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Summary

This thesis consists of three separate articles.
In the first article we extend a fast algorithm to price European options on underlying

assets which pay discrete dividends to the two-dimensional case. Firstly, by using convexity,
we formulate upper and lower bounds for the price of a classical (univariate) European option
written on a dividend-paying Black-Scholes asset in closed form, and show that those bounds
converge to the true option price. The errors introduced by the method decrease with the
square of the discretisation step used and scale with the gamma of the option. Secondly, the
procedure is extended to obtain similar bounds for the price of a bivariate European call on
the maximum of two underlying assets. Prices of other bivariate European options can then
be found through put-call/min-max parity relations.

The second article concerns the derivation of analytical expressions for the future Ex-
pected Exposure in several Inflation Indexed Swaps under a stochastic model for inflation.
These can be used to find a closed form solution for the Credit Value Adjustment (CVA). The
CVA of a Zero-Coupon Inflation Indexed Swap is obtained analytically under this framework.
For the Expected Exposure of a Year-on-Year Inflation Indexed Swap and for a portfolio of
many Zero-Coupon Inflation Indexed Swap instruments, semi-analytical solutions are derived
which are based on moment matching approximations. Extensive tests of the algorithms us-
ing Monte Carlo simulations show that the approximating formulae provide very fast and
accurate methods to determine the CVA for different products.

In the third article we show that an equilibrium bid-ask spread for European derivatives
may arise in dry markets for the underlying asset, even under symmetric information and
absence of transaction costs. By dry markets we mean that the underlying asset may not be
traded at all points in time, generating a particular form of market incompleteness. Using
a partial equilibrium analysis in a one period model, we show two results. For monopolistic
risk-neutral market makers, we fully characterise the bid-ask spread within the no-arbitrage
bounds. For oligopolistic risk-neutral market makers, we prove that there is no pure sym-
metric Nash equilibrium of the game and that a bid-ask spread can only exist under a mixed
strategy equilibrium.
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Samenvatting

Dit proefschrift bestaat uit drie afzonderlijke delen.
In het eerste deel wordt een snel algoritme uitgebreid om de prijs te bepalen voor Europese

opties op aandelen die een discreet dividend uitkeren naar twee dimensies. Door gebruik
te maken van convexiteit formuleren we eerst boven- en ondergrenzen voor de prijs van
een klassieke (univariate) Europese optie op een aandeel dat dividend betaalt onder Black-
Scholes dynamics. We laten zien hoe we deze grenzen kunnen laten convergeren naar de
werkelijke optieprijs. De fouten die door de methode worden gëıntroduceerd nemen af met
het kwadraat van de gebruikte discretisatiestap maal de gamma van de optie. Vervolgens
wordt de procedure uitgebreid om soortgelijke boven- en ondergrenzen te verkrijgen voor
de prijs van een bivariate Europese call op het maximum van twee onderliggende aandelen
die dividend uitkeren. Prijzen voor andere bivariate Europese opties kunnen dan worden
gevonden door middel van put-call-parity en min-max-parity relaties.

In het tweede deel worden analytische uitdrukkingen afgeleid voor de verwachte toekom-
stige blootstelling aan kredietrisico voor verschillende inflatieswaps, onder een stochastisch
inflatiemodel. Deze kunnen worden gebruikt om een oplossing in gesloten vorm te vinden
voor de zogenaamde Credit Value Adjustment (CVA). De CVA van een Zero-Coupon Infla-
tion Indexed Swap kan onder onze aannamen in analytische vorm verkregen worden. Voor het
toekomstige kredietrisico van een Year-on-Year Inflation Indexed Swap en voor een portfo-
lio van diverse Zero-Coupon Inflation Indexed Swaps worden semi-analytische benaderingen
afgeleid, die gebaseerd zijn op matching of moments technieken. Uitgebreide testen van de
algoritmes met behulp van Monte Carlo simulatie laten zien dat met de benaderende for-
mules zeer snelle en nauwkeurige benaderingen van de CVA bepaald kunnen worden voor
deze verschillende producten.

In het derde deel laten we zien dat zich een evenwicht voor de bid-ask spread voor Europese
derivaten voor kan doen in zogenaamde ‘droge’ markten voor het onderliggende aandeel, en
dat dit zelfs kan gebeuren onder symmetrische informatie en in afwezigheid van transac-
tiekosten. Met ‘droge’ markten bedoelen we markten waarin de onderliggende waarde niet
kan worden verhandeld op alle momenten in de tijd, hetgeen leidt tot een specifieke vorm van
markt incompleetheid. Met behulp van een analyse van het partiële evenwicht in een model
met één tijdsperiode, leiden we een aantal verschillende resultaten af. Zo kunnen we voor mo-
nopolistische risico-neutrale marketmakers een volledige karakterisering geven van de bid-ask
spread binnen de no-arbitrage grenzen. Voor oligopolistische risico-neutrale marketmakers
bewijzen we dat er geen puur symmetrisch Nash-evenwicht bestaat, en dat een bid-ask spread
alleen kan ontstaan bij een evenwicht dat gebaseerd is op gemengde strategieën.
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Resumo

Esta tese consiste em três artigos distintos.
O primeiro artigo apresenta a extensão de um algoritmo rápido que valoriza opções eu-

ropeias sobre ativos subjacentes que pagam dividendos discretos ao caso bi-dimensional. Em
primeiro lugar e tendo em conta a convexidade de formula, é posśıvel calcular limites supe-
rior e inferior para o preço de uma opção europeia clássica (univariada), escrito num ativo
Black-Scholes de pagamento de dividendos, na forma fechada, e mostrar que esses limites
convergem para o verdadeiro preço da opção. Os erros introduzidos pelo método descrito
diminuem com o quadrado da janela de discretização utilizada e são proporcionais ao gama
da opção. Em segundo lugar, o procedimento é estendido para obter limites semelhantes
para o preço de uma opção call europeia bivariada no máximo de dois ativos subjacentes.
Os preços de todas as outras opções europeias bivariadas podem ser encontrados através de
relações de paridade put-call/min-max.

No segundo artigo, expressões anaĺıticas para o futuro da exposição esperada em vários
swaps indexados à inflação são derivadas. Esta derivação assenta num modelo estocástico
para a inflação, o qual pode ser usado para encontrar uma solução de forma fechada para o
Credit Value Adjustment (CVA). O CVA de um Zero-Coupon Inflation Indexed Swap é assim
obtido analiticamente. Para a exposição esperada de um Year-on-Year Inflation Indexed
Swap e para uma carteira de muitos instrumentos de Zero-Coupon Inflation Indexed Swap,
soluções semi-anaĺıticas são derivadas. Estas baseiam-se em aproximações dos momentos
correspondentes. Testes extensivos dos algoritmos que usam simulações de Monte Carlo
mostram que as fórmulas de aproximação fornecem métodos muito rápidos e precisos para
determinar o CVA para os diferentes produtos.

O terceiro artigo mostra que um equiĺıbrio para um bid-ask spread de derivados europeus
pode surgir no âmbito dos “mercados secos” para o ativo subjacente, mesmo na ausência
de assimetria de informação e de custos de transação. Entende-se por “mercados secos” a
incapacidade de comercializar o ativo subjacente em todos os pontos do tempo. Usando uma
análise de equiĺıbrio parcial num modelo com um peŕıodo, apresentamos os seguintes resul-
tados: para intermediários monopolistas, neutros ao risco, caracterizamos completamente o
bid-ask spread dentro dos limites de não arbitragem; para intermediários oligopolistas, neu-
tros ao risco, provamos que não há equiĺıbrio de Nash simétrico puro do jogo e, um bid-ask
spread só pode existir sob um equiĺıbrio de estratégia mista.
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Chapter 1

Introduction

This thesis deals with three separate problems in derivatives pricing. It considers three mod-
ifications of standard derivative pricing problems which make the analysis more challenging:
the payment of discrete dividends, the introduction of credit risk, and the possibility that
markets become less liquid. All these problems share the overall characteristic of considering
derivatives under some deviations from the classical framework or different forms of market
imperfections or incompleteness (illiquidity).

In the first problem, a modification of a classical model is generated by a discrete dividend
on the underlying asset(s) which is paid at a predefined moment in time. This removes an
essential feature of the standard option pricing model by Black and Scholes: the lognormal
distribution of the underlying asset price at the derivative’s maturity. The solution presented
for the univariate case, initially proposed by Amaro de Matos et al. (2009), circumvents
using the asset price distribution after the discrete dividend has been paid, by exploiting the
convexity of the classical option price formula for stocks without dividends. This allows us
to derive new analytical formulae for an upper and a lower bound for the value of the option
on a stock paying a discrete dividend and to generalise results to the much harder bivariate
case. The bounds are then shown to converge to the real price of the option, when we grant
more computation time. The obtained algorithm turns out to be very fast and the pricing
error can be controlled by the size of a discretisation step.

In the second problem, we deal with a specific form of market imperfection: default risk of
the derivative’s counterparty. The literature which emerged after the financial crisis of 2008
dictates that for such risks an additional charge must be added to the standard default-free
price of derivatives, which is called the Credit Value Adjustment (CVA). In our work we are
concerned with the CVA for inflation-linked derivatives. We provide novel (semi)-analytical
formulae for the CVA of the two most common types, Zero-Coupon Inflation Indexed Swaps
(ZCIIS) and Year-on-Year Inflation Indexed Swaps (YYIIS), and we define a closed form
approximation for the CVA of a portfolio of inflation derivatives under netting agreements.
As will be explained later, this is important since a CVA is typically calculated for a whole
portfolio.

The third part of the work in this thesis considers a form of market incompleteness which
is generated due to absence of trading possibilities for the underlying asset at some points in
time; which we call market dryness. By considering a two period recombining binomial tree
model in which trading is not permitted at the mid-time, the model becomes equivalent to
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16 CHAPTER 1. INTRODUCTION

a one period trinomial model. The standard optimisation problems in microeconomics for
a representative agent will give us a demand and a supply curve for the derivative, which
will depend on the choice of the agent’s utility function. By introducing risk-neutral market
makers who maximise their profits, we show that an equilibrium bid-ask spread for the
derivative will be generated, even though our stylised model does not consider transaction
costs or information asymmetries. As will be shown, for the case of a monopolistic market
maker there is a result which fully characterises the equilibrium bid-ask spread within the
no-arbitrage bounds of the derivative, whereas in the case of competition between market
makers we prove that, under pure strategies, Nash equilibrium prices cannot exist. This is
shown by identifying a more profitable strategy which players would choose to undertake in
each of the possible cases. Furthermore, we can conclude that such a bid-ask equilibrium
must exist under a mixed strategies game.



Chapter 2

Pricing of Bivariate Options on Stocks
Paying Discrete Dividends

2.1 Introduction

Pricing of options on an asset that pays a discrete dividend has been a classical problem in
quantitative finance since the early work of Black (1975), Merton (1976a, 1976b), Roll (1977),
Geske (1979) and Whaley (1981). As Haug, Haug and Lewis (2003) correctly point out in
their aptly named paper “Back to basics: a new approach to the discrete dividend problem”,
the inclusion of dividends in option pricing theory is a very important problem that has been
overlooked throughout years of advances in the mathematical finance literature.

Merton (1973) was the first to relax the no-dividend assumption for the seminal Black and
Scholes (1973) European option pricing formulae. He allowed for a deterministic dividend
yield over the lifetime of the option or for a dividend specified as a fixed proportion of the
stock price on the dividend date, and showed that options can then still be priced in a Black-
Scholes-Merton economy with some minor modifications. However, in reality the majority of
stocks on which options trade pay dividends that are specified as a fixed value. This implies
that the stock price jumps downwards at dividend dates, with a jump size which equals this
fixed value. Therefore, in realistic cases, we lose the essential property of the Black-Scholes
model which makes explicit pricing formulae possible: the lognormal distribution of future
asset prices.

As a consequence, the existing literature proposes numerous different approximations to
such option prices. The approximation procedure that was first informally suggested by Black
(1975), replaces the initial value of the stock S0 in the Black-Scholes formula by its value
minus the present value of dividends that are to be paid, i.e. the adjustment in the classical
Black-Scholes formula would only adjust the current stock price: S0 → S∗0 = S0 − PV (D).
This approximation is what is now known as the Escrowed model for options on a discrete
dividend paying stock. The assumption is made that the asset price minus the present value
of all future dividends that are to be paid until the maturity of the option follows a geometric
Brownian motion. A number of other approximation models have been developed since, and
a good overview is given in Frishling (2002) and in Vellekoop and Nieuwenhuis (2006).

The assumption that the asset price plus the forward value of all past dividends that have
been paid until today follows a geometric Brownian motion is known as the Forward model.

17



18 CHAPTER 2. BIVARIATE OPTIONS ON DISCRETE DIVIDEND STOCKS

In this alternative model, the adjustment to the classical Black-Scholes formula would only
adjust the option’s strike price: K → K∗ = K − FV (D).

The Modified escrowed model is based on the slightly different assumption that the
asset price minus the present value of all dividends that are to be paid (at any time) in
the future follows a geometric Brownian motion. This model tries to remedy the obvious
problem in the Escrowed model that it admits arbitrage: American calls expiring just before
the dividend date can be more expensive than American calls expiring just after that date,
since the model assumes different dynamics for the price processes at times before and after
the dividend date. However, with the given modification, the option price will depend on
dividends that will be paid after the maturity of the option, which seems unreasonable.

The combination of the Escrowed and Forward models introduced by Bos and Vandemark
(2002) adjusts the time of dividends in the following way: a fraction of dividends is included
in an adjusted current asset price and the rest in an adjusted strike.

Beneder and Vorst (2002) and Bos et al. (2003) extend the Escrowed model by adjusting
the volatility to include the discrete dividends. This approach is based on the fact that the
Escrowed model usually undervalues the options and an effort was made to account for this
by adjusting the volatility parameter in the Black-Scholes formula using a weighted average
of an adjusted and unadjusted variance of the stock returns, with weights that depend on
the time of dividend payments.

Finally, the assumption that the asset price follows a geometric Brownian motion in
between dividend dates is called the Piecewise lognormal model.

All the techniques mentioned above, except the Piecewise lognormal model, do not ac-
tually specify the asset price process underlying the models, but instead introduce simple
ad hoc adjustments of the Black-Scholes formula for the classical European option. For the
case of American options, the approaches mentioned above were used by Roll (1977), Geske
(1979) and Whaley (1981), and this resulted in the Roll-Geske-Whaley model which has been
considered for decades the best way to price American options on stocks which pay discrete
dividends. The Roll-Geske-Whaley model is an Escrowed dividend model, but it uses a com-
pound option approach to take into account the possibility of early exercise. However, it
admits arbitrage opportunities, as pointed out in Haug, Haug and Lewis (2003).

As a result, in most later work the Piecewise lognormal model for the underlying asset
price process is assumed. Although that approach seems to be preferred from a practical
point of view, it is often too inefficient for accurate computations since, under this assump-
tion, standard discrete Cox-Ross-Rubinstein (1979) tree schemes no longer recombine af-
ter dividend dates. A method to overcome this problem was suggested by Vellekoop and
Nieuwenhuis (2006), and it can be used to price both European and American options with
multiple dividends. It is based on interpolation steps within the tree. Interpolation methods
had been suggested before by Wilmott et al. (1993) and Haug, Haug and Lewis (2003), but
the first one suffers from possible negative risk-neutral probabilities, and the second one will
not work for American options. For European options, the approximation method of Haug,
Haug and Lewis (2003) replaces a multiple integration by a succession of single integrations
over Black-Scholes-like approximating functions. It performs extremely well for this case and
an advantage of the method is the fact that it is not limited to the Black-Scholes model
for the underlying asset but can also treat more complex models, e.g. jump-diffusions or
stochastic volatility models. Also, it introduces stock-price dependent dividend payments
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which can be a useful extension in practice.
In this thesis we take a different approach. We follow the one-dimensional approach by

Amaro de Matos et al. (2009) and take the Piecewise Lognormal model for the underlying
stock(s) dynamics and by using convexity of the classical option price formula for stocks
without dividends, we derive analytical formulae for an upper and lower bound for the value
of the option on stock(s) paying a discrete dividend. We then show convergence to the correct
price for both bounds when the mesh size of an approximating grid goes to zero.

First, in the next section, we introduce the method for obtaining bounds for European
options on a stock paying a single dividend, and analyse the approximation errors introduced
by the method. Then, in Section 2.3, we extend the approach to bivariate options, i.e. options
written on two underlying assets. Examples of papers concerning bivariate options on non-
dividend paying stocks are Stulz (1982), Ouwehand and West (2006) and Margrabe (1978).
However, to the best of our knowledge, there are no results in the literature to price such
options on discrete dividend paying stocks, except in the master thesis by Kolb (2015), which
is based on a similar idea, but does not provide any proofs. In Section 2.4 we present the
results obtained by our algorithm and compare them with the values of the options obtained
using Monte Carlo methods. Appendices can be found at the end of this thesis.

2.2 The One-dimensional Case

Following Amaro de Matos et al. (2009) we obtain upper and lower bounds for the price of
a European option written on a stock S paying a discrete dividend of a fixed size D ≥ 0 at a
known time τ . We use the Piecewise lognormal model. The maturity of the option is T and
its strike is K. The risk free interest rate is r > 0. We will price an option at time t, where
t < τ < T .

For all t ∈ [0, T ]\{τ}, the underlying asset follows geometric Brownian motion dynamics

dSt = µStdt+ σStdWt, (2.2.1)

with µ > r and σ > 0 known constants and W a standard Brownian motion on a filtered

probability space
(

Ω,F , (Ft)t∈[0,T ]

)
which satisfies the usual conditions. The stock pays a

known discrete dividendD ≥ 0 at time τ , so Sτ = (Sτ− −D)+. We will use the notation EQ
t [· ]

as shorthand notation for EQ [ ·| Ft] which is the expectation under the unique martingale
measure Q, conditioned on the filtration Ft that is generated by the stochastic process (2.2.1).
Here, Q is the unique risk-neutral probability measure that is equivalent to the original real-
world probability measure P, and under which the discounted underlying asset price process
is a martingale.

We use V +(t, S) and V −(t, S) for the value of the option after and before the dividend
date, at times t ≥ τ and t ≤ τ respectively, for stock prices S ≥ 0. By a standard no-
arbitrage argument the price of an option cannot have a discontinuity at τ , so the price of
an option just after the dividend has been paid, V +(τ, Sτ ), must be exactly the same as
the price of the option just before the dividend payment, V −(τ, Sτ−), i.e. we must have
V −(τ, Sτ−) = V +(τ, Sτ ).

After the dividend date the option becomes an option on a non-dividend paying stock
that follows geometric Brownian motion and thus its price after the dividend date is given
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by the classical Black-Scholes formula for the price of a European option, i.e. V +(τ, Sτ ) =
BS (Sτ , K, r, σ, T − τ). By the no-arbitrage argument mentioned above this gives the price
of the option just before the dividend date V −(τ, Sτ ) = BS

(
(Sτ −D)+ , K, r, σ, T − τ

)
.

The price of the option at a time t before the dividend, for a stock price St, is then

V (t, St) = e−r(τ−t)EQ
t

[
V −(τ, Sτ−)

]
, t < τ (2.2.2)

with the function
V −(t, S) = BS

(
(S −D)+ , K, r, σ, T − t

)
. (2.2.3)

Definition 2.1. Convexity in Rn.
A function f : Rn → R is convex if

f(αx(1) + βx(2)) ≤ αf(x(1)) + βf(x(2)),

for all x(1), x(2) ∈ Rn and α, β ≥ 0, α + β = 1.

As remarked by Amaro de Matos et al. (2009), Theorem 2.2, the value of the derivative
at the dividend date is bounded from above:

V −(τ, S) ≤ V −u(τ, S), (2.2.4)

by convexity in R. Here V −u(τ, S), is a piecewise linear interpolation and extrapolation
function between the points (Si, V i) that are defined for i = 0, ...,M as

Si = D + i∆S, ∆S =
SM −D
M

, (2.2.5)

V i = V −(τ, Si),

and SM+1 = ∞, V M+1 = ∞. The parameter M gives the number of intervals [Si−1, Si)
formed by discretisation points and the last point of the discretisation is SM . Both M and
SM are input parameters for the method. We then set

V −u(τ, S) =
M∑
i=1

[
αi(S − Si) + V i

]
1{S∈[Si−1,Si)} +

[
(S − SM) + V M

]
1{S≥SM},

where the slopes of the piecewise linear function are ratios of differences, i.e.

αi =
V i − V i−1

Si − Si−1
, i = 1, ...,M (2.2.6)

and where in the last segment [SM ,∞) we have used the simple extrapolation of a linear
function with slope 1. This must be an upper bound in this region, because the convex
function V −(τ, S) in (2.2.3) is such that its derivative in S is always below 1. Thus, the line
with slope 1 starting from the point

(
SM , V M

)
must lie above the function itself in the region

[SM ,∞). By introducing more efficient notation all this can be merged together as

V −u(τ, S) =
M+1∑
i=1

[
αiS + ξi

]
1{S∈[Si−1,Si)}, (2.2.7)



2.2. THE ONE-DIMENSIONAL CASE 21

with
ξi = V i − αiSi, i = 1, ...,M, (2.2.8)

αM+1 = 1, ξM+1 = V M − SM .

Similarly, the value of the derivative at the dividend date is bounded from below:

V −(τ, S) ≥ V −l(τ, S), (2.2.9)

where V −l(τ, S), is defined as the piecewise linear interpolation and extrapolation function

on the mid-points of the segments defined above, i.e. on (Si−
1
2 , V i− 1

2 ). Here Si−
1
2 and V i− 1

2

are defined by (2.2.5) while the slopes βi−
1
2 in (Si−

1
2 , V i− 1

2 ) for this piecewise linear function
are

βi−
1
2 =

∂V −

∂S
(τ, Si−

1
2 ), i = 1, ...,M. (2.2.10)

The partial derivative with respect to the underlying S for a European call option (known
as an option’s delta) is

∂BS (S, K, r, σ, T − t)
∂S

= N

(
ln
(
S
K

)
+
(
r + 1

2
σ2
)

(T − t)
σ
√
T − t

)
(2.2.11)

for the Black-Scholes model, with N the standard Gaussian cumulative distribution function.

We define

V −l(τ, S) =
M∑
i=1

[
βi−

1
2 (S − Si−

1
2 ) + V i− 1

2

]
1{S∈[Si−1,Si)} +

[
S −D −Ke−r(T−τ)

]
1{S≥SM},

where the bound for the last segment is obtained from the fact that the Black-Scholes price
of a European call option is bounded from below by1

BS (S, K, r, σ, T − t) ≥ S −Ke−r(T−t), (2.2.12)

and thus, by (2.2.3),

V −(t, S) ≥ (S −D)+ −Ke−r(T−t) ≥ S −D −Ke−r(T−t).

Again, by defining auxiliary variables χi−
1
2 , we obtain the expression

V −l(τ, S) =
M+1∑
i=1

[
βi−

1
2S + χi−

1
2

]
1{S∈[Si−1,Si)}, (2.2.13)

with
χi−

1
2 = V i− 1

2 − βi−
1
2Si−

1
2 , i = 1, ...M, (2.2.14)

βM+ 1
2 = 1, χM+ 1

2 = −D −Ke−r(T−τ).

1See e.g. Hull (2006), “Options, futures and other derivatives”, 8th edition, page 219.
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So, from (2.2.2), (2.2.3), (2.2.4) and (2.2.7), we have for t < τ :

V (t, St) ≤ e−r(τ−t)
M+1∑
i=1

EQ
t

[(
αiSτ− + ξi

)
1{Sτ−∈[Si−1,Si)}

]
= e−r(τ−t)

M+1∑
i=1

[
αif i(t, St) + ξigi(t, St)

]
, (2.2.15)

where the functions f i and gi are defined for t < τ as

f i(t, St) = EQ
t

[
Sτ−1{Sτ−∈[Si−1,Si]}

]
= Ste

r(τ−t) [N (di)−N (di−1
)]
, (2.2.16)

gi(t, St) = EQ
t

[
1{Sτ−∈[Si−1,Si]}

]
= N

(
di + σ

√
τ − t

)
−N

(
di−1 + σ

√
τ − t

)
, (2.2.17)

with

di =
ln
(
Si

St

)
−
(
r + 1

2
σ2
)

(τ − t)

σ
√
τ − t

,

and N the standard normal cumulative distribution function.

Also, from (2.2.2), (2.2.3), (2.2.9) and (2.2.13) we have

V (t, St) ≥ e−r(τ−t)
M+1∑
i=1

EQ
t

[(
βi−

1
2Sτ− + χi−

1
2

)
1{Sτ−∈[Si−1,Si)}

]
= e−r(τ−t)

M+1∑
i=1

[
βi−

1
2f i(t, St) + χi−

1
2 gi(t, St)

]
, (2.2.18)

where the functions f i and gi are the same as above.

The result can now be summarised in the following proposition.

Proposition 2.1. At any time t < τ , the price of a European call option on the underlying
asset S with dynamics as specified by (2.2.1), has the following upper and lower bounds:

V (t, St) ≤ e−r(τ−t)
M+1∑
i=1

[
αif i(t, St) + ξigi(t, St)

]
,

V (t, St) ≥ e−r(τ−t)
M+1∑
i=1

[
βi−

1
2f i(t, St) + χi−

1
2 gi(t, St)

]
,

with coefficients αi, ξi, βi−
1
2 , χi−

1
2 and functions f i and gi as defined above.

The maximal error of the method, defined as the difference between the upper and lower
bound, will be

V −u(τ, S)− V −l(τ, S) ≤ 1

2

(
∆S

2

)2

max
u>0

∣∣∣∣∂2V −

∂S2
(τ, u)

∣∣∣∣+ h
(
SM
)
, (2.2.19)

for a function h which does not depend on ∆S, and which is such that lim
SM→∞

h
(
SM
)

= 0.
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Proof. The first part of the Proposition follows from (2.2.15) and (2.2.18), by construc-
tion, i.e. by definitions of the upper and lower bounds V −u(τ, S) and V −l(τ, S) in (2.2.7) and
(2.2.13).

The second part follows from a convergence analysis of our approximations. If we define
the maximal error as the difference between the upper and lower bounds, we will have the
following:

V −u(τ, S)− V −l(τ, S) ≤
M∑
i=1

max
S̃∈[Si−1,Si]

((
αi − βi−

1
2

)
S̃ + V i − V i− 1

2 − αiSi + βi−
1
2Si−

1
2

)
1{S∈[Si−1,Si)}

+
(
VM − SM +D +Ke−r(T−τ)

)
1{S≥SM}. (2.2.20)

We have a linear function in each interval [Si−1, Si] and since optimal values for a linear
function always equal the value at one of the end points we have

V −u(τ, S)− V −l(τ, S) ≤
M∑
i=1

max

 V i−1 − V i− 1
2 − βi− 1

2

(
Si−1 − Si− 1

2

)
,

V i − V i− 1
2 − βi− 1

2

(
Si − Si− 1

2

)  1{S∈[Si−1,Si)}

+
(
V M − SM +D +Ke−r(T−τ)

)
1{S≥SM}. (2.2.21)

Recalling that βi−
1
2 = ∂V −(τ,Si−

1
2 )

∂S
we can recognise the arguments of the max function to

be the first terms in a Taylor series expansion of the function S → V −(τ, S) around Si−
1
2 ,

evaluated at S = Si−1 and S = Si. By considering Lagrange’s form of the remainder R1 of
the Taylor’s series expansion we have

V i−1−V i− 1
2−βi−

1
2

(
Si−1 − Si−

1
2

)
= R1(Si−1) =

1

2

∂2V −(τ, ki)

∂S2

(
Si−1 − Si−

1
2

)2
, ki ∈ (Si−1, Si−

1
2 );

V i − V i− 1
2 − βi−

1
2

(
Si − Si−

1
2

)
= R1(Si) =

1

2

∂2V −(τ, k̃i)

∂S2

(
Si − Si−

1
2

)2
, k̃i ∈ (Si−

1
2 , Si).

Due to the uniform discretisation (2.2.5), Si−Si− 1
2 = Si−

1
2 −Si = ∆S

2
, (2.2.21) becomes:

V −u(τ, S)− V −l(τ, S) ≤1

2

(
∆S

2

)2 M∑
i=1

max

{
∂2V −(τ, ki)

∂S2
,
∂2V −(τ, k̃i)

∂S2

}
1{S∈[Si−1,Si)}

+
(
V −(τ, SM)− SM +D +Ke−r(T−τ)

)
1{S≥SM}. (2.2.22)

Replacing the maximum by maxu>0

∣∣∣∂2V −∂S2 (τ, u)
∣∣∣ we find the expression for the maximal

error (2.2.19).
The last term h

(
SM
)

= V −(τ, SM)−
(
SM −D −Ke−r(T−τ)

)
→ 0 when SM →∞, since

the limit of the Black-Scholes price of the call option, given by (2.2.3), is

lim
SM→∞

[
BS
(
SM −D, K, r, σ, T − t

)
−
(
SM −D −Ke−r(T−t)

)]
= 0,

i.e. the option’s price reduces to its intrinsic value.2 �

2See e.g. Hull (2006), “Options, futures and other derivatives”, 8th edition, page 315.
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This result states that we are able to directly control the error introduced by the method
through a suitable choice of the size of ∆S or, equivalently, the number of discretisation
points M , and the value of SM . It will scale with the second order sensitivity ∂2V −

∂S2 (τ, S), the
option’s gamma, which is readily available from the Black-Scholes formula for the function
V −(τ, S) in definition (2.2.3). The second term is a constant error term which stems from
the choice of the truncation value SM and it can be made negligible by choosing a large SM .

In the last step of the proof above, equation (2.2.22), the uniform discretisation step size
∆S was used. There is no specific reason for taking a uniform mesh. The proof would also
go through with a non-uniform mesh, i.e. similar result would hold in terms of the maximal
mesh size step max (∆S). In that case the benefit would be the possibility of making a grid
denser where curvature (gamma) is large, and thus improving the performance.

The result just presented shows that both bounds converge to the true option price (2.2.2)
which, according to the standard option pricing theory, guarantees that the model is arbitrage
free.

2.3 The Two-dimensional Case

We will extend the technique developed in the previous section for the option written on a
single stock paying a discrete dividend, to a bivariate option with maturity T written on two
correlated underlying stocks A and B. We therefore define for all t ∈ [0, T ]\{τ}:

dAt = µAAtdt+ σAAtdW
A
t ,

dBt = µBBtd+ σBBtdW
B
t , (2.3.1)

d
〈
WA,WB

〉
= ρdt,

with, as before, µA > r and µB > r known rates of return and σA > 0 and σB > 0 known

volatilities. The
(
WA,WB

)
are correlated Brownian motions on

(
Ω,F , (Ft)t∈[0,T ]

)
. The

stocks pay discrete dividends of known sizes DA and DB, respectively, at a known common
time τ , so Aτ = (Aτ− −DA)+ and Bτ = (Bτ− −DB)+.

2.3.1 The Non-dividend Paying Case

Let us first describe some standard European options on two stocks with strike K and
maturity T . Possible payoffs V (T,AT , BT ) of such options at the maturity time T > t are

• a call on the maximum of the two assets: (max(AT , BT )−K)+,

• a call on the minimum of the two assets: (min(AT , BT )−K)+,

• a put on the maximum of the two assets: (K −max(AT , BT ))+,

• a put on the minimum of the two assets: (K −min(AT , BT ))+.
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These options were priced by Stulz (1982) and Ouwehand and West (2006) for the case
without dividends. Stulz (1982) obtains a bivariate density for the minimum of the two
assets and derives a closed form solution for the price of a call on the minimum option by
direct integration. The paper also states and proves put-call/min-max parity relations which
allows us to use this result to price the other three types of options as well.

Ouwehand and West (2006) price both call-on-max and call-on-min options written on
any number of underlyings (which makes them multivariate or so-called rainbow options),
by using one of the assets as a numeraire. Their work shows how we can derive an analytical
formula for the price of a call on the maximum option directly, which we are going to use
in the rest of this chapter. A requirement to apply our method is that the option price is
both convex and non-decreasing in the stock prices everywhere, and we will see that this is
satisfied for that case.

We use the notation N2(·, · ; ρ) for the bivariate standard normal cumulative distribution
function with correlation coefficient ρ, i.e.

N2(a, b; ρ) =
1

2π
√

1− ρ2

aˆ

−∞

bˆ

−∞

e
−x

2−2ρxy+y2

2(1−ρ2) dy dx. (2.3.2)

and when the correlation parameter ρ is fixed, we also use the notation N2(a, b).

Lemma 2.1. (Ouwehand and West, 2006) The bivariate European call on the maximum op-
tion with strike K and maturity T , i.e. the option with payoff V (T,A,B) = (max(A,B)−K)+,
written on the (non-dividend paying) underlying assets A and B following geometric Brown-
ian motion dynamics given by (2.3.1), at time t < T has a price given by

OW (At, Bt, K, r, σA, σB, ρ, T − t) = AtN2 (c̃A, cA; ρA) +BtN2 (c̃B, cB; ρB) (2.3.3)

−Ke−r(T−t)
(

1−N2

(
−cA + σA

√
T − t ,−cB + σB

√
T − t ; ρ

))
,

with

cA =
ln
(
At
K

)
+
(
r + 1

2
σ2
A

)
(T − t)

σA
√
T − t

, cB =
ln
(
Bt
K

)
+
(
r + 1

2
σ2
B

)
(T − t)

σB
√
T − t

,

and

c̃A =
ln
(
At
Bt

)
+ 1

2
σ2 (T − t)

σ
√
T − t

, c̃B =
ln
(
Bt
At

)
+ 1

2
σ2 (T − t)

σ
√
T − t

,

where

σ =
√
σ2
A − 2ρσAσB + σ2

B, ρA =
σA − ρσB

σ
, ρB =

σB − ρσA
σ

.

An example of call-on-max prices as a function of underlying asset prices A and B (for
the parameter values K = 100, r = 3%, σA = 0.2, σB = 0.3, ρ = 0.5, T = 1, t = 0.5) is
shown in Figure 2.1.
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Figure 2.1: Price of a call on maximum option as a function of the two underlying assets.

Properties of the call on the maximum

As we can see, the price of the European call on the maximum option given by
OW (At, Bt, K, r, σA, σB, ρ, T − t) in Lemma 2.1 is a convex and non-decreasing function
of At and Bt. We now prove this property rigorously by showing it is inherited from the
convexity and monotonicity of the payoff at maturity T .

Let r, σA, σB and ρ be given and also fix the strike K and time of maturity T. Given the
dynamics of the underlying assets (2.3.1), according to standard no arbitrage pricing theory,
the price OW (At, Bt, K, r, σA, σB, ρ, T − t) ≡ V (t, At, Bt) equals the following expectation:

V (t, At, Bt) = e−r(T−t)EQ
t [V (T, AT , BT )] ,

with the payoff V (T,AT , BT ) = (max(AT , BT )−K)+ ≡ f(AT , BT ). More generally, given a
convex, non-decreasing and non-negative payoff function f(AT , BT ), the solution V (t, At, Bt)
is convex and non-decreasing in (At, Bt) as well, which we are going to show below.

Theorem 2.1. Let f : R2 → R, be a non-negative and convex payoff function for an option
with price function V (t, At, Bt) = e−r(T−t)EQ

t [f(AT , BT )] . Then, for any fixed t < T , the
solution V (t, At, Bt) is also convex, in (At, Bt).

Furthermore, if f is non-decreasing in both its arguments, this also holds for (At, Bt) →
V (t, At, Bt), for any fixed t < T .

Proof. From the convexity (Definition 2.1) of f , we have that its Hessian

Hf(x,y) =

[
∂2f(x,y)
∂x2

∂2f(x,y)
∂x∂y

∂2f(x,y)
∂y∂x

∂2f(x,y)
∂y2

]
≡
[
fxx(x, y) fxy(x, y)
fyx(x, y) fyy(x, y)

]
,
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is positive semidefinite, i.e. all principal minors3 of this matrix are non-negative:

fxx(x, y) ≥ 0, fyy(x, y) ≥ 0, det
(
Hf(x,y)

)
≥ 0. (2.3.4)

The solutions of the SDEs for the geometric Brownian motion processes (2.3.1), at time
T , under the risk neutral measure Q, are

AT = Ate
(r− 1

2
σ2
A)(T−t)+σA(WQ,A

T −WQ,A
t ),

BT = Bte
(r− 1

2
σ2
B)(T−t)+σB(WQ,B

T −WQ,B
t ),

where the Brownian motion increments WQ,A
T − WQ,A

t and WQ,B
T − WQ,B

t are correlated
normally distributed random variables with zero mean, variance T − t, and correlation ρ.
This can thus be expressed as

AT = AtRA, BT = BtRB, (2.3.5)

RA = e(r−
1
2
σ2
A)(T−t)+σA

√
T−t ZA ,

RB = e(
r− 1

2
σ2
B)(T−t)+σB

√
T−t

(
ρZA+
√

1−ρ2 ZB
)
,

where ZA and ZB are independent standard normal variables, and where the relative returns
RA and RB do not depend on At and Bt. This means that our solution to the option pricing
problem is now

V (t, At, Bt) = e−r(T−t)
ˆ

R

ˆ

R

f (AtRA, BtRB)
e−

1
2
z2A−

1
2
z2B

2π
dzA dzB. (2.3.6)

In order to show convexity of (2.3.6) in (At, Bt), we must show that its Hessian is positive
semidefinite as well. The Hessian is

HV (t,At,Bt) =

[
∂2V (t,At,Bt)

∂A2
t

∂2V (t,At,Bt)
∂At∂Bt

∂2V (t,At,Bt)
∂Bt∂At

∂2V (t,At,Bt)

∂B2
t

]

= e−r(T−t)
ˆ

R

ˆ

R

[
R2
Afxx (AtRA, BtRB) RARBfxy (AtRA, BtRB)

RBRAfyx (AtRA, BtRB) R2
B fyy (AtRA, BtRB)

]
e−

1
2
z2A−

1
2
z2B

2π
dzAdzB,

and hence, using (2.3.4), its determinant satisfies

det
(
HV (t,At,Bt)

)
= e−r(T−t)

ˆ

R

ˆ

R

R2
AR

2
B det

(
Hf(AtRA, BtRB)

) e− 1
2
z2A−

1
2
z2B

2π
dzA dzB ≥ 0,

as well as

∂2V (t, At, Bt)

∂A2
t

= e−r(T−t)
ˆ

R

ˆ

R

R2
A fxx (AtRA, BtRB)

e−
1
2
z2A−

1
2
z2B

2π
dzA dzB ≥ 0,

3The k-th principal minors are determinants formed from an n-by-n matrix by deleting any n − k rows
and the corresponding columns.
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∂2V (t, At, Bt)

∂B2
t

= e−r(T−t)
ˆ

R

ˆ

R

R2
B fyy (AtRA, BtRB)

e−
1
2
z2A−

1
2
z2B

2π
dzA dzB ≥ 0,

which proves the convexity.4

The second part of the theorem follows if we apply the same procedure but instead
consider the first order derivatives in (2.3.6) and the fact that f(x, y) is non-decreasing:

fx(x, y) ≡ ∂f(x,y)
∂x
≥ 0 and fy(x, y) ≡ ∂f(x,y)

∂y
≥ 0. Then we also have

∂V (t, At, Bt)

∂At
= e−r(T−t)

ˆ

R

ˆ

R

RA fx (AtRA, BtRB)
e−

1
2
z2A−

1
2
z2B

2π
dzA dzB ≥ 0,

∂V (t, At, Bt)

∂Bt

= e−r(T−t)
ˆ

R

ˆ

R

RB fy (AtRA, BtRB)
e−

1
2
z2A−

1
2
z2B

2π
dzA dzB ≥ 0,

since both RA and RB are positive functions, as given in (2.3.5). This proves the required
monotonicity. �

Corollary 2.1. A bivariate European call on the maximum satisfies

OW (At, Bt, K, r, σA, σB, ρ, T − t) ≥ At −Ke−r(T−t),

OW (At, Bt, K, r, σA, σB, ρ, T − t) ≥ Bt −Ke−r(T−t).

Furthermore,

lim
At→∞

OW (At, Bt, K, r, σA, σB, ρ, T − t)
At −Ke−r(T−t)

= 1, (2.3.7)

for fixed Bt and other parameters, and

lim
Bt→∞

OW (At, Bt, K, r, σA, σB, ρ, T − t)
Bt −Ke−r(T−t)

= 1, (2.3.8)

for fixed At and other parameters.
Also

∂OW (A, B, K, r, σA, σB, ρ, T − t)
∂A

≤ 1,
∂OW (A, B, K, r, σA, σB, ρ, T − t)

∂B
≤ 1,

(2.3.9)
for any A, B ≥ 0.

Proof. Consider buying the European call on the maximum option with strike K and
maturity T , with price OW (At, Bt, K, r, σA, σB, ρ, T − t) ≡ V Call−2D

max (At, Bt), at time t,
versus buying the portfolio Π that consists of the following:

• Any of the two underlying assets, say At,

• A borrowed amount Ke−r(T−t) in cash.

4The same approach can be adopted to show convexity in the one dimensional case, used in Section 2.2.
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The cost of this portfolio would be Π(t) = At − Ke−r(T−t) and its value at time T will be
exactly Π(T ) = AT − K. Note that it can also be negative, signifying a loss. For the call
option the following outcomes are possible:

1. AT > BT > K or AT > K > BT ⇒ V Call−2D
max (AT , BT ) = AT −K = Π(T ),

2. BT > AT > K or BT > K > AT ⇒ V Call−2D
max (AT , BT ) = BT −K > Π(T ),

3. K > AT > BT or K > BT > AT ⇒ V Call−2D
max (AT , BT ) = 0 > Π(T ).

Therefore, due to a no-arbitrage argument the value of the option at time t must be
V Call−2D
max (At, Bt) ≥ At −Ke−r(T−t). The same conclusion follows if we choose to hold asset
Bt instead.

