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Chapter 1

Introduction

1.1 General introduction
In its early history, the relationship between mathematics and games was limited
to mathematical methods being used in the analysis of games. Famous examples
are the work on games of chance by Cardano, in the 16th century, and by Fermat
and Pascal, in the 17th, originating what is now known as probability theory (cf.,
e.g., [8]), and Zermelo’s analysis of chess and other similar two-player adversarial
games which do not depend on chance (cf. [90]).

This relationship only became one of true symbiotic mutualism in the 20th

century, when games began being used as tools in the study of mathematics—
which is how games feature in this thesis. One illustrious example is the work of
Ehrenfeucht and Fraïssé in developing back and forth games, which are used to
determine the level of similarity between structures and still a fundamental tool
in current-day model theory (cf. [48, § 3.2]). However, this is far from the only
important example; games have found applications in a wide range of areas of
mathematical logic, such as the semantics of logics (e.g., the modal μ-calculus
[98, § 2.2]), characterizations of classes of problems in complexity theory (e.g.,
[75]), and descriptive set theory (e.g., the Choquet game characterizing Baire
spaces and the Banach-Mazur game characterizing meager sets; cf. [54, 8.C &
8.H]), among others (cf. [49] for a survey of applications of games to logic).

In many cases, the use of games can help one succinctly express properties of
the underlying objects which might otherwise be considerably more cumbersome.
In this way, games can also be an important tool in simplifying proofs (e.g.,
Blackwell’s elegant game proof of Kuratowski’s coreduction principle for analytic
sets [9]), and can therefore also play an important didactic role in the teaching of
logic (cf., e.g., [7, 32,96]).

One case in which games have been truly essential to the development of
mathematical logic is the work of Gale and Stewart in the 1950s [39]. The game
they introduced started what might be fairly described as a revolution in set theory

1
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2 Chapter 1. Introduction

and still bears fruit as an active topic of research to this day. The Gale-Stewart
game concerns subsets of Baire space, which is the topological space composed of
infinite sequences of natural numbers and the fundamental space of descriptive set
theory. Given a subset A of Baire space, the Gale-Stewart game for A is played
by two players who take turns in ω rounds, each player choosing a natural number
at each round. In this way they collectively build an element of Baire space, and
the first player wins the game iff the element thus built is in A, with the second
player winning otherwise. We say A is determined if one of the two players has a
strategy for playing which guarantees a win; thus the determinacy of A expresses
the infinitary De Morgan law

¬(∃x0 ∈ ω ∀x1 ∈ ω ∃x2 ∈ ω ∀x3 ∈ ω · · · (〈x0, x1, x2, x3, . . .〉 ∈ A))
⇔

∀x0 ∈ ω ∃x1 ∈ ω ∀x2 ∈ ω ∃x3 ∈ ω · · · (〈x0, x1, x2, x3 . . .〉 	∈ A)).

Postulating the determinacy of Gale-Stewart games for a certain class of sets
has far-reaching consequences for that class, in particular in terms of so-called
regularity properties such as Lebesgue measurability, property of Baire, perfect
set property, etc. (cf. [53, Chapter 6] for a thorough account of this topic). It
should be noted that, by the time of Gale and Stewart’s seminal paper, the Polish
mathematicians in Lwów (modern day Lviv, Ukraine) already had a decades-long
tradition of applying infinite games to set theory and topology at their famous
Scottish Café discussions [63]. It is widely accepted that by the 1930s they were
aware of what would later become known as the Gale-Stewart game and its basic
results, such as the determinacy of all open or closed sets and the existence of
non-determined sets as a consequence of the axiom of choice; cf., e.g., [53, p. 371].

A crucial development came with the work of Wadge [99,100], who introduced
a game similar to the one of Gale and Stewart in order to study the relation of
continuous reducibility between subsets of Baire space. Given such sets A and B,
in the Wadge game for A and B two players play as in the Gale-Stewart game,
except that the second player is allowed to postpone making a move for finitely
many rounds at a time. Thus the two players build elements x and y of Baire
space, respectively, and the second player wins the game exactly in case it holds
that x ∈ A iff y ∈ B. Wadge proved that the second player has a winning strategy
in the game for A and B iff A is continuously reducible to B, and that if the game
for A and B is determined, then either A is reducible to B or B is reducible to
the complement of A, a result which came to be known as Wadge’s lemma. Thus
the determinacy of the Wadge game for a class of sets implies that the class is
stratified into a highly granular hierarchy in which antichains have size at most 2,
which has been described as “the ultimate analysis of [subsets of Baire space] in
terms of topological complexity” by Andretta and Louveau [4, p.8].

