y. Artzi. Mapping instructions and visual observations to actions with
reinforcement learning. arXiv preprint arXiv:1704.08795, 2017.

[92] T. M. Mitchell. Machine learning. McGraw Hill series in computer science. McGraw-Hill, 1997. ISBN
978-0-07-042807-2.

[93] D. E. Moriarty, A. C. Schultz, and J. J. Grefenstette. Evolutionary algorithms for reinforcement learning.
J. Artif. Intell. Res. (JAIR), 11:241–276, 1999.

[94] A. Ng, D. Harada, and S. Russell. Policy invariance under reward transformations: Theory and applica-
tion to reward shaping. In Proc. 16th International Conference on Machine Learning, 1999.

[95] A. Y. Ng, S. J. Russell, et al. Algorithms for inverse reinforcement learning. In Proceedings of the
Internal Conference on Machine Learning (ICML), pages 663–670, 2000.

[96] J. Nocedal and S. Wright. Numerical optimization. Springer Science & Business Media, 2006.
[97] R. Parr, L. Li, G. Taylor, C. Painter-Wakefield, and M. L. Littman. An analysis of linear models, linear

value-function approximation, and feature selection for reinforcement learning. In ICML, pages 752–
759, 2008.

[98] B. A. Pearlmutter. Gradient calculations for dynamic recurrent neural networks: A survey. IEEE Trans-
actions on Neural networks, 6(5):1212–1228, 1995.

[99] B. A. Pearlmutter. Personal communication, 2017.
[100] J. Peters, S. Vijayakumar, and S. Schaal. Natural actor-critic. In European Conference on Machine

Learning, pages 280–291. Springer, 2005.
[101] M. Petrik, G. Taylor, R. Parr, and S. Zilberstein. Feature selection using regularization in approximate

linear programs for markov decision processes. In ICML, pages 871–878, 2010.
[102] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley

and Sons, New York, NY, 1994.
[103] A. Rajeswaran, K. Lowrey, E. Todorov, and S. Kakade. Towards generalization and simplicity in con-

tinuous control. arXiv preprint arXiv:1703.02660, 2017.
[104] J. Randløv and P. Alstrøm. Learning to drive a bicycle using reinforcement learning and shaping. In

Proc. 15th International Conference on Machine Learning, 1998.
[105] A. J. Robinson and F. Fallside. Dynamic reinforcement driven error propagation networks with ap-

104

Bibliography

plications to game playing. In Proceedings of the 11th Conference of the Cognitive Science Society,
1989.

[106] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors.
Nature, 323:533–536, 1986.

[107] G. Rummery and M. Niranjan. On-line q-learning using connectionist systems. Technical Report
CUED/F-INFENG-RT 116, Engineering Department, Cambridge University, 1994.

[108] L. M. Saksida, S. M. Raymond, and D. S. Touretzky. Shaping robot behavior using principles from
instrumental conditioning. Robotics and Autonomous Systems, 22(3-4):231 – 249, 1997. ISSN 0921-
8890. doi: 10.1016/S0921-8890(97)00041-9. ¡ce:title¿Robot Learning: The New Wave¡/ce:title¿.

[109] J. Schmidhuber. An on-line algorithm for dynamic reinforcement learning and planning in reactive
environments. In Neural Networks, 1990., 1990 IJCNN International Joint Conference on, pages 253–
258. IEEE, 1990.

[110] J. Schmidhuber. Reinforcement learning in markovian and non-markovian environments. In Advances
in neural information processing systems, pages 500–506, 1991.

[111] J. Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:85–117, 2015.
[112] J. Schulman. Optimizing Expectations: From Deep Reinforcement Learning to Stochastic Computation

Graphs. PhD thesis, University of California, Berkeley, 2016.
[113] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization. In

Proceedings of The 32nd International Conference on Machine Learning, pages 1889–1897, 2015.
[114] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization. In

Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pages 1889–1897,
2015.

[115] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization algo-
rithms. arXiv preprint arXiv:1707.06347, 2017.

[116] O. Selfridge, R. S. Sutton, and A. G. Barto. Training and tracking in robotics. In Proc. Ninth Interna-
tional Joint Conference on Artificial Intelligence, 1985.

[117] A. A. Sherstov and P. Stone. Improving action selection in MDP’s via knowledge transfer. In Proceed-
ings of the Twentieth National Conference on Artificial Intelligence, July 2005.

[118] H. T. Siegelmann and E. D. Sontag. On the computational power of neural nets. Journal of computer
and system sciences, 50(1):132–150, 1995.