For very large values of one of the underlying assets, while the other is kept fixed, the op-
tion value behaves like the classical (univariate) call option written only on that asset, and the
option’s price reduces to only its intrinsic value. This follows directly from (2.3.3), by noting
that cA, c̃A →∞ and c̃B → −∞ when At →∞. From the definition of the bivariate standard
normal distribution (2.3.2) we conclude that factor after At becomes N2 (∞,∞; ρA) = 1 and
the other two probability terms both become N2 (−∞, · ; ·) = 0 which gives (2.3.7). The
derivation is analogous for the case Bt →∞, giving (2.3.8).

Using L’Hôpital rule on (2.3.7) and (2.3.8) implies that the slope of the function in the At
direction, when At →∞, for fixed Bt, and the slope in the Bt direction, when Bt →∞, for
fixed At, equals 1. By convexity, shown in Theorem 2.1, those slopes are increasing functions.
Hence, they must approach 1 from below, which completes the proof, i.e. both derivatives
are always smaller than 1 for finite values of At and Bt.

5 �

However, on the diagonal, i.e. when At = Bt, we find different behaviour, which is
described in the following corollary.

Corollary 2.2. In the case of equal asset values At = Bt, the bivariate European call on the
maximum option price takes the following form:

OW (At, At, K, r, σA, σB, ρ, T − t) = At

[
N2

(
1

2
σ
√
T − t, cA; ρA

)
+N2

(
1

2
σ
√
T − t, cB; ρB

)]
−Ke−r(T−t)

(
1−N2

(
−cA + σA

√
T − t ,−cB + σB

√
T − t ; ρ

))
. (2.3.10)

Furthermore, in the limit At = Bt →∞, it degenerates to

lim
At→∞

OW (At, At, K, r, σA, σB, ρ, T − t)
2AtN

(
1
2
σ
√
T − t

)
−Ke−r(T−t)

= 1.

Proof. From (2.3.3), we see that both c̃A and c̃B equal 1
2
σ
√
T − t and (2.3.10) follows

directly. For the second part, we have that cA, cB → ∞ when At, Bt → ∞, and thus
the function becomes 2AtN2

(
1
2
σ
√
T − t,∞; ρA

)
−Ke−r(T−t) ( 1−N2 (−∞,−∞; ρ) ) . From

5The exact derivation of the first order derivatives ∂OW
∂A and ∂OW

∂B (i.e. the call-on-max option’s deltas)
and their plots (Figure A.2) are given in Appendix A.2.
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definition (2.3.2) we can conclude that N2 (−∞ ,−∞ ; ·) = 0 and N2

(
1
2
σ
√
T − t,∞; ρA

)
=

N
(

1
2
σ
√
T − t

)
, which completes the proof. �

By L’Hôpital’s rule, the slopes ∂OW
∂A

and ∂OW
∂B

of the function on the diagonal converge to

the value of 2N
(

1
2
σ
√
T − t

)
in the limit when At = Bt →∞.

The other bivariate option types

Prices for the other option types can be obtained from the following relationships. The price
for a call-on-min with strike K is connected to the call-on-max via the max-min parity of
Stulz (1982):

V Call
min (t, A, B, K) = V Call(t, A, K) + V Call(t, B, K)− V Call

max (t, A, B, K), (2.3.11)

which follows easily from the linear relationship at maturity. Here

V Call
max (t, A, B, K) = OW (A, B, K, r, σA, σB, ρ, T − t)

and

V Call(t, A, K) = BS (A, K, r, σA, T − t)

are the bivariate and univariate call options with the same strike and maturity.

Figure 2.2: Price of a call on minimum option as a function of the two underlying assets.
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Figure 2.3: Price of a put on maximum option as a function of the two underlying assets.

The price for a put-on-max with strike K can be derived from the price for the call-on-max
via put-call parity:

V Put
max(t, A, B, K) = e−r(T−t)K − V Call

max (t, A, B, 0) + V Call
max (t, A, B, K), (2.3.12)

and a similar relationship connects the prices of the put-on-min and the call-on-min:

V Put
min (t, A, B, K) = e−r(T−t)K − V Call

min (t, A, B, 0) + V Call
min (t, A, B, K). (2.3.13)

In the formulae above we use the call-on-max with zero strike V Call
max (t, A, B, 0), which can be

found by taking the limit K → 0 in (2.3.3), and call-on-min with zero strike V Call
min (t, A, B, 0),

which can be determined from the price of the option to exchange one asset for another at
maturity, i.e. the payoff V Call

Margrabe(T,AT , BT ) = (AT −BT )+, priced by Margrabe (1978), in
the following way:

V Call
min (t, A, B, 0) = A− V Call

Margrabe(t, A, B).

The prices of these other types of bivariate options, as functions of underlying asset prices
A and B are illustrated in Figures 2.2, 2.3 and 2.4, respectively (for the same values of the
parameters as specified above). As is obvious from the figures, and also from the payoff
formulae at the beginning of this subsection, the price for a call on the minimum and for a
put on the maximum are concave functions of the underlying stock prices, and therefore not
suitable for direct application of our method. A put on the minimum option is convex but
decreasing, which leaves us with a call on the maximum as the only candidate to apply our
method, since it is both convex and increasing in its two arguments.
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Figure 2.4: Price of a put on minimum option as a function of the two underlying assets.

2.3.2 The Dividend Paying Case

Since we now have an analytical and convex solution for the European call on the maximum
of underlying assets that do not pay dividends, we can use it to price the same option but
written on underlying assets that do pay discrete dividends. The upper and lower bounds
needed to do this are given in the following proposition.

Proposition 2.2. At time t, (t < τ < T ), the price of a bivariate European call on the
maximum, with strike K and maturity T , written on the underlying assets A and B as
specified above by (2.3.1), admits the following upper and lower bounds:

V (t, At, Bt) ≤ e−r(τ−t)
MA+1∑
i=1

MB+1∑
j=1

[
αi,jA f

i,j
A (t, At, Bt) + αi,jB f

i,j
B (t, At, Bt) + ξi,jgi,j(t, At, Bt)

]
,

V (t, At, Bt) ≥ e−r(τ−t)
MA+1∑
i=1

MB+1∑
j=1

[
β
i− 1

2
,j− 1

2
A f i,jA (t, At, Bt) + β

i− 1
2
,j− 1

2
B f i,jB (t, At, Bt)

+χi−
1
2
,j− 1

2 gi,j(t, At, Bt)
]
,

with coefficients αi,jA and αi,jB , ξ
i,j, β

i− 1
2
,j− 1

2
A and β

i− 1
2
,j− 1

2
B , χi−

1
2
,j− 1

2 defined below by (2.3.18),
(2.3.20), (2.3.22) and (2.3.24), respectively, and functions f i,jA , f i,jB and gi,j defined by
(2.3.27), (2.3.28) and (2.3.29). The discretisation grid is given by (2.3.17) and MA, MB,
AMAand BMB are input parameters of the method.
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Proof. The price of this option at time t < τ < T is

V (t, At, Bt) = e−r(τ−t)EQ
t

[
V −(τ, Aτ−, Bτ−)

]
, (2.3.14)

with

V −(t, A,B) = OW
(
(A−DA)+ , (B −DB)+ , K, r, σA, σB, ρ, T − t

)
, (2.3.15)

where OW (A, B, K, r, σA, σB, ρ, T − t) denotes the price of a non-dividend paying bivari-
ate call on maximum option which is given by (2.3.3). The value of the derivative is bounded
from above:

V −(τ, A,B) ≤ V −u(τ, A,B), (2.3.16)

where V −u(τ, A,B), is an upper bound, defined as a 2D piecewise linear interpolation and
extrapolation. To specify V −u(τ, A,B) we use points (Ai, Bj, V i,j) which are defined as

Ai = DA + i∆A, ∆A =
AMA −DA

MA

, i = 0, ...,MA; (2.3.17)

Bj = DB + j∆B, ∆B =
BMB −DB

MB

, j = 0, ...,MB;

V i,j = V −(τ, Ai, Bj),

with AMA −DA = BMB −DB, and AMA+1 = BMB+1 = ∞. We ensure that V −u(τ, A,B) is
indeed an upper bound since in each discretisation region [Ai−1, Ai]× [Bj−1, Bj] it is defined
as a plane through three points: (Ai, Bj, V i,j), (Ai, Bj−1, V i,j−1) and (Ai−1, Bj, V i−1,j), an
example of which is depicted in Figure 2.5.

Figure 2.5: A plane through three upper points of the section of the surface V −(τ, A,B).
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Since Theorem 2.1 shows that the function OW (A, B, K, r, σA, σB, ρ, T − τ) is both
convex and increasing in A and B, and from equation (2.3.15) and the fact that (A−DA)+

and (B −DB)+are convex and non-decreasing functions we conclude that V −(τ, A,B) must
be convex and increasing in A and B as well, and thus this plane must always lie above the
function surface itself. Thus, the slopes of the 2D piecewise linear function V −u(τ, A,B), in
both directions are defined as

αi,jA =
V i,j − V i−1,j

Ai − Ai−1
, i = 1, ...,MA, j = 1, ...,MB;

αMA+1,j
A = 1, j = 1, ...,MB;

αi,MB+1
A = αi,MB

A , i = 1, ...,MA; (2.3.18)

αi,jB =
V i,j − V i,j−1

Bj −Bj−1
, i = 1, ...,MA, j = 1, ...,MB;

αi,MB+1
B = 1, i = 1, ...,MA;

αMA+1,j
B = αMA,j

B , j = 1, ...,MB;

αMA+1,MB+1
A = αMA+1,MB+1

B = 2N

(
1

2
σ
√
T − τ

)
.

Hence, by considering only segments inside the discretised space (i.e. for the summation
indices up to MA and MB), we have

V −uinside(τ, A,B) =

MA∑
i=1

MB∑
j=1

[
αi,jA

(
A− Ai

)
+ αi,jB

(
B −Bj

)
+ V i,j

]
1{A∈[Ai−1,Ai)}1{B∈[Bj−1,Bj)}.

In the space outside of the region
[
DA, A

MA
)
×
[
DB, B

MB
)
, i.e. for indices MA + 1 and

MB + 1, we take the following planes (implied by the definitions of alphas above).
In the regions

[
AMA , ∞

)
×
[
DB, B

MB
)

and
[
DA, A

MA
)
×
[
BMB , ∞

)
we take a simple

extension of the two-dimensional piecewise linear function from the edges of the discretisation
region, with corresponding slopes equal to 1. As before, in the one-dimensional case, this
must be an upper bound in those regions, since, by Corollary 2.1, the derivatives of the
option’s value, for large A, with fixed B, and for large B, with fixed A, asymptotically
approach the value of 1 in the corresponding direction. Therefore, the option’s value surface
always has gradients in both directions less than 1, and if we take linear extensions with
gradient 1 in the appropriate direction, starting from points (AMA , Bj), j = 1, ...MB, and
(Ai, BMB), i = 1, ...MA on the surface, those extensions must lie above the function surface
itself.

In the corner region
[
AMA , ∞

)
×
[
BMB , ∞

)
, we take the plane with slopes in both

directions equal to 2N
(

1
2
σ
√
T − τ

)
, the quantity which appears in Corollary 2.2, where

σ =
√
σ2
A − 2ρσAσB + σ2

B, as defined before in (2.3.3). Since 1
2
σ
√
T − τ ≥ 0 and N is the

standard normal cumulative distribution function, we have 0.5 ≤ N
(

1
2
σ
√
T − τ

)
≤ 1, which
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means that those slopes are always at least 1. This plane, constructed such that is starts from
the point (AMA , BMB) on the surface, must thus rise faster than the surface of the function
V −(τ, A,B) and is therefore always above it.6 This is because the gradients of the function
itself, the option’s deltas, are never above 1, as proven in Corollary 2.1.

So finally, all this can be merged together in a single upper bound expression:

V −u(τ, A,B) =

MA+1∑
i=1

MB+1∑
j=1

[
αi,jA A+ αi,jB B + ξi,j

]
1{A∈[Ai−1,Ai)}1{B∈[Bj−1,Bj)}, (2.3.19)

with
ξi,j = V i,j − αi,jA A

i − αi,jB B
j, i = 1, ...,MA, j = 1, ...,MB (2.3.20)

and
ξMA+1,j = V MA,j − AMA − αMA,j

B Bj, j = 1, ...,MB;

ξi,MB+1 = V i,MB − αi,MB

A Ai −BMB , i = 1, ...,MA;

ξMA+1,MB+1 = V MA,MB − 2N

(
1

2
σ
√
T − τ

)
AMA − 2N

(
1

2
σ
√
T − τ

)
BMB .

Similarly, from the convexity proven in Theorem 2.1, the value of the derivative can be
bounded from below:

V −(τ, A,B) ≥ V −l(τ, A,B), (2.3.21)

where V −l(τ, A,B), is defined as the piecewise linear interpolation and extrapolation in
two dimensions on mid-points of the discretisation segments defined above, i.e. at points
(Ai−

1
2 , Bj− 1

2 , V i− 1
2
,j− 1

2 ). In each segment [Ai−1, Ai]× [Bj−1, Bj], the lower bound is a plane

tangent to the surface V −(τ, A,B) at the point (Ai−
1
2 , Bj− 1

2 , V i− 1
2
,j− 1

2 ) and due to the con-
vexity it will lie below the surface, as illustrated in Figure 2.6. This follows from the following
known property of convex functions:7

Theorem 2.2. Suppose that a convex function f , (as defined as above in Definition 2.1) is
differentiable (i.e. its gradient ∇f exists at each point in the function’s domain Rn). Then,
the inequality

f(y) ≥ f(x) +∇f(x)T (y − x)

holds ∀x, y ∈ Rn.

The function on the right hand side of the inequality is, of course, a first order Taylor
approximation of f near x. The inequality thus states that for a convex function, the first
order Taylor approximation in a point is in fact a global lower bound for the function. It
follows that in two dimensions the tangent plane at any point x must always lie below the
function itself.

6It rises even higher than the other “strip” surfaces in the edge regions just described above (for which
the slopes are exactly 1).

7See e.g. “Complex optimization” by Boyd and Vandenberghe (2004), page 69, Chapter 3.1.3
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Figure 2.6: A plane through the middle point of the section of the surface V −(τ, A,B).

The slopes (gradients) of this piecewise linear function V −l(τ, A,B) at these points are

β
i− 1

2
,j− 1

2
A =

∂V −

∂A
(τ , Ai−

1
2 , Bj− 1

2 ), i = 1, ...,MA, j = 1, ...,MB;

β
MA+ 1

2
,j− 1

2
A = β

MA− 1
2
,j− 1

2
A , j = 1, ...,MB + 1;

β
i− 1

2
,MB+ 1

2
A = β

i− 1
2
,MB− 1

2
A , i = 1, ...,MA + 1. (2.3.22)

β
i− 1

2
,j− 1

2
B =

∂V −

∂B
(τ , Ai−

1
2 , Bj− 1

2 ), i = 1, ...,MA, j = 1, ...,MB;

β
i− 1

2
,MB+ 1

2
B = β

i− 1
2
,MB− 1

2
B , i = 1, ...,MA + 1;

β
MA+ 1

2
,j− 1

2
B = β

MA− 1
2
,j− 1

2
B , j = 1, ...,MB + 1.

The partial derivatives ∂V −

∂A
and ∂V −

∂B
(i.e. the call-on-max option’s deltas) for the

Ouwehand-West formula (2.3.3) are given in Appendix A.2. For segments inside the dis-
cretised space (i.e. for the summation indices up to MA and MB), we have

V −linside(τ, A,B) =

MA∑
i=1

MB∑
j=1

[
β
i− 1

2
,j− 1

2
A

(
A− Ai−

1
2

)
+ β

i− 1
2
,j− 1

2
B

(
B −Bj− 1

2

)
+ V i− 1

2
,j− 1

2

]
·1{A∈[Ai−1,Ai)}1{B∈[Bj−1,Bj)}.
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For the values in the space outside
[
DA, A

MB
)
×
[
DB, B

MB
)
, i.e. for indices MA + 1 and

MB + 1, we take the extension of the planes that are tangent to V in points (AMA− 1
2 , Bj− 1

2 ),

j = 1, ...MB and (Ai−
1
2 , BMB− 1

2 ), i = 1, ...MA. That this indeed generates the lower bound
follows directly from Theorem 2.2.

We can merge all this in a single expression:

V −l(τ, A,B) =

MA+1∑
i=1

MB+1∑
j=1

[
β
i− 1

2
,j− 1

2
A A+ β

i− 1
2
,j− 1

2
B B + χi−

1
2
,j− 1

2

]
1{A∈[Ai−1,Ai)}1{B∈[Bj−1,Bj)},

(2.3.23)

with

χi−
1
2
,j− 1

2 = V i− 1
2
,j− 1

2 − βi−
1
2
,j− 1

2
A Ai−

1
2 − βi−

1
2
,j− 1

2
B Bj− 1

2 , i = 1, ...,MA, j = 1, ...,MB

and

χMA+ 1
2
,j− 1

2 = χMA− 1
2
,j− 1

2 , j = 1, ...,MB + 1; (2.3.24)

χi−
1
2
,MB+ 1

2 = χi−
1
2
,MB− 1

2 , i = 1, ...,MA + 1.

So, from (2.3.14), (2.3.15), (2.3.16) and (2.3.19) we have

V (t, At, Bt) ≤ e−r(τ−t)
MA+1∑
i=1

MB+1∑
j=1

EQ
t

[(
αi,jA Aτ− + αi,jB Bτ− + ξi,j

)
1{Aτ−∈[Ai−1,Ai)}1{Bτ−∈[Bj−1,Bj)}

]
= e−r(τ−t)

MA+1∑
i=1

MB+1∑
j=1

[
αi,jA f

i,j
A (t, At, Bt) + αi,jB f

i,j
B (t, At, Bt) + ξi,jgi,j(t, At, Bt)

]
,

(2.3.25)

and from (2.3.14), (2.3.15), (2.3.21) and (2.3.23) we have

V (t, At, Bt) ≥ e−r(τ−t)
MA+1∑
i=1

MB+1∑
j=1

EQ
t

[(
β
i− 1

2
,j− 1

2
A Aτ− + β

i− 1
2
,j− 1

2
B Bτ− + χi−

1
2
,j− 1

2

)
·1{Aτ−∈[Ai−1,Ai)}1{Bτ−∈[Bj−1,Bj)}

]
= e−r(τ−t)

MA+1∑
i=1

MB+1∑
j=1

[
β
i− 1

2
,j− 1

2
A f i,jA (t, At, Bt) + β

i− 1
2
,j− 1

2
B f i,jB (t, At, Bt)

+χi−
1
2
,j− 1

2 gi,j(t, At, Bt)
]
, (2.3.26)
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if the new functions f i,jA , f i,jB and gi,j are defined8 as

f i,jA (t, At, Bt) = EQ
t

[
Aτ−1{Aτ−∈[Ai−1,Ai)}1{Bτ−∈[Bj−1,Bj)}

]
(2.3.27)

= Ate
r(τ−t)

[
N2

(
diA, d̃

j
B

)
−N2

(
di−1
A , d̃jB

)
−N2

(
diA, d̃

j−1
B

)
+N2

(
di−1
A , d̃j−1

B

)]
,

f i,jB (t, At, Bt) = EQ
t

[
Bτ−1{Aτ−∈[Ai−1,Ai)}1{Bτ−∈[Bj−1,Bj)}

]
(2.3.28)

= Bte
r(τ−t)

[
N2

(
d̃iA, d

j
B

)
−N2

(
d̃i−1
A , djB

)
−N2

(
d̃iA, d

j−1
B

)
+N2

(
d̃i−1
A , dj−1

B

)]
,

gi,j(t, At, Bt) = EQ
t

[
1{Aτ−∈[Ai−1,Ai)}1{Bτ−∈[Bj−1,Bj)}

]
(2.3.29)

= N2

(
diA + σA

√
τ − t, djB + σB

√
τ − t

)
−N2

(
di−1
A + σA

√
τ − t, djB + σB

√
τ − t

)
−N2

(
diA + σA

√
τ − t, dj−1

B + σB
√
τ − t

)
+N2

(
di−1
A + σA

√
τ − t, dj−1

B + σB
√
τ − t

)
,

where

diA =
ln
(
Ai

At

)
−
(
r + 1

2σ
2
A

)
(τ − t)

σA
√
τ − t

, djB =
ln
(
Bj

Bt

)
−
(
r + 1

2σ
2
B

)
(τ − t)

σB
√
τ − t

,

and

d̃iA =
ln
(
Ai

At

)
−
(
r − 1

2σ
2
A + ρσAσB

)
(τ − t)

σA
√
τ − t

, d̃jB =
ln
(
Bj

Bt

)
−
(
r − 1

2σ
2
B + ρσAσB

)
(τ − t)

σB
√
τ − t

.

�

Proposition 2.3. For the discretisation steps ∆A and ∆B, the difference between the bounds
satisfies9

∣∣∣V −u(τ,A,B)− V −l(τ,A,B)
∣∣∣ ≤3

2

(
max {∆A,∆B}

2

)2

max
uA,uB>0

{∣∣∣∣∂2V −

∂A2
(τ, uA, uB)

∣∣∣∣ ,
2

∣∣∣∣ ∂2V −

∂A∂B
(τ, uA, uB)

∣∣∣∣ , ∣∣∣∣∂2V −

∂B2
(τ, uA, uB)

∣∣∣∣} (2.3.30)

+ h
(
τ,A,B,AMA , BMB

)
,

where lim
AMA→∞, BMB→∞

EQ
t

[
h
(
τ, Aτ , Bτ , A

MA , BMB
)]

= 0, for all (Aτ , Bτ ) .

Therefore, the maximal error of the method to obtain the price V (t, At, Bt) of a bivariate
European call on maximum option, for t < τ , becomes proportional to (max {∆A,∆B})2,
when AMA , BMB →∞.

8The detailed derivations are given in Appendix A.1.
9Second order derivatives such as ∂2V −

∂A2 (τ,A,B) may not exist for certain values of (A,B) since V − may
have discontinuous first order derivatives in the dividend value point. However, the lefthand and righthand
second order derivatives always exist in these points and are bounded, so our derivations which are based on
boundedness of these second order derivatives will remain valid.
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Proof. If we define the absolute difference between the upper and lower bounds for
V −(τ, A,B), i.e. (2.3.19) minus (2.3.23), we will have the following :∣∣V −u(τ,A,B)− V −l(τ,A,B)

∣∣ ≤ (2.3.31)

MA+1∑
i=1

MB+1∑
j=1

max
Ã ∈ [Ai−1, Ai],

B̃ ∈ [Bj−1, Bj ]

∣∣∣(αi,jA − βi− 1
2 ,j−

1
2

A

)
Ã+

(
αi,jB − β

i− 1
2 ,j−

1
2

B

)
B̃ + ξi,j − χi− 1

2 ,j−
1
2

∣∣∣ 1{A∈[Ai−1,Ai)}
1{B∈[Bj−1,Bj)}

,

where

ξi,j − χi−
1
2
,j− 1

2 = V i,j − V i− 1
2
,j− 1

2 − αi,jA A
i − αi,jB B

j + β
i− 1

2
,j− 1

2
A Ai−

1
2 + β

i− 1
2
,j− 1

2
B Bj− 1

2 .

Since we consider a linear two-dimensional function in each region [Ai−1, Ai]× [Bj−1, Bj]
the maxima always occur at the value in one of the corner points so, by recalling the definition
of the alphas from (2.3.18), we obtain

∣∣∣V −u(τ, A,B)− V −l(τ, A,B)
∣∣∣ ≤ (2.3.32)

MA∑
i=1

MB∑
j=1

max



∣∣∣∣V i,j − V i− 1
2
,j− 1

2 − βi−
1
2
,j− 1

2
A

(
Ai −Ai−

1
2

)
− βi−

1
2
,j− 1

2
B

(
Bj −Bj−

1
2

)∣∣∣∣ ,∣∣∣∣V i−1,j − V i−
1
2
,j− 1

2 − βi−
1
2
,j− 1

2
A

(
Ai−1 −Ai−

1
2

)
− βi−

1
2
,j− 1

2
B

(
Bj −Bj−

1
2

)∣∣∣∣ ,∣∣∣∣V i,j−1 − V i−
1
2
,j− 1

2 − βi−
1
2
,j− 1

2
A

(
Ai −Ai−

1
2

)
− βi−

1
2
,j− 1

2
B

(
Bj−1 −Bj−

1
2

)∣∣∣∣ ,∣∣∣∣V i−1,j + V i,j−1 − V i,j − V i−
1
2
,j− 1

2 − βi−
1
2
,j− 1

2
A

(
Ai−1 −Ai−

1
2

)
− βi−

1
2
,j− 1

2
B

(
Bj−1 −Bj−

1
2

)∣∣∣∣


1{A∈[Ai−1,Ai)}
1{B∈[Bj−1,Bj)}

+

MA∑
i=1

max



∣∣∣∣V i,MB − V i− 1
2
,MB− 1

2 − βi−
1
2
,MB− 1

2
A

(
Ai −Ai−

1
2

)
−βi−

1
2
,MB− 1

2
B

(
BMB −BMB−

1
2

)
+

(
1− βi−

1
2
,MB− 1

2
B

)(
B −BMB

)∣∣∣∣ ,∣∣∣∣V i−1,MB − V i−
1
2
,MB− 1

2 − βi−
1
2
,MB− 1

2
A

(
Ai−1 −Ai−

1
2

)
−βi−

1
2
,MB− 1

2
B

(
BMB −BMB−

1
2

)
+

(
1− βi−

1
2
,MB− 1

2
B

)(
B −BMB

)∣∣∣∣


1{A∈[Ai−1,Ai)}

1{B≥BMB}

+

MB∑
j=1

max



∣∣∣∣VMA,j − VMA− 1
2
,j− 1

2 − βMA−
1
2
,j− 1

2
A

(
AMA −AMA−

1
2

)
−βMA−

1
2
,j− 1

2
B

(
Bj −Bj−

1
2

)
+

(
1− βMA−

1
2
,j− 1

2
A

)(
A−AMA

)∣∣∣∣ ,∣∣∣∣VMA,j−1 − VMA−
1
2
,j− 1

2 − βMA−
1
2
,j− 1

2
A

(
AMA −AMA−

1
2

)
−βMA−

1
2
,j− 1

2
B

(
Bj−1 −Bj−

1
2

)
+

(
1− βMA−

1
2
,j− 1

2
A

)(
A−AMA

)∣∣∣∣


1{A≥AMA}

1{B∈[Bj−1,Bj)}

+

∣∣∣∣VMA,MB − VMA− 1
2
,MB− 1

2 − βMA−
1
2
,MB− 1

2
A

(
AMA −AMA−

1
2

)
− βMA−

1
2
,MB− 1

2
B

(
BMB −BMB−

1
2

)
+

(
2N
(
1
2
σ
√
T − τ

)
− βMA−

1
2
,MB− 1

2
A

)(
A−AMA

)
+

(
2N
(
1
2
σ
√
T − τ

)
− βMA−

1
2
,MB− 1

2
B

)(
B −BMB

)∣∣∣∣ 1{A≥AMA}
1{B≥BMB}

.

Recalling that β
i− 1

2
,j− 1

2
A = ∂V −

∂A
(τ, Ai−

1
2 , Bj− 1

2 ) and β
i− 1

2
,j− 1

2
B = ∂V −

∂B
(τ, Ai−

1
2 , Bj− 1

2 ) we
recognise terms in the two-dimensional Taylor series expansion of the functions V i,j, V i−1,j

and V i,j−1 around (Ai−
1
2 , Bj− 1

2 ).
By considering Lagrange’s form of the remainder R1 of the two-dimensional Taylor series

expansion we have that there exist kiA ∈ (Ai−
1
2 , Ai), kjB ∈ (Bj− 1

2 , Bj), k̃iA ∈ (Ai−1, Ai−
1
2 ),
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k̃jB ∈ (Bj− 1
2 , Bj) and k̂iA ∈ (Ai−

1
2 , Ai), k̂jB ∈ (Bj−1, Bj− 1

2 ) such that

R1(Ai, Bj) = V i,j − V i− 1
2
,j− 1

2 − βi−
1
2
,j− 1

2
A

(
Ai −Ai−

1
2

)
− βi−

1
2
,j− 1

2
B

(
Bj −Bj− 1

2

)
=

1

2

∂2V −(τ, kiA, k
j
B)

∂A2

(
Ai −Ai−

1
2

)2
+
∂2V −(τ, kiA, k

j
B)

∂A∂B

(
Ai −Ai−

1
2

)(
Bj −Bj− 1

2

)
+

1

2

∂2V −(τ, kiA, k
j
B)

∂B2

(
Bj −Bj− 1

2

)2
,

R1(Ai−1, Bj) = V i−1,j − V i− 1
2
,j− 1

2 − βi−
1
2
,j− 1

2
A

(
Ai−1 −Ai−

1
2

)
− βi−

1
2
,j− 1

2
B

(
Bj −Bj− 1

2

)
=

1

2

∂2V −(τ, k̃iA, k̃
j
B)

∂A2

(
Ai−

1
2 −Ai−1

)2
+
∂2V −(τ, k̃iA, k̃

j
B)

∂A∂B

(
Ai−1 −Ai−

1
2

)(
Bj −Bj− 1

2

)
+

1

2

∂2V −(τ, k̃iA, k̃
j
B)

∂B2

(
Bj −Bj− 1

2

)2
, (2.3.33)

R1(Ai, Bj−1) = V i,j−1 − V i− 1
2
,j− 1

2 − βi−
1
2
,j− 1

2
A

(
Ai −Ai−

1
2

)
− βi−

1
2
,j− 1

2
B

(
Bj−1 −Bj− 1

2

)
=

1

2

∂2V −(τ, k̂iA, k̂
j
B)

∂A2

(
Ai −Ai−

1
2

)2
+
∂2V −(τ, k̂iA, k̂

j
B)

∂A∂B

(
Ai −Ai−

1
2

)(
Bj−1 −Bj− 1

2

)
+

1

2

∂2V −(τ, k̂iA, k̂
j
B)

∂B2

(
Bj− 1

2 −Bj−1
)2
.

With those expressions, the maximal error (2.3.32) becomes:∣∣∣V −u(τ,A,B)− V −l(τ,A,B)
∣∣∣ ≤ (2.3.34)

MA∑
i=1

MB∑
j=1

max

kiA, k̃
i
A, k̂

i
A ∈ (Ai−1, Ai),

kjB, k̃
j
B, k̂

j
B ∈ (Bj−1, Bj)


∣∣R1(Ai, Bj)

∣∣ ,∣∣R1(Ai−1, Bj)
∣∣ ,∣∣R1(Ai, Bj−1)
∣∣ ,∣∣R1(Ai−1, Bj) +R1(Ai, Bj−1)−R1(Ai, Bj)

∣∣


1{A∈[Ai−1,Ai)}
1{B∈[Bj−1,Bj)}

+

MA∑
i=1

max
kiA,k̃

i
A,k̂

i
A∈(Ai−1,Ai)


∣∣R1(Ai, BMB )

∣∣+

(
1− βi−

1
2
,MB− 1

2
B

)(
B −BMB

)
,∣∣R1(Ai−1, BMB )

∣∣+

(
1− βi−

1
2
,MB− 1

2
B

)(
B −BMB

)


1{A∈[Ai−1,Ai)}
1{B≥BMB}

+

MB∑
j=1

max
kjB ,k̃

j
B ,k̂

j
B∈(Bj−1,Bj)


∣∣R1(AMA , Bj)

∣∣+

(
1− βMA− 1

2
,j− 1

2
A

)(
A−AMA

)
,∣∣R1(AMA , Bj−1)

∣∣+

(
1− βMA− 1

2
,j− 1

2
A

)(
A−AMA

)


1{A≥AMA}
1{B∈[Bj−1,Bj)}

+

[∣∣R1(AMA , BMB )
∣∣+

(
2N
(

1
2σ
√
T − τ

)
− βMA− 1

2
,MB− 1

2
A

)(
A−AMA

)
+

(
2N
(

1
2σ
√
T − τ

)
− βMA− 1

2
,MB− 1

2
B

)(
B −BMB

)] 1{A≥AMA}
1{B≥BMB}

.
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For the uniform discretisation10 (2.3.17), Ai−Ai− 1
2 = Ai−

1
2 −Ai−1 = ∆A

2
and Bj−Bj− 1

2 =

Bj− 1
2 −Bj−1 = ∆B

2
, so we can find the bound for all Taylor reminder terms (2.3.33), by using

|x+ y ± z| ≤ |x|+ |y|+ |z| ≤ 3 max {|x| , |y| , |z|}, as

∣∣R1(Ai, Bj)
∣∣ ≤ 1

2

(
max {∆A,∆B}

2

)2

· 3ηi

where

ηi ≡ max
kiA ∈ (Ai−1, Ai),
kiB ∈ (Bj−1, Bj)

{∣∣∣∣∣∂2V −(τ, kiA, k
j
B)

∂A2

∣∣∣∣∣ , 2

∣∣∣∣∣∂2V −(τ, kiA, k
j
B)

∂A∂B

∣∣∣∣∣ ,
∣∣∣∣∣∂2V −(τ, kiA, k

j
B)

∂B2

∣∣∣∣∣
}
.

Thus, (2.3.34) becomes ∣∣∣V −u(τ,A,B)− V −l(τ,A,B)
∣∣∣ ≤ (2.3.35)

3

2

(
max {∆A,∆B}

2

)2 MA+1∑
i=1

MB+1∑
j=1

max ηi · 1{A∈[Ai−1,Ai)} · 1{B∈[Bj−1,Bj)}

+

MA∑
i=1

[(
1− βi−

1
2 ,MB− 1

2

B

) (
B −BMB

)] 1{A∈[Ai−1,Ai)}
1{B≥BMB}

+

MB∑
j=1

[(
1− βMA− 1

2 ,j−
1
2

A

) (
A−AMA

)] 1{A≥AMA}
1{B∈[Bj−1,Bj)}

+

[(
2N

(
1

2
σ
√
T − τ

)
− βMA−

1
2
,MB− 1

2
A

)(
A−AMA

)
+

(
2N

(
1

2
σ
√
T − τ

)
− βMA−

1
2
,MB− 1

2
B

)(
B −BMB

)] 1{A≥AMA}
1{B≥BMB}

.

We thus conclude that an upper bound for the error is as given in (2.3.30), where

h
(
τ,A,B,AMA , BMB

)
=

MA∑
i=1

[(
1− ∂V −

∂B
(τ,Ai−

1
2 , BMB− 1

2 )

)(
B −BMB

)] 1{A∈[Ai−1,Ai)}
1{B≥BMB}

+

MB∑
j=1

[(
1− ∂V −

∂A
(τ,AMA− 1

2 , B,j− 1
2 )

)(
A−AMA

)] 1{A≥AMA}
1{B∈[Bj−1,Bj)}

(2.3.36)

+

[(
2N

(
1

2
σ
√
T − τ

)
− ∂V −

∂A
(τ,AMA− 1

2 , BMB− 1
2 )

)(
A−AMA

)
+

(
2N

(
1

2
σ
√
T − τ

)
− ∂V −

∂B
(τ,AMA− 1

2 , BMB− 1
2 )

)(
B −BMB

)] 1{A≥AMA}
1{B≥BMB}

is the error term which stems from truncation, i.e. the choice of parameters AMA and BMB .
In order to establish an error bound at pricing time t < τ , we use (2.3.14):∣∣V −u(t, At, Bt)− V −l(t, At, Bt)

∣∣ = e−r(τ−t)EQ
t

[∣∣V −u(τ, Aτ , Bτ )− V −l(τ, Aτ , Bτ )
∣∣] ,

10Please note that also in this two-dimensional case there is no specific reason for taking a uniform grid.
It can be established that the proof would go through with a non-uniform grid, i.e. similar result would
also hold in terms of the maximal grid distances max (∆A) and max (∆B), at the cost of more cumbersome
notation, since second derivatives are now matrices.
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which means we take a time-t-conditional risk-neutral expectation of the entire expression
(2.3.30), and thus also of the truncation error term (2.3.36). If we now also take the limit

lim
AMA→∞, BMB→∞

EQ
t

[
h
(
τ,Aτ , Bτ , A

MA , BMB
)]

, the individual terms which appear in the sum-

mations become zero, e.g.11

lim
AMA→∞

(
1− ∂V −

∂A
(τ,AMA , . )

)
EQ
t

[(
Aτ −AMA

)+]
= 0.

This is due to the fact that expectation EQ
t

[(
Aτ − AMA

)+
]

is nothing else but the value of

a call option at t, on the underlying asset A, with maturity τ , and strike AMA , and this
converges to zero when the strike goes to infinity (irrespective of where the value of the other
underlying asset Bτ happens to be). This reasoning can be applied to all four terms in the
above expression (2.3.36) and thus the error term EQ

t

[
h
(
τ, Aτ , Bτ , A

MA , BMB
)]

goes to zero
as AMA , BMB →∞.

Also, for the deltas of the Ouwehand-West option V −(τ, A, B), from Corollary 2.2 we
have lim

AMA→∞

∂V −

∂A
(τ, AMA , . ) = 1 and lim

BMB→∞

∂V −

∂B
(τ, . , BMB) = 1, whereas from Corollary 2.2:

lim
AMA=BMB→∞

∂V −

∂A
(τ, AMA , BMB) = lim

AMA=BMB→∞

∂V −

∂B
(τ, AMA , BMB) = 2N

(
1
2
σ
√
T − τ

)
.12 As

a matter of fact, the stronger result

lim
AMA→∞

(
1− ∂V −

∂A
(τ, AMA , . )

)
AMA = 0

holds, which is shown in Appendix A.2.1.2.
Therefore, at time t < τ , in the limit, the entire error of the method will be proportional

to the square of the discretisation step, (max {∆A,∆B})2 . �

The other bivariate option types

Using the price of the call-on-max option written on the discrete dividend paying assets, we
will now derive the prices for the other three option types. To do so, we will investigate
which max-min/put-call parity formulae (2.3.11), (2.3.12), (2.3.13) of Stulz (1982) still hold
in the dividend paying case. We first prove a max-min parity relationship.

Theorem 2.3. At time t, (t < τ < T ), the price of a bivariate European call on the minimum
option, with strike K and maturity T , written on the underlying assets A and B as specified
above by (2.3.1), is

V Call−2D
min (t, A, B, K) = V Call−1D(t, A, K) + V Call−1D(t, B, K)− V Call−2D

max (t, A, B, K),
(2.3.37)

where V Call−2D
max (t, A, B, K) is the price of the bivariate call-on-max, as given by Proposition

2.2, and V Call−1D(t, A, K) and V Call−1D(t, B, K) are the prices of the call options (2.2.2),
with underlying assets A and B, respectively, all with the same strike K and maturity T .

11From the discretisation (2.3.17) and the way mid-points of the discretisation segments are defined, it is

clear that when, for example, AMA →∞, then also AMA− 1
2 →∞.

12An expression for the Ouwehand-West delta is given in Appendix A.2 by (A.2.4), and an alternative
derivation of its convergence in Appendix A.2.1.1.
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Proof. Let us consider two different portfolios. Portfolio I consists of two bivariate
options: a call on the minimum and a call on the maximum of the two assets, whereas
Portfolio II consists of two univariate call options - one on each asset. All four options have
the same strike K and maturity T . We will now take a look at the payoffs of those portfolios
at maturity T > τ , where τ is the time of the discrete dividend payment for both assets A
and B. In Table 2.1 we show the payoff for each of the portfolios for every possible order of
AT , BT and K. Without loss of generality we can assume that AT > BT . This is allowed
because of the symmetry of the function max(AT , BT ): if the opposite is the case we can
just swap the asset names and the analysis that follows will not be affected. Now we can
distinguish the following cases:

Payoffs AT > BT > K AT > K > BT K > AT > BT

V Call−2Dmax (T, A, B, K) AT −K AT −K 0

V Call−2Dmin (T, A, B, K) BT −K 0 0

Portfolio I AT +BT − 2K AT −K 0

V Call−1D(T, A, K) AT −K AT −K 0

V Call−1D(T, B, K) BT −K 0 0

Portfolio II AT +BT − 2K AT −K 0

Table 2.1: The max-min parity proof.

Since both portfolios have the same payoff structure, due to absence of arbitrage argu-
ments, their values today, at time t, must be the same:

V Call−2D
min (t, A, B, K) + V Call−2D

max (t, A, B, K) = V Call−1D(t, A, K) + V Call−1D(t, B, K),

and (2.3.37) follows. The fact that assets pay dividends at τ will not influence this analysis
since, by absence of arbitrage, the value of any of the four options must not change across
the dividend date. �

Theorem 2.4. At time t, (t < τ < T ), the price of a bivariate European put on the maximum
option, with strike K and maturity T , written on the underlying assets A and B as specified
above by (2.3.1), is

V Put−2D
max (t, A, B, K) = e−r(T−t)K − V Call−2D

max (t, A, B, 0) + V Call−2D
max (t, A, B, K), (2.3.38)

and the price of a bivariate European put on the minimum is

V Put−2D
min (t, A, B, K) = e−r(T−t)K − V Call−2D

min (t, A, B, 0) + V Call−2D
min (t, A, B, K). (2.3.39)

Proof. The proof goes along the same lines as the proof for Theorem 2.3. We again
consider two different portfolios. Portfolio I consists of two bivariate options: a put on the
maximum with strike K and a call on the maximum with strike 0. The latter option’s payoff
is simply (max(AT , BT ))+ . Portfolio II consists of call on the maximum with strike K and
Ke−r(T−t) in cash. In Table 2.2 we show the possible payoffs of those portfolios at maturity
T > τ . We can again, without loss of generality, assume that AT > BT and we have the
following cases:
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Payoffs AT > BT > K > 0 AT > K > BT ≥ 0 K > AT > BT ≥ 0 K > AT = BT = 0

V Put−2D
max (T, A, B, K) 0 0 K −AT K

V Call−2D
max (T, A, B, 0) AT AT AT 0

Portfolio I AT AT K K

V Call−2D
max (T, A, B, K) AT −K AT −K 0 0

Ke−r(T−t) K K K K

Portfolio II AT AT K K

Table 2.2: The call-put parity proof for max options.