Viewed from a slightly different perspective, the Wadge game can be seen as a
game characterizing the class of continuous functions on Baire space. Given such
a function f , we abuse nomenclature slightly and call Wadge game for f the game



518165-L-bw-Nobrega518165-L-bw-Nobrega518165-L-bw-Nobrega518165-L-bw-Nobrega
Processed on: 21-3-2018Processed on: 21-3-2018Processed on: 21-3-2018Processed on: 21-3-2018 PDF page: 15PDF page: 15PDF page: 15PDF page: 15

1.1. General introduction 3

in which two players play exactly as in the Wadge game for sets, thus building
elements x and y of Baire space, respectively, with the second player winning iff
f(x) = y. It follows that the second player has a winning strategy in the game
iff f is continuous. The two versions of the Wadge game are of course closely
connected: if a function f reduces A to B, then a winning strategy for the second
player in the Wadge game for f also wins the Wadge game for A and B for her,
and conversely, any winning strategy for the second player in the Wadge game for
A and B induces a continuous function f reducing A to B, and that strategy is
also winning for the second player in the Wadge game for f .

By giving the second player more freedom in how she builds her sequence y,
larger classes of functions can be characterized. In the backtrack game, usually
attributed to Van Wesep (cf., e.g., [3, p. 4]), the second player can decide to
restart her definition of y from scratch an arbitrary finite number of times; the
resulting game characterizes the class of Δ0

2-functions, i.e., those for which the
preimage of any Δ0

2 set† is also a Δ0
2 set [3, Theorem 21]. In the eraser game,

usually attributed to Duparc [29,31], the second player can erase each element of
y an arbitrary finite number of times; the resulting game characterizes the Baire
class 1 functions. In his PhD thesis, Semmes [92] introduced four new games
characterizing the Borel measurable functions, the Baire class 2 functions, the
Δ0

3-functions, and the class of functions for which the preimage of any Δ0
2 set is a

Δ0
3 set.
Because they express the amount of power one needs in order to build the

output of a function when given access to longer and longer portions of its input,
such game characterizations intuitively measure the level of discontinuity of the
functions in question. Via the foundational result of effective descriptive set
theory that oracle computability of functions on Baire space coincides with the
notion of continuity for that space exactly (cf. Theorem 2.8 below), it follows that
game characterizations of classes of functions are closely related to questions of
computability for that class. Therefore, it should perhaps not come as a surprise
that the tools of computable analysis, the area of mathematical logic concerned
with questions of computability of functions, sets, and other objects from classical
analysis, can be fruitfully brought to bear on questions related to such game
characterizations.

In computable analysis, the study of computability over a structure X is done
via a representation of X, which is a surjection from the Baire space onto X.
In this way, this analysis is completely analogous to the Ershov-style analysis of
computability over countable structures via coding functions from the natural
numbers. The fundamental tool of computable analysis which we use in this thesis
is that of Weihrauch reducibility, which captures the notion that a function is at
most as uncomputable as another; f is Weihrauch-reducible to g iff the existence
of a method for computing g would also imply the computability of f .

†These terms are defined precisely in § 1.2.3.
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4 Chapter 1. Introduction

Organization of the text

In this thesis we study several aspects of game characterizations of classes of
functions. The text is organized as follows.

We close the present chapter with a review of the background material from
descriptive set theory and computable analysis which will be needed for the rest
of the thesis.

In Chapter 2 we review games for functions from the literature and define
modifications of Semmes’s game for Borel functions which characterize the Baire
class α functions for each fixed α < ω1. We also define a construction of games
which transforms a game characterizing a class Λ of functions into a game charac-
terizing the class of functions whose domains can be partitioned into countably
many relatively Π0

α sets, in such a way that the restriction of the function to each
part is in Λ. Our main results in this chapter are

2.31 Theorem (p. 38). The α-tree game characterizes the class of
Baire class α functions.

2.61 Theorem (p. 54). Let α > 0. If the Ψ-tree game characterizes a
class Λ of functions, then the (α,Ψ)-tree game characterizes the class
of functions which are piecewise Λ on a Π0

α partition.

In Chapter 3, we use tools from computable analysis to define a general
framework of game characterizations of function classes. Concretely, this is done
by introducing two parameters into (an appropriate modification of) the Wadge
game, and we show how by a particular choice of parameters one can precisely
control what class of functions is characterized by the resulting game. As an
application, we recast the games characterizing the Baire classes from Chapter
2 into this framework, in the process defining several representations of certain
relevant spaces of trees and operations over those represented spaces which might
be of independent interest. Our main results in this chapter are

3.17 Theorem (p. 65). Let Ξ : X Y be a transparent cylinder and
let π : Y ωω be a probe. For any multi-valued function f between
represented spaces, we have that player 2| has a (computable) winning
strategy in the (Ξ, π)-Wadge game for f iff f �t

W Ξ (f �W Ξ).