[119] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic policy gradient
algorithms. In Proceedings of the 31st International Conference on Machine Learning (ICML-14), pages
387–395, 2014.

[120] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game
of go with deep neural networks and tree search. Nature, 529(7587):484–489, Jan. 2016. ISSN 0028-
0836. URL http://dx.doi.org/10.1038/nature16961.

[121] S. Singh and R. Sutton. Reinforcement learning with replacing eligibility traces. Machine Learning, 22
(1):123–158, 1996.

[122] S. Singh, R. Lewis, and A. Barto. Where do rewards come from? In Proc. 31st Annual Conference of
the Cognitive Science Society, pages 2601–2606, 2009.

[123] S. P. Singh. Transfer of learning by composing solutions of elemental sequential tasks. Machine Learn-
ing, 8(3):323–339, 1992.

[124] S. P. Singh, T. Jaakkola, and M. I. Jordan. Learning without state-estimation in partially observable
markovian decision processes. In ICML, pages 284–292, 1994.

[125] B. F. Skinner. The behavior of organisms: An experimental analysis. Appleton-Century-Crofts, New
York, 1938.

[126] M. Snel and S. Whiteson. Multi-task evolutionary shaping without pre-specified representations. In
Genetic and Evolutionary Computation Conference (GECCO’10), 2010.

[127] M. Snel and S. Whiteson. Multi-task reinforcement learning: Shaping and feature selection. In Pro-
ceedings of the European Workshop on Reinforcement Learning (EWRL), 2011.

[128] M. Snel, S. Whiteson, and Y. Kuniyoshi. Robust central pattern generators for embodied hierarchical
reinforcement learning. In Development and Learning (ICDL), 2011 IEEE International Conference on,
volume 2, pages 1–6. IEEE, 2011.

[129] J. Sorg and S. Singh. Transfer via soft homomorphisms. In Proc. 8th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2009), pages 741–748, 2009.

[130] A. L. Strehl, C. Diuk, and M. L. Littman. Efficient structure learning in factored-state mdps. In AAAI,

105

Bibliography

pages 645–650, 2007.
[131] H. B. Suay, T. Brys, M. E. Taylor, and S. Chernova. Learning from demonstration for shaping

through inverse reinforcement learning. In Proceedings of the 2016 International Conference on Au-
tonomous Agents & Multiagent Systems, AAMAS ’16, pages 429–437, Richland, SC, 2016. Inter-
national Foundation for Autonomous Agents and Multiagent Systems. ISBN 978-1-4503-4239-1. URL
http://dl.acm.org/citation.cfm?id=2936924.2936988.

[132] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and momentum in
deep learning. In International conference on machine learning, pages 1139–1147, 2013.

[133] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In Advances
in neural information processing systems, pages 3104–3112, 2014.

[134] R. Sutton. Learning to predict by the method of temporal differences. Machine Learning, 3:9–44, 1983.
[135] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. The MIT Press, 1998.
[136] R. S. Sutton. Integrated architectures for learning, planning, and reacting based on approximating dy-

namic programming. In Proceedings of the Seventh International Conference on Machine Learning
(ICML), pages 216–224, 1990.

[137] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour. Policy gradient methods for reinforcement
learning with function approximation. In NIPS, pages 1057–1063, 1999.

[138] F. Tanaka and M. Yamamura. Multitask reinforcement learning on the distribution of mdps. In Proc.
2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA
2003), pages 1108–113, 2003.

[139] J. Taylor, D. Precup, and P. Panagaden. Bounding performance loss in approximate mdp homomor-
phisms. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information
Processing Systems 21, pages 1649–1656, 2009.

[140] M. Taylor and P. Stone. Transfer learning for reinforcement learning domains: A survey. Journal of
Machine Learning Research, 10(1):1633–1685, 2009.

[141] M. E. Taylor, P. Stone, and Y. Liu. Value functions for rl-based behavior transfer: A comparative study.
In AAAI, pages 880–885, 2005.

[142] M. E. Taylor, S. Whiteson, and P. Stone. Transfer via inter-task mappings in policy search reinforcement
learning. In AAMAS, page 37, 2007.

[143] S. Thrun. Is learning the n-th thing any easier than learning the first? In Advances in Neural Information
Processing, pages 640–646, 1995.

[144] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages 5026–5033. IEEE,
2012.

[145] L. Torrey, T. Walker, J. W. Shavlik, and R. Maclin. Using advice to transfer knowledge acquired in
one reinforcement learning task to another. In Proceedings of the Sixteenth European Conference on
Machine Learning (ECML 2005), pages 412–424, 2005.