We again have the same payoff for both portfolios and due to the absence of arbitrage
arguments, their values today, at time t, must be the same:

V Put−2D
max (t, A, B, K) + V Call−2D

max (t, A, B, 0) = e−r(T−t)K + V Call−2D
max (t, A, B, K),

so (2.3.38) follows.

The reasoning for the second equality (2.3.13) goes as follows. Portfolio I consists of two
bivariate options: a put on the minimum with strike K and a call on the minimum with
strike 0. Portfolio II contains a call on the minimum with strike K and Ke−r(T−t) in cash.
The payoffs at maturity are given in Table 2.3. We still assume, without loss of generality,
that AT > BT holds.

Payoffs AT > BT > K > 0 AT > K > BT > 0 AT > K > BT = 0 K > AT > BT > 0 K > AT ≥ BT = 0

V Put−2D
min (T, A, B, K) 0 K −BT K K −BT K

V Call−2D
min (T, A, B, 0) BT BT 0 BT 0

Portfolio I BT K K K K

V Call−2D
min (T, A, B, K) BT −K 0 0 0 0

Ke−r(T−t) K K K K K

Portfolio II BT K K K K

Table 2.3: The call-put parity proof for min options.

Due to absence of arbitrage arguments, the portfolio values at time t must be the same

V Put−2D
min (t, A, B, K) + V Call−2D

min (t, A, B, 0) = e−r(T−t)K + V Call−2D
min (t, A, B, K),

so (2.3.39) follows. The payment of the dividends at τ will not affect the put-call parities,
since the value of the components of the portfolios above can not exhibit any jumps across
the dividend date. �
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2.4 Numerical Results

2.4.1 The One-dimensional Case

In this subsection we are going to show the performance of our method for a number of
different options written on a single underlying stock paying a discrete dividend.

The results are obtained for the following values of the underlying asset parameters:
S0 = 55, K = 60, r = 5%, σ = 0.3, T = 1, τ = 0.5, D = 5 and SM = 250 for the
largest stock price on our numerical grid. The results for different values of the other method
parameter M , i.e. the number of discretisation steps, are summarised in the Table 2.4.

M V upper V lower Difference (ε) CPU time (s)

10 4.675849 3.286415 1.389434 0.0080
20 4.041586 3.649472 0.392114 0.0082
40 3.846169 3.746931 0.099238 0.0085
80 3.796590 3.771706 0.024885 0.0086
160 3.784150 3.777924 0.006226 0.0090
320 3.781038 3.779481 0.001557 0.0098
640 3.780259 3.779870 0.000389 0.0112

1,280 3.780065 3.779967 0.000097 0.0135
2,560 3.780016 3.779992 0.000024 0.0192
5,120 3.780004 3.779998 6.1 · 10−6 0.0314
10,240 3.780000 3.779999 1.5 · 10−6 0.0459

Table 2.4: The call option values for different values of the parameter M.

Using a Monte Carlo result for the same option with 200,000,000 simulations we have
obtained the value 3.7802 with the 95% confidence interval [3.7787, 3.7815] and a CPU time
of 543 seconds. The results for different values for the parameter M (100, 200, ... 1000,
2000) are graphically presented in Figure 2.7. We see that our method indeed gives the
correct value of the option and it is much more efficient than the Monte Carlo simulation
method. Notice that already for 600 discretisation points our method produces price bounds
that are closer than those of the Monte Carlo simulation 95% confidence interval for 2 · 108

simulations. For comparison, other Monte Carlo results are given in Table 2.5.

Sim. Num. V MC 95% Confidence Interval CPU time (s)

103 3.773922 [3.207120, 4.340724] 0.0036
104 3.649008 [3.476409, 3.821607] 0.0245
105 3.746018 [3.691415, 3.800621] 0.0306
106 3.782685 [3.765183, 3.800187] 0.1886
107 3.779123 [3.773523, 3.784624] 1.6334
108 3.781050 [3.779351, 3.782849] 17.5535

Table 2.5: The call option Monte Carlo values for different number of simulations.
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The value of the same option obtained by the Black-Scholes discrete dividend approxi-
mation formula of the Escrowed model is 3.4998, which implies an error of around 7.4% with
respect to the correct option value.

Figure 2.7: The bounds for the price of the option compared to Monte Carlo obtained result.

In order to better illustrate the differences in performance of our method and the Monte
Carlo method we present the absolute error versus the CPU time for both methods on a
logarithmic scale:

Figure 2.8: The absolute errors of both methods versus the CPU calculation time.
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The following numerical test shows the convergence of the method. The error is defined
as the maximal difference between the bounds for V (t, St) as given by Proposition 2.1, in
(2.2.19). We have used different values for the parameters and we have gradually increased
the number of discretisation points M up to 10,000, thus making the discretisation step ∆S
given by (2.2.5) progressively smaller. Figure 2.9 presents this error versus the parameter M
in log-log scale, and as we can see the slope of the lines is exactly -2, as predicted by (2.2.19).
In other words, the absolute value of the error of the method converges as ∆S2.

Figure 2.9: The difference between the bounds for the prices of different options versus the
number of discretisation points.

The moneyness and maturity of the options were varied as well as the discrete dividend
size and the payment time, but the results show that the method performs exceptionally well
in all cases. We can see that different parameter values only lead to a parallel shift which
means that the speed of convergence of the method is indeed as predicted in all cases, as
long as the truncation value is sufficiently large.

However, if the truncation value SM is not chosen large enough those lines will begin to
curve as the second term h

(
SM
)

in (2.2.19) becomes non-negligible. As a rule of thumb we
suggest at least SM ≈ 10S0σT to avoid this undesired behaviour of the error convergence.

2.4.2 The Two-dimensional Case

We now turn to the analysis of the method’s performance for a maximum option written on
two underlying stocks which both pay discrete dividends.

The values of the underlying asset parameters are now A0 = 75, B0 = 55, K = 60,
r = 5%, σA = 0.2, σB = 0.3, ρ = 0.7, T = 1, τ = 0.5, DA = 5, DB = 5 and the method
parameters are AMA = BMB = 250. The other parameters of the method are set to be equal:
MA = MB and for their different values, results are summarised in the following Table 2.6.
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MA = MB V upper V lower Difference (ε) CPU time (s)

10 17.400749 13.498299 3.902450 0.26
20 15.205101 14.322471 0.882629 0.48
40 14.686786 14.473807 0.212979 1.05
80 14.563401 14.510900 0.052501 2.17
160 14.533169 14.520109 0.013060 5.98
320 14.525666 14.522408 0.003259 16.69
640 14.523796 14.522982 0.000814 36.39

1,280 14.523329 14.523126 0.000203 161.52
2,560 14.523212 14.523161 0.000051 514.19
5,120 14.523183 14.523170 0.000013 1990.2
10,240 14.523176 14.523173 3.2 · 10−6 5243.7

Table 2.6: The call-on-max bivariate option values for different values of the parameters
MA = MB.

The same option was also priced by a Monte Carlo method with 200,000,000 simulations
and the result was 14.5232 with the 95% confidence interval [14.5213, 14.5250] and the CPU
calculation time was 1938 seconds (32 minutes). This is shown in Figure 2.10 together with
the bounds produced by our method, obtained for discretisation steps: 100, 200, ... 1000.

Figure 2.10: The bounds for the price of the bivariate option compared to the Monte Carlo
result.

We see that the Monte Carlo result converges to the value obtained by our method but it
is inferior in both the error introduced and in the calculation time spent. The result which
our method reaches for 500 discretisation points in just 31 seconds can be obtained by the
Monte Carlo method only when using 1.5 ·108 simulations in about 20 minutes of calculation
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time. The other examples of Monte Carlo results with their respective CPU times are given
in Table 2.7.

Sim. Num. V MC 95% Confidence Interval CPU time (s)

103 14.621109 [13.755309, 15.487001] 0.0019
104 14.380231 [14.118832, 14.641530] 0.0050
105 14.500715 [14.416514, 14.584816] 0.0441
106 14.519798 [14.493299, 14.546400] 0.3005
107 14.524123 [14.515722, 14.532524] 3.3945
108 14.522501 [14.514102, 14.530900] 57.3142

Table 2.7: The call-on-max bivariate option Monte Carlo values for different number of
simulations.

Again, for easier comparison of the performance of our method versus the Monte Carlo
method, we show in Figure 2.11 the absolute error for both methods versus the CPU time.

Figure 2.11: The absolute errors of both methods versus the CPU calculation time.

We have also performed a convergence analysis for the error of the method in the two-
dimensional case. The error is defined as the absolute value of the maximal difference between
the bounds for V (t, A,B), given by Proposition 2.3. Figure 2.12 presents numerical results
for this error, with an increasing number of discretisation points MA = MB and with equal
discretisation steps in both spatial dimensions, i.e. ∆A = ∆B.13 In this case the slope is
again exactly -2, as predicted by Proposition 2.3, equation (2.3.30).

13See discretisation formulae (2.3.17): we choose MA = MB , as well as AMA −DA = BMB −DB , which is
already prescribed by the method.
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Figure 2.12: The difference between the bounds for the prices of different options versus the
number of discretisation points.

The maturities and strike prices of options as well as the sizes of discrete dividends and
their payment time were all varied. The results in Figure 2.12 show that also in the two-
dimensional case the model performs extremely well for different parameter values.

2.5 Conclusion

We have presented a method for fast calculation of certain European option prices on stocks
paying a discrete dividend. It is based on the fact that the option values are convex functions
of the underlying asset prices at the dividend date with bounded derivatives, and hence
piecewise linear upper and lower bounds can be constructed.

First, we have proven for the case with one underlying asset that the maximal error of
the method scales with the gamma of the option, and that it is directly proportional to the
square of the discretisation step used. This allows us to choose the input parameters in such
a way that we achieve a desired precision.

Secondly, we have extended the methodology to the bivariate call on the maximum option
when both underlying assets pay a known discrete dividend at a known time. We showed
that the maximal error scales with (max {∆A,∆B})2, where ∆A and ∆B are the discreti-
sation steps in each dimension. The values of other types of bivariate options can then be
obtained by the max-min/put-call parities of Stulz (1982), which are shown to generalise to
the dividend paying case.

The obvious limitation of our method is that it can be used only for cases in which there
is only one known dividend payment date τ , at which all cash values of the dividends to be
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paid are known exactly. It cannot be used if the underlying stock pays two discrete dividends
during the life of the option, or if the two underlying assets pay their respective dividends at
two different times. This is due to the fact that after the option is priced for times between
dividend payments, i.e. for t with τ1 ≤ t < τ2, the price V +(τ1, Aτ1 , Bτ1) will be given by
Proposition 2.1 or 2.2, and the result must then be plugged again into an equation such as
(2.2.2) or (2.3.14), to find values for t < τ1:

V (t, At, Bt) = e−r(τ1−t)EQ
t

[
V −(τ1, Aτ−1 , Bτ−1

)
]
, t < τ1,

for which we have not found an explicit bound.
However, in those cases it is possible to use V +(τ1, Aτ1 , Bτ1) obtained by our method as

a control variate for the more accurate Monte Carlo simulation. Our method can also be
extended to price an option written on more than two underlying assets (a classical basket
option, which is indeed more commonly traded) as long as it has a convex payoff. But to
obtain a closed form solution, all of the underlying assets that pay dividends during the
lifetime of the option would need to pay them at the same time τ .

In practice, options exist on underlying stocks even before companies declare the expected
dividend size. In those cases our model can actually be used “inversely”, i.e. if we observe
an option price in the market, possibly obtained by using a different (unknown) model, we
can replicate it by our model and thus obtain an “implied” fixed dividend size D, which
could be useful information for a trader to try and take advantage of the market, e.g. make
an informed decision whether to buy/sell/hold the underlying stock. This inverse relation
V (t, St) → D would not be in a simple explicit form since, through discretisation (2.2.5),
D figures in many different parts of the expression given by Proposition 2.1, but it could
certainly be obtained numerically through a couple of iterations, in a similar way the classical
Black-Scholes formula is actually almost exclusively used to deduce implied volatility.

As pointed out by Haug, Haug and Lewis (2003), most of the known derivatives pricing
methodologies for discrete dividend paying underlying assets deal with variations of the
Black-Scholes model. Limitations of that model are very well known and many more advanced
models now exist. If the underlying dynamics would be assumed to be that of any alternative
model, this would lead to the same pricing formula (2.2.2), with different V −(t, S) at t = τ .
As long as the function S → V +

(
(S −D)+ , K, T − τ

)
is convex, it would be possible to

further continue with the construction of the numerical grid (2.2.5) and application of our

method. The quantities αi, ξi, βi−
1
2 , χβ

i− 1
2 in the expressions for the bounds (2.2.15) and

(2.2.18), at t < τ , would remain the same, whereas the functions f i and gi would instead be
expressed in terms of the specific probabilities P1(t, S,K, T ) and P2(t, S,K, T ):

f i(t, St) = Ste
r(τ−t) [P1(t, St, S

i−1, τ)− P1(t, St, S
i, τ)

]
, (2.5.1)

gi(t, St) = P2(t, St, S
i−1, τ)− P2(t, St, S

i, τ), (2.5.2)

where Pj(t, S,K, T ) = Qj {lnST ≥ lnK |St = S } , i.e. probabilities under the stock mar-
tingale measure, j = 1, and the T-forward martingale measure, j = 2 (which in the case



52 CHAPTER 2. BIVARIATE OPTIONS ON DISCRETE DIVIDEND STOCKS

of deterministic interest rates is actually just the standard risk-neutral measure), see e.g.
Geman, El Karoui and Rochet (1995).

An appropriate alternative model could come from the class of exponential Lévy models,
which offer analytically tractable positive jump processes, see e.g Cont and Tankov (2003).
An exponential Lévy model is given by

ST = Ste
(r+ω)(T−t)+LT−Lt ,

where L is a Lévy process, r is the constant risk-free rate and ω is the compensator chosen
to ensure that the discounted price process is a martingale. Since Lévy processes have
characteristic functions available in closed form, this allows us to use Fourier transform
methods for option pricing. There are a number of effective solutions available, e.g. using fast
Fourier transform as in Carr and Madan (1999), or the COS method of Fang and Oosterlee
(2008), which is based on Fourier cosine series expansions. The Bakshi and Madan (2000)
approach, directly gives us the specific probabilities Pj(t, S,K, T ), j = 1, 2 in terms of Lévy’s
inversion formula.14 This approach is applied to Merton’s (1976b) jump-diffusion model in
Minenna and Verzella (2008) and they generalise it to the entire class of exponential Lévy
models (affine jump-diffusion models).15 Madan, Carr and Chang (1998) consider a Lévy
model with the Variance Gamma process and obtain a solution for Pj(t, S,K, T ), j = 1, 2
in terms of the modified Bessel function of the second kind. Other examples of exponential
Lévy models are Normal Inverse Gaussian models, studied in Rydberg (1997), the KoBoL
model of Boyarchenko and Levendorskii (2002)16, the CGMY process of Carr et al. (2002)
and the model of Kou (2002), which is another jump-diffusion model, where the distribution
of jump sizes is taken to be an asymmetric exponential, as opposed to normally distributed
jump sizes in Merton (1976b).

These approaches would allow fast and efficient pricing of the options on discrete dividend
paying stocks presented in this thesis while giving the advantages of more advanced models
for option pricing, such as inclusion of the volatility smile.

14Actually its variation: Pj(t, S,K, T ) = 1
2 + 1

π

´∞
0

Re
[
e−iu lnK

iu ϕjt (lnST , u)
]
du, known as Gil-Pelaez inver-

sion formula, see e.g. Wendel (1961), for the characteristic function ϕjt (lnST , u) = EQj
t

[
eiu lnST

]
, j = 1, 2.

15A stochastic volatility model, such as the one proposed by Heston (1993), also gives us an explicit solution
obtained through Fourier transform methods. However, our method would not work under this particular
model because the functions f i and gi will not be known in closed form since they will also depend on the
volatility stochastic process at the dividend time.

16Initially introduced by Koponen (1995) under the name truncated Lévy flight, now also known as the
tempered stabe process, see e.g Cont and Tankov (2003).



Chapter 3

Fast Calculation of Credit Value
Adjustments for Inflation-linked
Derivatives

3.1 Introduction

Counterparty risk has become increasingly important after the financial crisis of 2008, due to
the new regulatory frameworks that have emerged after this crisis.1 Such frameworks often
require that a price for counterparty risk is charged on top of the standard default-free price
of financial derivatives. This Credit Value Adjustment (CVA) is basically an addition to the
price of a derivative to account for the fact that a counterparty is not default-free.

Most of the initial work on CVA calculations focused on interest rate derivatives since
these are often traded over-the-counter and may thus carry a significant amount of counter-
party risk. Results were first derived for standard interest rate swaps and these were then
extended to portfolios of such swaps under netting agreements, see, for example, the work
of Brigo and Masetti (2005). Today there is a myriad of counterparty models and methods
to obtain the CVA for most asset classes, and these are used in banks all over the world. A
good starting point for an overview of different methods is the Brigo, Morini and Pallavicini
(2013) book.

In this thesis we focus on inflation derivatives, an asset class for which not much work
seems to have been done on the CVA calculations. Pricing models for inflation derivatives are
more complex than those for standard interest rate swaps since both real interest rates and
(standard) nominal interest rates need to be included in the model. Well-known approaches
in the scientific literature include Barone and Castagna (1997), who priced the very first
inflation derivatives issued in US in January 1997 called TIPS (Treasury Inflation-Protected
Securities) by extending the CIR short-rate model of Cox, Ingersoll, Ross (1985) for interest
rate derivatives, followed by the doctoral thesis of Kazziha (1999)2, Jarrow and Yildirim
(2003), and market models of Belgrade, Benhamou and Koehler (2004) and Mercurio (2005).

1For a good overview, see e.g. Gregory (2010).
2This was the first work which imposes lognormal dynamics for the forward price of real zero-coupon

bonds.
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We will use the Jarrow-Yildirim (JY) model in this paper. In a similar way as in Barone
and Castagna (1997), it exploits an analogy with derivatives on foreign currency, in the sense
that the nominal rate is regarded as an interest rate on a “domestic” currency, the real
rate as an interest rate on a “foreign” currency and the inflation index as the “exchange
rate” between the currencies. However, the Jarrow-Yildirim model uses a different one-
factor short-rate model developed by Hull and White (1990), which makes it an intuitive and
natural extension of this classical model for interest rate derivatives. The dynamics for both
the nominal and the real instantaneous short-rate processes have the same form as in the
Hull-White model. The inflation index is assumed to follow geometric Brownian motion and
the short rates and the rate of inflation can all be correlated. As in the Hull-White model,
these modelling choices allow the derivation of explicit pricing formulae for the value of real
and nominal bonds in terms of the current short rates and the current inflation rate. This
makes calibration of such models to fixed income market data relatively easy. More advanced
market models such as the Lognormal Forward-Libor Market Model in Mercurio (2005) or
a similar approach of Belgrade, Benhamou and Koehler (2004) allow for more degrees of
freedom in the calibration process, but at the price of considerably greater complexity.3 For
a good overview of these and other methods to model inflation derivatives, see the book by
Brigo and Mercurio (2006).

The Zero-coupon Inflation Indexed Swaps (ZCIIS) that we want to price under counter-
party risk also have payoffs for which the Jarrow-Yildirim model allows an exact closed form
solution. For the related but more complicated payoffs of Year-on-Year Inflation Indexed
Swaps (YYIIS) we will derive a semi-analytical approximation using moment matching. We
will also show how a similar method can be applied to a whole portfolio of ZCIIS instruments
if the portfolio consists entirely of payer swaps or receiver swaps.

3.2 Product and Model Specifications

We will now briefly discuss different types of inflation derivatives and pricing methods without
counterparty risk adjustments.

3.2.1 Inflation-Linked Derivatives

The zero coupon inflation indexed swap (ZCIIS) exchanges two cash flows at the final time
T : the fixed amount

N((1 +K)T − 1)

and the floating amount

N

(
I(T )

I(0)
− 1

)
,

3If we would have considered pricing of Inflation Indexed Caps or Floors, it would have been more natural
to consider a volatility smile effect as it is done in other developed option markets. In that case the Jarrow-
Yildirim model would no longer suffice and we would need to turn to different model classes such as those
who allow stochastic volatilities, Mercurio and Moreni (2006, 2009), or jump-diffusion, Hinnerich (2008).
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where I(t) is the value of an underlying inflation index at time t. The time of maturity T
will always be expressed in years and usually it is an integer number. The quantity N is
the nominal value and K is the contract’s fixed rate which is established at the beginning of
the contract period. ZCIIS instruments are usually quoted in the market in terms of the par
rate K, i.e. the rate at which the initial contract value equals zero. The payer ZCIIS swap4

payoff at maturity in nominal terms is therefore

Π̂(T ) = N

(
I(T )

I(0)
− (1 +K)T

)
and assuming that standard asset pricing methods for arbitrage-free and complete markets
can be applied, the price of the instrument at time t can be written as

ZCIIS (t, T, I (0) , N) = EQn
t

[
D(t, T )Π̂(T )

]
= NEQn

t

[
D(t, T )

(
I(T )

I(0)
− (1 +K)T

)]
,

(3.2.1)
where D(t, T ) is the nominal stochastic discount factor from time T to time t. The notation
EQn
t [· ] is short for EQn [ ·| Ft] which is the expectation under the unique nominal martingale

measure Qn, conditioned on the filtration Ft that is generated by the stochastic processes
which drive the market and which will be specified later on. We will later make use of the
unique real martingale measure Qr as well but we simplify notation by writing Q ≡ Qn, i.e.
when no subscript is given, we refer to the nominal martingale measure.

The year-on-year inflation indexed swap (YYIIS) exchanges cash flows at given dates
Ti ∈ {T1, T2, ..., TM = M} equal to the a priori fixed amount

NϕiK

and the floating amount

Nϕi

(
I(Ti)

I(Ti−1)
− 1

)
,

where ϕi is the year fraction between Ti−1 and Ti. It usually has a value around 1, which
implies an exchange of cashflows every year. Notice that the inflation index at the end of
each period is expressed relative to the value of the inflation index at the beginning of that
period and not relative to the inflation at the inception of the contract, T0 = 0 . The price
at time t of the payer YYIIS instrument is thus given by

YYIIS (t, T0, {Ti, ϕi}i=1,...,M , N) = N
M∑
i=1

ϕiEQn
t

[
D(t, Ti)

(
I(Ti)

I(Ti−1)
− 1−K

)]
. (3.2.2)

3.2.2 Credit Value Adjustment

The CVA for any derivative contract position is defined as5

CVA = (1−R)EQ
0

[
1{τ≤T}D(0, τ)E(τ)

]
. (3.2.3)

4The holder of the payer ZCIIS pays a fixed rate and receives floating rates, and the holder of the receiver
ZCIIS receives a fixed rate and pays floating rates.

5See, for example, Brigo, Morini, Pallavicini (2013), Chapter 2.3, page 35.
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The constant R is the recovery rate that is usually taken to have deterministic (which is
not very realistic) value of around 40%.6 The random variable τ is the stochastic first time
of counterparty default and 1{τ≤T} is the indicator function that takes value 1 if τ ≤ T and
zero otherwise. The notation D(0, τ) for the nominal stochastic discount factor from time τ
until the initial time was introduced earlier.

The Exposure E(t) at some future time 0 ≤ t ≤ T is defined as

E(t) = V (t)+ ≡ max{0, V (t)}, V (t) = EQ
t [Π(t, T )], (3.2.4)

with Π(t, T ) the discounted value of all payoffs between t and the maturity of the contract,
T. For a vanilla swap this is the discounted sum of the random cash-flows on all different
payment dates between the current time t and maturity. When derivatives generate a payoff
only at maturity (which is the case for the ZCIIS), this quantity simply becomes D(t, T ), i.e.
the discount factor from T to t, times the payoff at maturity.

Using an expectation which is conditional on the event that the random time of default
τ happens before the maturity T we have:

CVA = (1−R)Q (τ ≤ T )EQ
0

[
D(0, τ)(V (τ))+|τ ≤ T

]
.

The first factor Q (τ ≤ T ) is the risk-neutral probability that the counterparty will default
before the expiration of the contract T . The second factor is the expectation under the risk-
neutral measure conditional on the event {τ ≤ T}, i.e. on the event that default occurs before
the contract expires. It corresponds to a standard option pricing problem at the present time
zero which involves a payoff at the later time τ .

To simplify the calculations, it is common in the financial industry to introduce what is
known as a bucketing approximation.7 We form a partition of (0, T ], i.e.

0 = t0 < t1 < t2 < ... < tn−1 < tn = T

and then approximate τ by ti whenever τ is in (ti−1, ti]. This means that we are slightly
postponing the default time, but the time intervals can be chosen arbitrarily small. In
practice they are often chosen to be daily intervals, and we will follow that convention when
generating our numerical results later in this chapter. The CVA is thus approximated by the
bucketed CVA as:

CVA ≈ CVAB = (1−R)
n∑
i=1

Q (τ ∈ (ti−1, ti])EQ
0

[
D(0, ti)(V (ti))

+|τ ∈ (ti−1, ti]
]
.

We can make a further simplification by assuming independence between the default time
and other stochastic factors driving the cash-flows paid out by the contract and the discount
rates.8

6Ideally, recovery rates would be derived from market prices of recovery swaps, which unfortunately do
not trade. Recoveries tend to show significant variations over time and across different industries and debt
seniorities, Gregory (2012). Stochastic recovery is modelled in Li (2013) and a good overview of the topic
and modelling possibilities is given by Altman et al. (2005).

7See Brigo, Morini, Pallavicini (2013), Chapter 2.3, page 36. Also see Pykhtin and Zhu (2007), last page,
equation (17).

8Independence cannot be assumed if there would be a requirement to also include wrong way risk; see
Pykhtin and Zhu (2007) for the definition and the book Brigo, Morini, Pallavicini (2013) for a detailed
theoretical treatment and an overview of current industry practice to deal with this issue.
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We then obtain what is known as the independence based CVA with bucketing :

CVA ≈ ICVAB = (1−R)
n∑
i=1

Q (τ ∈ (ti, ti−1])EE(ti), (3.2.5)

EE(ti) = EQ
0

[
D(0, ti)(V (ti))

+] .
If the recovery rate is set at the industry standard value, we thus need to calculate the

profile of the EE(ti), the Expected Exposure, and determine the risk-neutral probabilities of
default of the counterparty in our bucketing intervals. These are usually obtained by inter-
polation from the probabilities of default that are implied by Credit Default Swap spreads.
The calculation of the CVA is then reduced to obtaining the Expected Exposures at all time
points ti for our inflation-linked derivatives. To obtain these, we must now specify the market
model for interest and inflation.

3.2.3 Jarrow-Yildirim Asset Price Dynamics

In Jarrow and Yildirim (2003) a model for real and nominal short rates r and n, and an
inflation index I, is specified in the Heath-Jarrow-Morton framework, see Heath, Jarrow,
Morton (1990, 1991, 1992). The dynamics of nominal and real forward rates fn and fr, and
the dynamics for the inflation index I(t), are given by

dfn (t, T ) = αn (t, T ) dt+ σn (t, T ) dW P
n (t), (3.2.6)

dfr (t, T ) = αr (t, T ) dt+ σr (t, T ) dW P
r (t), (3.2.7)

dI (t) /I (t) = µI(t)dt+ σIdW
P
I (t), (3.2.8)

with (W P
n ,W

P
r ,W

P
I ) a three-dimensional Brownian motion with constant correlations ρnr, ρnI

and ρrI under the original probability measure P. This three-dimensional Brownian motion
generates the filtration Ft = σ

({(
W P
n (s),W P

r (s),W P
I (s)

)
, 0 ≤ s ≤ t

})
. The short rates in

this model follow from r(t) = fr(t, t) and n(t) = fn(t, t) which allows us to define the nominal
and real money market account values

Br(t) = exp

[ˆ t

0

r(u)du

]
, Bn(t) = exp

[ˆ t

0

n(u)du

]
,

while real and nominal zero-coupon bond prices at times t ≤ T , for maturity T , are found
from

Pr(t, T ) = exp

[
−
ˆ T

t

fr(t, u)du

]
, Pn(t, T ) = exp

[
−
ˆ T

t

fn(t, u)du

]
.

Jarrow and Yildirim define Gaussian forward rates based on a specification of volatility
term structures given by σk (t, T ) = σke

−ak(T−t), k ∈ {n, r}. Because of the HJM no-
arbitrage condition, this choice determines the drifts of forward rates under the nominal
martingale measure Qn, while the initial conditions fn(0, T ) and fr(0, T ) are also fixed if
we want to match an existing initial term structure of interest rates. Jarrow and Yildirim
impose that under this nominal martingale measure all nominally discounted tradables are
martingales. This holds true in particular for the discounted prices of nominal zero-coupon
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bonds, inflation weighted real zero-coupon bonds (i.e. real zero-coupon bonds in nominal
terms) and for the real bank account in nominal terms. As a result

Pn(t, T )

Bn(t)
,
I(t)Pr(t, T )

Bn(t)
,
I(t)Br(t)

Bn(t)
(3.2.9)

must all be martingales under Qn. This implies that the dynamics of the nominal and real
short interest rates and the inflation index are given by:

dn (t) = (θn (t)− ann (t)) dt+ σndWn (t) , (3.2.10)

dr (t) = (θr (t)− arr (t)− ρrIσrσI) dt+ σrdWr (t) , (3.2.11)

dI (t) = (n (t)− r(t))I (t) dt+ σII (t) dWI (t) , (3.2.12)

with (Wn,Wr,WI) a three-dimensional Brownian motion under Qn with the same set of
correlations ρnr, ρnI and ρrI as under the original probability measure P.

If we write down the dynamics under the real martingale measure Qr which is associated
with the numeraire Br(t), instead of Qn which is associated with the numeraire Bn(t), the
real short rate satisfies

dr (t) = (θr (t)− arr (t)) dt+ σrdW̃r (t) , (3.2.13)

with W̃r a Brownian Motion under Qr.
Both short rates thus have the form of a Hull-White one-factor model under their respec-

tive martingale measures. The deterministic functions θn (t) and θr (t) in (3.2.10)-(3.2.11)
can therefore be used to fit the initial term structures of nominal and real rates. This can be
achieved by taking

θk(T ) =
∂fk(0, T )

∂T
+ akfk(0, T ) +

σ2
k

2ak
(1− e−2akT ), (3.2.14)

for k ∈ {n, r}, where the initial instantaneous forward rates

fk (0, T ) = − ∂

∂T
lnPk(0, T ) (3.2.15)

can be directly obtained from the initial real and nominal zero-coupon bond prices Pk (0, T ).
The price for both the nominal and the real zero coupon bonds are then given by Hull and
White (1990) formulae:

Pk(t, T ) = EQk
t

[
e−
´ T
t k(s)ds

]
= Ak(t, T )e−Bak (t,T )k(t), (3.2.16)

Ak(t, T ) =
Pk(0, T )

Pk(0, t)
exp

{
Bak(t, T )fk(0, t)−

1

2
Bak(t, T )2vk(t)

}
, (3.2.17)

where the function Ba is defined as

Ba(t, T ) =
1

a

(
1− e−a(T−t)) , (3.2.18)

which we will often use in the sequel. We define the function vk(t) in terms of the function
Ba as

vk(t) ≡
σ2
k

2ak
(1− e−2akt) = σ2

kB2ak(0, t). (3.2.19)
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3.2.4 Second Order Moments

The SDEs in (3.2.10)-(3.2.12) have the following explicit solution (for t ≥ s):

n (t) = n (s) e−an(t−s) + αn (t)− αn (s) e−an(t−s) + σn

ˆ t

s

e−an(t−u)dWn (u) , (3.2.20)

r (t) = r (s) e−ar(t−s) + αr (t)− αr (s) e−ar(t−s) −R(s, t) + σr

ˆ t

s

e−ar(t−u)dWr(u) (3.2.21)

I (t) = I(s) exp

[ˆ t

s

(n (u)− r (u)) du− 1

2
σI

2 (t− s) + σI (WI (t)−WI (s))

]
, (3.2.22)

where the functions αk, k ∈ {n, r} are defined as

αk (t) ≡ fk (0, t) + xk(t), (3.2.23)

with

xk(t) ≡
σ2
k

2ak
(1− e−akt)2 =

1

2
σ2
kBak(0, t)

2, (3.2.24)

and the real rate specific term (which stems from the change of measure from Qr to Qn) is

R(s, t) =
ρrIσrσI
ar

(
1− e−ar(t−s)

)
. (3.2.25)

The conditional moments of the short rate processes are thus given by

EQn
t [n(T )] = αn (T ) + (n(t)− αn(t))e−an(T−t), (3.2.26)

EQn
t [r(T )] = αr (T ) + (r(t)− αr(t))e−ar(T−t) +R(t, T ), (3.2.27)

VarQ
n

t [k(T )] = σ2
k

ˆ T

t

e−2ak(T−u)du =
σ2
k

2ak

(
1− e−2ak(T−t)) = σ2

kB2ak(t, T ). (3.2.28)

Notice that αk(0) = fk(0, 0) = k(0).9 Therefore, the special case of conditioning on starting
time t = 0 gives us

EQn
0 [n(t)] = αn (t) , (3.2.29)

EQn
0 [r(t)] = αr (t) +R(t), (3.2.30)

VarQ
n

0 [k(t)] = σ2
kB2ak(0, t) = vk(t), (3.2.31)

where
R(t) ≡ R(0, t) =

ρrIσrσI
ar

(
1− e−art

)
= ρrIσrσIBar(0, t). (3.2.32)

To characterise conditional moments of integrated short rate processes as well, we first define

Vk(t, T ) ≡ σ2
k

ˆ T

t

Bak(u, T )2du = σ2
k

ˆ T−t

0

Bak(0, u)2du (3.2.33)

=
σ2
k

a2
k

(T − t+ 2(Bak(0, T )−Bak(0, t))− (B2ak(0, T )−B2ak(0, t))),

9The relationship between the instantaneous forward rate and the short rate is fk (t, t) = k(t).
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where we have used the fact that Ba(t, T ) = Ba(0, T − t) for all 0 ≤ t ≤ T . By integration
of (3.2.26), and using (3.2.23) and (3.2.24), we find:

EQn
t

[´ T
t
n(s)ds

]
=

ˆ T

t

αn(s)ds+ (n(t)− αn(t))

ˆ T

t

e−an(t−s)ds (3.2.34)

=

ˆ T

t

fn(0, s)ds+
1

2
σ2
n

ˆ T

t

Ban(0, s)2ds+ (n(t)− αn(t))

ˆ T

t

e−an(t−s)ds

= ln
Pn (0, t)

Pn (0, T )
+ 1

2
(Vn (0, T )− Vn (0, t)) + (n (t)− αn(t))Ban(t, T ),

where in the last step we have used the definition of instantaneous forward rate (3.2.15), and
also the second equality in (3.2.33). However,

EQn
t

[´ T
t
r(s)ds

]
= ln

Pr (0, t)

Pr (0, T )
+ 1

2
(Vr (0, T )− Vr (0, t)) + (r (t)− αr(t))Bar(t, T ) +R(t, T )

contains an extra term

R(t, T ) =

ˆ T

t

R(t, s)ds =
ρrIσrσI
ar

(
T − t− 1

ar

(
1− e−ar(T−t)

))
, (3.2.35)

originating from (3.2.27). Variances of both integrals are derived from (3.2.20)-(3.2.21):

VarQ
n

t

(´ T
t
k(s)ds

)
= VarQ

n

t

(
σk

ˆ T

t

ˆ s

t

e−ak(s−u)dWk(u) ds

)
= VarQ

n

t

(
σk

ˆ T

t

ˆ T

u

e−ak(s−u)ds dWk(u)

)

= σ2
k VarQ

n

t

(ˆ T

t

Bak(u, T )dWk(u)

)
= σ2

k

ˆ T

t

Bak(u, T )2du = Vk(t, T ), (3.2.36)

where in the second step a change of the order of integration (a stochastic Fubini theorem),
and in the fourth step Itô isometry was used, followed by definition (3.2.33). Again, the
special case when considering the moments at the initial time gives us

EQn
0

[´ t
0
n(s)ds

]
= − lnPn (0, t) + 1

2
Vn (t), (3.2.37)

EQn
0

[´ t
0
r(s)ds

]
= − lnPr (0, t) + 1

2
Vr (t) +R(t), (3.2.38)

and

VarQ
n

0

(´ t
0
k(s)ds

)
= Vk(t) ≡ Vk(0, t) =

σ2
k

a2
k

(t− 2Bak(0, t)−B2ak(0, t)), (3.2.39)

as well as

R(t) ≡ R(0, t) =
ρrIσrσI
ar

(
t− 1

ar

(
1− e−art

))
=
ρrIσrσI
ar

(t−Bar(0, t)) . (3.2.40)

We will also need the following two useful identities.
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The functions Vak,al(t, T1, T2) and Uak(s, t, T ) are defined as

Vak,al(t, T1, T2) ≡
ˆ t

0

Bak(u, T1)Bal(u, T2)du

=
1

akal

{
t+Bak(t, T1)−Bak(0, T1) +Bal(t, T2)−Bal(0, T2)

−
[
Bak+al(t,

akT1+alT2
ak+al

)−Bak+al(0,
akT1+alT2
ak+al

)
] }

, (3.2.41)

Uak(s, t, T ) ≡
ˆ t

s

Bak(u, T )du = 1
a
k

( t− s+Bak(t, T )−Bak(s, T ) ),

for k, l ∈ {n, r}, and where the function Bak(t, T ) is as given before by (3.2.18).

We remark that the functions vk, xk, R, R, Vk, Vak,al , V k and Uk can all easily be written
in terms of the basic exponential functions Bak ≡ Bk, given by (3.2.18), in the equivalent
notation which will be used throughout this part of the thesis. We summarise them all here:

Bk(t, T ) ≡ Bak(t, T ) =
1

ak

(
1− e−ak(T−t)) ,

vk(t) ≡
σ2
k

2ak
(1− e−2akt) = σ2

kB2ak(0, t),

xk(t) ≡
σ2
k

2ak
(1− e−akt)2 =

1

2
σ2
kBak(0, t)

2,

R(t) ≡ ρrIσrσI
ar

(
1− e−art

)
= ρrIσrσIBar(0, t),

R(t) ≡ ρrIσrσI
ar

(
t− 1

ar

(
1− e−art

))
=
ρrIσrσI
ar

(t−Bar(0, t)) ,

Vk(t) ≡
σ2
k

a2
k

(t− 2Bak(0, t)−B2ak(0, t)),

Vk(t, T ) ≡ σ2
k

a2
k

(T − t+ 2(Bak(0, T )−Bak(0, t))− (B2ak(0, T )−B2ak(0, t))),

Vk,l(t, T1, T2) ≡ Vak,al(t, T1, T2) =
1

akal
{ t+Bak(t, T1)−Bak(0, T1) +Bal(t, T2)−Bal(0, T2)

−
[
Bak+al(t,

akT1+alT2
ak+al

)−Bak+al(0,
akT1+alT2
ak+al

)
] }

,

V k(t, T ) ≡ σ2
k

a2
k

(t+ 2(Bak(t, T )−Bak(0, T ))− (B2ak(t, T )−B2ak(0, T ))) = σ2
kVak,ak(t, T, T ),

Uk(s, t, T ) ≡ Uak(s, t, T ) = 1
a
k

( t− s+Bak(t, T )−Bak(s, T ) ).

Now that we have derived the expressions for the second order moments and defined useful
auxiliary functions, we can use them to price the Zero Coupon and Year-on-Year inflation
derivatives and derive the Credit Value Adjustments.
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3.2.5 The Margrabe Formula

We first formulate and prove a very useful Lemma that will be used repeatedly in the rest
of this chapter. It is a version of the so-called Margrabe’s formula, derived by William
Margrabe to price an option to exchange one risky asset for another risky asset at maturity,
see Margrabe (1978).

Lemma 3.1. The expectation E
[(
ω
(
aeX − beY

))+
]
, where (X,Y) have a bivariate normal

distribution and a and b are constants, has the closed form solution

ωaE
[
eX
]

Φ

ω ln
aE[eX]
bE[eY ]

+ 1
2
V ar (X − Y )√

V ar (X − Y )

− ωbE [eY ]Φ

ω ln
aE[eX]
bE[eY ]

− 1
2
V ar (X − Y )√

V ar (X − Y )

 ,

(3.2.42)
where ω is 1 or −1 (for a call and a put option respectively) and the function Φ is the standard
Gaussian cumulative distribution function.