3.73 Corollary (p. 85). Let α < ω1. We have that Pruneα is a
transparent cylinder which is Weihrauch-complete for the Baire class
α functions. Therefore the (Pruneα,Label)-Wadge game characterizes
the Baire class α functions.

In Chapter 4, we work in generalized Baire spaces κκ for infinite cardinals
κ satisfying κ<κ = κ, and show that our game characterizations of each fixed
Baire class α generalize to that setting. Furthermore, we show how the notion of
computability on Baire space, which is the foundation stone of classical computable
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1.1. General introduction 5

analysis, can be generalized to the setting of generalized Baire spaces. We show
that this is indeed appropriate for generalized computable analysis by defining a
representation of Galeotti’s generalized real line [42] and analyzing the Weihrauch
degree of the intermediate value theorem for that space. Our main results in this
chapter are

4.13 Corollary (p. 94). The (α, κ)-tree game characterizes the
κ-Baire class α functions on κκ.

4.34 Theorem (p. 105).

(a) If there exists an effective enumeration of a dense subset of Rκ,
then IVTκ �κW Bκ

I .

(b) We have Bκ
I �κW IVTκ.

(c) We have IVTκ �t
κW Bκ

I , and therefore IVTκ ≡t
κW Bκ

I .

Finally, in Chapter 5, we show how the game characterizations of function
classes discussed in previous chapters naturally lead to a stratification of each
class into a hierarchy, intuitively measuring the complexity of functions in that
class. We concretely study some properties of the ranks thus defined for the
Wadge, backtrack, and eraser games, showing in each case that they are proper
non-collapsing hierarchies of length ω1, and that the backtrack rank matches a
rank on Δ0

2-functions introduced by Motto Ros [67, § 5.2], and also matches the
well-known Hausdorff-Kuratowski rank in the case of characteristic functions of
Δ0

2 sets. This idea and the results presented open new paths for further research.
Our main contribution in this chapter is

5.1 Definition (p. 110). Let G� be a game characterizing a class C of
functions, and let B� be a function associating to each f ∈ C and each
winning strategy ϑ for 2| in G� for f a wellfounded structure B�(ϑ, f).
Given such f and ϑ, the B� rank of ϑ for f , denoted rk�(ϑ, f), is the
wellfounded rank of B�(ϑ, f), and the B� rank of f is the minimum B�

rank of its winning strategies, i.e.,

rk�(f) := min{rk�(ϑ, f) ; ϑ is a winning strategy for 2| in G� for f}.

Remarks on co-authorship

Many of the results presented in Chapters 3–5 of this thesis were obtained in
collaboration with other researchers. Because of this, and in the interest of full
transparency, we have strived to meticulously attribute definitions and theorems
in the thesis to their original authors, denoting our own contributions by “N.” and
attributing definitions and theorems to “folklore” in case the original reference is
unknown (at least to us). In many cases the attribution to folklore is due to the
fact that the notion being defined or the result being proven is simple enough so
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6 Chapter 1. Introduction

as not to warrant attribution, but we have chosen to err on the side of caution and
attribute them to folklore to avoid giving any impression of claiming ownership
of material we did not develop ourselves. In the beginning of each chapter of
the thesis we make more detailed remarks on the co-authorship of the material
presented in that chapter.

1.2 Preliminaries and notation

1.2.1 Functions

1.1 Definition (Folklore). A multi-valued function between given sets X and
Y is a binary relation f ⊆ X × Y whose domain dom(f) := {x ∈ X ; ∃y ∈
Y ((x, y) ∈ f)} is X. We write f : X Y to denote that f is a multi-valued
function between X and Y , and if f ⊆ X × Y has dom(f) ⊆ X then we say f is
a multi-valued partial function between X and Y and write f : X Y . Given
such an f : X Y and x ∈ X, we write f(x) := {y ∈ Y ; (x, y) ∈ f}, and if
f(x) = {y} for some y ∈ Y then we write f(x) = y, as usual.

When we want to stress that a given object f is a function in the usual sense, as
opposed to a multi-valued function, then we will say f is a single-valued function.
We denote the fact that f is a partial single-valued function between X and Y by
f : X Y . In general, it may happen that we omit the word “partial” or that
we call a “function” an object which is only a multi-valued function, but we will
always be precise with the use of the notation , , , and .

1.2 Convention. Throughout this thesis, whenever we talk about a multi-valued
partial function f : X Y without specifying its domain, it is to be considered
with its so-called natural domain dom(f) := {x ∈ X ; f(x) 	= ∅}.