[146] L. Torrey, J. W. Shavlik, T. Walker, and R. Maclin. Transfer learning via advice taking. In Advances in
Machine Learning I, pages 147–170. Springer, 2010.

[147] H. van Seijen, S. Whiteson, and L. Kester. Switching between representations in reinforcement learning.
In Interactive Collaborative Information Systems, pages 65–84. 2010.

[148] N. Vlassis, M. L. Littman, and D. Barber. On the computational complexity of stochastic controller
optimization in pomdps. CoRR, abs/1107.3090, 2011.

[149] T. J. Walsh, L. Li, and M. L. Littman. Transferring state abstractions between mdps. In ICML-06
Workshop on Structural Knowledge Transfer for Machine Learning, 2006.

[150] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8:279–292, 1992.
[151] P. J. Werbos. Applications of advances in nonlinear sensitivity analysis. In System modeling and opti-

mization, pages 762–770. Springer, 1982.
[152] P. J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE,

78(10):1550–1560, 1990.
[153] S. D. Whitehead. A complexity analysis of cooperative mechanisms in reinforcement learning. In

Proceedings AAAI-91, pages 607–613, 1991.
[154] S. Whiteson and P. Stone. Evolutionary function approximation for reinforcement learning. Journal of

Machine Learning Research, 7:877–917, 2006.
[155] S. Whiteson, B. Tanner, M. E. Taylor, and P. Stone. Protecting against evaluation overfitting in empirical

reinforcement learning. In ADPRL 2011: Proceedings of the IEEE Symposium on Adaptive Dynamic
Programming and Reinforcement Learning, pages 120–127, April 2011.

[156] D. Wierstra, A. Foerster, J. Peters, and J. Schmidhuber. Solving deep memory POMDPs with recurrent

106

policy gradients. In Proc. Intl. Conf. on Artificial Neural Networks (ICANN), pages 697–706. Springer,
2007.

[157] E. Wiewiora. Potential-based shaping and q-value initialization are equivalent. Journal of Artificial
Intelligence Research, 19:205–208, 2003.

[158] E. Wiewiora, G. Cottrell, and C. Elkan. Principled methods for advising reinforcement learning agents.
In Proc. 20th International Conference on Machine Learning, pages 792–799, 2003.

[159] A. Wilson, A. Fern, S. Ray, and P. Tadepalli. Multi-task reinforcement learning: a hierarchical bayesian
approach. In ICML, pages 1015–1022, 2007.

107

Samenvatting

Een reinforcement-learning agent leert door proefondervindelijk door interactie met zijn
omgeving, het observeren van het effect van zijn acties, en de beloning die het ontvangt
na elke actie. Over het algemeen is het doel van de agent om reeks(en) van acties te
identificeren die leiden tot de maximale totale som aan beloningen, ook wel de max-
imale return genoemd. Hoewel reinforcement learning conceptueel eenvoudig is, is de
methodiek opmerkelijk krachtig voor het oplossen van sequentiële beslissingsproblemen.
Het heeft talloze succesvolle praktische toepassingen en blijft een belangrijk onderzoeks-
gebied binnen de machine learning gemeenschap.

Formeel wordt de taak die de agent moet oplossen, gemodelleerd als een Markov
beslissingsproces (MDP). MDP’s kunnen gedeeltelijk waarneembaar zijn, wat betekent
dat de huidige ware toestand van de omgeving slechts gedeeltelijk bekend is. Voor prak-
tische doeleinden is het handig als de agent taak oplossingen kan generaliseren naar
nieuwe, vergelijkbare taken die het in de toekomst kan tegenkomen. Dit proefschrift
onderzoekt twee strategieën voor generalisatie in reinforcement learning.

De eerste strategie richt zich op een multi-task reinforcement learning scenario, waar-
bij taken worden gesampled uit een domein, een kansverdeling over gerelateerde taken.
Agenten beginnen met het oplossen van een of meer taken, gesampled uit het domein.
Omdat taken in het domein gerelateerd zijn, wordt van agenten verwacht dat ze kennis
over opgeloste taken behouden en gebruiken in nieuwe taken, ook gesampled uit het
domein, teneinde ze sneller op te lossen. In dit proefschrift maken agenten expliciet ge-
bruik van gemeenschappelijke structuur van taken in het domein, door het gebruik van
shaping functies. Shaping functies bieden de agent extra informatieve kunstmatige be-
loning, bovenop de beloning die de MDP biedt. Deze functies kunnen vooraf ontworpen,
of geleerd zijn; dit proefschrift richt zich op het automatisch leren ervan. We doen dit
door een dataset te vormen die bestaat uit de combinatie van state-action-value-paren van
waargenomen taken. Net als in een supervised learning probleem moeten twee belangri-
jke keuzes gemaakt worden: de target functie die de shaping functie moet benaderen, en
de representatie voor de shaping functie, d.w.z. de feature set. We stellen drie verschil-
lende target functies voor, en evaluaren deze op een aantal synthetische domeinen. We
laten empirisch zien dat de beste target functie afhangt van het domein, het leeralgoritme
en de leerparameters.