In the special case where E
[
eX
]

= E
[
eY
]

= 1:

E
[(
ω
(
aeX − beY

))+
]

= ω

(
aΦ

(
ω

ln a
b

+ 1
2
V ar(X − Y )√

V ar(X − Y )

)
− bΦ

(
ω

ln a
b
− 1

2
V ar(X − Y )√

V ar(X − Y )

))
.

(3.2.43)

Proof. Without loss of generality we take ω = 1 since the case ω = −1 then follows by
switching the roles of a and b and of X and Y . We find by conditioning on Z ≡ X − Y ,

E
[
(aeX − beY )+

]
= E

[
E
[(
aeX−Y − b

)
1{X−Y≥ln(b/a)}e

Y |X − Y
] ]

= E
[ (
aeZ − b

)
1{Z≥ln(b/a)}E

[
eY |Z

] ]
. (3.2.44)

Since (Y, Z) are jointly Gaussian and since lnE[eA] = E[A] + 1
2
Var(A) for Gaussian variables

A, we have that

E
[
eY |Z

]
= exp

(
E [Y |Z] + 1

2
Var (Y |Z)

)
= exp

(
E[Y ] + Cov(Y,Z)

Var(Z)
(Z − E[Z]) + 1

2

(
Var(Y )− Cov(Y,Z)2

Var(Z)

))
(3.2.45)

= exp
(
−Z + E[X] + Cov(X,Z)

Var(Z)
(Z − E[Z]) + 1

2

(
Var(X)− Cov(X,Z)2

Var(Z)

))
. (3.2.46)

Substitution of (3.2.46) and (3.2.45) in the first and second term of (3.2.44) respectively gives

E
[
(aeX − beY )+

]
= aE

[
1{Z≥ln(b/a)} exp

(
Cov(X,Z)

Var(Z)
(Z − E[Z])

) ]
· E[eX ] exp

(
−Cov(X,Z)2

2Var(Z)

)
−bE

[
1{Z≥ln(b/a)} exp

(
Cov(Y,Z)
Var(Z)

(Z − E[Z])
) ]
· E[eY ] exp

(
−Cov(Y, Z)2

2Var(Z)

)
.

Using that for Gaussian Z we have

E
[
eγ(Z−E[Z])1{Z≥c}

]
= exp

(
1
2
γ2Var(Z)

)
Φ

(
γVar(Z)−c+E[Z]√

Var(Z)

)
,
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this gives that E
[
(aeX − beY )+

]
equals

aE[eX ]Φ

(
Cov(X,Z)+ln(a/b)+E[Z]√

Var(Z)

)
− bE[eY ]Φ

(
Cov(Y,Z)+ln(a/b)+E[Z]√

Var(Z)

)
= aE[eX ]Φ

(
Cov(X,X−Y )+ln(a/b)+lnE[eX ]− 1

2
Cov(X,X)−lnE[eY ]+ 1

2
Cov(Y,Y )√

Var(X−Y )

)
− bE[eY ]Φ

(
Cov(Y,X−Y )+ln(a/b)+lnE[eX ]− 1

2
Cov(X,X)−lnE[eY ]+ 1

2
Cov(Y,Y )√

Var(X−Y )

)
,

which gives the result after collecting terms.

The second part follows trivially if we substitute E
[
eX
]

= E
[
eY
]

= 1. �

Note that in the special case of E
[
eX
]

= E
[
eY
]

= 1 the formula not only simplifies
considerably but the end result (3.2.43) will only depend on the variance of X − Y . We will
exploit this property repeatedly in our subsequent derivations.

3.3 The Zero Coupon Inflation Indexed Swap

For the Zero Coupon Inflation Indexed Swap, the pricing equation (3.2.1) reduces to

ZCIIS (t, T, I (0) , N) = NEQn
t

[
e−
´ T
t n(s)ds

(
I(T )

I(0)
− (1 +K)T

)]
. (3.3.1)

We use the fact that Pr(t, T )I(t) is the nominal value of a tradeable asset, and thus a
martingale under the nominal martingale measure after (nominal) discounting, to write

EQn
t

[
e−
´ T
0 n(s)dsI(T )Pr(T, T )

]
= e−

´ t
0 n(s)dsI(t)Pr(t, T ),

for the floating leg of the swap. For the fixed leg we have

EQn
t

[
e−
´ T
t n(s)ds(1 +K)T

]
= Pn (t, T ) (1 +K)T . (3.3.2)

The price of the payer ZCIIS swap at time t is thus

ZCIIS (t, T, I (0) , N) = N

(
I(t)

I(0)
Pr (t, T )− (1 +K)T · Pn (t, T )

)
. (3.3.3)

We see immediately from substituting t = 0 that the initial value is completely model
independent since it depends only on the initial discount rates. Because of this model in-
dependence and since ZCIIS contracts are quoted in the market in terms of the fixed rate
K which makes the initial contract value equal to zero, we can strip (bootstrap) real zero-
coupon bond prices from those quotations for different maturities K(T ) to obtain the term
structure of real interest rates, according to:

Pr (0, T ) = Pn (0, T ) (1 +K(T ))T . (3.3.4)
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ZCIIS CVA

We can now proceed to the CVA calculation for the ZCIIS instrument.

Proposition 3.1. Under the Jarrow Yildirim model (3.2.10) - (3.2.12), the Expected Expo-
sure at the future time τ for the Zero-Coupon Inflation Indexed Swap contract (3.3.3), with
fixed rate K and maturity T ≥ τ, is given by

EE(τ) = ωN

Pr (0, T ) Φ

ω ln Pr(0,T )

K̂Pn(0,T )
+ ς(τ)2

2

ς(τ)

− K̂Pn (0, T ) Φ

ω ln Pr(0,T )

K̂Pn(0,T )
− ς(τ)2

2

ς(τ)

 ,

(3.3.5)

where K̂ ≡ (1 +K)
T
, ω is 1 for a payer ZCIIS, and -1 for a receiver ZCIIS and Φ is the

standard normal cumulative distribution function. The variance ς(τ)2 is given by

ς(τ)2 = V n(τ, T ) + V r(τ, T ) + σ2
Iτ (3.3.6)

− 2ρnrσnσrVn,r(τ, T, T ) + 2ρnIσnσIUn(0, τ, T )− 2ρrIσrσIUr(0, τ, T ),

with functions V k(t, T ), Vn,r(t, T1, T2) and Uk(s, t, T ) defined above in (3.2.33) and (3.2.41).

Proof. In order to calculate EE(τ) we need to evaluate

EQ
0

[
D(0, τ)

(
ωN ·

(
I(τ)

I(0)
Pr (τ, T )− (1 +K)T · Pn (τ, T )

))+
]
,

with D (0, τ) = exp
(
−
´ τ

0
n (s) ds

)
. Since n(τ) and r(τ) are normally distributed and

Pn (τ, T ) and Pr (τ, T ) are lognormally distributed, this can be interpreted as an option
of Margrabe type which exchanges an inflation rate adjusted real zero-coupon bond for
K̂ = (1 +K)T nominal zero-coupon bonds. We can therefore use Lemma 3.1 to determine

EE(τ) = N · EQn
0

[(
ω

(
D(0, τ) · I(τ)

I(0)
Pr (τ, T )− K̂ ·D(0, τ) · Pn (τ, T )

))+
]

(3.3.7)

= N · EQn
0

[(
ω
(
aeX − beY

))+
]
, (3.3.8)

if we define

a ≡ Pr (0, T ) , eX ≡ D(0, τ)
I(τ)

I(0)

Pr (τ, T )

Pr (0, T )
, (3.3.9)

b ≡ K̂Pn (0, T ) , eY ≡ D(0, τ)
Pn (τ, T )

Pn (0, T )
.

For every discounted tradable asset price process Sτ in nominal terms we must have that
EQn

0 [Sτ/S0] = 1. Therefore, from (3.2.9), we know that for our tradables, i.e. real and
nominal zero-coupon bonds, the following must hold:

EQn
0

[
D(0, τ)

I(τ)

I(0)

Pr (τ, T )

Pr (0, T )

]
= 1, EQn

0

[
D(0, τ)

Pn (τ, T )

Pn (0, T )

]
= 1,
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so E
[
eX
]

= E
[
eY
]

= 1, and we can apply the second part of Lemma 3.1: equation (3.2.43).
From that equation we see that we only need to determine Var(X − Y ). This random
variable X − Y follows the normal distribution N

(
µ(τ), ς (τ)2) with mean µ(τ) = E [X] −

E [Y ] and variance ς (τ)2 = Var(X) + Var(Y ) − 2Cov(X, Y ). We notice that we must have
E [X] = −1

2
Var(X) and E [Y ] = −1

2
Var(Y ), since for any Gaussian variable X we have that

E
[
eX
]

= eE[X]+ 1
2

Var(X). After including the inflation index dynamics from (3.2.22) we have

eX = e−
´ τ
0 r(s)dse−

1
2
σ2
I τ+σIWI(τ) · Pr (τ, T )

Pr (0, T )
, eY = e−

´ τ
0 n(s)ds · Pn (τ, T )

Pn (0, T )
.

From the Hull-White zero-coupon bond formula (3.2.16), the dynamics of the short rate
processes n(τ) and r(τ) from (3.2.20)-(3.2.21), and using the expression for the variance of
the integral processes (3.2.36) we can decompose our normal variables X and Y into their
means and their martingale increment parts:

E [X] = −1

2
Var(X),

X − E [X] = −σr
ˆ τ

0

ˆ s

0

e−ar(s−u)dWr (u)ds−Br (τ, T )σr

ˆ τ

0

e−ar(τ−u)dWr (u) + σIWI (τ) ;

E [Y ] = −1

2
Var(Y ), (3.3.10)

Y − E [Y ] = −σn
ˆ τ

0

ˆ s

0

e−an(s−u)dWn (u)ds−Bn (τ, T )σn

ˆ τ

0

e−an(τ−u)dWn (u).

We will use the following identity to simplify the martingale increments:

σk

ˆ τ

0

ˆ s

0

e−ak(s−u)dWk (u)ds+Bk (τ, T )σk

ˆ τ

0

e−ak(τ−u)dWk (u)

= σk

ˆ τ

0

(
Bk (u, τ) +Bk (τ, T ) e−ak(τ−u)

)
dWk (u)

= σk

ˆ τ

0

(
1− e−ak(τ−u)

ak
+

1− e−ak(T−τ)

ak
e−ak(τ−u)

)
dWk (u)

= σk

ˆ τ

0

1

ak

(
1− e−ak(T−u)

)
dWk (u) = σk

ˆ τ

0

Bk (u, T ) dWk (u). (3.3.11)

It is now clear that Var(X − Y ) can be found by the clasical variance of the sum formula
Var (

∑n
i=1Xi) =

∑n
i=1

∑n
j=1 Cov (Xi, Xj) from

ς(τ)2 = Var(X − Y ) = Var

(
σn

ˆ τ

0
Bn (u, T ) dWn (u)− σr

ˆ τ

0
Br (u, T ) dWr (u) + σIWI (τ)

)
= σ2

n

ˆ τ

0
Bn (u, T )2 du+ σ2

r

ˆ τ

0
Br (u, T )2 du+ σ2

I τ (3.3.12)

− 2ρnrσnσr

ˆ τ

0
Bn(u, T )Br(u, T )du+ 2ρnIσnσI

ˆ τ

0
Bn(u, T )du− 2ρrIσrσI

ˆ τ

0
Br(u, T )du.
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Finally, we apply formula (3.2.43) to obtain (3.3.5), where the expectation in formula
(3.3.7) is found using constants a and b from (3.3.9) and the variance from (3.3.12), which
gives equation (3.3.6) of the proposition. �

Once the analytical formula for EE(τ) is available, the CV A for ZCIIS instruments can
be obtained from (3.2.5).

3.4 The Year-on-Year Inflation Indexed Swap

We now proceed with determining the CVA for the Year-on-Year Inflation Indexed Swap
instrument. We first derive the price of this instrument without considering the possibility
of default. We will consider individual terms i in the summation of equation (3.2.2). If the
current time is t ∈ [Ti−1, Ti), the pricing equation for such terms is completely analogous to
the case of a ZCIIS valuation as in equation (3.3.3) and we find

YYIIS (t, Ti−1, Ti, ϕi, N) = NϕiEQn
t

[
e−
´ Ti
t n(s)dsEQn

t

(
I(Ti)

I(Ti−1)
− 1−K

)]
(3.4.1)

= Nϕi

(
I(t)

I(Ti−1)
Pr (t, Ti)− (1 +K)Pn (t, Ti)

)
.

For t < Ti−1 we cannot resort to the ZCIIS valuation since the value of I(Ti−1) is still
unknown. We use that for Gaussian X and Y

E
[
eX+Y−Z] = eE[X]+E[Y ]−E[Z]+ 1

2
Var(X+Y−Z) = eE[X]+ 1

2
Var(X)+E[Y ]+ 1

2
Var(Y )−E[Z]− 1

2
Var(Z)+Cov(X−Z, Y−Z)

= eCov(X−Z, Y−Z)E[eX ]E[eY ] /E[eZ ],

and choose

X = −
ˆ Ti−1

t
n(s)ds, Y = ln

I(Ti)

I(t)
−
ˆ Ti

t
n(s)ds, Z = ln

I(Ti−1)

I(t)
−
ˆ Ti−1

t
n(s)ds,

so that the price for the derivative leg at time i in this case equals

YYIIS (t, Ti−1, Ti, ϕi, N) = Nϕi

(
Pn(t, Ti−1)

Pr(t, Ti)

Pr(t, Ti−1)
eC(t,Ti−1,Ti) − (1 +K)Pn(t, Ti)

)
,

with

C(t, Ti−1, Ti) = CovQn
t

(
− ln I(Ti−1)

I(t) , ln I(Ti)
I(Ti−1) −

´ Ti
Ti−1

n(s)ds
)

= CovQn
t

(
−σn

´ Ti−1

t Bn(u, Ti−1)dWn(u) + σr
´ Ti−1

t Br(u, Ti−1)dWr(u)− σI
´ Ti−1

t dWI(u),

σr
´ Ti
t Br(u, Ti)dWr(u)− σr

´ Ti−1

t Br(u, Ti−1)dWr(u) + σI
´ Ti
Ti−1

dWI(u)
)

=
´ Ti−1

t [−σnρnrBn(u, Ti−1) + σrBr(u, Ti−1)− σIρrI ] [σrBr(u, Ti−1)− σrBr(u, Ti)] du

= −σr
´ Ti−1

t [−σnρnrBn(u, Ti−1) + σrBr(u, Ti−1)− σIρrI ]Br(Ti−1, Ti)e
−ar(Ti−1−u)du

= σrBr(Ti−1, Ti) [σnρnrLar,an(t, Ti−1)− σrLar,ar(t, Ti−1) + σIρrIBr(t, Ti−1)] , (3.4.2)

where

Lak,al(t, T ) ≡
ˆ T

t
e−ak(T−u)Bal(u, T )du = 1

a
l

( Bak(t, T )−Bak+al(t, T ) ) ,
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for k, l ∈ {n, r}, and the function Bk(t, T ) ≡ Bak(t, T ) is as before given by (3.2.18). The first
equality in the derivation above follows from the inflation index dynamics (3.2.22), by express-

ing stochastic parts of the corresponding
´ T
t
k(s)ds integrals in terms of

´ T
t
Bak(u, T )dWk(u)

as it was already done before when deriving (3.2.36) (in the penultimate step).

By summing the cashflows at all possible times, we obtain the following expression for
the price of the payer YYIIS instrument at time t:

YYIIS (t, T0, {Ti, ϕi}i=1,...M , N, K) = Nϕl

(
I(t)

I(Tl−1)
Pr (t, Tl)− (1 +K) · Pn (t, Tl)

)
(3.4.3)

+N

M∑
i=l+1

ϕi

(
Pn (t, Ti−1)

Pr (t, Ti−1)
Pr (t, Ti) · eC(t,Ti−1,Ti) − (1 +K) · Pn (t, Ti)

)
,

where l = min {i : Ti > t} and C(t, Ti−1, Ti) is as defined in (3.4.2). Here it is clear that a
valuation of a single YYIS cannot simply be done as a valuation of a portfolio of ZCIIS. Next
section however deals with the separate case of a netted portfolio of ZCIIS’s.

YYIIS CVA

For the CVA for an YYIIS instrument we use the independence and bucketing based CVA
standard formula (3.2.5), which will take the following form:

CV A ≈ (1−R)
n∑
i=1

Q {τ ∈ (ti, ti−1]}EQ
0 D(0, ti)

[
(YYIIS (ti, T, {Tj , ϕj} j=1,...,M , N,K))+]

= (1−R)
n∑
i=1

Q {τ ∈ (ti, ti−1]}EE(ti), (3.4.4)

where the bucketing of the default time is done over the partition

(0 = t0, t1], (t1, t2], ..., (tn−2, tn−1], (tn−1, tn = TM ],

with TM the maturity of the YYIIS instrument. Note that l, the starting index of the
summation in the expression (3.4.3) for YYIIS(ti, T, {Tj, ϕj}j=1,...,M , N,K), will now depend
on ti, so li = min {j : Tj > ti}.

The expression for the expected exposure at default corresponds to a t=0 option price
for a payoff at τ : EE(τ) = EQ

0

[
D(0, τ) (YYIIS(τ, T0, {Tj, ϕj}j=1,...,M , N,K))+] . By including

our YYIIS valuation expression (3.4.3) we find the following expectation

EE(τ) = EQn
0

N ·D(0, τ)

ω
ϕl I(τ)

I(Tl−1)
Pr (τ, Tl) +

M∑
j=l+1

ϕj
Pn (τ, Tj−1)

Pr (τ, Tj−1)
Pr (τ, Tj) · eC(τ,Tj−1,Tj)

−(1 +K) ·
M∑
j=l

ϕjPn (τ, Tj)

+ , (3.4.5)

with l = min {j : Tj > τ}. The flag ω is either +1 for a payer YYIIS, or -1 for a receiver
YYIIS.
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The evaluation of this expression is the topic of the following proposition. We will show
that a semi-analytical formula can be derived using moment matching approximations.10 If
we define the following quantities:

G ≡ e−
´ τ
0 n(s)ds

(
ϕl

I(τ)

I(Tl−1)
Pr (τ, Tl) +

M∑
j=l+1

ϕj
Pn (τ, Tj−1)

Pr (τ, Tj−1)
Pr (τ, Tj) · eC(τ,Tj−1,Tj)

)
, (3.4.6)

H ≡ e−
´ τ
0 n(s)ds · (1 +K) ·

M∑
j=l

ϕjPn (τ, Tj) ,

we see that the expectation EE(τ) has the form N · EQn
0

[
(ω (G−H))+]. To apply the

Margrabe formula (3.2.42), as we have done in the ZCIIS case, we require the quantities
G and H to be lognormal. Unfortunately, they are not. Each of them is actually a sum
of lognormal random variables for which no closed form probability distribution is available.
However, we can argue that their distribution is not very far from lognormal and use auxiliary
lognormal variables to approximate G and H, i.e.

G ≈ aeX , H ≈ beY ,

with (X, Y ) bivariate Gaussian variables.
This will allow us to evaluate our expectation

EQn
0

[
(ω (G−H))+] ≈ E

[(
ω
(
aeX − beY

))+
]

in exactly the same manner as before by applying Margrabe formula - equation (3.2.42).

Proposition 3.2. Under the Jarrow Yildirim model (3.2.10) - (3.2.12), the moment matching
approximation for the Expected Exposure at default τ for the Year on Year Inflation Indexed
Swap (3.4.3) (payer when ω = 1, receiver when ω = −1 defined above) is

EE(τ) = ωN

(
m1(τ)Φ

(
ω

ln m1(τ)
b

+ ς(τ)2

2

ς(τ)

)
− bΦ

(
ω

ln m1(τ)
b
− ς(τ)2

2

ς(τ)

))
,

with

ς(τ)2 = ln
E [H2]E [G2]

E [GH]2
, (3.4.7)

and

b = (1 +K)
M∑
j=l

ϕjPn(0, Tj),

10This kind of two-moment matching approximations to a lognormal distribution was first employed by
Levy (1992) for a problem of pricing Asian options. Other approximations in the literature are Gentle’s
(1993) approximation by geometric average, Curran (1994) who uses conditioning on a geometric average
price, Ju (1992) who uses Taylor series expansion approximations and Milevsky and Posner (1998a, 1998b)
who match the two moments to a reciprocal gamma distribution instead.
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where

m1(τ) ≡ E [G] = el(τ)e
1
2

Var(Zl) +

m∑
j=l+1

cj(τ)e
1
2

Var(Xj),

E
[
G2
]

= el(τ)2e2Var(Zl) + 2
M∑

j=l+1

el(τ)cj(τ)e
1
2

Var(Zl+Xj) +
M∑

p=l+1

M∑
q=l+1

cp(τ)cq(τ)e
1
2

Var(Xp+Xq),

E
[
H2
]

= (1 +K)2 ·
M∑
p=l

M∑
q=l

dp(τ)dq(τ)e
1
2

Var(Yp+Yq),

E [GH] = (1 +K) ·


M∑
j=l

el(τ)dj(τ)e
1
2

Var(Zl+Yj) +

M∑
p=l+1

M∑
q=l

cp(τ)dq(τ)e
1
2

Var(Xp+Yq)

 ,

with deterministic functions

cj(τ) = ϕj
Pn(0, Tj−1)

Pr(0, Tj−1)
Pr(0, Tj)e

C(τ,Tj−1,Tj) · e−
1
2
Vn(τ)− 1

2
Bn(τ,Tj−1)2vn(τ)−Bn(τ,Tj−1)xn(τ)

· e−
1
2(Br(τ,Tj)2−Br(τ,Tj−1)2)vr(τ)−(Br(τ,Tj)−Br(τ,Tj−1))(xr(τ)−R(τ)),

dk(τ) = ϕkPn(0, Tk)e
− 1

2
Vn(τ)− 1

2
Bn(τ,Tk)2vn(τ)−Bn(τ,Tk)xn(τ),

el(τ) = ϕl
Pn(0, Tl−1)

Pr(0, Tl−1)
Pr(0, Tl)e

− 1
2
Vn(Tl−1)− 1

2
(Vr(τ)−Vr(Tl−1))−(R(τ)−R(Tl−1))− 1

2
σ2
I (τ−Tl−1)

· e−
1
2
Br(τ,Tl)

2vr(τ)−Br(τ,Tl)(xr(τ)+R(τ)),

and where the functions Vk(τ), vk(τ), xk(τ), R(τ) and R(τ) have been defined before.

Variance-covariance terms that are needed in the moments expressions above can be expressed
in terms of the functions Vk,l(t, T1, T2) and Uk(s, t, T ) given in (3.2.41):

Cov (Xi, Xj) =σ2
nVn,n(τ, Ti−1, Tj−1) + σ2

r [Vr,r(τ, Ti−1, Tj−1)− Vr,r(τ, Ti−1, Tj)]

− σ2
r [Vr,r(τ, Ti, Tj−1)− Vr,r(τ, Ti, Tj)]− ρnrσrσn [Vn,r(τ, Ti−1, Tj−1)

−Vn,r(τ, Ti−1, Tj) + Vn,r(τ, Tj−1, Ti−1)− Vn,r(τ, Tj−1, Ti)] ,

Cov (Yi, Yj) =σ2
nVn,n(τ, Ti, Tj),

Cov (Yi, Xj) =σ2
nVn,n(τ, Ti, Tj−1)− ρnrσnσr [Vn,r(τ, Ti, Tj−1)− Vn,r(τ, Ti, Tj)] ,

Cov (Yi, Zk) =σ2
nVn,n(Tk−1, Ti, Tk−1)− ρnrσrσn [Vr,n(Tk−1, Tk−1, Ti)− Vr,n(t, Tk, Ti)]

− ρnIσnσIUn(Tk−1, t, Ti),

Cov (Xj, Zk) =σ2
nVn,n(Tk−1, Tk−1, Tj−1)− ρnIσnσIUn(Tk−1, t, Tj−1) (3.4.8)

− ρnrσrσn [Vr,n(Tk−1, Tk−1, Tj−1)− Vr,n(t, Tk, Tj−1)]

− ρnrσrσn [Vr,n(Tk−1, Tj−1, Tk−1)− Vr,n(Tk−1, Tj, Tk−1)]

+ ρrIσrσI [Ur(Tk−1, t, Tj−1)− Ur(Tk−1, t, Tj)] + σ2
r [Vr,r(Tk−1, Tj−1, Tk−1)

−Vr,r(Tk−1, Tj, Tk−1)− Vr,r(t, Tj−1, Tk) + Vr,r(t, Tj, Tk)] ,

Var (Zk) =σ2
nVn,n(Tk−1, Tk−1, Tk−1)− 2ρnrσrσn [Vr,n(Tk−1, Tk−1, Tk−1)

−Vr,n(Tk−1, Tk, Tk−1)] + σ2
I (t− Tk−1)− 2ρrIσrσIUr(Tk−1, t, Tk)

+ σ2
rVr,r(Tk−1, Tk−1, Tk−1)− 2σ2

rVr,r(Tk−1, Tk−1, Tk) + σ2
rVr,r(t, Tk, Tk).
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Proof. Let
X ∼ N (µ, ξ2), Y ∼ N (ν, η2), Corr(X, Y ) = ρ.

It is then enough to match the first two moments of the (unknown) distribution of both
our processes and their mixed moment, i.e. E[G], E[G2], E[H], E[H2] and E[GH] to the
moments of the auxiliary lognormal random variables. The first order moments will give us
E
[
aeX

]
= E[G] and E

[
beY
]

= E[H] directly and the second order moments E[G2], E[H2]
and E[GH] will provide us with three equations from which the variances ξ2, η2 and the
covariance ρξη can be determined, and thus the key quantity Var(X − Y ).

Looking at the definition of the quantities G and H in (3.4.6) we define

G = F ∗l +
M∑

j=l+1

Gj, H = (1 +K) ·
M∑
k=l

Hk ;

F ∗l ≡ e−
´ τ
0 n(s)ds · ϕl

I(τ)

I(Tl−1)
Pr (τ, Tl) = fle

Zl , (3.4.9)

Gj ≡ e−
´ τ
0 n(s)ds · ϕj

Pn (τ, Tj−1)

Pr (τ, Tj−1)
Pr (τ, Tj) · eC(τ,Tj−1,Tj) = gje

Xj ,

Hk ≡ e−
´ τ
0 n(s)ds · ϕkPn (τ, Tk) = hke

Yk ,

where, using the Hull-White zero-coupon bond formula (3.2.16) and the dynamics of the
inflation index (3.2.22)11, we distinguish deterministic factors which involve the functions Ak
defined in (3.2.17):

fl = ϕlAr(τ, Tl)e
− 1

2
σ2
I (τ−Tl−1),

gj = ϕje
C(τ,Tj−1,Tj)

An(τ, Tj−1)

Ar(τ, Tj−1)
Ar(τ, Tj), (3.4.10)

hk = ϕkAn(τ, Tk),

and the stochastic processes in the exponents:

Xj = −
ˆ τ

0

n(s)ds − Bn(τ, Tj−1)n(τ) − (Br(τ, Tj)−Br(τ, Tj−1))r(τ),

Yk = −
ˆ τ

0

n(s)ds − Bn(τ, Tk)n(τ), (3.4.11)

Zl = −
ˆ τ

0

n(s)ds − Br(τ, Tl)r(τ) +

ˆ τ

Tl−1

(n(s)− r(s)) ds+ σI (WI(τ)−WI(Tl−1))

= −
ˆ Tl−1

0

(n(s)− r(s)) ds + σI

ˆ τ

Tl−1

dWI(u) − Br(τ, Tl)r(τ) −
ˆ τ

0

r(s)ds.

11with s = Tl−1 and t = τ . From the definition of the index l after equation (3.4.5) it is clear that
Tl−1 ≤ τ ≤ Tl.
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From expressions (3.2.29)-(3.2.30) and (3.2.37)-(3.2.38), and using definitions (3.2.23),
(3.2.32) and (3.2.39), (3.2.40) the expectations of those processes are

E[Xj] = lnPn(0, τ)− 1

2
Vn(τ)−Bn(τ, Tj−1) (fn(0, τ) + xn(τ))

− (Br(τ, Tj)−Br(τ, Tj−1)) (fr(0, τ) + xr(τ) +R(τ)) ,

E[Yk] = lnPn(0, τ)− 1

2
Vn(τ)−Bn(τ, Tk) (fn(0, τ) + xn(τ)) , (3.4.12)

E[Zl] = ln

(
Pn(0, Tl−1)

Pr(0, Tl−1)

)
− 1

2
[Vn(Tl−1)− Vr(Tl−1)] +R(Tl−1)

−Br(τ, Tl) (fr(0, τ) + xr(τ) +R(τ)) + lnPr(0, τ)− 1

2
Vr(τ)−R(τ).

For moment matching, we will use the moment generating function, which for a normal
random variable S ∼ N (µ, σ2) and m ∈ R takes the form

E
[
emS

]
= eµm+σ2

2
m2

. (3.4.13)

Moment matching technique for H . Let us first start with the quantity H. The first
two moments of H are

E[H] = (1 +K) ·
M∑
j=l

hjE
[
eYj(τ)

]
= (1 +K) ·

M∑
j=l

hje
E[Yj ]+

1
2

Var(Yj), (3.4.14)

E
[
H2
]

= (1 +K)2

M∑
p=l

M∑
q=l

hphqE
[
eYp(τ)+Yq(τ)

]
(3.4.15)

= (1 +K)2

M∑
p=l

M∑
q=l

hphqe
E[Yp]+E[Yq ]+

1
2

Var(Yp+Yq),

that are to be matched with the first two moments of the auxiliary lognormal variable beY

which, according to the moment generating function expression (3.4.13) are

E
[
beY
]

= beν+ η2

2 , (3.4.16)

E
[
(beY )2

]
= b2e2ν+2η2 .
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Referring to the definition of hj in (3.4.10), of An(τ, T ) in (3.2.17) and of the mean E[Yj]
in (3.4.12), we define

dj(τ) ≡ hje
E[Yj ] (3.4.17)

= ϕjAn(τ, Tj)e
lnPn(0,τ)− 1

2
Vn(τ)−Bn(τ,Tj)(fn(0,τ)+xn(τ))

= ϕj
Pn(0, Tj)

Pn(0, τ)
eBn(τ,Tj)fn(0,τ)− 1

2
Bn(τ,Tj)

2vn(t)Pn(0, τ)e−
1
2
Vn(τ)−Bn(τ,Tj)(fn(0,τ)+xn(τ))

= ϕjPn(0, Tj)e
− 1

2
Vn(τ)− 1

2
Bn(τ,Tj)

2vn(τ)−Bn(τ,Tj)xn(τ),

and using (3.4.11) we find the variances

Var (Yj) = Var

(
−

τ

∫
0
n(s)ds−Bn(τ, Tj)n(τ)

)
= Var

(
τ

∫
0
n(s)ds

)
+Bn(τ, Tj)

2Var (n(τ)) + 2Bn(τ, Tj)Cov

(
τ

∫
0
n(s)ds, n(τ)

)
= Vn(τ) +Bn(τ, Tj)

2vn(τ) + 2Bn(τ, Tj)xn(τ),

Var (Yp + Yq) = V ar

(
−2

τ

∫
0
n(s)ds− (Bn(τ, Tp) +Bn(τ, Tq))n(τ)

)
= 4Vn(τ) + (Bn(τ, Tp) +Bn(τ, Tq))

2 vn(τ) + 4 (Bn(τ, Tp) +Bn(τ, Tq))xn(τ),

where definitions of variances (3.2.31) and (3.2.39) are used, and the covariance is derived as
follows, using dynamics of the rate process (3.2.20):

Cov

(ˆ τ

0

k (s) ds, k (τ)

)
= Cov

(
σk

ˆ τ

0

ˆ s

0

e−ak(s−u)dWk (u)ds, σk

ˆ τ

0

e−ak(τ−u)dWk (u)

)
=

= Cov

(
σk

ˆ τ

0

(ˆ τ

u

e−ak(s−u)ds

)
dWk (u), σk

ˆ τ

0

e−ak(τ−u)dWk (u)

)
=

= Cov

(
σk
ak

ˆ τ

0

(1− e−ak(τ−u))dWk (u), σk

ˆ τ

0

e−ak(τ−u)dWk (u)

)
=

=
σ2
k

ak

ˆ τ

0

(1− e−ak(τ−u))e−ak(τ−u)du =
σ2
k

2a2
k

(
1− e−akτ

)2
= xk(τ),

so the end result turns out to be exactly the quantity xk(τ) defined in (3.2.24).
The moment expression (3.4.14) becomes

E[H] = (1 +K) ·
M∑
j=l

dj (τ) e
1
2
V ar(Yj) = (1 +K)

M∑
j=l

ϕjPn(0, Tj), (3.4.18)

as expected (since H represents a discounted tradable asset price), and (3.4.15) becomes
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E
[
H2
]

= (1 +K)2

M∑
p=l

M∑
q=l

dp (τ) dq (τ) e
1
2

Var(Yp+Yq) (3.4.19)

= (1 +K)2

M∑
p=l

M∑
q=l

ϕpϕqPn(0, Tp)Pn(0, Tq)e
Vn(τ)+Bn(τ,Tp)Bn(τ,Tq)vn(τ)+(Bn(τ,Tp)+Bn(τ,Tq))xn(τ).

The form of E[H] as given by (3.4.18) shows that E
[
eY
]

= 1, so ν = −η2

2
, leaving us with

the system of two equations with two unknowns (b, η2):

(1 +K)
M∑
j=l

ϕjPn(0, Tj) = b, (3.4.20)

(1+K)2

M∑
p=l

M∑
q=l

ϕpϕqPn(0, Tp)Pn(0, Tq)e
Vn(τ)+Bn(τ,Tp)Bn(τ,Tq)vn(τ)+(Bn(τ,Tp)+Bn(τ,Tq))xn(τ) = b2eη

2

,

which gives b and the solution for η:

η2 = ln

∑M
p=l

∑M
q=l ϕpϕqPn(0, Tp)Pn(0, Tq)e

Vn(τ)+Bn(τ,Tp)Bn(τ,Tq)vn(τ)+(Bn(τ,Tp)+Bn(τ,Tq))xn(τ)(∑M
j=l ϕjPn (0, Tj)

)2 .

(3.4.21)

Moment matching technique for G and for the mixed sum GH . By using
equation (3.4.13) for G, as given by (3.4.9), its moments are

E[G] = flE
[
eZl
]

+
M∑

j=l+1

gjE
[
eXj
]

= fle
E[Zl]+

1
2

Var(Zl) +
M∑

j=l+1

gje
E[Xj ]+

1
2

Var(Xj),

E
[
G2
]

= fl
2 E
[
e2Zl
]

+ 2
M∑

j=l+1

flgjE
[
eZl+Xj

]
+

M∑
p=l+1

M∑
q=l+1

gpgqE
[
eXp+Xq

]
(3.4.22)

= fl
2 e2E[Zl]+2Var(Zl)+2

M∑
j=l+1

flgje
E[Zl]+E[Xj ]+

1
2

Var(Zl+Xj)+
M∑

p=l+1

M∑
q=l+1

gpgqe
E[Xp]+E[Xq ]+

1
2

Var(Xp+Xq),

E [GH] = (1 +K) ·

{
M∑
j=l

flhjE
[
eZl+Yj

]
+

M∑
p=l+1

M∑
q=l

gphqE
[
eXp+Yq

]}

= (1 +K) ·

{
M∑
j=l

flhje
E[Zl]+E[Yj ]+

1
2

Var(Zl+Yj) +
M∑

p=l+1

M∑
q=l

gphqe
E[Xp]+E[Yq ]+

1
2

Var(Xp+Yq)

}
.
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As above, from the definitions of gj and fl in (3.4.10), of Ak(τ, T ) in (3.2.17) and the
expectations E[Xj] and E[Zl] in (3.4.12), we define new deterministic functions

cj(τ) ≡ gje
E[Xj ]

= ϕje
C(τ,Tj−1,Tj)An(τ, Tj−1)

Ar(τ, Tj)

Ar(τ, Tj−1)
elnPn(0,τ)− 1

2
Vn(τ)−Bn(τ,Tj−1)(fn(0,τ)+xn(τ))

· e−(Br(τ,Tj)−Br(τ,Tj−1))(fr(0,τ)+xr(τ)+R(τ))

= ϕje
C(τ,Tj−1,Tj)

Pn(0, Tj−1)

Pn(0, τ)
eBn(τ,Tj−1)fn(0,τ)− 1

2
Bn(τ,Tj−1)2vn(τ)

· Pr(0, Tj)

Pr(0, Tj−1)
e(Br(τ,Tj)−Br(τ,Tj−1))fr(0,τ)− 1

2(Br(τ,Tj)2−Br(τ,Tj−1)2)vr(τ)

· Pn(0, τ)e−
1
2
Vn(τ)−Bn(τ,Tj−1)(fn(0,τ)+xn(τ)) · e−(Br(τ,Tj)−Br(τ,Tj−1))(fr(0,τ)+xr(τ)+R(τ))

= ϕj
Pn(0, Tj−1)

Pr(0, Tj−1)
Pr(0, Tj)e

C(τ,Tj−1,Tj) · e−
1
2
Vn(τ)− 1

2
B2
n(τ,Tj−1)vn(τ)−Bn(τ,Tj−1)xn(τ)

· e−
1
2(Br(τ,Tj)2−Br(τ,Tj−1)2)vr(τ)−(Br(τ,Tj)−Br(τ,Tj−1))(xr(τ)+R(τ)), (3.4.23)

el(τ) ≡ fle
E[Zl]

= ϕlAr(τ, Tl)e
− 1

2
σ2
I (τ−Tl−1)e

ln

(
Pn(0,Tl−1)

Pr(0,Tl−1)

)
− 1

2
[Vn(Tl−1)−Vr(Tl−1)]+R(Tl−1)

· e−Br(τ,Tl)(fr(0,τ)+xr(τ)+R(τ))+lnPr(0,τ)− 1
2
Vr(τ)−R(τ)

= ϕl
Pr(0, Tl)

Pr(0, τ)
eBr(τ,Tl)fr(0,τ)− 1

2
Br(τ,Tl)

2vr(τ)Pn(0, Tl−1)

Pr(0, Tl−1)
e−

1
2

[Vn(Tl−1)−Vr(Tl−1)]+R(Tl−1)

· Pr(0, τ)e−Br(τ,Tl)(fr(0,τ)+xr(τ)+R(τ))− 1
2
Vr(τ)−R(τ) · e−

1
2
σ2
I (τ−Tl−1)

= ϕl
Pn(0, Tl−1)

Pr(0, Tl−1)
Pr(0, Tl)e

− 1
2
Vn(Tl−1)− 1

2
(Vr(τ)−Vr(Tl−1))−(R(τ)−R(Tl−1))− 1

2
σ2
I (τ−Tl−1)

· e−
1
2
Br(τ,Tl)

2vr(τ)−Br(τ,Tl)(xr(τ)+R(τ)),

which finally give us the moment expressions

E [G] = el(τ)e
1
2

Var(Zl) +
m∑

j=l+1

cj(τ)e
1
2

Var(Xj), (3.4.24)

E
[
G2
]

= el(τ)2 e2Var(Zl) + 2
M∑

j=l+1

el(τ)cj(τ)e
1
2

Var(Zl+Xj) +
M∑

p=l+1

M∑
q=l+1

cp(τ)cq(τ)e
1
2

Var(Xp+Xq),

E [GH] = (1 +K) ·

{
M∑
j=l

el(τ)dj(τ)e
1
2

Var(Zl+Yj) +
M∑

p=l+1

M∑
q=l

cp(τ)dq(τ)e
1
2

Var(Xp+Yq)

}
.
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With this expression we have all the necessary terms to apply formula (3.2.42). The
required variance is obtained from the following identity:

E [H2]E [G2]

E [GH]2
=
a2e2E[X]+2Var(X)b2e2E[Y ]+2Var(Y )(

abeE[X+Y ]+ 1
2

Var(X+Y )
)2 = eVar(X)+Var(Y )−2Cov(X,Y ) = eVar(X−Y ),

and thus

Var(X − Y ) ≡ ς2 = ln
E [H2]E [G2]

E [GH]2
.

This variance together with b from (3.4.21) and m1(τ) ≡ E[G] from first line of (3.4.24),
are all we need for the approximate semi-analytical solution for the expected exposure at
default of the YYIIS instrument according to Lemma 3.1, and equation (3.2.42) takes the
final form

EE(τ) = ωN

{
m1Φ

(
ω

ln m1

b
+ ς2

2

ς

)
− bΦ

(
ω

ln m1

b
− ς2

2

ς

)}
. (3.4.25)

The remaining moments in (3.4.24) are obtained from definitions of our stochastic pro-
cesses (3.4.11) and the key identity (3.3.11), by considering

Xj−E [Xj] = −σn
ˆ τ

0

Bn(u, Tj−1)dWn (u)−σr
ˆ τ

0

(
e−ar(Tj−1−τ) − e−ar(Tj−1−τ)

)
e−ar(τ−u)dWr (u)

= −σn
ˆ τ

0

Bn(u, Tj−1)dWn (u)− σr
ˆ τ

0

(Br(u, Tj−1)−Br(u, Tj)) dWr (u),

Yk − E [Yk] = −σn
ˆ τ

0

Bn(u, Tk)dWn (u), (3.4.26)

Zl − E [Zl] = −σn
ˆ Tl−1

0

Bn(u, Tl−1)dWn (u) + σI

ˆ τ

Tl−1

dWn (u)

+σr

ˆ Tl−1

0

Br(u, Tl−1)dWr (u)− σr
ˆ τ

0

Br(u, Tl)dWr (u).