We use the nomenclature multi-valued (partial) function instead of binary
relation to stress that we view these objects from an input-output perspective,
considering any y ∈ f(x) to be an equally valid output of the multi-valued function
f for the input x. This paradigm plays a role in the definitions of many concepts
involving multi-valued functions. For example, the composition of multi-valued
(partial) functions is not what is usually defined as the composition of binary
relations:

1.3 Definition (Folklore). Given multi-valued partial functions f : X Y and
g : Y Z, we define their composition g ◦ f : X Z by letting dom(g ◦ f) =
{x ∈ dom(f) ; f(x) ⊆ dom(g)} and g ◦ f(x) = ⋃{g(y) ; ∃x ∈ dom(f)(y ∈ f(x))}.

Thus, the difference with the usual relational composition is that for that notion
of composition we would have dom(g ◦ f) = {x ∈ dom(f) ; f(x) ∩ dom(g) 	= ∅}.

According to the same paradigm, the following is the appropriate generalization
for multi-valued functions of the notion of (single-valued) function extension.



518165-L-bw-Nobrega518165-L-bw-Nobrega518165-L-bw-Nobrega518165-L-bw-Nobrega
Processed on: 21-3-2018Processed on: 21-3-2018Processed on: 21-3-2018Processed on: 21-3-2018 PDF page: 19PDF page: 19PDF page: 19PDF page: 19
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1.4 Definition (Weihrauch [102, Definition 7]). A multi-valued function f
tightens g or is a tightening of g, denoted by f � g, if for every x ∈ dom(g) we
have that both x ∈ dom(f) and f(x) ⊆ g(x) hold.

1.2.2 Trees, wellfounded structures, and their ranks

1.5 Definition (Folklore). A sequence is a function whose domain is an ordinal
number, and the length of a sequence s, denoted by |s|, is its domain. Note that
this is a slight abuse of notation, since |X| usually denotes the cardinality of the
set X, and if dom(s) is not a cardinal then of course it is not the cardinality
of the sequence s as a set. However, in this thesis we will not be interested in
cardinalities of sequences, so the notation |s| will never be ambiguous. We use
angle brackets when extensionally or intensionally denoting the elements in a
sequence; thus, e.g., 〈〉 is the empty sequence and 〈2n ; n ∈ ω〉 is the sequence
of all even natural numbers. However, so as to avoid being cumbersome with
notation, when a sequence appears as part of an expression and is itself wrapped
in round or square brackets, then we will often omit the angle brackets, e.g.,
writing f(x0, . . . , xn−1) instead of f(〈x0, . . . , xn−1〉) to denote the application of
a function f to a sequence 〈x0, . . . , xn−1〉. Given a sequence s and an ordinal α,
we denote by s�α the restriction of s to domain min{|s|, α}. We say a sequence
s is an initial segment or prefix of a sequence t, denoted s ⊆ t, if |s| � |t| and
s = t�|s|, and we say s is a proper initial segment or prefix of t, denoted s ⊂ t,
if s ⊆ t and s 	= t. Two sequences are called compatible if one is a prefix of the
other, and incompatible otherwise. If a sequence s is such that |s| is a successor
ordinal, then we denote by ⊥(s) the last element of s, i.e., the element s(|s| − 1),
and by s− the sequence s�(|s| − 1).

Let κ and μ be cardinal numbers. Following another common abuse of notation,
we use μκ, μ<κ, and μ�κ to respectively denote not only the cardinalities of the
sets of sequences with domain κ and range in μ, with domain some ordinal strictly
less than κ and range in μ, and with domain some ordinal at most κ and range in
μ, but also the respective sets of sequences themselves. It will always be clear from
the context whether the symbol used is meant to denote the set of sequences or the
cardinality thereof. We will usually denote elements of μ<κ by σ, τ, ξ, elements of
μκ by x, y, z, and elements of μ�κ by s, t, in each case possibly using sub- and/or
superscripts. We denote by μ<κ

�=0 and μ<κ
succ the subsets of μ<κ formed of sequences

of nonzero and of successor lengths, respectively. Given ordinals α < μ and β � κ,
by yet another abuse of notation and only when it is clear from the context that
we are talking about elements of one of μκ, μ<κ, or μ�κ, we denote by αβ the
sequence with length β and constant value α, i.e., the sequence we would usually
denote by {α}β. Finally, given s ∈ μ<κ and t ∈ μ�κ, the concatenation of s with
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8 Chapter 1. Introduction

t, denoted by s�t, is the element of μ�κ with length |s|+ |t| satisfying

(s�t)(α) =

{
s(α), if α < |s|
t(β), if α � |s| and |s|+ β = α.