Shaping functie representaties kunnen ook vooraf worden ontworpen of geleerd, en
in dit werk worden ze voor het eerst automatisch geleerd. Om dit te doen introduceren
we FS-TEK (Feature Selection Through Extrapolation of k-relevance), een nieuw feature
selection algoritme. Het is gebaseerd op de nieuwe notie van k-relevantie, de verwachte
relevantie van een feature set op een reeks van k taken gesampled uit het domein. We
bewijzen dat de k-relevantie asymptotisch de domeinrelevantie van de feature set be-
naderd. Deze eigenschap wordt gebruikt om FS-TEK af te leiden. Het belangrijkste
inzicht achter FS-TEK is dat verandering in relevantie die wordt waargenomen in taak-
sequenties van toenemende lengte kan worden geëxtrapoleerd om de relevantie van het
domein nauwkeuriger te voorspellen. We demonstreren empirisch het voordeel van FS-
TEK op een aantal synthetische domeinen.

De tweede strategie voor generalisatie in reinforcement learning onderzoekt neurale
controllers die een zekere mate van robuustheid vertonen ten opzichte van veranderingen

109

in taak. Dat wil zeggen dat het doel is de verwachte prestatiedaling op nieuwe taken te
minimaliseren met betrekking tot de taak waarop zij getraind zijn, zonder in de nieuwe
taak te leren. We trainen vijf recurrent neural net (RNN) architecturen en een diep en
ondiep feedforward net (FNN) op een set gesimuleerde robot locomotie taken en onder-
werpen ze aan twee soorten verstoringen tijdens de test: sensor ruis en een overgang van
vlak naar heuvelachtig terrein. De FNN’s leren het snelst, maar geen enkele architec-
tuur is in alle locomotie taken het beste op het moment van testen. We laten echter zien
dat de FNN’s en een continuous time RNN (CTRNN) gemiddeld het meest robuust zijn
voor taakveranderingen, waarbij de CTRNN aanzienlijk beter presteert dan de anderen
onder sensor ruis. Bovendien laten we zien dat training op een heuveltaak de verwachte
prestatiedaling verlaagt als gevolg van verstoringen voor de RNN’s, maar niet de FNN’s.

Summary

A reinforcement-learning agent learns through trial and error by interacting with the
environment and observing the effect of its actions and the reward that it receives after
each action. Generally, the goal of the agent is to identify the sequence(s) of actions that
lead to the maximal sum of rewards, or maximal return. While conceptually simple, the
reinforcement learning framework is a remarkably powerful one for solving sequential
decision tasks. It has had numerous successful practical applications, and remains a
major area of research within the machine learning community.

Formally, the task the agent needs to solve is modeled as a Markov decision process
(MDP). MDPs can be partially observable, meaning that the current true state of the en-
vironment is only partially known. For practical purposes, it is useful if the agent can
generalize from tasks it has solved to new, but similar, tasks it might encounter in the fu-
ture. This thesis investigates two classes of strategies for generalization in reinforcement
learning.

The first strategy focuses on a multi-task reinforcement learning setting, in which
tasks are sampled from a domain, a distribution over tasks. Agents start by solving one
or more tasks, sampled from the domain. Since tasks in the domain are related, agents
are then expected to retain knowledge about solved tasks and transfer it to new tasks,
also sampled from the domain, in order to solve them more quickly. In this thesis, agents
explicitly leverage structure that is shared between tasks, through the use of shaping func-
tions. Shaping functions provide the agent with additional informative artificial reward,
on top of the reward provided by the MDP. They can be either pre-designed or learned;
this thesis focuses on learning them automatically. We do so by forming a dataset that
consists of the union of state-action-value pairs of observed tasks. Akin to a supervised
learning setting, two key choices need to be made: the target function the shaping func-
tion should approximate, and the representation for the shaping function, i.e., the feature
set. We propose three different target functions to approximate, and evaluate each on
a number of artificial domains. We show empirically that which target function is best
depends highly on the domain, learning algorithm, and learning parameters.