By looking at all possible covariance combinations of the above expression and after some
very tedious algebra, we finally obtain all variance-covariance terms that are given by (3.4.8)
in Proposition 3.2, concisely expressed in the terms of two generalised functions defined by
(3.2.41). �
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3.5 Portfolios of ZCIIS’s with Netting

In analogy to the previous result for the YYIIS CVA we can derive a similar formula for a
netted portfolio of ZCIIS instruments. However, because of the moments matching technique,
we must impose a restriction: we can consider either only payer instruments or only receiver
instruments.

A modified technique was employed in the existing literature to overcome this limitation
for the case of interest rate swaps with netting, for example by Brigo and Masetti (2005).
An extra parameter was introduced to add a shift to the lognormal distributions to allow
for the possibility of negative values. However, in our case it is not possible to proceed in
a similar manner since our inflation CVA pricing formula is of the Margrabe type (i.e. we
exchange one asset with a lognormal price distribution for another) whereas the interest rate
swap CVA pricing formula is of the classical Black type. In our case, including such a shift
to allow for negative netting coefficients would lead to a pricing formula where the Margrabe
formula can no longer be applied. Instead, it would lead to a pricing formula of spread option
type (see e.g. Brigo and Mercurio (2006), Appendix B, page 921).

Starting from the valuation equation of a single ZCIIS instrument (3.3.3), we now derive
the valuation equation for a portfolio of ZCIIS instruments, if they are all payer or receiver
swaps.

A portfolio of m payer instruments (which we will call PZCIIS) would lead to the following
present value function

PZCIIS (t, I(0), {Tj, Nj, Kj}j=1,...,m) =
m∑
j=1

Nj

(
I (t)

I (0)
Pr (t, Tj)− (1 +Kj)

Tj · Pn (t, Tj)

)

=
I (t)

I (0)

m∑
j=1

NjPr (t, Tj)−
m∑
j=1

NjK̂jPn (t, Tj) , (3.5.1)

where K̂j ≡ (1+Kj)
Tj , ∀j = 1, ...,m. The instruments are ordered by increasing maturity, so

Tm represents the longest maturity. We choose buckets for the default time using a partition
up to the longest instrument maturity in the portfolio:

(0 = t0, t1], (t1, t2], ..., (tn−2, tn−1], (tn−1, tn = Tm],

to write down the approximation as introduced earlier

CV A ≈ (1−R)
n∑
i=1

Q {τ ∈ (ti, ti−1]}EE(ti),

EE(τ) = EQn
0

[
D(0, τ)

(
ω

(
I(τ)

I(0)

m∑
j=1

NjPr(τ, Tj)−
m∑
j=1

NjK̂jPn(τ, Tj)

))+]
. (3.5.2)

We can then use moment matching techniques to calculate approximations for the Ex-
pected Exposures, since the Nj and K̂j are all of the same sign. We take them positive, and
use ω = 1 for payer, and ω = −1 for receiver swaps.
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Proposition 3.3. Under the Jarrow Yildirim model (3.2.11) the moment matching approx-
imation for the Expected Exposure at default time τ of a portfolio of netted Zero-Coupon
Inflation Indexed Swaps (3.5.1) that are all in the same direction (either all payer when
ω = 1, or all receiver when ω = −1) is

EE(τ) = ω

(
aΦ

(
ω

ln a
b

+ ς(τ)2

2

ς(τ)

)
− bΦ

(
ω

ln a
b
− ς(τ)2

2

ς(τ)

))
,

with coefficients

a =
m∑
j=1

NjPr(0, Tj), b =
m∑
j=1

NjK̂jPn(0, Tj),

and variance

ς(τ)2 = ln
E
[
Ḡ2
]
E
[
H̄2
]

E
[
ḠH̄

]2 , (3.5.3)

where the second moments are

E
[
Ḡ2
]

=

m∑
p=1

m∑
q=1

NpNqPr(0, Tp)Pr(0, Tq)e
σ2
rVr,r(t,Tp,Tq)−ρrIσrσI(Ur(0,τ,Tp)+Ur(0,τ,Tq))+σ2

I τ ,

E
[
H̄2
]

=

m∑
p=1

m∑
q=1

NpNqK̂pK̂qPn(0, Tp)Pn(0, Tq)e
σ2
nVn,n(t,Tp,Tq),

E
[
ḠH̄

]
=

m∑
p=1

m∑
q=1

NpK̂pNqPn(0, Tp)Pr(0, Tq)e
ρnrσnσrVn,r(τ,Tp,Tq)−ρnIσnσIUn(0,τ,Tp)−ρrIσrσIUr(0,τ,Tq),

with functions Vk,l(t, T1, T2), and Uk(s, t, T ) defined in (3.2.41).

Proof. As before, by looking at the expression for EE(τ) in equation (3.5.2), we can
define the following quantities:

Ḡ ≡ e−
´ τ
0 n(s)ds I (τ)

I (0)

m∑
j=1

NjPr (τ, Tj) , (3.5.4)

H̄ ≡ e−
´ τ
0 n(s)ds

m∑
j=1

NjK̂jPn (τ, Tj) ,

which leads to an expectation EE(τ) in the form EQn
0

[(
ω
(
Ḡ− H̄

))+
]

with, as before,

Ḡ ≈ aeX , H̄ ≈ beY ,

for bivariate Gaussian (X, Y ).

The netting coefficients Nj and NjK̂j are all of the same sign, giving us

EQn
0

[(
ω
(
Ḡ− H̄

))+
]
≈ E

[(
ω
(
aeX − beY

))+
]
.
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As before, we only need to calculate

Var(X − Y ) = ln
E
[
Ḡ2
]
E
[
H̄2
]

E
[
ḠH̄

]2 ,

and a and b to apply the Margrabe formula. Both Ḡ and H̄ are similar to the quantity H in
the previous YYIIS case, and we are going to rely heavily on our earlier derivations. The form
of the quantities Ḡ and H̄ allows us to apply the same method of separating deterministic
and stochastic parts as was done previously for G and H, so similar expressions are found
here:

Ḡ =
m∑
j=1

c̄j (τ) eX̄j(τ), (3.5.5)

H̄ =
m∑
j=1

d̄j (τ) eȲj(τ),

with deterministic parts

c̄j (τ) = NjPr(0, Tj)e
E[X̄j ], (3.5.6)

d̄j (τ) = NjK̂jPn(0, Tj)e
E[Ȳj ],

and the zero-mean stochastic parts

X̄j − E[X̄j] = −σr
ˆ τ

0

ˆ s

0

e−ar(s−u)dWr (u)ds−Br(τ, Tj)σr

ˆ τ

0

e−ar(τ−u)dWr (u) + σIWI (τ) ,

Ȳj − E[Ȳj] = −σn
ˆ τ

0

ˆ s

0

e−an(s−u)dWn (u)ds−Bn(τ, Tj)σr

ˆ τ

0

e−an(τ−u)dWn (u). (3.5.7)

After using identity (3.3.11) those stochastic processes become

X̄j − E[X̄j] = −σr
ˆ τ

0

Br (u, Tj) dWr (u) + σIWI (τ) ,

Ȳj − E[Ȳj] = −σn
ˆ τ

0

Bn (u, Tj) dWn (u). (3.5.8)

Once again, we proceed using the moment matching technique. The moments are
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E[Ḡ] =
m∑
j=1

c̄j (τ) e
1
2

Var(X̄j(τ)) =
m∑
j=1

NjPr(0, Tj)e
E[X̄j ]e

1
2

Var(X̄j),

E
[
Ḡ2
]

=
m∑
p=1

m∑
q=1

c̄p (τ) c̄q (τ) e
1
2

Var(X̄p(τ)+X̄q(τ))

=
m∑
p=1

m∑
q=1

NpPr(0, Tp)NqPr(0, Tq)e
E[X̄p]+E[X̄q ]e

1
2

Var(X̄p+X̄q),

E[H̄] =
m∑
j=1

d̄j (τ) e
1
2

Var(Ȳj(τ)) =
m∑
j=1

NjK̂jPn(0, Tj)e
E[Ȳj ]e

1
2

Var(Ȳj), (3.5.9)

E
[
H̄2
]

=
m∑
p=1

m∑
q=1

d̄p (τ) d̄q (τ) e
1
2

Var(Ȳp(τ)+Ȳq(τ))

=
m∑
p=1

m∑
q=1

NpK̂pPn(0, Tp)NqK̂qPn(0, Tq)e
E[Ȳp]+E[Ȳq ]e

1
2

Var(Ȳp+Ȳq),

E
[
ḠH̄

]
=

m∑
p=1

m∑
q=1

d̄p (τ) c̄q (τ) e
1
2

Var(Ȳp(τ)+X̄q(τ))

=
m∑
p=1

m∑
q=1

NpK̂pPn(0, Tp)NqPr(0, Tq)e
E[Ȳp]+E[X̄q ]e

1
2

Var(Ȳp(τ)+X̄q(τ)).

We again have that lognormals eX̄j(τ), and eȲj(τ) are discounted tradable asset price processes

and thus, the fact that E
[
eX̄j(τ)

]
= E

[
eȲj(τ)

]
= 1 gives us E

[
X̄j

]
= −1

2
Var(X̄j) and E

[
Ȳj
]

=
−1

2
Var(Ȳj), for every j, as was the case for X and Y in (3.3.10).12 After applying this fact

to the moment expressions (3.5.9), they reduce to

E[Ḡ] =
m∑
j=1

NjPr(0, Tj),

E
[
Ḡ2
]

=
m∑
p=1

m∑
q=1

NpNqPr(0, Tp)Pr(0, Tq)e
Cov(X̄p,X̄q),

E[H̄] =
m∑
j=1

NjK̂jPn(0, Tj), (3.5.10)

E
[
H̄2
]

=
m∑
p=1

m∑
q=1

NpNqK̂pK̂qPn(0, Tp)Pn(0, Tq)e
Cov(Ȳp,Ȳq),

E
[
ḠH̄

]
=

m∑
p=1

m∑
q=1

NpK̂pNqPn(0, Tp)Pr(0, Tq)e
Cov(Ȳp,X̄q).

12Please note that here X and Y denote different quantities from X̄j (τ) and Ȳj (τ). Here X and Y are
auxiliary variables to approximate processes 1

a ln Ḡ and 1
b ln H̄, and not the original processes themselves as

was the case in Section 3.3.
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We observe that as before, we are going to need expressions for the covariances of mixed
terms:

Cov
(
X̄p, X̄q

)
= Cov

{
−σr
ˆ τ

0
Br (u, Tp) dWr (u) + σIWI (τ) , −σr

ˆ τ

0
Br (u, Tq) dWr (u) + σIWI (τ)

}

= σ2
r

ˆ τ

0
Br (u, Tp)Br (u, Tq) du− ρrIσrσI

ˆ τ

0
Br(u, Tp)du− ρrIσrσI

ˆ τ

0
Br(u, Tq)du+ σ2

I τ

= σ2
rVr,r(t, Tp, Tq)− ρrIσrσIUr(0, τ, Tp)− ρrIσrσIUr(0, τ, Tq) + σ2

I τ,

Cov
(
Ȳp, Ȳq

)
= Cov

{
−σn

ˆ τ

0
Bn (u, Tp) dWn (u), −σn

ˆ τ

0
Bn (u, Tq) dWn (u)

}

= σ2
n

ˆ τ

0
Bn (u, Tp)Bn (u, Tq) du = σ2

nVn,n(t, Tp, Tq), (3.5.11)

Cov
(
Ȳp, X̄q

)
= Cov

{
−σn

ˆ τ

0
Bn (u, Tp) dWn (u), −σr

ˆ τ

0
Br (u, Tq) dWr (u) + σIWI (τ)

}

= ρnrσnσr

ˆ τ

0
Bn(u, Tp)Br(u, Tq)du− ρnIσnσI

ˆ τ

0
Bn(u, Tp)du− ρrIσrσI

ˆ τ

0
Br(u, Tq)du

= ρnrσnσrVn,r(τ, Tp, Tq)− ρnIσnσIUn(0, τ, Tp)− ρrIσrσIUr(0, τ, Tq),

which are expressed in terms of the functions Vk,l(t, T1, T2), and Uk(s, t, T ) defined in (3.2.41).

Now, when looking at the right hand sides of the equations in (3.5.10), from the form
of the first moments we can conclude that in this case for both auxiliary variables X and
Y the convenient property that E [X] = −1

2
Var(X) and E [Y ] = −1

2
Var(Y ) holds. This

was to be expected since the sum of discounted tradables is still a discounted tradable so
E
[
eX
]

= E
[
eY
]

= 1 holds, i.e. E
[
Ḡ/a

]
= E

[
H̄/b

]
= 1. This gives us the two unknowns a

and b:
m∑
j=1

NjPr(0, Tj) = a, (3.5.12)

m∑
j=1

NjK̂jPn(0, Tj) = b, (3.5.13)

which together with the Margrabe type formula (3.2.43) gives the final closed form approxi-
mation for the expected exposure at default of the portfolio of ZCIIS instruments. �
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3.6 Numerical Studies

3.6.1 ZCIIS CVA Results

In this subsection we will compare profiles of the Expected Exposure of the ZCIIS instruments
given by the exact formula (3.3.5) to numerically obtained approximations based on Monte
Carlo simulations. As an example, we take a ZCIIS instrument of payer type, with a notional
of 2.79 million euros, and a fixed rate of 2.49%, which was priced at its inception on 10-Dec-
2010 and expires on 03-Dec-2040. We will look at other strikes and maturities afterwards.

The maturity of the contract is therefore T = 30 years. The parameters used were
an = 0.0498, ar = 0.2273, σn = 0.0108, σr = 0.0078, σI = 0.0339 and ρnr = −0.8755, ρnI =
−0.3861 and ρrI = 0.7799. The nominal rate term structure was taken to be flat with
n0 = 1%, which together with the term structure of the ZCIIS strikes gives an initial flat real
rate term structure with r0 = −1.46%. The initial value of the inflation index was taken to
be I0 = 117 and the default recovery rate REC = 0.4.

Figure 3.1 shows the results. We can clearly see that the Monte Carlo result is close to
our closed form solution when enough paths have been simulated. To calculate the CVA, the
profiles for the Expected Exposure were combined with counterparty default probabilities,
which for simplicity have been based on a flat hazard rate curve which gives a flat curve with
a daily probability of default of 10−5. This produces a CVA of 226.68 basis points (63,244
euros) for our analytic solution versus 226.54 basis points (63,204 euros) for the Monte Carlo
simulation with 10.000 paths. The relative error is thus of the order of magnitude of 10−4.

Figure 3.1: The expected exposure profile EE(τ) (left) and squared volatility ς(τ)2 (right)
for the ZCIIS, obtained by Monte Carlo simulations with 1,000 paths (green), 10.000 paths
(blue) and our formula (red).

In the same figure, the expected exposure profile obtained by the Monte Carlo method
with 1,000 simulations was added to show that results are still not very reliable for that
number of simulations. On the right hand side of the figure we show the time evolution
of the relevant variance. We notice that for a small number of Monte Carlo simulations
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the Expected Exposure may be underestimated at large maturities while the variance is
systematically overestimated in this case. Table 3.1 shows CPU times and relative errors
for our method and the Monte Carlo simulations for another strike and another maturity as
well. In both cases daily time steps were used for the calculations. We see that our formula
outperforms simulations in terms of computational time needed. For errors of a basis point
or less, Monte Carlo simulation CPU time is 15 times higher than for our method. Figure 3.2
shows the relationship between speed and accuracy for Monte Carlo methods on a logarithmic
scale.

Number of Monte Carlo simulations

Analytical 250 500 1,000 2,000 4,000 8,000 16,000

T=30, K=2.49%

CVA (bp) 226.6807 209.6532 214.1824 229.1274 225.0112 226.5375 226.5790 226.7129

relative error (10−3) 0 -75.1 -55.4 10.8 -7.4 -0.63 -0.45 0.14

CPU time (s) 2.62 5.12 8.09 12.75 22.72 46.65 128.32 205.10

T=10, K=2.49%

CVA (bp) 49.7244 55.0273 45.5484 47.5670 48.2522 50.8175 49.3963 49.6539

relative error (10−3) 0 106.6 -84.0 -43.4 -29.6 22.0 -6.6 -1.4

CPU time (s) 2.52 4.87 6.34 11.60 20.15 39.97 130.10 210.53

T=10, K=1.49%

CVA (bp) 91.9073 95.7819 88.6794 89.8195 89.6964 90.7518 92.5880 91.4571

relative error (10−3) 0 42.2 -35.1 -22.7 -24.1 -12.6 -7.4 -4.9

CPU time (s) 2.94 5.17 9.39 15.25 32.15 46.65 128.32 205.10

Table 3.1: The ZCIIS CVA example: values for an increasing number of simulations.

Figure 3.2: The log-log graph of the Monte Carlo error for the ZCIIS CVA value for an
increasing number of simulations and different maturity/strike combinations.
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3.6.2 YYIIS CVA Results

We will now compare the analytically obtained approximation for the Expected Exposure
profile of the YYIIS instruments given by (3.4.25) to the numerically obtained values using
Monte Carlo simulations.

The YYIIS instrument was chosen to be similar to the ZCIIS contract from the previous
section, so it is of payer type, with a notional of 2.79 million euros, with year-on-year fixed
rate at 2.44%. This rate was determined such that the contract has zero value at its inception
on 10-Dec-2010 on which nominal and real rate term structures were set flat at n0 = 1% and
r0 = −1.46%, respectively. The fixing dates are Ti = i for i = 1...30 for 30 years until its
maturity date on 03-Dec-2040. The other model parameters are the same as before.

Figure 3.3: The expected exposure profile EE(τ) (left) and total variance ς(τ)2 (right) for
the YYIIS product, obtained by Monte Carlo simulations with 1,000 paths (green), 10.000
paths (blue) and our formula (red).

The time profile of the expected exposure is given in Figure 3.3 (left) and the time
evolution of the variance is shown in Figure 3.3 (right). An almost perfect match is observed
between the Monte Carlo result with 10.000 scenarios and the closed form solution. The
two expected profiles combined with the same daily counterparty default as in the previous
section lead to CVA values of 61.90 basis points (17,271 euros) for our formula and 61.76
basis points (17,232 euros) for the Monte Carlo simulation with 10.000 paths.13 Table 3.2
summarises another set of CVA calculations together with the respective CPU times, for a
varying number of Monte Carlo scenarios and different strikes and fixing dates.

13Please note that in this case we do not refer to the difference between Monte Carlo results and our
formula as “error” but as a “difference”. This is due to the fact that our closed form solution in this case
was derived by using a moment matching approximation and as such cannot be regarded as the “true” value.
However in order to compare results they are presented (analogous to the case of ZCIIS CVA in previous
subsection) by showing the relative difference of Monte Carlo results with respect to the value obtained by
our closed form approximate solution. The same is the case in the following subsection which presents results
of the Portfolio of ZCIIS CVA.
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Number of Monte Carlo simulations

Analytical 250 500 1,000 2,000 4,000 8,000 12,000

T={T1, ..., T30}, K=2.44%

CVA (bp) 61.9030 58.0250 63.3920 62.5657 62.6567 62.1411 62.1615 61.8255

relative difference (10−3) 0 -62.6 24.1 10.7 12.2 3.8 4.2 -1.3

CPU time (s) 85.36 28.39 41.77 79.77 130.2 154.75 589.45 1841.7

T={T1, ..., T10}, K=2.48%

CVA (bp) 8.5462 8.0912 8.2534 8.2413 8.3257 8.4136 8.4817 8.5279

relative difference (10−3) 0 -53.2 -34.3 -35.7 -25.8 -15.5 -7.5 -2.1

CPU time (s) 5.8 8.78 13.94 16.43 20.48 26.91 50.11 173.2

T={T1, ..., T10}, K=1.48%

CVA (bp) 15.4998 14.7891 16.0172 15.3403 15.4338 15.6062 15.5302 15.5039

relative difference (10−3) 0 -45.9 33.4 -10.3 -4.3 6.9 2.0 0.3

CPU time (s) 5.26 7.02 8.32 18.45 29.47 41.83 43.81 181.77

Table 3.2: The YYIIS CVA example: values for an increasing number of simulations.

The graph showing speed versus accuracy on a logarithmic scale is presented in Figure 3.4
and it clearly demonstrates the usefulness of our method when accurate CVA calculations
are required. Another advantage of the analytically obtained result can be seen in the
situation when we have YYIIS contracts with the same fixing time structure T1, T2, ..., TM
that differ only in strikes K. Then we can actually retain most of the earlier calculations,
and in particular the expressions for variance-covariance terms given by (3.4.8), when we
consider products with the same structure but different strikes. In this case the reduction in
CPU times when compared to Monte Carlo methods is even larger. We tested our method
for many different fixing dates and strikes and it performed well in all cases.

We have also tested the method using actual term structure of nominal and real interest
rates as of 10-Dec-2010, given in Figure 3.5, as opposed to flat term structure which was
assumed in all numerical studies above. Figure 3.6 demonstrates that the method works
equally well also in this more realistic case. Exactly the same YYIIS instrument from the
beginning of this subsection was used and the CVA in this case was 37.81 basis points (10,549
euros) for our formula and 38.06 basis points (10,618 euros) for the Monte Carlo simulation
with 10.000 paths, which amounts to a relative difference of 6.5·10−3. For different parameters
of the YYIIS instrument both relative differences in the obtained CVA and the CPU times
are in line with the previous (flat term) structure results presented in Table 3.2, which shows
that our closed form solution performs equally well for this more realistic term structure and
as such it can be used in practice.

There are cases where our approximation works less well. An example is a long maturity,
already in life YYIIS contract initiated at times of low (high) inflation. Thus having a low
(high) year-on-year fixed rate K, combined with a present term structure which implies ex-
treme inflation (deflation). This market expectation of periods of extreme inflation (deflation)
would mean increasing (decreasing) ZCIIS rates K(T ), from formula (3.3.4), which would
lead to out-of-the-money Margrabe options in Proposition 3.2, for which the two-moment
matching approximation to a lognormal distribution overprices the option. This is consistent
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with findings of Milevsky and Posner (1998b) that moment matching may overprice out-of-
the-money basket call options (for moneyness around 0.8 or less). However in order for this
effect to be significant in our case we must have strong divergence of nominal and real rates
(think of them approximately as the quantities on the second panel of Figure 3.5) to be of
the order of magnitude 0.2K per year, and for our example case of K = 2.44%, this would
amount to around 0.5% difference between every two year points. We see that in the realistic
case presented here the difference between those two curves was almost constant.

Figure 3.4: The log-log graph of the difference between Monte Carlo and our formula for the
YYIIS CVA value for an increasing number of simulations and different strike/fixing-time
combinations.

Figure 3.5: The actual term structure of nominal (blue) and real (red) interest rate prevailing
at the inception of the YYIIS contract.
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Figure 3.6: The expected exposure profile EE(τ) (left) and total variance ς(τ)2 (right) for
the YYIIS product, obtained by Monte Carlo simulations with 10.000 paths (blue) and our
formula (red), using actual (non-flat) initial term structure of nominal and real rates.

3.6.3 Portfolios of ZCIIS’s with Netting CVA Results

We now consider a portfolio of thirty ZCIIS swaps which are all of the payer type, with equal
notionals of 2.79 million euros, maturities ranging from 1 to 30 years and fixed rates (strikes)
at [1.04%, 1.09%, ..., 2.44%, 2.49%]. These have been priced from their inception on 10-Dec-
2010 until the expiration of the last contract on 03-Dec-2040. The Expected Exposure and
variance results are depicted in Figure 3.7.

Figure 3.7: The expected exposure profile EE(τ) (left) and total variance ς(τ)2 (right) for the
portfolio of ZCIIS’s, obtained by Monte Carlo simulations with 1,000 paths (green), 10.000
paths (blue) and our formula (red).
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Number of Monte Carlo simulations

Analytical 250 500 1,000 2,000 4,000 8,000 12,000

Tm=30, K=[1.04%,...,2.49%]

CVA (bp) 63.3918 68.9087 66.3526 66.7889 62.9987 64.0150 63.2245 63.4176

relative difference (10−3) 0 87.0 46.7 53.6 -6.2 9.8 -2.6 0.4

CPU time (s) 10.14 15.40 17.60 23.92 54.83 127.65 259.25 405.28

Tm=10, K=[1.04%,...,1.49%]

CVA (bp) 6.6903 6.1501 6.2623 6.8864 6.5409 6.5663 6.7037 6.6871

relative difference (10−3) 0 -80.7 -64.0 29.3 -22.3 -18.5 2.0 0.5

CPU time (s) 1.28 7.16 9.96 11.86 24.87 20.36 46.24 116.91

Tm=10, K=[0.04%,...,0.49%]

CVA (bp) 2.0615 2.2326 1.6711 2.187 2.0493 2.0567 2.0630 2.0621

relative difference (10−3) 0 83.0 -189.4 60.9 -5.9 -2.3 0.7 0.3

CPU time (s) 0.95 5.32 6.88 7.54 19.66 26.78 36.42 108.12

Table 3.3: The portfolio of ZCIIS’s CVA example: values for an increasing number of simu-
lations.

The CVA obtained from our approximating profile is 63.39 basis points (530,589 euros)
versus 63.42 basis points (530,826 euros) from the simulation with 10.000 scenarios. The
Monte Carlo result with only 1,000 simulations shows significant overestimation in the pro-
files, and thus it leads to a higher CVA value of 66.79 bp (559,022 euros). Table 3.3 gives
further examples for different maturities and strikes of the ZCIIS portfolio and the perfor-
mance graph is shown in Figure 3.8.

Figure 3.8: The log-log graph of the difference between Monte Carlo and our formula for
the portfolio of ZCIIS’s CVA value for an increasing number of simulation and different
combinations of strikes and maturities.
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3.7 Conclusion

We have given a derivation of an exact analytical solution for the ZCIIS CVA under the
Jarrow-Yildirim model. We have compared it with a standard Monte Carlo CVA calculation
approach and have shown in a simulation study that Monte Carlo estimates indeed converge
to values that are close to our analytic solution, but at less efficient computation times.

Furthermore, closed form approximations for the Expected Exposure of the Year-on-
Year Inflation Indexed Swap and for a portfolio of Zero-Coupon Inflation Indexed Swap
instruments were derived using moment matching techniques.

The substantial CPU time reduction (see the Tables 1-3 that report example CPU times
for different cases) show that our methods are much faster than Monte Carlo simulations. If
we aim to obtain an accuracy of say 0.1%, this can mean a considerable saving of time for
institutions that have many inflation linked derivative instruments in their portfolios.

An obvious limitation of our approach is due to the fact that financial institutions will have
many derivative positions towards the same counterparty and it is thus crucial to consider
netting agreements. The CVA is a portfolio-based value and it is less meaningful as a stand
alone quantity for a singe derivative position. We derived a formula for netted portfolios of
ZCIIS instruments but we had to impose that notionals are all of the same sign, i.e. they
are all either only payer or only receiver instruments.14 This is necessary because of the
moments matching technique used here, in order to stay within the domain of application of
the Margrabe formula. As mentioned before, it is possible to employ a modified moments
matching technique to overcome this limitation as in Brigo and Masetti (2005) for the case
of interest rate swaps with netting. An extra parameter is then introduced to add a shift to
the lognormal distributions to allow for the possibility of negative values. The quantities Ḡ
and H̄ in Proposition 3.3 would remain the sums of lognormal random variables as defined
in (3.5.4), but they would now be approximated with

Ḡ ≈ aeX − c, H̄ ≈ beY − d,

to ensure that each netting coefficient Nj in the sums can be of arbitrary sign. However,
the CVA pricing formula (3.5.2) will no longer be of the Margrabe type but will instead

contain the term EQn
0

[(
ω
(
aeX − beY − c+ d

))+
]
, with X and Y correlated normal random

variables, which is the pricing formula for a spread option. The approximate solutions for this
problem have been developed starting with Kirk (1995) and Pearson (1995) and later followed
by Li, Deng and Zhou (2006). Brigo and Mercurio (2006) give a pseudo-analytical formula
for this expectation in terms of improper integrals. Therefore, by building on that work it
should be possible to further extend our approach and arrive at a general CVA formula for
a portfolio of different inflation derivatives altogether under netting agreements.

A second limitation of our CVA formulae is that they do not account for the possibil-
ity of wrong way risk, which acknowledges that the likelihood of a counterparty’s default
event may depend on the market value of the expected exposure towards that counterparty.
Whether this is a realistic assumption can vary from case to case, mostly depending on the

14A naive adjustment would be to simply add those two CVA numbers at the end, which is indeed an
acceptable estimate in the absence of a more exact method, but it would always over-estimate the real CVA
value since (X + Y )+ ≤ X+ + Y +, for any two real numbers X and Y .
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asset class.15 Properly addressing this issue would require an underlying model for credit
(which is not needed in the usual approach under which the default probabilities are given
exogenously) which could then be coupled to the interest rate/inflation model through appro-
priately correlated Brownian motions. The book of Brigo, Morini, Pallavicini (2013) gives a
detailed theoretical treatment and an overview of current industry practice to deal with this
issue. Pioneered by Brigo and Pallavicini (2007) work on wrong way risk developed further
and besides Brigo and Vrins (2017), who price the wrong way risk CVA via a change of mea-
sure and drift adjustment, notable more recent contributions include Glasserman and Yang
(2016), who present an adjustment to bound the wrong way risk and Feng and Oosterlee
(2016), who study wrong way risk CVAs for European and Bermudan options based on an
intensity model and present very efficient numerical algorithms.

Our approach can, however, be directly applied to another important counterparty risk
adjustment - Debt Value Adjustment (DVA), which is an adjustment to the price of the
derivative to account for the fact that our institution is also not default-free, i.e. this is the
discount we are expected to give to our counterparty since we may default as well. The final
value of the derivative actually becomes PriceDefault−free − CV A + DV A. This is easily
obtained from (3.2.5) by “flipping” sides (recovery rate and default probabilities in that
equation represent those of the counterparty, and the expected exposure is ours, while for
DVA it is the opposite), i.e.

DVA ≈ (1−Rour)
n∑
i=1

Qour (τ ∈ (ti, ti−1])EEcpt.(ti), (3.7.1)

EEcpt.(ti) = NEE.(ti) = EQ
0

[
D(0, ti)(V (ti))

−] = −EQ
0

[
D(0, ti)(−V (ti))

+] .
The problem boils down to determining the counterparty’s (positive) Expected Exposure
towards us. That is actually our Negative Expected Exposure16 NEE.(ti), which can still
be obtained by formulae presented in this thesis using the sign flipping above, which would
only affect the corresponding ω.

A final limitation worth mentioning is in the Jarrow-Yildirim model itself. It is analyt-
ically tractable and very intuitive due to its similarity to the classical short rate model of
Hull and White, but it is difficult to calibrate and it may not be sufficiently sophisticated for
the more advanced inflation derivatives. However, our methods cannot be directly applied
to more complex inflation models such as the ones in Mercurio (2005), Kazziha (1999) and
Belgrade, Benhamou and Koehler (2004). Nonetheless, for those more complicated cases it
is reasonable to resort back to Monte Carlo based methods17 and employ our method to
generate a convenient control variate in order to improve the accuracy of the calculations.

15Consider for example an oil producing company as a counterparty to which we have significant exposure
in the form of commodity derivatives. It would be very erroneous to assume that the probability of default
of that company is totally independent of our exposure to the commodities market (i.e. oil prices).

16V (ti) is still value of the derivative position for us, as given by the second equation in (3.2.4).
17The LIBOR market model is a multifactor model often used by practitioners under which derivatives are

almost exclusively priced by Monte Carlo.
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Chapter 4

Equilibrium Bid-Ask Spread of
European Derivatives in Dry Markets *

4.1 Introduction

Financial markets present equilibrium bid-ask spreads that can only be explained by market
imperfections. The related literature has focused on equity markets and on market imperfec-
tions such as information asymmetries and transaction costs. In this paper we are interested
in the equilibrium bid-ask spread of derivatives. There is a microstructure literature that
tries to explain the spread of derivatives. It includes some papers,1 all based on either the
inventory approach2 or the information based approach.3 This paper shows that equilibrium
bid-ask spreads for derivatives may be generated by an alternative imperfection, namely by
a dry (illiquid) market for the underlying asset, whereby transactions may not be permitted
at all times. Such illiquid situations are of practical importance. As an example, exchanges
are closed many hours per day and stocks cannot be traded during that period. Also, there is
strong empirical evidence of large trading volume in the beginning and end of trading days,
and relatively light trading in the middle of that period, see Jain and Joh (1986), among
others. Such pattern reflects that markets are essentially dry away from opening and closing
hours. These are typical situations where adding assets will not help completing the market.
Admati and Pfleiderer (1988, 1989) seminal papers started modelling such intraday dryness
for stock markets. Such literature was expanded to markets such as the FX, see Bollerslev

*This chapter extends earlier unpublished work by Amaro de Matos and Lacerda (2006). We will cite,
with permission from the authors, from that report throughout this chapter, without continuously repeating
this reference.

1Biais, Foucault and Salanié (1998) analyse three different market structures and the ways the associated
restrictions lead to differences in prices, bid-ask spreads, trades and risk-sharing. There are also a few
empirical studies that examine bid-ask spreads in the derivatives markets, such as George and Longstaff
(1993), Chan, Chung and Johnson (1995) and Etling and Miller (2000).

2Among others, Stoll (1978) and Amihud and Mendelson (1980) study bid-ask spreads and stock inventory.
Lee, Mucklow and Ready (1993), Hasbrouck and Sofianos (1993), Madhavan and Smidt (1993) and Manaster
and Mann (1996) also find evidence on the relationship of bid-ask spreads to market maker inventory costs.

3Some authors discussing the topic are Copeland and Galai (1983), Glosten and Milgrom (1985), Admati
and Pfleiderer (1992) and Foster and Viswanathan (1994). More recently, Morrison (2004), Bagnoli et al.
(2001) and Vayanos (2001).
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and Domowitz (1993). Other common examples where trading may not be possible include
refracting periods for swing options and vesting periods for employee stock options.

An illiquid underlying asset implies that markets become incomplete, in the sense that
perfect hedging of the derivative in all states of nature is no longer possible. Under such
incompleteness a unique non-arbitrage price for the derivative does not exist. Rather, there
is a range of values within which all possible equilibrium prices must lie. Thus, the equilibrium
bid-ask spread must fall within such range.

A particular characterisation of no-arbitrage bounds on prices for European derivatives
is based on the construction of a super-replicating portfolio as in El Karoui and Quenez
(1991, 1995), Edirisinghe, Naik and Uppal (1993) and Karatzas and Kou (1996), and Föllmer
and Leukert (1999), among others. Amaro de Matos and Antão (2001) characterise super-
replicating bounds for European option pricing under dry markets. In most cases the super-
replication bounds produce too broad intervals, and certainly not equilibrium values. Other
works using super-replication strategies under different no-arbitrage criteria obtain narrower
super-replication bounds.4 Different bounds can be obtained through utility indifference
pricing, as introduced by Hodges and Neuberger (1989). Despite being utility dependent,
this method has a meaningful economic interpretation. However, as Davis, Panas and Za-
riphopoulou (1993) point out, utility indifference pricing does not determine equilibrium
prices either, but rather define an interval within which the trading values must lie. Alterna-
tively, we may introduce the marginal price as the utility indifference price for an infinitesimal
quantity as in Davis (1997), Karatzas and Kou (1996), and Kallsen (2002). Although the
marginal price can be shown to be unique as in Karatzas and Kou (1996), and Hugonnier,
Kramkov and Schachermayer (2005), it is not yet an equilibrium price, reflecting simply the
willingness to pay for a marginal (infinitesimal) amount.

The value of a derivative can also be seen as its expected discounted payoff under the
risk-neutral probability measure. As in incomplete markets there are many such admissi-
ble measures, authors have proposed different criteria to select a number of them, e.g. the
minimal martingale measure by Follmer and Schweizer (1990), the variance optimal mea-
sure by Schweizer (1996) and the minimal entropy measure by Rouge and El Karoui (2000)
and Frittelli (2000a, 2000b). An alternative approach was taken by Jarrow, Protter and
Shimbo (2010) who explain the existence of bubbles assuming that incomplete markets may
exhibit different local martingale measures across time, a non-trivial extension of the classical
martingale pricing framework. The utility-maximisation price dependence on the choice of
the distance metric can be found in Henderson (2005) and Henderson et al. (2003). Co-
herent risk-neutral probability measures were studied by Artzner et al. (1999), and convex
risk-neutral measures by Follmer and Schied (2002). Such measures were introduced to ax-
iomatise measures of risk and to generalise the properties of utility indifference prices.

With the exception of the marginal price, all the methodologies proposed above either
establish a range of variation for the value of the derivative or use an ad hoc criterion in
order to get the price without any economic insight. One exception related to our approach
is the work of Barrieu and El Karoui (2002), where derivative pricing rules are characterised
in incomplete markets taking into account the demand and supply sides of the markets.

Another notable exception is Duffie, Garleanu and Pedersen (2005), where the bid-ask

4See the works of Bernardo and Ledoit (2000), Cochrane and Saá-Requejo (2000) and Bondarenko (2003).
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spread is also explained by illiquidity, basing their result in the theory of intermediation. They
obtain a bid-ask equilibrium modeling a market where investors meet randomly according to
their search efforts in the presence of market makers. In their model illiquidity - and thus,
market incompleteness - is associated with counterparty’s search effort and bargaining power.
In other words, the bid-ask spread depends on how difficult it is for an investor to find other
investors to transact, or have easier (or not) access to multiple market makers. Results for
a monopolistic market maker are then characterised as a special case. Our model differs
substantially from this approach as we do not delve into any modelling of the mechanics of
searching for a trading counterparty. In our work market incompleteness is generated by dry
markets and the equilibrium bid-ask spread is derived from utility (or profit) maximisation
first principles, providing a different perspective than the results in Duffie et al. (2005).

In this work we characterise equilibrium bid and ask prices for our model of dry markets.
Equilibrium must verify that all agents maximise their utilities and markets clear. Hence, the
determination of equilibrium aggregates all agents’ decisions. Using the utility maximisation
approach we construct the market demand and supply for the derivative from the point of
view of a representative trader. We then introduce the market makers, who are intermediaries
responsible for setting the bid and ask prices. We first analyse equilibrium in a context where
there is one monopolistic market maker, followed by a similar analysis of the case where
many market makers compete in prices. Our results show that under risk-neutral market
makers, an equilibrium bid-ask spread is obtained for the monopolistic case, whereas no
equilibrium exists under price competition. This leads us to conclude that for bid-ask spreads
to exist under competition, we should either have risk-averse market makers or consider a
mixed strategy Nash equilibrium in a game between risk-neutral market makers. Our results
assume neither asymmetric information nor optimal inventory strategies and still explains
the existence of an equilibrium bid-ask spread for derivatives. It is related to the failure
of the continuous hedging portfolio rebalancing hypothesis since we assume, as in Longstaff
(2001), that the underlying asset can not be transacted at all points in time.

Our work is organised as follows. Section 4.2 characterises the demand and supply for
derivatives, and simulations are performed for different types of utilities. Section 4.3 states
the problem of the market maker(s), presenting first the monopoly case and then the oligopoly
case. Section 4.4 concludes. Our main technical proofs are presented in the Appendix B.

4.2 The Model

A two-period recombining binomial model not allowing for transactions at the intermedi-
ate point in time is formally equivalent to a one period trinomial model. In the remaining of
this work we thus consider a one-period economy, with dates 0 and t, where transactions are
only possible at those two discrete points in time. Due to liquidity, constraints transactions
are only possible at those two discrete times. At time t there are three possible states of
nature, labelled by i = 1, 2, 3, with respective probabilities pi. In this economy there are
three different assets being transacted: a risk free asset with unitary initial value, providing
a certain total return R per period; a risky asset (the underlying asset) with initial value
S0 and uncertain final values Si, for i = 1, 2, 3; and a European derivative, written on the
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underlying asset, with expiration date t. In particular, we number the states in an order such
that S1 > S2 > S3. Notice also that, in order to avoid arbitrage opportunities, we must have
S1 > RS0 > S3. The possible payoffs of the derivative at time t are denoted Gi, for i = 1, 2, 3,
and depend only on the final state of nature. We also assume that the payoffs of each con-
sidered European derivative are ordered according to the states’ labels, in a monotonic way
(i.e. decreasing for the call-like, increasing for the put-like derivative).

Every agent builds a portfolio composed of shares, risk free asset and derivatives. Each
agent can influence neither the market price of the underlying asset, nor the market price
of the derivative. Each representative agent maximises a von Neumann-Morgenstern utility
EU , of the wealth at time t, where the utility function U is increasing and concave in wealth.

In the following Section 4.2.1 we derive the individual and the market aggregate demand
and supply functions for the derivative. Section 4.2.2 characterises its no-arbitrage price
bounds and reservation price. In Section 4.2.3 the individual demand and supply for two
different types of utility functions are presented in order to illustrate the method.

4.2.1 Demand/Supply

Consider a representative agent that maximises the expected value of wealth at the ter-
minal date t. The problem that the agent faces is to choose at time 0 the number of shares of
the underlying asset ∆0, the amount B0 invested in the risk-free asset and how many units
of the derivative he is going to buy or sell (qd and qs respectively) for a given price of the
derivative. This portfolio will be held until time t. The problem that the representative agent
solves is essentially the same for demand or supply (apart from the change of sign). We thus
use the notation5 qd/s for the demanded or supplied amount, and formalise the problem as
follows:

max
∆0,B0,qd/s

EU
[
∆0S +RB0 ± qd/sG

]
= max

∆0,B0,qd/s

3∑
i=1

piU
[
∆0Si +RB0 ± qd/sGi

]
,

subject to

∆0S0 +B0 ± qd/sPd/s ≤ y, (4.2.1)

∆0Si +RB0 ± qd/sGi ≥ 0, i = 1, 2, 3 (4.2.2)

and qd/s ≥ 0.
The set of solutions for the problem is implicitly characterised by the following result.