We will also frequently denote the concatenation of s and t by the juxtaposition st.
If s ∈ μ�κ has |s| > 0, we call the left shift of s, denoted by shift(s), the unique
t ∈ μ�κ such that s = 〈s(0)〉�t holds.
1.6 Definition (Folklore). Given cardinals κ and μ, a κ-tree on μ is a subset
of μ<κ closed under taking initial segments. Now let T be a κ-tree on μ. If T is
not empty, then 〈〉 ∈ T is called its root. Given an ordinal α � κ, the αth level of
T , denoted by Level(T, α), is the set of nodes of T of length α, and the height of
T , denoted by ht(T ), is the least ordinal α for which Level(T, α) = ∅ holds. A
κ-branch of T is an element x ∈ μκ satisfying x�α ∈ T for every α < κ, and the
body of T , denoted by [T ], is the set of its κ-branches. Given a cardinal α � κ,
we say T is <α-branching if for every σ ∈ T the set {σ�〈β〉 ∈ T ; β < μ} of
immediate children of σ in T has cardinality strictly less than α. We say T is
finitely branching if it is <ω-branching, and linear if it is < 2-branching, i.e., if
every node σ ∈ T has at most one immediate child in T . We will use the same
nomenclature to describe the branching at a given node of T ; thus, e.g., we say T
is finitely branching at σ if σ ∈ T has only finitely many immediate children in
T . We use the expression outside of σ to collectively talk about the branching
properties of nodes of T which are not σ. Figure 1.1 shows some examples of
branching properties of trees. Given σ ∈ μ<κ, we denote

(1) by Com(T, σ) the κ-tree {τ ∈ T ; σ ⊆ τ or τ ⊆ σ} on μ composed of nodes of
T which are compatible with σ;

(2) by Ext(T, σ) the set {τ ∈ T ; σ ⊆ τ} of extensions of σ in T ;

(3) by Conc(T, σ) the κ-tree {τ ∈ μ<κ ; σ�τ ∈ T} on μ composed of those
elements of μ<κ whose pre-concatenations with σ result in nodes of T .

If κ = μ then we omit “on μ” and just call T a κ-tree,† and if κ = ω then we omit
the prefix “κ-” and just call T a tree on μ, or just a tree if μ = ω as well. An
ω-branch of a tree is called an infinite branch of T .

1.7 Definition (Folklore). Let X be a set and ≺ be an irreflexive binary relation
on X. We say (X,≺) is wellfounded, or simply that ≺ is wellfounded if there is
no risk of ambiguity, if for any nonempty Y ⊆ X there exists y ∈ Y such that for
all x ∈ Y we have x 	≺ y. Such an element y is called a ≺-minimal element of Y .
We say (X,≺) is illfounded if it is not wellfounded.

†Note that this nomenclature is often used with a different meaning in the literature. For
example, for Kanamori [53, p. 75] and Kunen [61, Definition 5.5], a κ-tree is a tree of height κ
whose levels have cardinality strictly less than κ.
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1.2. Preliminaries and notation 9

(a) Finitely branching at
σ and linear elsewhere

(b) Linear outside of σ (c) Finitely branching
outside of σ

Figure 1.1: Examples of branching properties of trees.

The axiom of choice implies that the illfoundedness of (X,≺) is equivalent
to the existence of an infinite descending chain in X, i.e., an infinite sequence
〈xn ∈ X ; n ∈ ω〉 such that xn+1 ≺ xn holds for all n.
1.8 Convention. Given ordinal numbers α, β < κ, let (α0, β0) ≺ (α1, β1) iff
(max(α0, β0), α0, β0) is lexicographically-less than (max(α1, β1), α1, β1). It is a
standard fact of set theory that, for any infinite cardinal κ, the relation ≺
restricted to κ2 is a wellordering of κ2 of order type κ. The Gödel pairing function
� ␣ � is given by �α, β� = γ iff (α, β) is the γth element in ≺, i.e., if the order type
of {(α′, β′) ∈ κ2 ; (α′, β′) ≺ (α, β)} is exactly γ; thus � ␣ ��κ2 is a bijection between
κ2 and κ. Cf. Figure 1.2 for a depiction of some values of � ␣ �. It is easy to see
that the tupling function � ␣ � restricted to ω, and its inverse, are computable;
we will prove in Lemma 4.25 that the same holds true for uncountable κ under a
suitable notion of transfinite computability. Restricting ourselves to the κ = ω
case, we can define tupling functions of all finite arities by iterated applications of
pairing, associating, say, to the right. We overload notation and denote all such
tupling functions by � ␣ �; thus �k0, . . . , kn� := �k0, �k1, . . . , �kn−1, kn� . . .��. For
n > 0, we denote the inverse of the n-ary tupling function thus defined by bijn;
therefore for any natural n > 0, k ∈ ω, and σ ∈ ωn, we have

bijn(k) = σ iff |σ| = n and k = �σ(0), σ(1), . . . , σ(n− 1)�.
From this we can define a bijection bij : ω ω<ω by letting bij(n) = σ iff n = 0
and σ = 〈〉, or n > 0, σ 	= 〈〉, n − 1 = �, k�, and bij�+1(k) = σ. It follows that
bij is computable, has a computable inverse, and satisfies that bij(n) ⊂ bij(m)
implies n < m. As usual, the tupling functions on ω come associated with natural
projections ( ␣ )nk for each k < n ∈ ω, defined by

(m)nk := the unique  ∈ ω for which m = �m0, . . . ,mk−1, ,mk+1, . . . ,mn−1�
holds for some m0, . . . ,mk−1,mk+1, . . . ,mn−1 ∈ ω.