Shaping function representations can also be pre-designed or learned, and this thesis
is the first to learn them. In order to do so, we introduce FS-TEK (Feature Selection
Through Extrapolation of k-relevance), a novel feature selection algorithm. It is based on
the new notion of k-relevance, the expected relevance of a feature set on a sequence of
k tasks sampled from the domain. We prove that k-relevance converges asymptotically
to the domain relevance of the feature set. This property is used to derive FS-TEK. The
key insight behind FS-TEK is that change in relevance observed on task sequences of
increasing length can be extrapolated to more accurately predict domain relevance. We
demonstrate empirically the benefit of FS-TEK on a number of artificial domains.

The second strategy for generalization in reinforcement learning investigates neural
controllers that exhibit a degree of robustness to changes in task. That is to say, while
these controllers do not learn on the new task(s), the objective is to minimize degradation
in performance with respect to the task they were trained on. We train five recurrent
neural net (RNN) architectures and a deep and shallow feedforward net (FNN) on a set
of simulated locomotion tasks, and subject them to two types of perturbations at test
time: sensor noise, and a switch from flat to hilly terrain. While the FNNs learn fastest,

111

no single architecture is best at everything at test time. However, we show that the FNNs
and a continuous-time RNN (CTRNN) are most robust to task changes on average, with
the CTRNN significantly outperforming the others under noise perturbation. In addition,
we show that training on a hill task decreases the expected drop in performance due to
perturbation for the RNNs, but not the FNNs.

Acknowledgements

With the completion of this thesis, a long journey to scientific maturity (well – teenage-
hood perhaps) has come to an end. Before thanking the people who have helped me
along the way in more or less chronological order, I’d like to express my gratitude to
Shimon Whiteson, my supervisor at the University of Amsterdam. Shimon is really the
person who, with his critical “question everything” view, high standards, and attention
to detail (“the devil is always in the details”) has had a lasting impact on the way I think
and approach problems. This work would not have been possible without his guidance.

The journey began, then, with an MSc in Artificial Intelligence at the University of
Edinburgh, where I got fascinated and inspired by the Reinforcement Learning course
taught by Gillian Hayes. Although I had no plans for starting a PhD when I entered my
Master studies, I found RL, and AI in general, so fascinating that I decided to take the
plunge. Thanks to Gillian for inspiring me to study RL more deeply, taking me on as a
PhD student, and giving me the freedom to pursue my own naive ideas.

Unfortunately, Gillian left the university after about two years to start her own com-
pany. I thank Michael Herrmann for taking me over from Gillian and briefly supervising
me before I left for the University of Amsterdam, where Shimon took me on as a student
under somewhat irregular circumstances (for which also thanks).

In this period, I also traveled to the University of Tokyo several times to work as vis-
iting student in the lab of Prof. Yasuo Kuniyoshi, initially under a JSPS Fellowship and
later directly for the lab itself. Thanks to Kuniyoshi-sensei for arranging the fellowship
after just one meeting, and enabling me to have a fantastic experience in Japan and in the
lab. I have especially fond memories of the karaoke nights with the lab, with Prof. Ku-
niyoshi among the most enthusiastic singers. Thanks also to Daniel Burfoot, Hassan
Alirezaei, Alexandre Pitti, and Fumihiro Bessho for providing advice on Japanese cul-
ture, and for research discussions and social outings. Thanks to Tatsuya Kaneko for
friendship and good parties.

At the time my contract with the university ended, I had about half a chapter of
research work left, and in astounding naivety (still!) decided that I would finish this
while taking on a full-time job as researcher at Optiver, my current employer. Now,
several years and a half-year leave of absence later, I did finally manage to finish that
chapter. Here, heartfelt thanks are in order to Wim Vink, my boss at the time I requested
leave. I’d also like to thank Frans Groen for valuable advice and being my promotor for
all this time, even past his retirement, and Ben Kröse for stepping in as promotor during
the last stretch.

This work would also not have been possible without all the great work done by
researchers who came before me. I’m grateful I’ve been given the chance to contribute
my insignificant pebble to the edifice of science.

Thanks to all my friends, who have put up with my endless “have to work on the
PhD” excuses without complaint (mostly). Sorry guys. Special thanks to Wing, for her
general awesomeness and for designing the cover of this booklet.

Last but not least, my deepest thanks to my family, who have somehow managed to
guide me while giving me total freedom, for always supporting me in whatever I do.

113