Proposition 4.1. The maximisation problem above is solved by every ∆∗0 and q∗d/s satisfying

S0 =
1

R

3∑
i=1

α
(
wi,d/s

)
Si,

Pd/s ≥ (≤)
1

R

3∑
i=1

α
(
wi,d/s

)
Gi, if q∗d/s > 0 (4.2.3)

5Together with ”± ”, ” ≥ (≤)” and ”∓ ” symbols further below, meaning ” + ”, ” ≥ ” and ”− ” signs for
the demand problem, i.e. with corresponding qd, Pd and wi,d quantities, and ”− ”, ” ≤ ” and ” + ” signs for
the supply problem, i.e. with corresponding qd, Pd and wi,s.
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with

α
(
wi,d/s

)
=

piU
′ (wi,d/s)∑3

j=1 pjU
′
(
wj,d/s

) , i = 1, 2, 3

and
wi,d/s = ∆∗0 (Si −RS0) +Ry ± q∗d/s

(
Gi −RPd/s

)
. (4.2.4)

Proof. As utility is increasing in wealth, constraint (4.2.1) is satisfied as an equality, so

B0 = y −∆0S0 ∓ qd/sPd/s (4.2.5)

and the problem above can be rewritten as

max
∆0,qd/s

3∑
i=1

piU
[
∆0 (Si −RS0) +Ry ± qd/s

(
Gi −RPd/s

)]
,

subject to

wi,d/s ≡ ∆0 (Si −RS0) +Ry ± qd/s
(
Gi −RPd/s

)
≥ 0, i = 1, 2, 3

and qd/s ≥ 0.
Ignoring the positivity constraints, the first order conditions are:


∂E[U(wi,d/s)]

∂∆0
= 0,

∂E[U(wi,d/s)]
∂qd/s

≤ 0;

⇒



3∑
i=1

pi(Si −RS0)U ′(wi,d/s) = 0,

±
3∑
i=1

pi(Gi −RPd/s)U ′(wi,d/s) ≤ 0;

(4.2.6)

leading to equation (4.2.3). The maximum is guaranteed since the second order conditions
are satisfied. See Appendix B.1.1 for details. �

In the next proposition, a necessary and sufficient condition for the individual demand
φd (Pd) to be decreasing in prices, and for the individual supply φs (Ps) to be increasing in
prices is established.

Theorem 4.1. A necessary and sufficient condition to obtain both φ′d (Pd) < 0 and φ′s (Ps) >
0, is that

3∑
i=1

pi (Si −RS0)2 U
′′ (
wi,d/s

) 3∑
i=1

piU
′ (
wi,d/s

)
+q

{
3∑
i=1

pi (Si −RS0)
(
Gi −RPd/s

)
U
′′ (
wi,d/s

) 3∑
i=1

pi (Si −RS0)U
′′ (
wi,d/s

)
−

3∑
i=1

pi (Si −RS0)2 U
′′ (
wi,d/s

) 3∑
i=1

pi
(
Gi −RPd/s

)
U
′′ (
wi,d/s

)}
≤ 0.

Proof. See Appendix B.1.2 for details. �
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From the maximisation problem faced by a representative buyer/seller of the derivative,
we obtain the optimal amount qd/s = φd/s

(
Pd/s

)
. If this function is monotonic, i.e., if the

condition of the above proposition is satisfied, φd/s
(
Pd/s

)
may be inverted in order to obtain

an individual market demand/supply

Pd/s = φ−1
d/s

(
qd/s
)
.

Assuming that there are n equal agents buying/selling the derivative in this economy, the
market demand/supply (Qd/s) and the inverse market demand/supply can be written as

Qd/s = nqd/s = nφd/s
(
Pd/s

)
⇒ Pd/s = φ−1

d/s

(
Qd/s

n

)
. (4.2.7)

4.2.2 Arbitrage Bounds, Reservation Price and Fair Price

4.2.2.1 Arbitrage Bounds and Finite Utility

In order to guarantee that there are no arbitrage opportunities in this market, we must
ensure that the price of the derivative is within the super-replication (no-arbitrage) bounds.

The upper bound of the arbitrage-free range of variation is given by

P u = min
∆0,B0

∆0S0 +B0,

subject to

∆0Si +RB0 ≥ Gi, i = 1, 2, 3.

The lower bound of the arbitrage-free range of variation is given by

P l = max
∆0,B0

∆0S0 +B0,

subject to
∆0Si +RB0 ≤ Gi, i = 1, 2, 3.

The upper and lower bounds can be written in a shorter way, if we introduce some simplify-
ing notation. Let the vector of parameters of our model be π ≡ (S0, S1, S2, S3, G1, G2, G3, R) .
We further define

G+ = {π : G1 (S2 − S3) +G2 (S3 − S1) +G3 (S1 − S2) ≥ 0} ,
G− = {π : G1 (S2 − S3) +G2 (S3 − S1) +G3 (S1 − S2) ≤ 0} ,
H+ = {π : S2 −RS0 ≥ 0} ,
H− = {π : S2 −RS0 ≤ 0} ,

and

Pi,j =
Gj (Si −RS0)−Gi (Sj −RS0)

R (Si − Sj)
. (4.2.8)
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We then have
P u = P1,3 and P l = P2,3

if π ∈ G+ ∩H+,
P u = P1,3 and P l = P1,2

if π ∈ G+ ∩H−,
P u = P2,3 and P l = P1,3

if π ∈ G− ∩H+, and
P u = P1,2 and P l = P1,3

if π ∈ G− ∩H−.6
We claim that prices above P u or below P l will generate arbitrage opportunities and

therefore, infinite utility. The reason is as follows. First consider demand. If the derivative’s
price is below the lower bound, it would then be possible to buy the derivative with the
proceedings obtained by selling a super-replicating portfolio with higher value, assuring a
positive wealth at time t, in all possible states of nature. Hence, the utility and the optimal
solution would not be finite. In what concerns supply, if the derivative’s price is higher
than the upper bound, it would then be possible to sell the derivative and buy a cheaper
super-replicating portfolio with the proceedings, assuring once again, an unbounded positive
wealth as well.

This issue can be analysed going back to the maximisation problem of both buyers and
sellers. In fact, there is no restriction to infinite solutions to these problems. If we would
have added the restriction 0 < q < ∞, the optimal solution would immediately imply that
φ (P u) > q > φ

(
P l
)
. Therefore, the imposition of finite solutions provides an alternative way

to characterise the bounds of the no-arbitrage region. Finite q implies that the inequality
in the first order condition (4.2.6) can be replaced by a strict equality, reducing the set of
solutions to a single solution. This is true both for the demand and supply problem and thus,
ignoring whether the investor is buying or selling the derivative i.e. Pd/s ≡ P , the first order
conditions (4.2.6) can be written as:

∑3
i=1

piSi
RS0

U ′ (wi) =
∑3

i=1 piU
′ (wi) ,∑3

i=1
piGi
RP

U ′ (wi) =
∑3

i=1 piU
′ (wi) .

If there is a finite solution for the maximisation problem then

3∑
i=1

piU
′ (wi) ≡ A > 0,

where wi is evaluated at the optimum values of ∆, qd/s and B. Hence, the first order conditions
solve the following system 

∑3
i=1

piSi
RS0

U ′ (wi) = A,∑3
i=1 piU

′ (wi) = A,∑3
i=1

piGi
RP

U ′ (wi) = A.

6See Appendix B.2 for the full derivation of the bounds.
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This is a linear system in U ′ (w1) , U ′ (w2) and U ′ (w3) with the solution
U ′ (w1) = ARP (S2−S3)+G3(RS0−S2)−G2(RS0−S3)

G1(S2−S3)+G2(S3−S1)+G3(S1−S2)
1
p1
≡ Aµ1,

U ′ (w2) = ARP (S3−S1)+G1(RS0−S3)−G3(RS0−S1)
G1(S2−S3)+G2(S3−S1)+G3(S1−S2)

1
p2
≡ Aµ2,

U ′ (w3) = ARP (S1−S2)+G2(RS0−S1)−G1(RS0−S2)
G1(S2−S3)+G2(S3−S1)+G3(S1−S2)

1
p3
≡ Aµ3.

(4.2.9)

As U ′ (w1) , U ′ (w2) and U ′ (w3) are strictly positive, we must impose some constraints on
the parameters, implying that P u > P > P l for P u and P l defined as above for the different
regions of π.

4.2.2.2 Reservation Price and Fair Price

In this subsection we characterise the behaviour of investors when the price of the deriva-
tive is actuarially fair.7 In particular, we establish under which conditions investors would
prefer to buy or would prefer to sell the derivative. We also provide conditions under which
the investors prefer to buy or prefer to sell the underlying asset. In both cases the conditions
do not depend on the preferences. Additionally, we establish the relation between the actu-
arially fair price P̄ and the reservation price P̂ of the derivative, where the reservation price
is defined as the price at which the optimal transacted quantity is zero. The results are as
follows.

If both the derivative and underlying asset have actuarially fair values, investors prefer
to assure a risk-free wealth at maturity and do not transact the derivative or the risky
asset. Alternatively, if the price of the underlying asset is not actuarially fair, there are two
possibilities. First, if the asset is undervalued, the agent will buy it, i.e. S0 <

1
R

∑3
i=1 piSi ⇒

∆∗ > 0. Second, if the asset is overvalued, the agent will sell it, i.e. S0 >
1
R

∑3
i=1 piSi ⇒

∆∗ < 0. Furthermore, investors will buy (qd = q∗ > 0) or sell (qs = q∗ < 0) the derivative,
depending on the payoff structure, as characterised in the following theorem.

Theorem 4.2. Let the price of the derivative P be actuarially fair, P = P̄ ≡ 1
R

∑3
i=1 piGi.

Also, let P̄ belong to the arbitrage-free range of variation. Then the sign of ∆∗ and q∗ are
characterised in the table below, as well as the fair price relationship with the reservation
price.

G1 ≥ G2 ≥ G3 G1 ≤ G2 ≤ G3∑3
i=1 pi (Si −RS0) > 0 ∆∗ > 0; q∗ < 0⇒ P̂ < P̄ ∆∗ > 0; q∗ > 0⇒ P̂ > P̄∑3
i=1 pi (Si −RS0) = 0 ∆∗ = 0; q∗ = 0⇒ P̂ = P̄ ∆∗ = 0; q∗ = 0⇒ P̂ = P̄∑3
i=1 pi (Si −RS0) < 0 ∆∗ < 0; q∗ > 0⇒ P̂ > P̄ ∆∗ < 0; q∗ < 0⇒ P̂ < P̄

The proof of this result is presented in detail in the Appendix B.3 giving the sign of ∆∗

and q∗. As for the reservation price P̂ , we know that it must depend on the investor’s utility
by definition, as opposed to the exogenous P̄ .

When P = P̄ , the sign of the optimal transacted quantity of the derivative is well defined
and does not depend on the risk aversion of the investors. Hence, P̂ will be larger than P̄ if

7We say that the price of the derivative is actuarially fair if it equals the expected payoff at maturity
discounted at the risk-free rate.
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the demanded quantity is positive for P = P̄, and P̂ will be smaller than P̄ if the demanded
quantity is negative for P = P̄ .

Remark 1. Although P̂ depends on the utility of the investors, the fact that P̂ ≤ P̄ or
P̂ ≥ P̄ depends only on the parameters of the economy, not on the investors’ preferences.

Remark 2. If P̂ belongs to the arbitrage-free range, P̄ must be outside the range defined

by
(

inf P̂ , sup P̂
)
, where the infimum and the supremum above are taken over the class of

all admissible utility functions.

4.2.3 Illustrations

We now consider the cases of Constant Absolute Risk Aversion (CARA) utility function
U (w) = −e−δw, with absolute risk aversion coefficient δ > 0, and Constant Relative Risk
Aversion (CRRA) utility function U (w) = w1−γ−1

1−γ , with relative risk aversion coefficient

γ > 0. Notice that, when γ = 0, the latter utility becomes U (w) = w − 1, characterising a
risk neutral agent. Moreover, when γ → 1, the utility function converges to U (w) = ln (w).

4.2.3.1 Explicit Solution for Demand and Supply

For these utility functions it is possible to have an explicit solution for the demand and
supply of the derivative. The derivation is presented in Appendix B.4.1. From (4.2.9) we
have:

µ1 = RP (S2−S3)+G3(RS0−S2)−G2(RS0−S3)
G1(S2−S3)+G2(S3−S1)+G3(S1−S2)

1
p1
,

µ2 = RP (S3−S1)+G1(RS0−S3)−G3(RS0−S1)
G1(S2−S3)+G2(S3−S1)+G3(S1−S2)

1
p2
,

µ3 = RP (S1−S2)+G2(RS0−S1)−G1(RS0−S2)
G1(S2−S3)+G2(S3−S1)+G3(S1−S2)

1
p3
.

If a CARA utility function is considered then

q = −1

δ

(S2 − S3) lnµ1 + (S3 − S1) lnµ2 + (S1 − S2) lnµ3

G1 (S2 − S3) +G2 (S3 − S1) +G3 (S1 − S2)
. (4.2.10)

If a CRRA utility function is considered then

q = Ry
µ
− 1
γ

1 (S2 − S3) + µ
− 1
γ

2 (S3 − S1) + µ
− 1
γ

3 (S1 − S2)

µ
− 1
γ

1 [(S3 −RS0) (G2 −RP )− (S2 −RS0) (G3 −RP )]

+µ
− 1
γ

2 [(S1 −RS0) (G3 −RP )− (S3 −RS0) (G1 −RP )]

+µ
− 1
γ

3 [(S2 −RS0) (G1 −RP )− (S1 −RS0) (G2 −RP )]

. (4.2.11)

In both cases supply and demand are simply given by{
qd(Pd) = q, q > 0, (⇔ Pd ≡ P < P̂ ),

qs(Ps) = −q, q < 0, (⇔ Ps ≡ P > P̂ ).
(4.2.12)



100 CHAPTER 4. BID-ASK SPREADS IN DRY MARKETS

4.2.3.2 Properties of Individual Demand and Supply

In what follows we present some properties of the individual demand and supply. If u (w)
is a CARA utility function then:8

1. The individual demand for the derivative is a decreasing function of the price, i.e.

∂qd
∂Pd
≤ 0.

2. The individual supply for the derivative is an increasing function of the price, i.e.

∂qs
∂Ps
≥ 0.

Figure 4.1: Transacted quantity q(P ) of the derivative for the CARA utility.

3. The optimal number of options multiplied by δ is constant. Hence, the demand and/or
supply will shift downwards when the absolute risk aversion coefficient δ increases, i.e.

∂qd
∂δ
≤ 0 and

∂qs
∂δ
≤ 0.

4. The price such that the optimal number of derivatives is equal to zero (i.e. reservation
price) is independent of δ.

5. The optimal number of shares is independent of the initial wealth.

8See Appendix B.4.2.1 for details on CARA and Appendix B.4.2.2 for details on CRRA properties.
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The graph (Figure 4.1) displays the transacted quantities of the derivative as a function
of its price q(P ). These values are obtained from equation (4.2.12) through MATLAB sim-
ulation assuming that the derivative was a European put option with K = 11, and that
the parameters are: price of the risky asset S0 = 10, and S = [S1, S2, S3] = [12, 10.5, 9];
derivative’s payoff G = [G1, G2, G3] = [0, 0.5, 2]; states’ probabilities p = [0.2, 0.3, 0.5]; the
risk free rate assumed to be zero, and the initial wealth normalised to y = 1. The parameter
of CARA utility function is δ = 0.1.

The arbitrage-free range for the price is
(
P l, P u

)
=
(
1, 4

3

)
(thick red lines on the graph),

reservation price is P̂ = 1.1859 (dotted green line) and fair price is P̄ = 1.15 (solid green
line).

If u (w) is a CRRA utility function then:

1. Numerically, the individual demand for the derivative can be shown to be a decreasing
function of the price, i.e.

∂qd
∂Pd
≤ 0.

2. Numerically, the individual supply for the derivative can be shown to be an increasing
function of the price, i.e.

∂qs
∂Ps
≥ 0.

3. The demand and supply are increasing functions of the exogenous wealth, i.e.

∂qd
∂y

> 0 and
∂qs
∂y

> 0.

4. The reservation price is an increasing function of γ if G1 (S2 − S3) + G2 (S3 − S1) +
G3 (S1 − S2) < 0. Otherwise, the reservation price is a decreasing function of γ.

Note that under the CRRA utility function the quantities depend on the level of ini-
tial wealth y, whereas under the CARA utility they do not, which is expected and a well
known property of their respective Arrow-Prat (1964, 1965) absolute risk aversion coefficients

A(w) = −U
′′

(w)

U ′ (w)
.

The graph presented in Figure 4.2, is obtained for this case of utility function using the
same parameters as above with the addition of CRRA utility function parameter γ = 0.9.

The arbitrage-free range of variation for the price is the same
(
P l, P u

)
=
(
1, 4

3

)
(thick red

lines on the graph), reservation price is now P̂ = 1.1861 (dotted green line), whereas fair
price is unchanged at P̄ = 1.15 (solid green line).

4.2.3.3 Other Variables - Explicit Solution and Simulations

We can also get explicit expressions for the transacted amount (∆0) of the underlying
asset and for the transacted amount (B) of the risk-free asset.

For a CARA utility function

∆0 = −1

δ

(G2 −G3) lnµ1 + (G3 −G1) lnµ2 + (G1 −G2) lnµ3

G1 (S2 − S3) +G2 (S3 − S1) +G3 (S1 − S2)
.
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Figure 4.2: Transacted quantity q(P ) of the derivative for the CRRA utility.

For a CRRA utility function

∆0 = Ry
µ
− 1
γ

1 (G3 −G2) + µ
− 1
γ

2 (G1 −G3) + µ
− 1
γ

3 (G2 −G1)

µ
− 1
γ

1 [(S3 −RS0) (G2 −RP )− (S2 −RS0) (G3 −RP )]

+µ
− 1
γ

2 [(S1 −RS0) (G3 −RP )− (S3 −RS0) (G1 −RP )]

+µ
− 1
γ

3 [(S2 −RS0) (G1 −RP )− (S1 −RS0) (G2 −RP )]

. (4.2.13)

The optimal demand and supply quantity for the underlying asset are simply given by{
∆0,d (Pd) = ∆0, Pd ≡ P < P̂ ,

∆0,s (Ps) = ∆0, Ps ≡ P > P̂ .
(4.2.14)

Using (4.2.12) and (4.2.14) in (4.2.5) we get for both cases (Pd and Ps):

B0 = y −∆0S0 − qP, ∀P. (4.2.15)

From equation (4.2.4) we have the solution for wealth

wi = ∆0Si +RB + qGi, ∀P, (4.2.16)

the argument of any utility function U (wi). For any given price, the expected utility function,
EU (.) is obtained by taking expectations over the different states of nature.
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Figure 4.3: For the CARA utility: a) derivative demand and supply curves; b) transacted
amount of underlying asset; c) transacted amount of risk-free asset; d) expected utility level
attained for different prices.

Figure 4.4: For the CRRA utility: a) derivative demand and supply curves; b) transacted
amount of underlying asset; c) transacted amount of risk-free asset; d) expected utility level
attained for different prices.
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For a CARA utility function, the Figure 4.3 shows for the same parameters as before a)
the derivative demand and supply curves; b) the transacted amount of underlying asset; c)
the transacted amount of risk-free asset; d) the expected utility level attained for different
prices. The expected utility level reaches zero exactly at the reservation price. This is in
accordance with the utility indifference pricing, e.g. Henderson and Hobson (2004). At the
reservation price any investor is exactly indifferent between (a) paying nothing and not having
the derivative and (b) paying the reservation price to receive the payoff of the derivative at
maturity. If derivative price moves left or right away from the reservation price, the expected
utility gradually increases until it reaches a super-replication bound where it is infinite,
allowing for an arbitrage opportunity with unbounded wealth. Graphs of intermediate results
- quantities wi and U(wi), i = 1, 2, 3, for the same example are given in Appendix B.4.2.3.

A similar figure for the CRRA utility function is shown in the Figure 4.4.

4.3 Market Makers

In the previous section we presented the optimisation problem of illiquid traders and
derived the demand and supply of derivatives as a function of exogenous endowments. In
this section we present the problem faced by market makers, given the demand and supply
functions for derivatives. The optimal strategy of these intermediaries depends on the level
of competition. We shall first consider the case of a monopolistic market maker and then
consider the case when they compete.9 Given optimal prices and quantities, the market
maker(s) must also define an optimal hedging strategy in stocks and bonds.

4.3.1 Monopolistic Market Maker

The monopolist market maker’s problem consists of choosing the bid and ask prices,
together with a hedging strategy, so as to maximise his expected utility. Equivalently, the
problem can be solved by choosing the optimal amount of transacted derivatives (sell and
buy) and the optimal hedging strategies. This equivalence follows assuming that the market
maker must satisfy market demand and supply at the set ask and bid prices. Let QA/QB be
the number of European derivatives that the market maker is selling/buying, ∆ be the number
of shares in the hedging portfolio and B be the amount invested in the risk-free asset. In
what follows we allow the optimal quantity sold QA to be different from the optimal quantity
bought QB.

If the market maker is risk neutral he faces the following problem:

max
QB ,QA,∆,B

E [π] =
3∑
i=1

pi [QBGi −QAGi + ∆Si +RB] ,

9Important feature of the option trading on the American Stock Exchange is the use of specialists. The
option specialist has access to more information than other traders and, therefore, can mantain a monopolistic
position. For instance, on many exchanges, only the specialist has information about the orders at the opening
of the market. The access to this information allows him to extract some monopolistic profits. In contrast, at
the Chicago Board Options Exchange each market maker is required to compete with others. CBOE requires
that each transaction be executed at the highest bid and lowest ask prices emerging from the group of market
makers participating in the process. These rules induce a strong competition between market makers.
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subject to

∆S0 +B −QAPd (QA) +QBPs (QB) ≤ y, (4.3.1)

QBGi −QAGi + ∆Si +RB ≥ 0, i = 1, 2, 3 and (4.3.2)

QB ≥ 0, QA ≥ 0. (4.3.3)

Several assumptions concerning the market demand and supply are made.

Assumption 1: The supply and the demand functions are, respectively, increasing and
decreasing in the transacted quantities,

dPs (QB)

dQB

> 0,

dPd (QA)

dQA

< 0.

Assumption 2: The function10

3∑
i=1

pi [QB (Gi −RPs (QB))−QA (Gi −RPd (QA)) + ∆ (Si −RS0) +Ry]

is concave in QA, QB and ∆.

In order to simplify the notation let X̄k ≡ Xk/R. Taking into account that, at the
optimum, ∆S0 +B−QAPd+QBPs = y, the problem of the monopolistic risk-neutral market
maker can be rewritten as

max
QB ,QA,∆

3∑
i=1

pi
{
QB

[
Ḡi − Ps (QB)

]
−QA

[
Ḡi − Pd (QA)

]
+ ∆

(
S̄i − S0

)
+ y
}
,

subject to

−QB

[
Ḡi − Ps (QB)

]
+QA

[
Ḡi − Pd (QA)

]
−∆

(
S̄i − S0

)
− y ≤ 0, i = 1, 2, 3

and
QB ≥ 0, QA ≥ 0.

Since the objective function is quasiconcave and the constraint set is convex,11 there
exists a solution for the problem.12 Moreover, and provided that all the constraints that
hold in equality are independent, the solution of the problem is given by the Kuhn-Tucker
solutions.13

10See Appendix B.5.1 for details on this assumption. This function is simply the objective function of the
monopolist, incorporating the first restriction, shown later to be always binding.

11See Appendix B.5.2.1.
12See theorem MK4, in Mas-Colell et al. (1995), page 962.
13Once again using a theorem of Mas-Colell et al. (1995), theorem MK2, page 959.
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The Lagrangean of the problem is given by

L =
3∑
i=1

pi
{
QB

[
Ḡi − Ps (QB)

]
−QA

[
Ḡi − Pd (QA)

]
+ ∆

(
S̄i − S0

)
+ y
}

−
3∑
i=1

λi
{
QB

[
Ḡi − Ps (QB)

]
−QA

[
Ḡi − Pd (QA)

]
+ ∆

(
S̄i − S0

)
+ y
}
.

The first order Kuhn-Tucker conditions are

dL
dQB
≤ 0, QB ≥ 0, dL

dQB
QB = 0;

dL
dQA
≤ 0, QA ≥ 0, dL

dQA
QA = 0;

dL
d∆

= 0;

dL
dλi
≤ 0, λi ≤ 0, dL

dλi
λi = 0;

for i = 1, 2 and 3. If the solution is characterised by Q∗A > 0 and Q∗B > 0, the first order
conditions at the optimum are

dL
dQB

= 0,
dL
dQA

= 0,
dL
d∆

= 0;

⇔


∑3

i=1 pi
[
Ḡi −Ψ (Q∗B)

]
−
∑3

i=1 λi
[
Ḡi −Ψ (Q∗B)

]
= 0,∑3

i=1 pi
[
Ḡi −Ψ (Q∗A)

]
−
∑3

i=1 λi
[
Ḡi −Ψ (Q∗A)

]
= 0,∑3

i=1 pi
[
S̄i − S0

]
−
∑3

i=1 λi
[
S̄i − S0

]
= 0;

where

Ψ (Q∗) =
d [QP (Q)]

dQ

∣∣∣∣
Q∗
. (4.3.4)

If λi < 0, i = 1, 2, 3, all constraints would be binding at the optimal point characterizing
the solution, and the value of the objective function would be zero. Moreover, it is not
possible to have all λi = 0, i = 1, 2, 3, unless

∑3
i=1 pi

[
S̄i − S0

]
= 0. Hence, either there is

only one value of i such that λi = 0, or there is only one value of i such that λi < 0 (i.e. two
values of i such that λi = 0). In the latter case, the first order conditions presented above
results in equation (4.3.5) with λk = σk < 0 ⇒ k ∈ K. In the former case, the first order
conditions lead to equation (4.3.6). Here,

σk ≡
∑3

i=1 piS̄i − S0

S̄k − S0

,

and the function of Q14

Φk (Q) =

∑3
i=1 piḠi − d[QP (Q)]

dQ

Ḡk − d[QP (Q)]
dQ

∑3
i=1 piḠi −Ψ (Q)

Ḡk −Ψ (Q)
.

14Note that, if we consider the market supply, Φk is evaluated at Q = QB . Alternatively, if we consider
the market demand, Φk is evaluated at Q = QA.
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The sets K and Bk (QA, QB,∆, B) are defined as follows:

K ≡

{
m : sign

(
3∑
i=1

piS̄i − S0

)
= −sign

(
S̄m − S0

)}
,

and

Bk (QA, QB,∆, B) ≡


(QA, QB,∆, B) : ∆S0 +B +QAPd (QA)−QBPs (QB) = y,

QBGi −QAGi + ∆Si +RB ≥ 0, i 6= k and
QBGk −QAGk + ∆Sk +RB = 0

 .

The previous derivation and the existence of the bid-ask spread are summarised as follows.

Proposition 4.2. Under Assumptions 1 and 2, and in the presence of a risk-neutral mo-
nopolist market maker, a sufficient condition for the existence of an equilibrium with strictly
positive quantities {Q∗B, Q∗A} , is characterised by Q∗A and Q∗B satisfying either

Φk (Q∗B) = Φk (Q∗A) = σk; (4.3.5)

with (Q∗A, Q
∗
B,∆

∗, B∗) ∈ Bk (QA, QB,∆, B) and k ∈ K, or
∑3

i=1 piḠi −Ψ (Q∗B)− λk
[
Ḡk −Ψ (Q∗B)

]
− λj

[
Ḡj −Ψ (Q∗B)

]
= 0,∑3

i=1 piḠi −Ψ (Q∗A)− λk
[
Ḡk −Ψ (Q∗A)

]
− λj

[
Ḡj −Ψ (Q∗A)

]
= 0,∑3

i=1 piS̄i − S0 − λk
[
S̄k − S0

]
− λj

[
S̄j − S0

]
= 0;

(4.3.6)

with λk < 0, λj < 0, k 6= j, with at least one of k and j in K, and (Q∗A, Q
∗
B,∆

∗, B∗) ∈
Bk (QA, QB,∆, B) ∩ Bj (QA, QB,∆, B). Moreover, the above conditions are also sufficient to
generate a bid-ask spread, i.e. Pd (Q∗A) > Ps (Q∗B) .

Proof. The result about the existence of a bid-ask spread under the above conditions is
discussed in Appendix B.5.2.2. �

Now, we present a necessary and sufficient condition to have (4.3.5) fulfilled. Notice that

Φk (QB = 0) =

∑3
i=1 piḠi − P̂s
Ḡk − P̂s

and Φk (QA = 0) =

∑3
i=1 piḠi − P̂d
Ḡk − P̂d

,

where P̂s and P̂d are the supply and demand reservation prices, respectively.

Corollary 4.1. A necessary and sufficient condition to have equation (4.3.5) satisfied is that
there are reservation prices P̂d and P̂s such that

Φk (QA = 0) ≤ σk ≤ Φk (QB = 0) < 0 (4.3.7)

if
∑3

i=1 piḠi − Ḡk ≤ 0, and

0 > Φk (QA = 0) ≥ σk ≥ Φk (QB = 0) (4.3.8)

if
∑3

i=1 piḠi − Ḡk ≥ 0.
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Moreover, necessary conditions for (4.3.7) and (4.3.8) to hold are

3∑
i=1

piḠi < P̂d ≤ P̂s < Ḡk, (4.3.9)

3∑
i=1

piḠi > P̂d ≥ P̂s > Ḡk. (4.3.10)

Proof. The proof is given in Appendix B.5.3. �

In equilibrium the market maker gains on one side of the market but loses on the other
side.

We illustrate the point here. Consider the second case presented above. In equilibrium,
the market maker expects to gain in the long position on the derivative (because Ps <∑3

i=1 piḠi), but expects to lose in the short position (because Pd <
∑3

i=1 piḠi). This results
from the fact that (i) in this equilibrium, at least one of the wealth constraints is binding and
(ii) the interval defined by the demand and supply reservation prices does not contain the
expected value of the derivative’s payoff,

∑3
i=1 piḠi. This latter fact implies that a market

maker selling and buying simultaneously the derivative has necessarily a positive expected
utility on one side, and a negative expected utility on the other side. The market maker
may thus choose to be only on the side of the market that provides a positive expected
utility. However, in order to maximise the expected utility, the market maker may find an
incentive to enter the other side of the market, relaxing the binding restrictions. This only
happens provided the improvement of the positive expected utility more than compensates
the negative expected utility on the other side of the market. Our result reflects the fact that
a bid-ask spread exists only when the market maker faces one such incentive.

Validity of our results can be justified by empirical patterns of intraday bid-ask spreads of
CBOE option prices depending on the level of the competition in market-making, observed
by Chan et al. (1995).

Comparative Statics. Having characterised the equilibrium bid-ask spread in the mo-
nopolistic market maker case, let us investigate how it changes with different parameters of
our agents’ utility functions.

Corollary 4.2. If the agents’ utility is of the CARA type as illustrated before in Section
4.2.3, i.e. individual supply and demand are given by (4.2.10) with (4.2.12), and aggregate
supply/demand by (4.2.7), the equilibrium ask price is a decreasing function of CARA utility
parameter δ, whereas the equilibrium bid price is an increasing function of the same parameter
i.e.

dPd (Q∗A)

dδ
≤ 0,

dPs (Q∗B)

dδ
≥ 0.

Thus, the bid-ask spread narrows as the coefficient of absolute risk aversion increases.
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Proof. The bid-ask spread dependence on the agents’ utility function parameters is
discussed in Appendix B.5.4. �

For the other illustrative case, using a CRRA utility function, due to the individual
supply and demand (4.2.11), with (4.2.12), and aggregate supply/demand in (4.2.7), we
can numerically reach a similar conclusion that the equilibrium ask price decreases with the
coefficient of relative risk aversion γ, whereas the equilibrium bid price increases, i.e.

dPd (Q∗A)

dγ
≤ 0,

dPs (Q∗B)

dγ
≥ 0.

Again, this implies that the bid-ask spread narrows as γ increases.

4.3.2 Competition Between Market Makers

In this section, our model is extended to consider the presence of several market makers.
In an oligopoly, the payoffs for one market maker depend on its own actions, as well as on the
actions of the other market makers. The strategic interactions between the market makers
will determine the equilibrium.

Here, individual market makers simultaneously determine their bid and ask prices, the
number of shares and the amount invested in the risk-free asset, behaving in their own interest
in a non-cooperative game. The objective is to compute the Nash equilibrium of this game.

Let M be the number of market makers in this market. The i-th market maker, with
i = 1, ...,M, has expected utility Ui (Pi,d, Pi,s, P−i,d, P−i,s,∆i,∆−i) , where Pi,d, Pi,s and ∆i

are, respectively, the ask price, the bid price and the number of units of the underlying asset
held by market maker i. The values P−i,d, P−i,s and ∆−i correspond to the components of
the vector of the analogous variables relative to the remaining M − 1 market makers, i.e.
(P−i,d, P−i,s,∆−i) = (Pj,d, Pj,s,∆j)j∈{1,...,M},j 6=i .

Formally, the expected utility of market maker j corresponds to its expected profit:

Πj (Pj,d, Pj,s, P−j,d, P−j,s,∆j,∆−j) =
3∑
i=1

pi [Qj,B (Pj,s, P−j,s) (Gi −RPj,s)

−Qj,A (Pj,d, P−j,d) (Gi −RPj,d) + ∆j (Si −RS0) +Ry] .

For given prices, the optimal amount transacted ∆∗j , solves the problem

Ui (Pj,d, Pj,s, P−j,d, P−j,s) = max
∆j

Πj (Pj,d, Pj,s, P−j,d, P−j,s,∆j,∆−j) ,

leading to ∆∗j = ∆j (Pj,d, Pj,s, P−j,d, P−j,s) and characterising the expected utility function to
be maximised on prices. For that given amount ∆∗j , prices are set optimally as the solution
of

max
Pj,s,Pj,d

Ui (Pj,d, Pj,s, P−j,d, P−j,s)
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subject to

0 ≤ Qj,B (Pj,s, P−j,s) (Gi −RPj,s)−
Qj,A (Pj,d, P−j,d) (Gi −RPj,d) + ∆∗j (Si −RS0) +Ry,

for i = 1, 2, 3, where Qj,B (Pj,s, P−j,s) and Qj,A (Pj,d, P−j,d) are, respectively, the demand and
supply functions faced by firm j.

Financial products are generally considered homogeneous goods. Options traded by dif-
ferent intermediaries are taken as perfect substitutes by the investors, who choose to transact
with the intermediary setting the best price. In financial markets the best quotes can be eas-
ily found. In particular, automated trading systems facilitate the disclosure of the best price.
Hence, the homogeneous good assumption gives rise to discontinuity of the demand and sup-
ply curves. Market maker j is viewed as facing the demand curve Qj,A (Pj,d, P−j,d), a function
of the ask price that all market makers quote. Supposing that Pi,d = Pk,d, for all i, k 6= j,

Qj,A (Pj,d, P−j,d) =


χA (Pj,d, Pi,d) , if Pj,d > Pi,d, for all i,
1
M
QA (Pj,d) , if Pj,d = Pi,d, for all i,

QA (Pj,d) , if Pj,d < Pi,d, for all i;
(4.3.11)

where χA (Pj,d, Pi,d) ∈
[
0, QA (Pj,d)− M−1

M
QA (Pi,d)

]
.

The last line reflects the fact that, if market maker j quotes the lowest price, he or she will
face all the market demand. The second line corresponds to a fair ratio among the market
makers. The first line, however, is more subtle. If market maker j quotes a higher price than
his competitors, several situations are possible. As competitors have wealth constraints,
they may not be able to sell additional units at the lower price to former customers of
market maker j. In that case Qj,A (Pj,d, P−j,d) = QA (Pj,d) − M−1

M
QA (Pi,d) . However, it

may also be possible that, even having binding constraints,15 competitors are able to sell
additional units to former customers of market maker j, reducing his or her demand to zero,
i.e. Qj,A (Pj,d, P−j,d) = 0. An intermediate solution is also possible, where the competitors are
not able to sell to all the former customers of market maker j. Hence, we can conclude that
when market maker j sets a price above his competitors, his or her demand will belong to
the range

[
0, QA (Pj,d)− M−1

M
QA (Pi,d)

]
. This discontinuous demand faced by a competitive

market maker is illustrated in Figure 4.5.

On the other hand, market maker j is viewed as facing the following supply curve, also
shown in Figure 4.5,

Qj,B (Pj,s, P−j,s) =


QB (Pj,s) , if Pj,s > Pi,s, for all i,
1
M
QB (Pj,s) , if Pj,s = Pi,s, for all i,

χB (Pj,s, Pi,s) , if Pj,s < Pi,s, for all i;
(4.3.12)

where χB (Pj,s, Pi,s) ∈
[
0, QB (Pj,s)− M−1

M
QB (P−j,s)

]
.

15This is the case if
∑3
i=1 piGi −RPi,d < 0 and Gk −RPi,d < 0, where k identifies the binding restriction.
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Figure 4.5: Competitive market maker’s demand and supply curves.

Definition 4.1. A vector of ask and bid prices (P ∗d , P
∗
s ,∆

∗) =
(
P ∗i,d, P

∗
i,s,∆

∗
i

)
i=1,...,M

is an

equilibrium iff, for all i and all possible prices (Pd, Ps) = (Pi,d, Pi,s)i=1,...,M ,

Ui
(
P ∗i,d, P

∗
i,s, P

∗
−i,d, P

∗
−i,s
)
≥ Ui (Pi,d, Pi,s, P−i,d, P−i,s) .

In other words, a set of prices is a Nash equilibrium if market makers have no incentive
to set different prices in order to obtain higher utility.

This result is known as Bertrand paradox, Bertrand (1883), establishing that when there
is price competition between identical firms with no constraints, price equals marginal cost,
and firms make no profit. As market makers are perfect competitors in prices, it is usually
accepted that market makers earn zero profits. However, that is not the case here, since
there are positive wealth constraints. Hence, we must investigate further the existence of a
pure Nash equilibrium of this game.

For each firm j we define two reaction functions as the optimal demand and supply prices
which are functions of the prices quoted by other firms:

P ∗j,s = Υj,s (P−j,s, Pj,d, P−j,d) ,

P ∗j,d = Υj,d (P−j,d, Pj,s, P−j,s) .

The symmetric Nash equilibrium of the game is the set of prices that solve the following
system {

P ∗j,s = Υj,s

(
P ∗−j,s, P

∗
j,d, P

∗
−j,d
)
, ∀j ∈ {1, . . . ,M} ,

P ∗j,d = Υj,d

(
P ∗−j,d, P

∗
j,s, P

∗
−j,s
)
, ∀j ∈ {1, . . . ,M} .

Theorem 4.3. Under the assumptions of the model, if all market makers are risk-neutral,
there is no pure symmetric Nash equilibrium of the game.

Proof. Let (P ∗d , P
∗
s ) be an equilibrium candidate. We prove that there is always a

profitable deviation and therefore (P ∗d , P
∗
s ) cannot be an equilibrium. The proof examines

the case of zero, one, two or all binding constraints.

If no wealth constraint is binding, a profitable deviation is easily identified. In the case∑3
i=1 pi

(
S̄i − S0

)
> 0 (< 0) each market maker could increase the expected profit by increas-

ing (decreasing) ∆.
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A solution with three binding constraints would not be an equilibrium of the game. In
that case, the expected profit would be zero and a profitable deviation would be, for instance,
Pd = P̂d, Ps = P̂s and ∆ = 0, with an expected profit of Ry.

We now consider the more complex case of one binding constraint (say, constraint k).
On one hand, if

∑3
i=1 pi

(
S̄i − S0

)
> 0, the constraint that is binding is the one such that

S̄k−S0 < 0, because if that is not the case it would be possible to increase utility by increasing
∆. On the other hand, for the same reasons, if

∑3
i=1 pi

(
S̄i − S0

)
< 0, the constraint that is

binding is the one such that S̄k − S0 > 0.

In order to check for all the profitable deviations for market maker j, assume that all
other market makers are playing the hypothetical equilibrium. If market maker j decides
to slightly increase the price that he is charging to the demand (Pj,d), and if the wealth
constraints of his competitors do not allow them to sell more units of the derivative, then
the impact in the expected profit is

−
∂Qj,A

(
Pj,d, P

∗
−j,d
)

∂Pj,d

[∑3

i=1
piḠi − Pj,d

]
+Qj,A

(
Pj,d, P

∗
−j,d
)
. (4.3.13)

However, if the market maker j decides to decrease Pj,d, he will face all the market
demand. Hence, the impact in the expected profit is

−dQj,A
[∑3

i=1
piḠi −

(
P ∗j,d − ε

)]
, (4.3.14)

where dQj,A denotes the variation in the quantity sold by firm j. Ignoring the positivity
constraints of wealth at time t, note that, in order to be profitable to slightly increase the
price, we must assure that equation (4.3.13) is positive. Moreover, it would be profitable to
slightly decrease the price, increasing the quantity sold, if equation (4.3.14) is positive.