Tupling functions and their associated projections allow us to make definitions
implicitly—given n,m ∈ ω we can define numbers k0, . . . , km ∈ ω by the equation

n = �k0, . . . , km�,
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10 Chapter 1. Introduction

which is to be understood as merely shorthand for the definition ki := (n)m+1
i for

each i � m.

0 1 2 3 · · · ω · · · β · · ·
0 0 1 4 9 · · · ω

1 2 3 5 10 · · · ω + 1

2 6 7 8 11 · · · ω + 2

3 12 13 14 15 · · · ω + 3
...

...
...

...
...

...
ω ω · 2 ω · 2 + 1 ω · 2 + 2 ω · 2 + 3 · · · ω · 3
...
α �α, β�
...

Figure 1.2: Ordinal pairing.

A fundamental feature of wellfounded structures is that they allow one to
define functions with domain X by wellfounded recursion, i.e., by first specifying
the value of the function on the ≺-minimal elements of X, and then recursively
defining the value of the function on a given element x ∈ X assuming that the
function is already defined on every element of the set of ≺-predecessors of x—i.e.,
the set {y ∈ X ; y ≺ x}—and possibly using those values in the definition of f(x).
For our purposes the main example of such a function is the following.

1.9 Definition (Folklore). Let S = (X,≺) be a wellfounded structure, with X
a set. We define a function rkS : X On, called the rank function of S, by the
recursion

rkS(x) = sup{rkS(y) + 1 ; y ≺ x}
(note that sup∅ = 0). Therefore the rank of x in S is the least ordinal greater
than the rank of every ≺-predecessor of x. We define the rank of S, denoted rk(S),
as the ordinal number sup{rkS(x) ; x ∈ X}.

Note that, depending on the wellfounded structure S = (X,≺), it may be
the case that rk(S) = rkS(x) holds for some x ∈ X. We always consider trees as
structures with the relation ⊃, so that, e.g., a tree is wellfounded iff it contains
no infinite ⊃-decreasing (i.e., ⊂-increasing) chains, and if the tree T is nonempty
then its rank is equal to rkT (〈〉).
1.10 Theorem (Folklore). For every wellfounded S = (X,≺) we have rk(S) <
|X|+, and for every cardinal κ and every α < κ+ there exists a wellfounded tree
T on κ such that rk(T ) = α.
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Proof. Recall that successor cardinals are regular, so the supremum of at most |X|-
many ordinals, each of which is less than |X|+, is also less than |X|+. Therefore
the first claim is equivalent to the rank of each x ∈ X being less than |X|+, and
this follows by an easy induction on the ranks of elements of X—the limit case
again using the regularity of |X|+.

The second claim can be established with a simple recursive construction.
For α = 0, just take T := {〈〉}. If T is a tree on κ of rank α < κ+, then
T ′ := {〈〉} ∪ {〈0〉�t ; t ∈ T} is easily seen to be a tree on κ of rank α + 1.
Finally, suppose λ < κ+ is a limit ordinal and that for each α < λ we have a
wellfounded tree Tα on κ with rank α. Let f : κ λ be cofinal in λ. Now
T := {〈〉} ∪ {〈α〉�t ; α < λ and t ∈ Tf(α)} is also easily seen to be a tree on κ of
rank sup{f(α) + 1 ; α < κ} = λ.

1.11 Theorem (Folklore). Let S = (X,≺) be wellfounded. Then rk(S) is the
least ordinal α for which there exists a ≺-increasing function f : X α + 1.

Proof. We proceed by induction on rk(S), with the base case rk(S) = 0 being
immediate. Now suppose rk(S) > 0, and for each γ < rk(S) let Sγ = (Xγ,≺γ)
be the substructure of S composed of the elements of S of rank at most γ. In
particular rk(Sγ) = γ. Since f�Xγ : Xγ β + 1 is ≺γ-increasing, it follows that
β � γ. In particular, if rk(S) is a limit ordinal then we are done. Otherwise, if
rk(S) is a successor, say rk(S) = γ + 1, then by what we just saw we have β � γ.
But in this case there exists x ∈ X with rank γ+1, and therefore there also exists
y ≺ x with rank γ. Since f is ≺-increasing, it follows that β � γ+1 = rk(Sγ).

1.12 Corollary. If (X,≺X) and (Y,≺Y ) are wellfounded structures and there
exists f : X Y such that x ≺X x′ implies f(x) ≺Y f(x′), then rk(X,≺X) �
rk(Y,≺Y ).

It will be convenient to also have rank functions for illfounded structures, as
follows.

1.13 Definition (Folklore). Let X be a set, ≺ be an irreflexive binary relation
on X, and S = (X,≺). The wellfounded part of S, denoted by WF(S), is the
substructure of S composed of the elements of X which are not part of any infinite
descending chains of S. We now define a function rkS : X On ∪ {∞}, called
the rank function of S, by letting

rkS(x) =

{
rkWF(S)(x), if x ∈ WF(S)
∞, otherwise,

where ∞ is not an ordinal number.

If we stipulate that ∞ is strictly greater than any ordinal number and that
∞+ 1 = ∞ holds, then the rank function of S = (X,≺) also satisfies

rkS(x) = sup{rkS(y) + 1 ; y ≺ x}.
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1.14 Definition (Folklore). A labeled κ-tree is a pair Υ = (T, ϕ) of a κ-tree
T ⊆ κ<κ and a labeling function ϕ : (T ∩ κ<κ

succ) κ. Let Υ = (T, ϕ) be
a labeled κ-tree. We define the function ϕ̃ : T κ<κ by |ϕ̃(σ)| = |σ| and
ϕ̃(σ)(α) = ϕ(σ�(α + 1)) for all σ ∈ T and α < |σ|. The sequence ϕ̃(σ) is called
the running label of σ in Υ. Given a second labeled κ-tree Υ′ = (T ′, ϕ′), we say
Υ is a subtree of Υ′, denoted Υ ⊆ Υ′, if both T ⊆ T ′ and ϕ ⊆ ϕ′ hold. Given a
subtree S of T , the labeled κ-tree (S, ϕ�S) is called the subtree of Υ induced by S.

Again, if κ = ω we will omit the prefix “κ-” and thus talk about labeled trees,
subtrees, etc.

1.15 Remark. We will in general overload notation from unlabeled to labeled
κ-trees; whenever some such notation is used without prior introduction, the
intended meaning will be intuitive. For example, for Υ = (T, ϕ) we will write
σ ∈ Υ to mean σ ∈ T , or rkΥ(σ) instead of rkT (σ), etc. Furthermore, whenever we
define an operation F on κ-trees which assigns to a κ-tree T a subtree F (T ) ⊆ T ,
we extend F to labeled κ-trees by letting F (T, ϕ) be the subtree of (T, ϕ) induced
by F (T ).

Some of our results will involve the following notion, which is well-known in
certain areas of logic and computer science, where it models the notion that two
systems have equivalent behavior. We only give the definition for labeled trees,
i.e., labeled ω-trees.

1.16 Definition (Folklore). Given labeled trees Υ0 = (T0, ϕ0) and Υ1 = (T1, ϕ1),
a nonempty relation B ⊆ T0 × T1 is called a bisimulation between Υ0 and Υ1 in
case σ B τ implies

ϕ̃0(σ) = ϕ̃1(τ) (label)
∀σ′ ∈ T0(σ ⊂ σ′ ⇒ ∃τ ′ ∈ T1(τ ⊂ τ ′ ∧ σ′ B τ ′)) (forth)
∀τ ′ ∈ T1(τ ⊂ τ ′ ⇒ ∃σ′ ∈ T0(σ ⊂ σ′ ∧ σ′ B τ ′)) (back)
|σ| > 0 ⇒ σ− B τ− (parent)

We say Υ0 and Υ1 are bisimilar, denoted Υ0 � Υ1, if there exists a bisimulation
between Υ0 and Υ1.

It is straightforward to check that � is an equivalence relation. It is also easy
to see that the union of any family of bisimulations between given labeled trees is
also a bisimulation between those trees. Therefore, between any pair of bisimilar
labeled trees Υ0 and Υ1 there always exists a largest bisimulation, denoted �Υ0,Υ1

or simply � when there is no risk of ambiguity. A particular case of a bisimulation
between Υ0 = (T0, ϕ0) and Υ1 = (T1, ϕ1) is an isomorphism between those trees,
i.e., a bijection ι : T0 T1 satisfying, for any σ, τ ∈ T0:

(1) σ ⊆ τ iff ι(σ) ⊆ ι(τ),
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(2) |σ| = |ι(σ)|, and

(3) ϕ0(σ) = ϕ1(ι(σ)).

The trees Υ0 and Υ1 are isomorphic, denoted Υ0 � Υ1, if there exists an isomor-
phism between them.
1.17 Lemma (N.). If B ⊆ Υ × Υ′ is a bisimulation and σ B τ holds, then
rkΥ(σ) = rkΥ′(τ).