Additionally, we consider the wealth constraints. Since the expected profit and the wealth
constraints are linear in the amount of bought/sold shares of stock (∆), at least one of the
wealth constraints is binding. Let this constraint be denoted by k. In an analogous way to
the case just described, if the market maker decides to slightly increase the price that he is
charging to the demand (Pj,d) then the impact in the wealth constraint that is binding is

−
∂Qj,A

(
Pj,d, P

∗
−j,d
)

∂Pj,d

[
Ḡk − Pj,d

]
+Qj,A

(
Pj,d, P

∗
−j,d
)
. (4.3.15)

However, if the market maker j decides to slightly decrease Pj,d, he will face all the market
demand. Hence, the impact in the wealth constraint that is binding is

−dQj,A
[
Ḡk −

(
P ∗j,d − ε

)]
, (4.3.16)

where dQj,A denotes the variation in the quantity sold by firm j, as before.

All the possibilities concerning the sign of equations (4.3.13), (4.3.14), (4.3.15) and
(4.3.16) are presented in the next table.
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Eq. (4.3.13) Eq. (4.3.14) Eq. (4.3.15) Eq. (4.3.16)
Case I ≤ 0 > 0 ≤ 0 > 0
Case II ≤ 0 > 0 > 0 > 0
Case III ≤ 0 > 0 > 0 < 0
Case IV ≤ 0 > 0 > 0 = 0
Case V > 0 ≥ 0 > 0 ≥ 0
Case VI > 0 ≥ 0 > 0 ≤ 0
Case VII > 0 > 0 ≤ 0 > 0
Case VIII > 0 = 0 ≤ 0 > 0
Case IX > 0 ≤ 0 > 0 ≥ 0
Case X > 0 ≤ 0 > 0 ≤ 0
Case XI > 0 < 0 < 0 > 0
Case XII > 0 < 0 = 0 > 0

Table 4.1: All possible cases when one constraint is binding.

If cases I and II were considered the market maker j could slightly decrease the price that
he is charging, increasing the quantity that he is selling, which would result in an increase of
the expected value of the wealth. In case III the market maker can find a profitable deviation
by changing Pj,d and ∆j. See Appendix B.6.1. In case IV, if market maker j decides to
increase the price the quantity demand will be zero. The reason is that as equation (4.3.14)
and equation (4.3.16) are non-negative the other market makers can increase their expected
wealth by selling to the investors that used to buy from market maker j. Hence, we can not
find a profitable deviation changing Pj,d. In what follows we will find a profitable equilibrium
changing Pj,s. We begin by noticing that, as

∑3
i=1 piḠi does not belong to the interval defined

by the reservation price, then
∑3

i=1 piḠi does not belong to the interval defined P−j,s and
P−j,d, with P−j,d > P−j,d. Hence, the situation described in this case,

∑3
i=1 piḠi < P−j,d = Ḡk,

implies
∑3

i=1 piḠi < P−j,s ≤ Ḡk. Notice that the impact of decreasing the price Pj,s in the
expected wealth is

−

{
∂Qj,B

(
Pj,s, P

∗
−j,s
)

∂Pj,s

[∑3

i=1
piḠi − Pj,s

]
−Qj,B

(
Pj,s, P

∗
−j,s
)}

> 0.

Moreover, the impact on the constraint is

−

{
∂Qj,B

(
Pj,s, P

∗
−j,s
)

∂Pj,s

[
Ḡk − Pj,s

]
−Qj,B

(
Pj,s, P

∗
−j,s
)}
≷ 0.

If the impact on the constraint is positive a profitable deviation for market maker j is slightly
decrease the price Pj,s. However, if that is not the case it is possible to find a profitable
deviation changing Pj,s and ∆j. See Appendix B.6.1.

Case V is analogous to case IV. In what concerns cases VI, IX and X, the market maker
j must increase the price that he is charging, decreasing the quantity that he is selling and
increase the expected value of the wealth. Case VII is equal to cases I and II. Case VIII is
not an admissible possibility because, by equation (4.3.13) and (4.3.15), we conclude that
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∑3
i=1 piḠi > Ḡk, whereas, by equations (4.3.14) and (4.3.16), we conclude

∑3
i=1 piḠi < Ḡk,

which is a contradiction. The remaining cases XI and XII are presented in the Appendix
B.6.1.

Another possibility is that there are two constraints binding. Let them be denoted by m
and n. In Appendix B.6.1, all the possibilities concerning the relation between Pd, Ps, Ḡn

and Ḡm, are presented and a profitable deviation for each case is identified. �

Hence, if price competition between market makers is introduced in our model, a pure
symmetric Nash equilibrium of the game does not exist. This result is similar to the well
known Edgeworth paradox, Edgeworth (1897), since in any possible situation, given equal
equilibrium prices, each player has an incentive to undercut the others.

As mentioned before this result stems from the fact that market makers have positive
wealth constraints (otherwise with no constraints at all we would fall back to the Bertrand
paradox). However, those constraints are too rigid and thus we have effectively replicated the
Edgeworth result, by failing to find the pure symmetric equilibrium. If we instead assumed
more flexible capacity constraints by introducing market makers’ convex cost functions, this
could potentially help finding equilibria even under the pure strategies.

However, a mixed strategy Nash equilibrium must exist, according to the classical exis-
tence theorem result by Dasgupta and Maskin (1986a).16 The theorem states17 that a mixed
strategy equilibrium exists when the payoff function is discontinuous only at a few points
characterised as follows: let a′ be an action combination at which the payoff function is dis-
continuous; then if a′′ is an action combination exactly similar to a′ except for one player’s
action, then there must be no discontinuity at a′′.

This is exactly what we have in our case, from the discontinuous demand and supply
curves (4.3.11) and (4.3.12), depicted in Figure 4.5. The action combinations correspond to
the choices of prices of the market makers whereas the payoff is represented by the output
demand/supply quantities.18 We can see that the discontinuity in our equations arises from
one player’s choices of prices while others are kept fixed. Thus, our action combinations for
both demand and supply quantities are valid candidates to apply Dasgupta-Maskin theorem
and a mixed strategy equilibrium must exist. Another way to see this is to realise that when
proving the Theorem 4.3, i.e. proving that there is no pure strategy Nash equilibrium, we
were always able to identify one and only one player that would have incentive to deviate
and thus violate the equilibrium. In those cases Dasgupta-Maskin theorem implies that there
must be a mixed strategy equilibrium.

In general, a mixed strategy equilibrium is obtained by considering solutions where players
are assigned a probability θ, 0 ≤ θ ≤ 1, to choose an action, i.e. the fraction of market makers
that choose that action is θ. In our case we can interpret the mixed equilibrium existence
theorem in the following way.

16See Theorem 5 in Dasgupta and Maskin (1986a).
17For completeness, Appendix B.7 presents a version of the theorem taken from Rasmusen and Blackwell

(1994) book.
18As mentioned before this is a Bertrand game where the actions of the players are to choose prices as

opposed to a Cournot game, where the players choose quantities they sell/buy, Cournot (1838).
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Conjecture 4.1. Under the assumptions of the model, if all market makers are risk-neutral,
there is a mixed strategy Nash equilibrium of the game. A fraction θ of the total number of
market makers will choose to set different prices (either higher or lower) than their competi-
tors, and the bid-ask equilibrium prices will still exist as in the case of monopolistic market
maker.

Comparative Statics. Even without fully characterising the mixed strategy equilibrium
bid-ask spread in the competing market maker case, we can say how it will change with
different parameters of our agents’ utility functions.

Corollary 4.3. In the case of CARA utility function of the agents, illustrated in Section
4.2.3, i.e. if individual supply and demand are given by (4.2.10) with (4.2.12), and aggregate
supply/demand by (4.2.7), the mixed strategy Nash equilibrium is as follows: the ask price
is a decreasing function of coefficient of absolute risk aversion δ, whereas the bid price is an
increasing function of the same parameter i.e.

dPd (Q∗A)

dδ
≤ 0,

dPs (Q∗B)

dδ
≥ 0.

Thus, also in the mixed strategy equilibrium under competing market makers, the bid-ask
spread narrows as the coefficient of absolute risk aversion increases.

Proof. Since in the mixed strategy equilibrium, players (market makers) will choose
prices and thus face demand and supply given by (4.3.11) and (4.3.12), both the fraction θ of
the players who choose to set prices differently and the remaining fraction 1− θ of them who
choose not to, will have the similar functional form of demand and supply, i.e. in both cases
it will be directly proportional to the market aggregate demand and supply, QA and QB,
given by (4.2.7), with (4.2.10) and (4.2.12). The bid-ask spread dependence on the agents’
utility function parameter δ will be exactly the same as in the monopolistic market maker
equilibrium case, i.e. Corollary 4.2, whose proof is discussed in Appendix B.5.4. �

The case of CRRA utility function of the agents can be discussed following the same line
of reasoning. In this case we must consider the individual supply and demand (4.2.11) with
(4.2.12), and aggregate supply/demand in (4.2.7), which are to be inserted in (4.3.11) and
(4.3.12). Once again, there is no reason for the dependence on the coefficient of relative
risk aversion γ (parameter of agents’ utility function) to be any different from the previous
case of a monopolistic market maker equilibrium. Thus, as before, numerically, we can reach
a similar conclusion that the mixed strategy Nash equilibrium ask price decreases with γ,
whereas the equilibrium bid price increases with the same parameter, i.e.

dPd (Q∗A)

dγ
≤ 0,

dPs (Q∗B)

dγ
≥ 0.

Again, this implies that also the mixed strategy bid-ask spread narrows as γ increases.
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4.4 Conclusion

In this paper we have considered a simple economy where markets are incomplete due to
the inexistence of transactions of the underlying asset at some points in time.

Although our two-period economy may be seen as simplified setting, our main contribu-
tions are robust with respect to different types of utility functions considered. They may be
summarised as follows.

First, we characterise the investment decisions in the risky assets, when the derivative is
fairly priced.

Second, we find that if the fair price is in the no-arbitrage region, then it is either above
the reservation ask price or below the reservation bid price. The implication is that, for a
risk-neutral, monopolistic market maker to transact in both sides of the market, a loss in one
side is necessary to justify the gain in the other side.

Third, sufficient conditions for an equilibrium to exist under a risk-neutral, monopolistic
market maker are presented.

Finally and interestingly, the imperfection considered here (dry markets) suffices to pro-
vide conditions assuring the existence of a bid-ask spread under a monopolistic market maker,
although one such equilibrium can be shown not to exist when competition in prices is in-
troduced and only pure strategies are considered.

However, in the mixed strategy game an equilibrium bid-ask spread must exist according
to the Dasgupta-Maskin (1986a) theorem. We illustrate how this theorem is applied to our
setting of dry markets, and point out its practical implications. The challenge of exactly
determining the fraction of market makers θ who will chose to act differently then the others,
and predicting how many of them will chose to increase/decrease their prices and what is the
most probable equilibrium outcome is a topic of further research.

Furthermore, for some specific and standard utility functions (i.e. CARA and CRRA) we
show several additional results.

First, demand and supply curves are derived and they present the desired behaviour.
Second, the reservation prices do not depend on the agents’ initial wealth level.
Third, the reservation prices may depend on the agents’ risk aversion. In the case of a

CARA utility function the reservation price does not depend on the absolute risk aversion
coefficient. However, in the case of a CRRA utility function, the reservation price does
depend on the relative risk aversion coefficient.

Additionally, the bid-ask spread narrows as the risk aversion coefficient increases, for
both monopolistic market maker and when there is a competition. This result holds both for
CARA and CRRA utility functions. This is an intuitive result that tells us that risk-neutral
market makers use their market power (a monopolistic market maker even more so) to shrink
the bid-ask range of prices as the agents in the market become more risk averse.



Appendix A

Auxiliary Derivations for Chapter 2

A.1 Functions to Derive Upper and Lower Bounds

A.1.1 A Lognormal Expectation

Lemma A.1. If (X, Y ) are two bivariate normal random variables with means (µx, µy),
standard deviations (σx, σy) and correlation ρ then

E
[
eX · 1{X<a, Y <b}

]
= eµx+

σ2x
2 N2

(
a− µx
σx

− σx,
b− µy
σy

− ρσx
)
, (A.1.1)

where N2(·, ·) is the bivariate standard normal cumulative distribution function given by
(2.3.2) with correlation ρ.

Proof. We need to calculate E
[
eX · 1{X<a, Y <b}

]
=
´ a
−∞

´ b
−∞ exp(x, y) dy dx, where

p(x, y) =
1

2πσxσy
√

1− ρ2
e
−

(x−µxσx )
2
−

2ρ(x−µx)(y−µy)
σxσy

+( y−µyσy )
2

2(1−ρ2)

is a bivariate normal probability density function. We complete the square in the following
way:

E
[
eX · 1{X<a, Y <b}

]
=

1

2πσxσy
√

1− ρ2

aˆ

−∞

bˆ

−∞

e
− F

2(1−ρ2) dy dx, (A.1.2)

where the expression F in the exponent is

F ≡ −2x
(
1− ρ2

)
+

(
x− µx
σx

)2

− 2ρ (x− µx) (y − µy)
σxσy

+

(
y − µy
σy

)2

.

We expand the first two terms as follows:

F = −2x+ 2xρ2 +

(
x− µx
σx

)2

− 2ρ (x− µx) (y − µy)
σxσy

+

(
y − µy
σy

)2

=
(x− µx)2 − 2xσ2

x

σ2
x

− 2ρ (x− µx) (y − µy)− 2xρ2σxσy
σxσy

+
(y − µy)2

σ2
y

.
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We proceed with completing the square in the numerator of the first fraction by adding
and subtracting σ4

x + 2µxσ
2
x which gives us:

F =

(
x− (µx + σ2

x)
)2

σ2
x

− σ2
x − 2µx −

2ρ (x− µx) (y − µy)− 2xρ2σxσy
σxσy

+
(y − µy)2

σ2
y

.

We want to have the same x− (µx + σ2
x) term in the first term of the second fraction so

we write

F = −2µx − σ2
x +

(
x− (µx + σ2

x)
)2

σ2
x

−
2ρ
(
x− (µx + σ2

x)
)

(y − µy) + 2ρσ2
x (y − µy)− 2xρ2σxσy

σxσy
+

(y − µy)
2

σ2
y

= −2µx − σ2
x +

(
x− (µx + σ2

x)
)2

σ2
x

−
2ρ
(
x− (µx + σ2

x)
)

(y − µy)− 2ρ2σxσy · x
σxσy

− 2ρσx (y − µy)

σy
+

(y − µy)
2

σ2
y

.

We add and subtract 2ρ2σxσy(µx + σ2
x) and obtain:

F = −2µx − σ2
x +

(
x− (µx + σ2

x)
)2

σ2
x

−
2ρ
(
x− (µx + σ2

x)
)

(y − µy − ρσxσy)
σxσy

+ 2ρ2(µx + σ2
x) +

(y − µy)2

σ2
y

− 2ρσx (y − µy)
σy

.

Finally, the only thing left to do is to complete the square in the last two terms by adding
and subtracting ρ2σ2

x:

F = −2µx−σ2
x+ρ2(2µx+2σ2

x)+

(
x− µx − σ2

x

)2
σ2
x

−
2ρ
(
x− µx − σ2

x

)
(y − µy − ρσxσy)

σxσy
+

(y − µy − ρσxσy)
2

σ2
y

−ρ2σ2
x.

By grouping other terms in front of the three fractions we finally have

F = −(1− ρ2)
(
2µx + σ2

x

)
+

(
x− µx
σx

− σx
)2

− 2ρ

(
x− µx
σx

− σx
)(

y − µy
σy

− ρσx
)

+

(
y − µy
σy

− ρσx
)2

= −(1− ρ2)
(
2µx + σ2

x

)
+ x2 − 2ρxy + y2,

where new variables are introduced:

x =
x− µx
σx

− σx, y =
y − µy
σy

− ρσx.

By substituting the expression for F , back into the integral (A.1.2), and applying this
change of integration variables, it reduces to

E
[
eX · 1{X<a, Y <b}

]
= eµx+

σ2x
2

1

2π
√

1− ρ2

aˆ

−∞

bˆ

−∞

e
−x

2−2ρxy+y2

2(1−ρ2) dy dx = eµx+
σ2x
2 N2

(
a, b
)
,
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where we have used the bivariate standard normal cumulative distribution function N2 given
in (2.3.2), and the new limits of integration are

a =
a− µx
σx

− σx, b =
b− µy
σy

− ρσx.

This gives (A.1.1) and completes the proof. �

A.1.2 Some Conditional Expectations

Let us now derive the functions f i,jA , f i,jB and gi,j given by (2.3.27), (2.3.28) and (2.3.29).
The derivation of f i,jB is completely analogous to f i,jA , and therefore only one is presented in

details. The other is easily obtained by interchanging the quantities diA and d̃jB with d̃iA and
djB, respectively, (and A with B). In all three cases we can split the function in four parts
according to four different regions identified in Figure A.1 below. So

f i,jA (t, At, Bt) = EQ
t

[
Aτ−1{Aτ−∈[Ai−1,Ai)}1{Bτ−∈[Bj−1,Bj)}

]
= EQ

t

[
Aτ−1{Aτ−<Ai, Bτ−<Bj}

]
− EQ

t

[
Aτ−1{Aτ−<Ai−1, Bτ−<Bj}

]
(A.1.3)

− EQ
t

[
Aτ−1{Aτ−<Ai, Bτ−<Bj−1}

]
+ EQ

t

[
Aτ−1{Aτ−<Ai−1, Bτ−<Bj−1}

]
,

gi,j(t, At, Bt) = EQ
t

[
1{Aτ−∈[Ai−1,Ai]}1{Bτ−∈[Bj−1,Bj ]}

]
= Q

{
Aτ− ∈ [Ai−1, Ai), Bτ− ∈ [Bj−1, Bj)

}
= Q

{
Aτ− < Ai, Bτ− < Bj

}
−Q

{
Aτ− < Ai−1, Bτ− < Bj

}
−Q

{
Aτ− < Ai, Bτ− < Bj−1

}
+ Q

{
Aτ− < Ai−1, Bτ− < Bj−1

}
. (A.1.4)

From the SDE in (2.3.1), the solution for the geometric Brownian motion process at time
τ−, under the risk neutral measure Q, is

Aτ− = Ate
(r− 1

2
σ2
A)(τ−t)+σA(WQ,A

τ −WQ,A
t ),

where the Brownian motion increment WQ,A
τ −WQ,A

t is normally distributed with zero mean
and variance τ−t, which means that the random variable X = lnAτ− is normally distributed
with mean µx = lnAt +

(
r − 1

2
σ2
A

)
(τ − t) and standard deviation σx = σA

√
τ − t. We have

an analogous relationship for Y = lnBτ−.

Now, consider the first term from (A.1.3) and use the previous result (A.1.1) in Lemma
A.1:

EQ
t

[
Aτ−1{Aτ−<Ai, Bτ−<Bj}

]
= EQ

t

[
elnAτ−1{lnAτ−<lnAi, lnBτ−<lnBj}

]
(A.1.5)

= EQ
t

[
eX · 1{X<lnAi, Y <lnBj}

]
= eµx+

σ2x
2 N2

(
lnAi − µx

σx
− σx,

lnBj − µy
σy

− ρσx
)

= Ate
r(τ−t) N2

(
ln Ai

At
−
(
r + 1

2
σ2
A

)
(τ − t)

σA
√
τ − t

,
ln Bj

Bt
−
(
r − 1

2
σ2
B + ρσAσB

)
(τ − t)

σB
√
τ − t

)
.
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Figure A.1: Regions in (A,B) space required for derivations of functions f i,jA , f i,jB and gi,j.

Looking back to expression (A.1.3) and combining four such terms we finally obtain

equation (2.3.27) with the definitions of the quantities diA and d̃jB. Equation (2.3.28) is
obtained completely analogously by symmetry.

For expression (A.1.4) the situation is even simpler. By looking at the first term we
conclude that

Q
{
Aτ− < Ai, Bτ− < Bj

}
= Q

{
lnAτ− < lnAi, lnBτ− < lnBj

}
= Q

{
X < lnAi, Y < lnBj

}
= N2

(
lnAi − µx

σx
,

lnBj − µy
σy

)
(A.1.6)

= N2

(
ln Ai

At
−
(
r − 1

2
σ2
A

)
(τ − t)

σA
√
τ − t

,
ln Bj

Bt
−
(
r − 1

2
σ2
B

)
(τ − t)

σB
√
τ − t

)
.

Again, by combining four such terms we obtain the final expression (2.3.29). As already

pointed out, we see that analogous quantities djB and d̃jB are obtained from diA and d̃iA by
replacing A with B (and i with j). As a matter of fact, the function f i,jB given in (2.3.28)

follows directly from f i,jA in (2.3.27), by interchanging the quantities diA and d̃jB with d̃iA and
djB, respectively, which is obtained by interchanging A and B, interchanging i and j, and
using the symmetry in N2.
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A.2 Partial Derivatives of Call-on-max Option Prices

A.2.1 First Order Derivatives

We will present here the derivation of the first order sensitivities of the call-on-max option
price of Lemma 2.1, with respect to the underlying assets. From (2.3.3), by applying the
chain rule, we have the partial derivative1

∂OW (A, B, K, r, σA, σB, ρ, T − t)
∂A

= N2 (c̃A, cA; ρA) +A
∂N2 (c̃A, cA; ρA)

∂A
+B

∂N2 (c̃B, cB; ρB)

∂A

+Ke−r(T−t)
∂N2

(
−cA + σA

√
T − t ,−cB + σB

√
T − t ; ρ

)
∂A

.

(A.2.1)

Further, the derivative becomes

∂OW (A,B,K, r, σA, σB , ρ, T − t)
∂A

= N2 (c̃A, cA; ρA) +A

[
∂N2

∂c̃A
(c̃A, cA; ρA)

∂c̃A
∂A

+
∂N2

∂cA
(c̃A, cA; ρA)

∂cA
∂A

]
+B

∂N2

∂c̃B
(c̃B , cB ; ρB)

∂c̃B
∂A

(A.2.2)

+Ke−r(T−t)
∂N2

∂(−cA)

(
−cA + σA

√
T − t,−cB + σB

√
T − t; ρ

)(
−∂cA
∂A

)
,

with

∂N2 (a, b; ρ)

∂a
=

1

2π
√

1− ρ2

bˆ

−∞

e
−a

2−2ρay+y2

2(1−ρ2) dy =
e−

a2

2

√
2π

N

(
b− ρa√
1− ρ2

)
, (A.2.3)

and
∂c̃A
∂A

=
1

Aσ
√
T − t

,

∂cA
∂A

=
1

AσA
√
T − t

,

∂c̃B
∂A

= −∂c̃A
∂A

.

This gives us the following result:

∂OW (A, B, K, r, σA, σB , ρ, T − t)
∂A

= N2 (c̃A, cA; ρA) +
1√

2π (T − t)

e− c̃A2

2

σ
N

(
cA − ρAc̃A√

1− ρ2A

)

+
e−

c2A
2

σA
N

(
c̃A − ρAcA√

1− ρ2A

)
− Be−

c̃B
2

2

Aσ
N

(
cB − ρB c̃B√

1− ρ2B

)
(A.2.4)

−Ke
−r(T−t)e−

(−cA+σA
√
T−t)2

2

AσA
N

(
ρcA − cB + (σB − ρσA)

√
T − t√

1− ρ2

) .
1We will again present only the partial derivative with respect to the underlying A. The derivation for B

is completely analogous and it is easily obtained by interchanging A and B in the end result.
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Figure A.2: Deltas of the European call on maximum option.

A.2.1.1 The Limit when A→∞

For a fixed B, from (2.3.3) we have that cA, c̃A →∞ when A→∞, and thus

lim
A→∞

N2 (c̃A, cA; ρA) = 1, (A.2.5)

as well as

lim
A→∞

N

(
cA − ρAc̃A√

1− ρ2
A

)
= 1, (A.2.6)

and

lim
A→∞

N

(
c̃A − ρAcA√

1− ρ2
A

)
= 1, (A.2.7)

since ρA < 1. Further, terms lim
A→∞

e−
c2A
2 = 0 and lim

A→∞
e−

c̃A
2

2 = 0. Hence, in the above expression

(A.2.4), the first two terms in the brackets go to zero when when A→∞.

Third term goes to zero both due to A in the denominator, and due to lim
A→∞

e−
c̃B

2

2 = 0,

while

lim
A→∞

N

(
cB − ρB c̃B√

1− ρ2
B

)
= 1, (A.2.8)

because of lim
A→∞

c̃B = −∞. Similar conclusion holds for the last term since

lim
A→∞

e−
(−cA+σA

√
T−t)2

2 = 0, (A.2.9)

and

lim
A→∞

N

(
ρcA − cB + (σB − ρσA)

√
T − t√

1− ρ2

)
= 1. (A.2.10)

This leaves us with only the first term in front of the brackets, i.e.

lim
A→∞

∂OW (A, B, K, r, σA, σB, ρ, T − t)
∂A

= lim
A→∞

N2 (c̃A, cA; ρA) = 1.
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A.2.1.2 The Stronger Limit Result when A→∞

We now also show that

lim
A→∞

(
1− ∂OW

∂A
(A, . )

)
A = 0,

i.e. the first derivative of the function converges to 1 relatively fast. From (A.2.4) we have
that

lim
A→∞

(
A−A∂OW

∂A
(A, . )

)
= lim
A→∞

A (1−N2 (c̃A, cA; ρA)) +
1√

2π (T − t)

 lim
A→∞

Ae−
c̃A

2

2

σ
N

(
cA − ρAc̃A√

1− ρ2A

)

+ lim
A→∞

Ae−
c2A
2

σA
N

(
c̃A − ρAcA√

1− ρ2A

)
− lim
A→∞

Be−
c̃B

2

2

σ
N

(
cB − ρB c̃B√

1− ρ2B

)
(A.2.11)

− lim
A→∞

Ke−r(T−t)e−
(−cA+σA

√
T−t)2

2

σA
N

(
ρcA − cB + (σB − ρσA)

√
T − t√

1− ρ2

) .
Since 0 ≤ N(x) ≤ 1 for all x, while for A → ∞ we have cA, c̃A → ∞; c̃B → −∞, all terms
in the bracket converge to zero. This is because

Ae−
c̃A

2

2 = e
− 1

2
(lnA+δ1)

2

δ2
+lnA,

(A.2.12)

for constants δ1 ∈ R, δ2 > 0 which do not depend on A, and similar expressions can be
written down for the other three cases. We are thus left only with

lim
A→∞

A (1−N2 (c̃A, cA; ρA)) = lim
A→∞

1−N2 (c̃A, cA; ρA)
1
A

= lim
A→∞

− e−
c̃A

2

2

Aσ
√

2π(T−t)
N

(
cA−ρAc̃A√

1−ρ2A

)
− e−

c2A
2

AσA
√

2π(T−t)
N

(
c̃A−ρAcA√

1−ρ2A

)
− 1
A2

= lim
A→∞

A e−
c̃A

2

2

σ
√

2π (T − t)
N

(
cA − ρAc̃A√

1− ρ2
A

)

+A
e−

c2A
2

σA
√

2π (T − t)
N

(
c̃A − ρAcA√

1− ρ2
A

) = 0,

where in the first step the limit is transformed so that in the second step L’Hôpital’s rule

can be applied, while we once again used (A.2.3). But lim
A→∞

Ae−
c̃A

2

2 = 0 and lim
A→∞

Ae−
c2A
2 = 0,

because of (A.2.12), and this completes the proof.
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A.3 PDE Approach for Pricing a Call-on-max Option

Let r, σA, σB, ρ be given and fix the strike K and time of maturity T. Given the dynam-
ics of the underlying assets (2.3.1), according to standard no arbitrage pricing theory, the
price of a European call on maximum bivariate option OW (At, Bt, K, r, σA, σB, ρ, T − t) ≡
V (t, A,B) can also be found as a solution of the following partial differential equation:

∂V

∂t
= rV − rA∂V

∂A
− rB∂V

∂B
− 1

2
σ2
AA

2∂
2V

∂A2
− ρσAσBAB

∂2V

∂A∂B
− 1

2
σ2
BB

2∂
2V

∂B2
,

with the terminal condition V (T,A,B) = (max(A,B)−K)+. By a suitable change of vari-
ables:

θ = T − t,

x =

(
x1

x2

)
,

x1 =
2ρσA ln(B)− 2σB ln(A) + (σ2

AσB − ρσAσ2
B + 2rρσA − 2rσB) θ

σAσB
√

2 (1− ρ2)
,

x2 =
2 ln(B) + (2r − σ2

B) θ

σB
√

2
,

and
ϕ(θ, x) = erθV (t, A,B),

this PDE can be transformed into the 2D heat equation2

∂ϕ

∂θ
=
∂2ϕ

∂x2
1

+
∂2ϕ

∂x2
2

, (A.3.1)

with initial condition
f(x) ≡ ϕ(0, x) = V (T,A,B).

The solution of the heat equation in R2 is, see for example Haberman (1983):

ϕ(θ, x) =
1

4πθ

ˆ

R2

f(x) exp

(
−|x− y|

2

4θ

)
dy, (A.3.2)

which then yields a solution for our OW call-on-max option price V (t, A,B) = e−rθϕ(θ, x).

2The general form of the heat equation is ∂ϕ
∂t = k∇2ϕ, where k is a constant (i.e. thermal diffusivity) and

∇2 denotes the Laplace operator, which in the Cartesian coordinate system is
∑n
i=1

∂2

∂x2
i
.



Appendix B

Auxiliary Derivations for Chapter 4

B.1 Some Proofs on Demand/Supply

B.1.1 Individual Demand/Supply: Second Order Conditions

In this appendix we present the second order conditions of the problem presented in Section
4.2.1 and show that, using the concavity of the utility function, they are always respected.
The second order conditions are:

∂2E[U(wi,d/s)]
∂∆2

0
≤ 0,

∂2E[U(wi,d/s.)]
∂q2

≤ 0,

∂2E[U(.wi,d/s)]
∂∆2

0

∂2E[U(.wi,d/s)]
∂q2

−
[
∂2E[U(wi,d/s.)]

∂q∂∆0

]2

> 0;

⇔



∑3
i=1 pi (Si −RS0)2 U

′′ (
wi,d/s

)
≤ 0,∑3

i=1 pi
(
Gi −RPd/s

)2
U
′′ (
wi,d/s

)
≤ 0,

{∑3
i=1 pi (Si −RS0)2 U

′′ (
wi,d/s

)}{∑3
i=1 pi

(
Gi −RPd/s

)2
U
′′ (
wi,d/s

)}
−
[
±
∑3

i=1 pi (Si −RS0)
(
Gi −RPd/s

)2
U
′′ (
wi,d/s

)]2

> 0.

The third condition reduces to:

∑∑
i 6=j

pipjU
′′ (
wi,d/s

)
U
′′ (
wj,d/s

) [
(Si −RS0)

(
Gj −RPd/s

)
+
(
Gi −RPd/s

)
(Sj −RS0)

]2 ≥ 0.

As, U
′′ (
wi,d/s

)
≤ 0 (utility function concave in wealth), all three second order conditions

are always satisfied.

125
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B.1.2 Proof of Theorem 4.1

Proof. Let F
(
qd/s,∆, Pd/s

)
and G

(
qd/s,∆, Pd/s

)
denote the first order conditions, for a

positive qd, of the problem that must be solved to find the market demand, i.e.

F
(
qd/s,∆, Pd/s

)
=

3∑
i=1

pi (Si −RS0)U ′
(
wi,d/s

)
,

G
(
qd/s,∆, Pd/s

)
=

3∑
i=1

pi
(
Gi −RPd/s

)
U ′
(
wi,d/s

)
.

Using the implicit function theorem we know

dqd/s
dPd/s

= −
∂F
∂∆

∂G
∂Pd/s

− ∂G
∂∆

∂F
∂Pd/s

∂F
∂∆

∂G
∂qd/s

− ∂F
∂qd/s

∂G
∂∆

= −


±
∑3

i=1 pi (Si −RS0)2 U
′′ (
wi,d/s

)
·
[
−R

∑3
i=1 piU

′ (wi,d/s)−Rqd/s∑3
i=1 pi

(
Gi −RPd/s

)
U
′′ (
wi,d/s

)]
∓
∑3

i=1 pi
(
Gi −RPd/s

)
(Si −RS0)U

′′ (
wi,d/s

)
·Rqd/s

∑3
i=1 pi (Si −RS0)U

′′ (
wi,d/s

)


∂F
∂∆

∂G
∂qd/s

− ∂F
∂qd/s

∂G
∂∆

= ±R

 ∑3
i=1 p

i (Si −RS0)2 U
′′ (
wi,d/s

)∑3
i=1 piU

′ (
wi,d/s

)
+q
{∑3

i=1 pi (Si −RS0)
(
Gi −RPd/s

)
U
′′ (
wi,d/s

)∑3
i=1 pi (Si −RS0)U

′′ (
wi,d/s

)
−
∑3

i=1 pi (Si −RS0)2 U
′′ (
wi,d/s

)∑3
i=1 pi

(
Gi −RPd/s

)
U
′′ (
wi,d/s

)}


∂F
∂∆

∂G
∂qd/s

− ∂F
∂qd/s

∂G
∂∆

,

where

∂F

∂∆

∂G

∂qd/s
− ∂F

∂qd/s

∂G

∂∆
=
∂2E

[
U
(
wi,d/s

)]
∂∆2

0

∂2E
[
U
(
wi,d/s

)]
∂q2

−

[
∂2E

[
U
(
wi,d/s

)]
∂q∂∆0

]2

≥ 0,

by using the last second order conditions from previous appendix. Thus, we have that sign

of
dqd/s
dPd/s

depends on the sign of the numerator which proves the inequality of the theorem

for both demand (decreasing function of demand price) and supply (increasing function of
supply price) cases. �

B.2 Arbitrage Bounds

The upper bound is given by
P u = min

∆0,B0

∆0S0 +B0,

subject to
∆0Si +RB0 ≥ Gi, i = 1, 2, 3.

In the optimum two of the wealth constraints will be binding. Remember that, by as-
sumption, S1 > S2 > S3. Three possibilities must be considered.
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1. The constraints binding are the first and the second. In that case the solution would
be given by

∆0 =
−G1 +G2

S2 − S1

,

B0 = −S1G2 −G1S2

(S2 − S1)R
.

The third constraint will be respected if and only if

G1 (S2 − S3) +G2 (S3 − S1)−G3 (S2 − S1) ≤ 0.

If that is the case the upper bound will be given by

P u =
G2 (S1 −RS0)−G1 (S2 −RS0)

R (S1 − S2)
.

2. The constraints binding are the first and the third. In that case the solution would be
given by

∆0 =
−G3 +G1

S1 − S3

,

B0 =
−S3G1 +G3S1

(S1 − S3)R
.

The second constraint will be respected if and only if

G1 (S2 − S3) +G2 (S3 − S1)−G3 (S2 − S1) ≥ 0.

If that is the case the upper bound will be given by

P u =
G3 (S1 −RS0)−G1 (S3 −RS0)

R (S1 − S3)
.

3. The constraints binding are the second and the third. In that case the solution would
be given by

∆0 =
−G3 +G2

S2 − S3

,

B0 = −S3G2 −G3S2

(S2 − S3)R
.

The second constraint will be respected if and only if

G1 (S2 − S3) +G2 (S3 − S1)−G3 (S2 − S1) ≤ 0.

If that is the case the upper bound will be given by

P u =
G3 (S2 −RS0)−G2 (S3 −RS0)

R (S2 − S3)
.
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Note that if
G1 (S2 − S3) +G2 (S3 − S1)−G3 (S2 − S1) ≥ 0,

the upper bound will be the one described in situation 2. However, if

G1 (S2 − S3) +G2 (S3 − S1)−G3 (S2 − S1) ≤ 0,

there are two possible solutions. The solution described in situation 1 has a higher value
than the one described in situation 3 if

G2 (S1 −RS0)−G1 (S2 −RS0)

R (S1 − S2)
≥ G3 (S2 −RS0)−G2 (S3 −RS0)

R (S2 − S3)

⇔

G1 (S2 − S3) (S2 −RS0) +G2 (S3 − S1) (S2 −RS0)−G3 (S2 − S1) (S2 −RS0) ≥ 0.

Hence, for the vector of parameters π ≡ (S0, S1, S2, S3, G1, G2, G3, R) and using the definitions

G+ = {π : G1 (S2 − S3) +G2 (S3 − S1) +G3 (S1 − S2) ≥ 0} ,
G− = {π : G1 (S2 − S3) +G2 (S3 − S1) +G3 (S1 − S2) ≤ 0} ;

and

H+ = {π : S2 −RS0 ≥ 0} ,

H− = {π : S2 −RS0 ≤ 0} ;

we can write the upper bound

P u =
G3 (S1 −RS0)−G1 (S3 −RS0)

R (S1 − S3)
≡ P1,3

if π ∈ G+,

P u =
G3 (S2 −RS0)−G2 (S3 −RS0)

R (S2 − S3)
≡ P2,3

if π ∈ G− ∩H+, and

P u =
G2 (S1 −RS0)−G1 (S2 −RS0)

R (S1 − S2)
≡ P1,2

if π ∈ G− ∩H−.
The lower bound is given by

P l = max
∆0,B0

∆0S0 +B0,

subject to
∆0Si +RB0 ≤ Gi, i = 1, 2, 3.
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Proceeding in the same way we find out that

P l =
G3 (S1 −RS0)−G1 (S3 −RS0)

R (S1 − S3)
≡ P1,3

if π ∈ G−,
P l =

G3 (S2 −RS0)−G2 (S3 −RS0)

R (S2 − S3)
≡ P2,3

if π ∈ G+ ∩H+, and

P l =
G2 (S1 −RS0)−G1 (S2 −RS0)

R (S1 − S2)
≡ P1,2

if π ∈ G+ ∩H−.
All this gives us in total 4 combinations of lower and upper bounds expressions as pre-

sented in Section 4.2.2.1.

B.3 Reservation and Fair Prices - Proof of Theorem

4.2

Proof. As the utility function is strictly concave in ∆ and q then

3∑
i=1

piU [∆0 (Si −RS0) + q (Gi −RP ) +Ry]

≤ U

[
∆0

3∑
i=1

pi (Si −RS0) + q
3∑
i=1

pi (Gi −RP ) +Ry

]
.

If P = 1
R

∑3
i=1 piGi and S0 = 1

R

∑3
i=1 piSi we have

3∑
i=1

U [∆0 (Si −RS0) + q (Gi −RP ) +Ry] ≤ U [Ry] .

Hence, in order to maximise the expected utility, the best strategy is ∆∗ = q∗ = 0 leading to
the maximal expected utility U [Ry] .

In the remainder of this proof we shall concentrate on the case where P = 1
R

∑3
i=1 piGi

and S0 6= 1
R

∑3
i=1 piSi. Regarding the sign of the optimal ∆0, notice that

3∑
i=1

piU [∆0 (Si −RS0) + q (Gi −RP ) +Ry]

≤ U

[
∆0

3∑
i=1

pi (Si −RS0) +Ry

]
.

In order to guarantee a level of expected utility above U [Ry] , which is the utility with ∆ =
q = 0, we must assure that ∆0 > 0 if

∑3
i=1 (Si −RS0) > 0 and ∆0 < 0 if

∑3
i=1 (Si −RS0) < 0.



130 APPENDIX B. AUXILIARY DERIVATIONS FOR CHAPTER 4

Regarding the sign of the optimal q, notice that

P = P̄ ⇔ p2 (G2 −RP ) = −p1 (G1 −RP )− p3 (G3 −RP ) .

implying that the first order condition (second condition from Proposition 4.1)

3∑
i=1

pi (Gi −RP )U ′ (wi) = 0,

may be rewritten as

p1 (G1 −RP ) [U ′ (w1)− U ′ (w2)] = −p3 (G3 −RP ) [U ′ (w3)− U ′ (w2)] , (B.3.1)

with wi = ∆0 (Si −RS0) + Ry + q (Gi −RP ) , i = 1, 2 and 3. Using the assumption about
the order of the payoffs and the fairness of P,

RP ∈ {min (G1, G3) ,max (G1, G3)}

⇔ (G1 −RP )

(G3 −RP )
< 0

⇒ [U ′ (w1)− U ′ (w2)]

[U ′ (w3)− U ′ (w2)]
< 0,

which implies that
w1 > w2 and w3 > w2, (Case 1)

or
w1 < w2 and w3 < w2. (Case 2)

Note that wi = ∆0 (Si −RS0) +Ry + q (Gi −RP ), implying that

wi > wj ⇔ ∆0 (Sj − Si) < q (Gi −Gj) . (B.3.2)

We now consider the four possible situations, analysing in each one the two cases mentioned
above.

1. We first consider the case G1 ≥ G2 ≥ G3 and
∑3

i=1 pi (Si −RS0) > 0.

(a) If G1 > G2 > G3, in Case 1 we must have

w3 > w2 ⇔ ∆0 (S2 − S3) < q (G3 −G2) .

As ∆ > 0, q must be strictly negative. The same procedure applies if Case 2 is
considered, leading to

w1 < w2 ⇔ ∆0 (S2 − S1) > q (G1 −G2) , (B.3.3)

and a strictly negative value for q.

(b) G1 > G2 = G3 is incompatible with Case 1. However, Case 2 applies.

(c) G1 = G2 > G3 is incompatible with Case 2, but Case 1 applies.
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2. We next consider the case G1 ≤ G2 ≤ G3 and
∑3

i=1 pi (Si −RS0) > 0.

(a) If G1 < G2 < G3, in Case 1 we must assure ∆0 (S2 − S1) > q (G1 −G2). As
∆ > 0, q must be strictly positive. A similar reasoning applies in Case 2. Using
the relation in (B.3.3), ∆ > 0⇒ q > 0.

(b) G1 < G2 = G3 is incompatible with Case 1. However, Case 2 applies.

(c) G1 = G2 < G3 is incompatible with Case 2, but Case 1 applies.

3. We now consider the case G1 ≥ G2 ≥ G3 and
∑3

i=1 pi (Si −RS0) < 0.

(a) If G1 > G2 > G3 in Case 1 we must have

w1 > w2 ⇔ ∆0 (S2 − S1) < q (G1 −G2) ,

and ∆ < 0⇒ q > 0. A similar procedure applies in Case 2, where we take

w3 < w2 ⇔ ∆0 (S2 − S3) > q (G3 −G2) ,

and ∆ < 0⇒ q > 0.

(b) G1 > G2 = G3 is incompatible with Case 1. However, Case 2 applies.

(c) G1 = G2 > G3 is incompatible with Case 2, but Case 1 applies.

4. We finally consider the case G1 ≤ G2 ≤ G3 and
∑3

i=1 pi (Si −RS0) < 0.

(a) If G1 > G2 > G3 in Case 1 we must have ∆0 (S2 − S1) < q (G1 −G2). As ∆ < 0,
q must be strictly negative. A similar reasoning applies in Case 2. We must assure
that ∆0 (S2 − S3) > q (G3 −G2) . As ∆ < 0, q must be strictly negative.

(b) G1 < G2 = G3 is incompatible with Case 1. However, Case 2 applies.

(c) G1 = G2 < G3 is incompatible with Case 2, but Case 1 applies. �

B.4 Illustrations

B.4.1 Explicit Solution for the Individual Demand and Supply
Functions

A solution for the demand and supply of the derivative for a CARA and a CRRA utility
functions can be explicitly obtained. The procedure is the following.

We start from the equation (4.2.9) derived in Section 4.2.2.1. Thus:

µ1 =
RP (S2 − S3) +G3 (RS0 − S2)−G2 (RS0 − S3)

G1 (S2 − S3) +G2 (S3 − S1) +G3 (S1 − S2)

1

p1

,

µ2 =
RP (S3 − S1) +G1 (RS0 − S3)−G3 (RS0 − S1)

G1 (S2 − S3) +G2 (S3 − S1) +G3 (S1 − S2)

1

p2

,

µ3 =
RP (S1 − S2) +G2 (RS0 − S1)−G1 (RS0 − S2)

G1 (S2 − S3) +G2 (S3 − S1) +G3 (S1 − S2)

1

p3

;
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and denote by [U ′ (.)]−1 the inverse function of the marginal utility. Hence the system (4.2.9)
becomes:

U ′ (wi) = Aµi ⇒ wi = [U ′]
−1

(Aµi) .

Moreover, as wi = ∆0 (Si −RS0) +Ry + q (Gi −RP ) the following system is obtained

∆0 (S1 −RS0) + q (G1 −RP )− [U ′]−1 (Aµi) = −Ry,
∆0 (S2 −RS0) + q (G2 −RP )− [U ′]−1 (Aµi) = −Ry,
∆0 (S3 −RS0) + q (G3 −RP )− [U ′]−1 (Aµi) = −Ry.

(B.4.1)

The system presented above is a system of three equations and three variables (q,∆0, A),
with a unique solution for the CARA and CRRA utility functions. First, we are going to
consider the CARA utility functions and then the CRRA utility functions.

If a CARA utility is considered then U ′ (wi) = δe−δwi . Therefore,

U ′ (wi) = Aµi ⇒ wi = [U ′]
−1

(Aµi) = −1

δ
ln

(
Aµi
δ

)
.

Hence, system (B.4.1) can be written as

∆0 (S1 −RS0) + q (G1 −RP ) + 1
δ

ln
(
Aµ1
δ

)
= −Ry,

∆0 (S2 −RS0) + q (G2 −RP ) + 1
δ

ln
(
Aµ2
δ

)
= −Ry,

∆0 (S3 −RS0) + q (G3 −RP ) + 1
δ

ln
(
Aµ3
δ

)
= −Ry.

Solving for q we obtain the individual demand/supply for the derivative, i.e.,

q = −1

δ

(S2 − S3) lnµ1 + (S3 − S1) lnµ2 + (S1 − S2) lnµ3

G1 (S2 − S3) +G2 (S3 − S1) +G3 (S1 − S2)
.

If the CRRA utility is considered then U ′ (wi) = (wi)
−γ . Therefore,

U ′ (wi) = Aµi ⇒ wi = [U ′]
−1

(Aµi)
−1 = (Aµi)

− 1
γ .

Hence, system (B.4.1) becomes

∆0 (S1 −RS0) + q (G1 −RP )− (Aµ1)−
1
γ = −Ry,

∆0 (S2 −RS0) + q (G2 −RP )− (Aµ2)−
1
γ = −Ry,

∆0 (S3 −RS0) + q (G3 −RP )− (Aµ3)−
1
γ = −Ry.

Solving for q gives

q = Ry
µ
− 1
γ

1 (S2 − S3) + µ
− 1
γ

2 (S3 − S1) + µ
− 1
γ

3 (S1 − S2) µ
− 1
γ

1 [(S3 −RS0) (G2 −RP )− (S2 −RS0) (G3 −RP )]

+µ
− 1
γ

2 [(S1 −RS0) (G3 −RP )− (S3 −RS0) (G1 −RP )]

+µ
− 1
γ

3 [(S2 −RS0) (G1 −RP )− (S1 −RS0) (G2 −RP )]


.
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B.4.2 Properties of the Individual Demand and Supply

B.4.2.1 CARA Utility Function

Properties 1 and 2

For a CARA utility function the first order conditions (4.2.3) are given by:
∑3

i=1 pi (Si −RS0) e−δ[∆0,d/sSi+qd/sGi] = 0,

∑3
i=1 pi

(
Gi −RPd/s

)
e−δ[∆0,d/sSi+qd/sGi] ≤ 0.

In order to prove that ∂qd
∂Pd

< 0 notice that, as U
′′ (
wi,d/s

)
= −δU ′

(
wi,d/s

)
, we have

3∑
i=1

pi (Si −RS0)U
′′ (
wi,d/s

)
=

3∑
i=1

pi (Gi −RPd)U
′′ (
wi,d/s

)
= 0.

Using Proposition 4.1 whose proof is given in B.1.2 we have the following for the demand
(Property 1) and the supply (Property 2) of the derivative:

∂qd
∂Pd

=
R
∑3

i=1 pi (Si −RS0)2 U
′′

(wi,d) ·
∑3

i=1 piU
′
(wi,d)

∂F
∂∆

∂G
∂qd
− ∂F

∂qd

∂G
∂∆

< 0,

∂qs
∂Ps

= −R
∑3

i=1 pi (Si −RS0)2 U
′′

(wi,s) ·
∑3

i=1 piU
′
(wi,s)

∂F
∂∆

∂G
∂qd
− ∂F

∂qd

∂G
∂∆

> 0.

Property 3

In order to prove that dφd(Pd)
dδ

≤ 0 notice that the first and second conditions of the optimi-
sation problem can be written in terms of Λ = δ∆ and Γ = δq, eliminating δ and q from the
first and second order conditions. Hence, we can only find the optimal values of Λ and Γ (Λ∗

and Γ∗). The optimal values of the number of shares bought/sold and the number of options
bought/sold is given by

∆ = Λ∗

δ
,

q = Γ∗

δ
.

Property 4

This property follows from the fact that δq is constant.

Property 5

Moreover, note that the first and second conditions are independent of y. Hence, the optimal
values will also be independent of y.
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B.4.2.2 CRRA Utility Function

For a CRRA utility function the first order conditions presented in equations (4.2.3) can be
written as

∑3
i=1 pi (Si −RS0)

[
∆0,d/s (Si −RS0) +Ry + qd/s (Gi −RPd)

]−γ
= 0,∑3

i=1 pi (Gi −RPd)
[
∆0,d/s (Si −RS0) +Ry + qd/s (Gi −RPd)

]−γ
= 0.

Property 1 and 2

See Section 4.2.3. Numerically shown, graph in the Figure 4.2.

Property 3

The property follows straightforwardly using the optimal quantity defined in equation (4.2.11).

Property 4

Let the function υ (P, γ) be defined as1

υ (P ) = µ
− 1
γ

1 (S3 − S2) + µ
− 1
γ

2 (S1 − S3) + µ
− 1
γ

3 (S2 − S1) .

Using the optimal quantity, defined in equation (4.2.11), the reservation price is the price P̂
such that

υ
(
P̂ , γ

)
= 0. (B.4.2)

Using the implicit function theorem we have

dP̂

dγ
= −

∂υ(P̂ ,γ)
∂γ

υ(P̂ ,γ)
∂P̂

= −G1 (S2 − S3) +G2 (S3 − S1)−G3 (S2 − S1)

γ

=
ln (µ1)µ

− 1
γ

1 (S3 − S2) + ln (µ2)µ
− 1
γ

2 (S1 − S3) + ln (µ3)µ
− 1
γ

3 (S2 − S1)

µ
− 1
γ
−1

1 (S3 − S2)2 + µ
− 1
γ
−1

2 (S1 − S3)2 + µ
− 1
γ
−1

3 (S2 − S1)2
.

As the denominator of the second fraction is always positive we have to check the sign of the

numerator in order to define the sign of dP̂
dγ
.

Using equation (B.4.2) we can write µ
− 1
γ

2 as an weighted average of µ
− 1
γ

1 and µ
− 1
γ

3 , i.e.

µ
− 1
γ

2 =
S2 − S3

S1 − S3

µ
− 1
γ

1 +
S3 − S1

S1 − S3

µ
− 1
γ

3 .

1Note that each µi is a function of P.
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Moreover, as p1µ1 + p2µ2 + p3µ3 = 1, we must have one of the following situations:

µ
− 1
γ

1 > µ
− 1
γ

2 > µ
− 1
γ

3 ⇔ µ1 < µ2 < µ3 ⇔ µ1 < 1, µ3 > 1, (B.4.3)

µ
− 1
γ

1 < µ
− 1
γ

2 < µ
− 1
γ

3 ⇔ µ1 > µ2 > µ3 ⇔ µ1 > 1, µ3 < 1. (B.4.4)

Additionally, as ln (.) is a concave function we have

ln (µ2) ≥ ln (µ1)
S2 − S3

S1 − S3

+ ln (µ3)
S2 − S1

S1 − S3

.

Hence,

ln (µ1)µ
− 1
γ

1 (S3 − S2) + ln (µ2)µ
− 1
γ

2 (S1 − S3) + ln (µ3)µ
− 1
γ

3 (S2 − S1)

≥ ln (µ1)µ
− 1
γ

1 (S3 − S2) +

[
ln (µ1)

S2 − S3

S1 − S3

+ ln (µ3)
S1 − S2

S1 − S3

]
µ
− 1
γ

2

+ ln (µ3)µ
− 1
γ

3 (S2 − S1)

= ln (µ1) (S2 − S3)

[
µ
− 1
γ

2 − µ
− 1
γ

1

]
+ ln (µ3) (S1 − S2)

[
µ
− 1
γ

2 − µ
− 1
γ

3

]
.

If case given by (B.4.3) is considered

ln (µ1)︸ ︷︷ ︸ (S2 − S3)︸ ︷︷ ︸
[
µ
− 1
γ

2 − µ
− 1
γ

1

]
︸ ︷︷ ︸ + ln (µ3)︸ ︷︷ ︸ (S1 − S2)︸ ︷︷ ︸

[
µ
− 1
γ

2 − µ
− 1
γ

3

]
︸ ︷︷ ︸ > 0.

< 0 > 0 < 0 > 0 > 0 > 0

If case given by (B.4.4) is considered

ln (µ1)︸ ︷︷ ︸ (S2 − S3)︸ ︷︷ ︸
[
µ
− 1
γ

2 − µ
− 1
γ

1

]
︸ ︷︷ ︸ + ln (µ3)︸ ︷︷ ︸ (S1 − S2)︸ ︷︷ ︸

[
µ
− 1
γ

2 − µ
− 1
γ

3

]
︸ ︷︷ ︸ > 0,

> 0 > 0 > 0 < 0 > 0 < 0

resulting in

ln (µ1)µ
− 1
γ

1 (S3 − S2) + ln (µ2)µ
− 1
γ

2 (S1 − S3) + ln (µ3)µ
− 1
γ

3 (S2 − S1) ≥ 0.

It follows that

sign

(
dP̂

dγ

)
= −sign [G1 (S2 − S3) +G2 (S3 − S1)−G3 (S2 − S1)] .

B.4.2.3 CARA Utility Function Intermediate Results

For the same CARA example presented in Subsection 4.2.3.3 we hereby show two more
quantities wi, i = 1, 2, 3:
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Figure B.1: The wealth attained under different states of nature for different derivative prices

and U(wi), i = 1, 2, 3:

Figure B.2: The utility attained under different states of nature for different derivative prices
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under different states of nature (with probabilities of occuring pi, i = 1, 2, 3), which lead to
the final expected utility (von Neumann-Morgenstern) presented in Figure 4.3, bottom right
panel.

B.5 Monopolistic Market Maker

B.5.1 Conditions on Assumption 2

A function f : A→ R is concave if and only if for every x ∈ A, the Hessian matrix D2f (x)
is negative semidefinite. For the function considered, the Hessian matrix is −

d2[QBPs(QB)]

dQ2
B

0 0

0 d2[QAPd(QA)]

dQ2
A

0

0 0 0

 .
Hence, this matrix negative semidefinite if and only if QBPs (QB) is a convex function in QB

and QAPd (QA) is a concave function in QA, i.e.

d2 [QBPs (QB)]

dQ2
B

= 2
dPs (QB)

dQB

+
∂2Ps (QB)

∂Q2
B

≥ 0,

d2 [QAPd (QA)]

dQ2
A

= 2
dPd (QA)

dQA

+
∂2Pd (QA)

∂Q2
A

≤ 0.

B.5.2 Proof of Proposition 4.2

B.5.2.1 Convexity of the Constraint Set

In order to check for the convexity of the constraint set consider two possible elements of
the constraint set. Let them be (Q1

B, Q
1
A,∆

1) and (Q2
B, Q

2
A,∆

2) . Then, for each constraint
i = 1, 2 and 3, we have

−Q1
B

(
Gi −RPs

(
Q1
B

))
+Q1

A

(
Gi −RPd

(
Q1
A

))
−∆1 (Si −RS0)−Ry ≤ 0 (B.5.1)

and

−Q2
B

(
Gi −RPs

(
Q2
B

))
+Q2

A

(
Gi −RPd

(
Q2
A

))
−∆2 (Si −RS0)−Ry ≤ 0. (B.5.2)

If the element(
Q3
B, Q

3
A,∆

3
)

=
(
λQ1

B + (1− λ)Q2
B, λQ

1
A + (1− λ)Q2

A, λ∆1 + (1− λ) ∆2
)

respects the three constraints then the constraint set is convex. In order to check for that
characteristic of the constraint set, multiply equation (B.5.1) by λ and equation (B.5.2) by
1− λ. The following equation is obtained

−Q3
BGi +Q3

AGi −∆3 (Si −RS0)−Ry+
−R (λQ1

APd (Q1
A) + (1− λ)Q2

APd (Q2
A)) +

+R (λQ1
BPs (Q1

B) + (1− λ)Q2
BPs (Q2

B)) ≤ 0.
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As QAPd (QA) is a concave function

R
(
λQ1

APd
(
Q1
A

)
+ (1− λ)Q1

APd
(
Q1
A

))
≤ RQ3

APd
(
Q3
A

)
,

−R
(
λQ1

APd
(
Q1
A

)
+ (1− λ)Q1

APd
(
Q1
A

))
≥ −RQ3

APd
(
Q3
A

)
.

Moreover, as QBPs (QB) is a convex function

R
[
λQ1

BPs
(
Q1
B

)
+ (1− λ)Q2

BPs
(
Q2
B

)]
≥ RQ3

BPs
(
Q3
B

)
,

we have

−Q3
B

[
Gi −RPs

(
Q3
B

)]
+Q3

A

[
Gi −RPd

(
Q2
A

)]
−∆3 (Si −RS0)−Ry ≤ 0.

B.5.2.2 Existence of the Bid-Ask Spread

In what follows the proof of the second part of Proposition 4.2, that concerns the existence
of a bid-ask spread if there is an equilibrium with strictly positive quantities {Q∗B, Q∗A}, is
presented.

Proof. First, the optimal condition expressed in equality (4.3.5) is considered. Then,
the optimal condition expressed in equality (4.3.6) is also considered.

In the case presented in equations (4.3.5) the proof is done by contradiction. Suppose that
Pd (Q∗A) ≤ Ps (Q∗B) . Three cases must be considered concerning the relation between Pd (Q∗A) ,

Q∗A
dPd(Q∗A)
dQA

, Ps (Q∗B) , Q∗B
dPs(Q∗B)
dQB

and Ḡk. First, consider that Ḡk > Ps (Q∗B) + Q∗B
dPs(Q∗B)
dQB

.

Using equation (4.3.5), we obtain

Ḡk − Pd (Q∗B)−Q∗A
dPd (Q∗A)

dQA

≥ Ḡk − Ps (Q∗B)−Q∗B
dPs (Q∗B)

dQB

> 0 ⇔

3∑
i=1

piḠi − Pd (Q∗A)−Q∗A
dPd (Q∗A)

dQA

≤
3∑
i=1

piḠi − Ps (Q∗B)−Q∗B
dPs (Q∗B)

dQB

⇔

Ps (Q∗B)− Pd (Q∗A) ≤ Q∗A
dPd (Q∗A)

dQA

−Q∗B
dPs (Q∗B)

dQB

.

As, by Assumption 1,

Q∗A
dPd (Q∗A)

dQA

−Q∗B
dPs (Q∗B)

dQB

< 0

then

Ps (Q∗B)− Pd (Q∗A) < 0,

contradicting Pd (Q∗A) ≤ Ps (Q∗B) .

In the second case, consider that Pd (Q∗A) < Ps (Q∗B) and Pd (Q∗A) + Q∗A
dPd(Q∗A)
dQA

< Ḡk <
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Ps (Q∗B) +Q∗B
dPs(Q∗B)
dQB

. From equation (4.3.5) we obtain

Ḡk − Ps (Q∗B)Q∗B
dPs (Q∗B)

dQB

≤ Ḡk − Pd (Q∗A)−Q∗A
dPd (Q∗A)

dQA

⇔ (B.5.3)

3∑
i=1

piḠi − Ps (Q∗B)−Q∗B
dPs (Q∗B)

dQB

≥
3∑
i=1

piḠi − Pd (Q∗A)−Q∗A
dPd (Q∗A)

dQA

⇔

Pd (Q∗A)− Ps (Q∗B) ≥ Q∗B
dPs (Q∗B)

dQB

−Q∗A
dPd (Q∗A)

dQA

.

As, by Assumption 1,

Q∗B
dPs (Q∗B)

dQB

−Q∗A
dPd (Q∗A)

dQA

> 0

then
Pd (Q∗A)− Ps (Q∗B) > 0,

contradicting Pd (Q∗A) ≤ Ps (Q∗B) .

At last, consider that Ḡk < Pd (Q∗A) + Q∗A
dPd(Q∗A)
dQA

. In this case, from equation (4.3.5)

we obtain the same relation that is displayed in equation (B.5.3), for the case Pd (Q∗A) <
Ḡk < Ps (Q∗B) . Therefore, by contraction we prove that for the tangency solution Pd (Q∗A) >
Ps (Q∗B) .

Now, consider the optimal conditions expressed in equations (4.3.6). Subtracting the
second equation from the first one we have

(1− λk − λj) [Ψ (Q∗A)−Ψ (Q∗B)] = 0.

As 1 − λk − λj > 0, we must assure Ψ (Q∗A) − Ψ (Q∗B) = 0. Then, using Assumption 1, and
noting that Ψ (Q∗A)−Ψ (Q∗B) = 0 is equivalent to

Pd (Q∗A)− Ps (Q∗B) = −Q∗A
dPd (Q∗A)

dQA

+Q∗B
dPs (Q∗B)

dQB

,

we have Pd (Q∗A)− Ps (Q∗B) > 0. �

B.5.3 Proof of Corollary 4.1

Proof. In order to study the behaviour of the function Φk (Q) we take the derivative

dΦk (Q)

dQ
=

d2[QP (Q)]
dQ2

[∑3
i=1 piḠi − Ḡk

][
Ḡk − d[QP (Q)]

dQ

]2 .

The sign of d2[QBPs(QB)]

dQ2
B

and d2[QAPd(QA)]

dQ2
A

is well defined by Assumption 2. Therefore, we

identify the regions where Φk (QB) is decreasing in QB, and Φk (QA) is increasing in QA,∑3
i=1 piḠi − Ḡk ≥ 0

∑3
i=1 piḠi − Ḡk ≤ 0

dΦk(QB)
dQB

≥ 0 ≤ 0
dΦk(QA)
dQA

≤ 0 ≥ 0
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Equation (4.3.5) reads Φk (Q∗A) = Φk (Q∗B) = σk. Now consider the case
∑3

i=1 piḠi− Ḡk ≥
0. In that region Φk (Q∗A) = Φk (Q∗B) ⇒ Φk (QA = 0) ≥ Φk (QB = 0) , and the full equation
(4.3.5) is satisfied iff

Φk (QA = 0) ≥ σk ≥ Φk (QB = 0) .

As Φk (Q = 0) is an increasing function on P, then P̂d ≥ P̂s.

In what follows we present the relation between P̂d, P̂s,
∑3

i=1 piḠi and Ḡk at the optimum
of the monopolistic market maker.

Suppose that P̂d and P̂s belong to the arbitrage-free range of variation for the value of
a European derivative. It is not possible to have both P̂d and P̂s above

∑3
i=1 piḠi or below

Ḡk, otherwise Φk (QA = 0) > 0 and Φk (QB = 0) > 0, which is incompatible with σk < 0.
Moreover, it is not possible to have P̂d >

∑3
i=1 piḠi and Ḡk < P̂s <

∑3
i=1 piḠi, because from

Theorem 4.2, Remark 1, we know that
∑3

i=1 piḠi /∈
(
P̂s, P̂d

)
. Finally, the situation where

P̂s < Ḡk is also not possible because in that case Φk (QB = 0) > 0, contradicting the fact
that σk ≥ Φk (QB = 0) and σk ≤ 0. Hence, the case that remains is exactly what is given by
equation (4.3.10). Proceeding in the same way for the case

∑3
i=1 piḠi − Ḡk ≤ 0 we find out

that (4.3.9) holds. �

B.5.4 Proof of Corollary 4.2

Proof. From both equilibrium characterisations within Proposition 4.2, i.e. (4.3.5) and
(4.3.6) we can conclude that Ψ (Q∗A) = cA, Ψ (Q∗B) = cB where cA > 0 and cB > 0 are
positive constants (quantities that depend only on the parameters of the model and are not
functions of demand and supply, nor of the prices) and Ψ is a function defined as before in
(4.3.4). From this definition and after applying the chain rule we have Pd (Q∗A) +Q∗A

dPd(Q∗A)
dQA

= cA > 0,

Ps (Q∗B) +Q∗B
dPs(Q∗B)
dQB

= cB > 0;
=⇒


dPd(Q∗A)
dQA

> 0,
dPs(Q∗B)
dQB

> 0.
(B.5.4)

By using aggregate demand/supply formula (4.2.7) and its differentiation given in (4.2.12),
the required quantities become:

dPd (Q∗A)

dδ
=

dPd(Q∗A)
dQA

dQA
dδ

=
dPd(Q∗A)
dQA

n
(
dqd
dδ

)
≤ 0,

dPd (Q∗B)

dδ
=

dPs(Q∗B)
dQB

dQB
dδ

=
dPs(Q∗B)
dQB

n
(
−dqs

dδ

)
≥ 0.

The final inequalities in the last step above follow from the signs of the quantities just
given in (B.5.4) and the CARA utility Property 3, derived in the Subsection 4.2.3.2, which
completes the proof. �

For the case of CRRA utility similar property with respect to parameter γ can only be
shown numerically.
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B.6 Competition Between Market Makers

B.6.1 Proof of Theorem 4.3

Proof.

Case III
In this case we must consider two possible situations:
Situation 1:∣∣∣∣∣∣∣

−∂Qj,A(Pj,d,P ∗−j,d)
∂Pj,d

[∑3
i=1 piḠi − Pj,d

]
+Qj,A

(
Pj,d, P

∗
−j,d
)

−∂Qj,A(Pj,d,P ∗−j,d)
∂Pj,d

[
Ḡk − Pj,d

]
+Qj,A

(
Pj,d, P ∗−j,d

)
∣∣∣∣∣∣∣ <

∣∣∣∣∣
∑3

i=1 piS̄i − S0

S̄k − S0

∣∣∣∣∣ .
Deviation: Increase Pj,d and decrease ∆0 if S̄k − S0 > 0, or increase ∆0 if S̄k − S0 < 0.

Situation 2:∣∣∣∣∣∣∣
−∂Qj,A(Pj,d,P ∗−j,d)

∂Pj,d

[∑3
i=1 piḠi − Pj,d

]
+Qj,A

(
Pj,d, P

∗
−j,d
)

−∂Qj,A(Pj,d,P ∗−j,d)
∂Pj,d

[
Ḡk − Pj,d

]
+Qj,A

(
Pj,d, P ∗−j,d

)
∣∣∣∣∣∣∣ ≥

∣∣∣∣∣
∑3

i=1 piS̄i − S0

S̄k − S0

∣∣∣∣∣ .
As ∣∣∣∣∣

∑3
i=1 piḠi − Pj,d

Ḡk − (Pj,d − ε)

∣∣∣∣∣ >
∣∣∣∣∣∣∣
−∂Qj,A(Pj,d,P ∗−j,d)

∂Pj,d

[∑3
i=1 piḠi − Pj,d

]
+Qj,A

(
Pj,d, P

∗
−j,d
)

−∂Qj,A(Pj,d,P ∗−j,d)
∂Pj,d

[
Ḡk − Pj,d

]
+Qj,A

(
Pj,d, P ∗−j,d

)
∣∣∣∣∣∣∣ ,

we have ∣∣∣∣∣
∑3

i=1 piḠi − Pj,d
Ḡk − Pj,d

∣∣∣∣∣ >
∣∣∣∣∣
∑3

i=1 piS̄i − S0

S̄k − S0

∣∣∣∣∣ .
Deviation: Decrease Pj,d → increase Q∗j,A and increase ∆0 if S̄k − S0 > 0, or decrease ∆0 if
S̄k − S0 < 0.

Case IV
Notice that the impact of slightly decrease the price Pj,s in the expected wealth is

−

{
∂Qj,B

(
Pj,s, P

∗
−j,s
)

∂Pj,s

[∑3

i=1
piḠi − Pj,s

]
−Qj,B

(
Pj,s, P

∗
−j,s
)}

> 0.

Moreover, the impact on the constraint is

−

{
∂Qj,B

(
Pj,s, P

∗
−j,s
)

∂Pj,s

[
Ḡk − Pj,s

]
−Qj,B

(
Pj,s, P

∗
−j,s
)}

< 0.
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Moreover, ∑3

i=1
piḠi − Pj,s ≤ 0 and Ḡk − Pj,s ≥ 0.

Proceeding in an analogous way as in case III we can find a profitable deviation changing
Pj,s and ∆j.

Case XI
In this case two possibilities must be considered.
Situation 1:∣∣∣∣∣∣∣

−∂Qj,A(Pj,d,P ∗−j,d)
∂Pj,d

[∑3
i=1 piḠi − Pj,d

]
+Qj,A

(
Pj,d, P

∗
−j,d
)

−∂Qj,A(Pj,d,P ∗−j,d)
∂Pj,d

[
Ḡk − Pj,d

]
+Qj,A

(
Pj,d, P ∗−j,d

)
∣∣∣∣∣∣∣ >

∣∣∣∣∣
∑3

i=1 piS̄i − S0

S̄k − S0

∣∣∣∣∣ .
Deviation: Increase P ∗j,d and increase ∆0 if S̄k − S0 > 0, or decrease ∆0 if S̄k − S0 < 0.

Situation 2:∣∣∣∣∣∣∣
−∂Qj,A(Pj,d,P ∗−j,d)

∂Pj,d

[∑3
i=1 piḠi − Pj,d

]
+Qj,A

(
Pj,d, P

∗
−j,d
)

−∂Qj,A(Pj,d,P ∗−j,d)
∂Pj,d

[
Ḡk − Pj,d

]
+Qj,A

(
Pj,d, P ∗−j,d

)
∣∣∣∣∣∣∣ ≤

∣∣∣∣∣
∑3

i=1 piS̄i − S0

S̄k − S0

∣∣∣∣∣ .
Note that

−
∂Qj,A

(
Pj,d, P

∗
−j,d
)

∂Pj,d

[
Ḡk − Pj,d

]
+Qj,A

(
Pj,d, P

∗
−j,d
)
< 0⇒ Ḡk − Pj,d < 0,

as ∑3

i=1
piḠi − P ∗j,d > 0.

In this case we can check that∣∣∣∣∣−dQj,A

[∑3
i=1 piḠi − Pj,d

]
−dQj,A

[
Ḡk − Pj,d

] ∣∣∣∣∣ <
∣∣∣∣∣∣∣
−∂Qj,A(Pj,d,P ∗−j,d)

∂Pj,d

[∑3
i=1 piḠi − Pj,d

]
+Qj,A

(
Pj,d, P

∗
−j,d
)

−∂Qj,A(Pj,d,P ∗−j,d)
∂Pj,d

[
Ḡk − Pj,d

]
+Qj,A

(
Pj,d, P ∗−j,d

)
∣∣∣∣∣∣∣ ,

hence, as ∣∣∣∣∣−dQj,A

[∑3
i=1 piḠi − Pj,d

]
−dQj,A

[
Ḡk − Pj,d

] ∣∣∣∣∣ <
∣∣∣∣∣
∑3

i=1 piS̄i − S0

S̄k − S0

∣∣∣∣∣ ,
we have the following deviation.

Deviation: Decrease Pj,d → increase Q∗j,A and decrease ∆0 if S̄k − S0 > 0, or increase ∆0

if S̄k − S0 < 0.

Case XII
In this case note that as

−
∂Qj,A

(
Pj,d, P

∗
−j,d
)

∂Pj,d

[
Ḡk − (Pj,d − ε)

]
+Qj,A

(
Pj,d, P

∗
−j,d
)
< 0,
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case XI applies.

Now, consider the case when two constraints are binding. Let them be constraint m and
n. If an agent decides to increase Ps or decrease Pd, the positive alteration in quantities must
be such that

dQj,B

(
Ḡm − (Pj,s + ε)

)
− dQj,A

(
Ḡm − (Pj,d − ε)

)
≥ 0,

dQj,B

(
Ḡn − (Pj,s + ε)

)
− dQj,A

(
Ḡn − (Pj,d − ε)

)
≥ 0.

The alteration in the utility is

dQj,B

(∑3

i=1
piḠi − (Pj,s + ε)

)
− dQj,A

(∑3

i=1
piḠi − (Pj,d − ε)

)
> 0,

and it is positive or equal to zero if

dQj,B
dQj,A

>
∑3
i=1 piḠi−(Pj,d−ε)∑3
i=1 piḠi−(Pj,s+ε)

, Pj,d ≤
∑3

i=1 piḠi;

∀Qj,B, ∀Qj,A, Pj,s <
∑3

i=1 piḠi < Pj,d;

dQj,B
dQj,A

<
∑3
i=1 piḠi−(Pj,d−ε)∑3
i=1 piḠi−(Pj,s+ε)

,
∑3

i=1 piḠi < Pj,s.

The constraints will be respected if

dQj,B

(
Ḡk − (Pj,s + ε)

)
− dQj,A

(
Ḡk − (Pj,d − ε)

)
> 0;

dQj,B
dQj,A

>
Ḡk−(Pj,d−ε)
Ḡk−(Pj,s+ε)

, Pj,d ≤ Ḡk;

∀Qj,B, ∀Qj,A, Pj,s < Ḡk < Pj,d;

dQj,B
dQj,A

<
Ḡk−(Pj,d−ε)
Ḡk−(Pj,s+ε)

, Ḡk < Pj,s.

Now, for each case of the two constraints binding. Let them be denoted by m and n. All the
possibilities concerning the relation between Pd, Ps, Ḡn and Ḡm, are presented (Cases I - VI)
in Figure B.1, as well as profitable deviation for each case.

. < Ps Ps < . < Pd Pd < .
Case I Ḡn, Ḡm

Case II Ḡn Ḡm

Case III Ḡn Ḡm

Case IV Ḡn, Ḡm

Case V Ḡn Ḡm

Case VI Ḡn, Ḡm

Table B.1: All possible cases when two constraints are binding.
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Case I
In order to have the wealth constraints respected we must have

dQj,B

dQj,A

> max

{
Ḡn − (Pj,d − ε)
Ḡn − (Pj,s + ε)

,
Ḡm − (Pj,d − ε)
Ḡm − (Pj,s + ε)

}
.

Situation A:

dQj,B

dQj,A

> max

{
Ḡn − (Pj,d − ε)
Ḡn − (Pj,s + ε)

,
Ḡm − (Pj,d − ε)
Ḡm − (Pj,s + ε)

,

∑3
i=1 piḠi − (Pj,d − ε)∑3
i=1 piḠi − (Pj,s + ε)

}
.

Situation B:
dQj,B

dQj,A

> max

{
Ḡn − (Pj,d − ε)
Ḡn − (Pj,s + ε)

,
Ḡm − (Pj,d − ε)
Ḡm − (Pj,s + ε)

}
.

Situation C:

max

{
Ḡn − (Pj,d − ε)
Ḡn − (Pj,s + ε)

,
Ḡm − (Pj,d − ε)
Ḡm − (Pj,s + ε)

}
<
dQj,B

dQj,A

<

∑3
i=1 piḠi − (Pj,d − ε)∑3
i=1 piḠi − (Pj,s + ε)

which is verified.

Case II
In order to have the wealth constraints respected we must have

dQj,B

dQj,A

>
Ḡm − (Pj,d − ε)
Ḡm − (Pj,s + ε)

.

Situation A:
In order to have an increase in utility

dQj,B

dQj,A

>

∑3
i=1 piḠi − (Pj,d − ε)∑3
i=1 piḠi − (Pj,s + ε)

.

Hence, any deviation:

dQj,B

dQj,A

> max

{∑3
i=1 piḠi − (Pj,d − ε)∑3
i=1 piḠi − (Pj,s + ε)

,
Ḡm − (Pj,d − ε)
Ḡm − (Pj,s + ε)

}
,

will increase utility.
Situation B:

dQj,B

dQj,A

>
Ḡm − (Pj,d − ε)
Ḡm − (Pj,s + ε)

.

Situation C:
In order to have an increase in utility

dQj,B

dQj,A

<

∑3
i=1 piḠi − (Pj,d − ε)∑3
i=1 piḠi − (Pj,s + ε)

.
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Hence, as ∑3
i=1 piḠi − (Pj,d − ε)∑3
i=1 piḠi − (Pj,s + ε)

>
Ḡm − (Pj,d − ε)
Ḡm − (Pj,s + ε)

,

any
dQj,B
dQj,A

such that

Ḡm − (Pj,d − ε)
Ḡm − (Pj,s + ε)

<
dQj,B

dQj,A

<

∑3
i=1 piḠi − (Pj,d − ε)∑3
i=1 piḠi − (Pj,s + ε)

,

will increase utility.

Case III
In order to have the wealth constraints respected we must have

Ḡm − (Pj,d − ε)
Ḡm − (Pj,s + ε)

<
dQj,B

dQj,A

<
Ḡn − (Pj,d − ε)
Ḡn − (Pj,s + ε)

.

It is easy to check that there is a non-empty set for
dQj,B
dQj,A

.

Situation A:
In order to have an increase in utility

dQj,B

dQj,A

>

∑3
i=1 piḠi − (Pj,d − ε)∑3
i=1 piḠi − (Pj,s + ε)

.

Hence, as ∑3
i=1 piḠi − (Pj,d − ε)∑3
i=1 piḠi − (Pj,s + ε)

<
Ḡn − (Pj,d − ε)
Ḡn − (Pj,s + ε)

,

any
dQj,B
dQj,A

such that

max

{
Ḡm − (Pj,d − ε)
Ḡm − (Pj,s + ε)

,

∑3
i=1 piḠi − (Pj,d − ε)∑3
i=1 piḠi − (Pj,s + ε)

}
<
dQj,B

dQj,A

<
Ḡn − (Pj,d − ε)
Ḡn − (Pj,s + ε)

,

will increase utility.
Situation B:

Ḡm − (Pj,d − ε)
Ḡm − (Pj,s + ε)

<
dQj,B

dQj,A

<
Ḡn − (Pj,d − ε)
Ḡn − (Pj,s + ε)

.

Situation C:
In order to have an increase in utility

dQj,B

dQj,A

<

∑3
i=1 piḠi − (Pj,d − ε)∑3
i=1 piḠi − (Pj,s + ε)

.

Hence, as ∑3
i=1 piḠi − (Pj,d − ε)∑3
i=1 piḠi − (Pj,s + ε)

>
Ḡm − (Pj,d − ε)
Ḡm − (Pj,s + ε)

,
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any
dQj,B
dQj,A

such that

Ḡm − (Pj,d − ε)
Ḡm − (Pj,s + ε)

<
dQj,B

dQj,A

< min

{
Ḡn − (Pj,d − ε)
Ḡn − (Pj,s + ε)

,

∑3
i=1 piḠi − (Pj,d − ε)∑3
i=1 piḠi − (Pj,s + ε)

}
,

will increase utility.

Case IV
Any possible

dQj,B
dQj,A

will respect the wealth constraints. Hence, it is possible to find a

deviation that increases utility.

Case V
In order to have the wealth constraints respected we must have

dQj,B

dQj,A

<
Ḡn − (Pj,d − ε)
Ḡn − (Pj,s + ε)

.

Situation A:
In order to have an increase in utility

dQj,B

dQj,A

>

∑3
i=1 piḠi − (Pj,d − ε)∑3
i=1 piḠi − (Pj,s + ε)

.

Hence, as ∑3
i=1 piḠi − (Pj,d − ε)∑3
i=1 piḠi − (Pj,s + ε)

<
Ḡn − (Pj,d − ε)
Ḡn − (Pj,s + ε)

,

any
dQj,B
dQj,A

such that ∑3
i=1 piḠi − (Pj,d − ε)∑3
i=1 piḠi − (Pj,s + ε)

<
dQj,B

dQj,A

<
Ḡn − (Pj,d − ε)
Ḡn − (Pj,s + ε)

,

will increase utility.
Situation B:

dQj,B

dQj,A

<
Ḡn − (Pj,d − ε)
Ḡn − (Pj,s + ε)

.

Situation C:
In order to also have an increase in utility

dQj,B

dQj,A

< min

{∑3
i=1 piḠi − (Pj,d − ε)∑3
i=1 piḠi − (Pj,s + ε)

,
Ḡn − (Pj,d − ε)
Ḡn − (Pj,s + ε)

}
.

Case VI
In order to have the wealth constraints respected we must have

dQj,B

dQj,A

< min

{
Ḡn − (Pj,d − ε)
Ḡn − (Pj,s + ε)

,
Ḡm − (Pj,d − ε)
Ḡm − (Pj,s + ε)

}
.
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Situation A:
In order to increase utility

dQj,B

dQj,A

>

∑3
i=1 piḠi − (Pj,d − ε)∑3
i=1 piḠi − (Pj,s + ε)

.

Hence, as ∑3
i=1 piḠi − (Pj,d − ε)∑3
i=1 piḠi − (Pj,s + ε)

< min

{
Ḡn − (Pj,d − ε)
Ḡn − (Pj,s + ε)

,
Ḡm − (Pj,d − ε)
Ḡm − (Pj,s + ε)

}
,

a deviation is∑3
i=1 piḠi − (Pj,d − ε)∑3
i=1 piḠi − (Pj,s + ε)

<
dQj,B

dQj,A

< min

{
Ḡn − (Pj,d − ε)
Ḡn − (Pj,s + ε)

,
Ḡm − (Pj,d − ε)
Ḡm − (Pj,s + ε)

}
.

Situation B:
dQj,B

dQj,A

< min

{
Ḡn − (Pj,d − ε)
Ḡn − (Pj,s + ε)

,
Ḡm − (Pj,d − ε)
Ḡm − (Pj,s + ε)

}
.

Situation C:

dQj,B

dQj,A

< min

{
Ḡn − (Pj,d − ε)
Ḡn − (Pj,s + ε)

,
Ḡm − (Pj,d − ε)
Ḡm − (Pj,s + ε)

,

∑3
i=1 piḠi − (Pj,d − ε)∑3
i=1 piḠi − (Pj,s + ε)

}
,

which is verified. �

B.7 Dasgupta-Maskin (1986a) Discontinuity Equilib-

rium Existence Theorem

For each player i (i = 1, ..., n) let the action set Ai ∈ Rm be convex and compact. Let
the payoff function πi(a1, ...an) be continuous except on a subset A∗i consisting of action
combinations such that for some j 6= i, some action k, and some integer d, there is some
continuous one-to-one function fdi,j : R1 → R1 such that

fdi,j =
(
fdi,j
)−1

, and a,jk = fdi,j (aik) .

Suppose that
∑
πi(a) is upper semicontinuous, and for all i the payoff is bounded and is

weakly lower semicontinuous in ai. Then the game has a mixed strategy Nash equilibrium.
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