Proof. If rkΥ(σ) = ∞, i.e., if σ is on an infinite branch of Υ, then it is easy to see
that τ is on an infinite branch of Υ′ and therefore rkΥ′(τ) = ∞ as well. By the
same argument, we have that if rkΥ′(τ) = ∞ then rkΥ(σ) = ∞. If σ ∈ WF(Υ),
then we proceed by induction on rkΥ(σ). For the base case, note that rkΥ(σ) = 0
iff σ is a leaf of Υ, and in this case σ B τ implies that τ is also a leaf of Υ′ and
therefore also has rank 0. Now suppose the result holds for every node of rank
< rkΥ(σ). For each β < rkΥ(σ) there exists some descendant σ′ of σ in Υ such
that rkΥ(σ

′) = β. Since B is a bisimulation, there exists a descendant τ ′ of τ in
Υ′ such that σ′ B τ ′. By induction hypothesis we have rkΥ′(τ ′) = β, and since
β < rkΥ(σ) was arbitrary we have rkΥ′(τ) � rkΥ(σ). Analogously we can prove
rkΥ′(τ) � rkΥ(σ), so the result follows.

1.2.3 Baire space
Definitions and notation which we use without prior introduction are standard
and can be found, e.g., in [54].

As usual, we endow ωω with the product topology, considering ω with the
discrete topology, and call the resulting topological space Baire space. Its topology
is generated by the basis of sets of the form [σ] := {x ∈ ωω ; σ ⊂ x} for σ ∈ ω<ω.

Given an element x ∈ ωω and n ∈ ω, we define an element (x)n ∈ ωω by letting
(x)n(k) := x(�n, k�) for every n, k ∈ ω. The map x �→ 〈(x)n ; n ∈ ω〉 is easily seen
to be a homeomorphism between ωω and the product space (ωω)ω.

The collection of Borel subsets of ωω is stratified into the Borel hierarchy,
which is defined as follows.

Σ0
0 := {∅, ωω} ∪ {ωω � [σ] ; σ ∈ ω<ω}

Π0
0 := {∅, ωω} ∪ {[σ] ; σ ∈ ω<ω}

Δ0
0 := {∅, ωω},

and recursively for, α > 0,

Σ0
<α :=

⋃
β<α Σ

0
β

Π0
<α :=

⋃
β<α Π

0
β

Σ0
α := {⋃n∈ω An ; ∀n ∈ ω(An ∈ Π0

<α)}
Π0

α := {⋂n∈ω An ; ∀n ∈ ω(An ∈ Σ0
<α)}

Δ0
α := Σ0

α ∩Π0
α.
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14 Chapter 1. Introduction

It is a classical result that for every α < ω1 we have

(1) Δ0
α ⊂ Σ0

α ∪Π0
α ⊂ Δ0

α+1 and

(2) Σ0
ω1

= Π0
ω1

= Σ0
<ω1

= Π0
<ω1

,

i.e., the Borel hierarchy is a proper hierarchy of length ω1 (cf., e.g., [65, Exercises
1F.5 & 1F.6]).

Given a subset X ⊆ ωω we can define the Borel hierarchy relativized to X as
usual, e.g., setting Σ0

α(X) := {Y ∩ X ; Y ∈ Σ0
α}. Due to the basic laws of how⋃

,
⋂

, and ωω � ␣ interact with one another, this definition behaves as expected.
For example, Y ∈ Σ0

α(X) holds iff there exists 〈Yn ∈ Π0
<α(X) ; n < ω〉 such that

Y =
⋃

n<ω Yn. We will usually omit “(X)” from the notation, e.g., writing just
Σ0

α instead of Σ0
α(X), whenever the context in which the notation appears makes

it clear which hierarchy is meant.
Recall that for every ordinal α there exist a unique limit ordinal λ and a unique

natural number n such that α = λ+ n. We call α even or odd according to the
parity of n.

1.18 Definition (Folklore). Given an ordinal α < ω1 and a sequence 〈Aβ ⊆
ωω ; β � α〉 with Aα = ωω, we define diff〈Aβ ; β � α〉 as the set of those x ∈ ωω

for which the least β � α such that x ∈ Aβ holds has parity opposite to that of α.
Given 1 � ξ < ω1, an increasing sequence 〈Aβ ; β � α〉 of sets in Σ0

ξ with
α < ω1 and Aα = ωω is called a Σ0

ξ-resolution for the set diff〈Aβ ; β � α〉.

Figure 1.3 presents a depiction of diff〈Aβ ; β � α〉 where α is odd and 〈Aβ ; β �
α〉 is an increasing sequence.

Figure 1.3: The set diff〈Aβ ; β � α〉 (shaded region) for odd α and increasing
〈Aβ ; β � α〉.

1.19 Theorem (Hausdorff-Kuratowski, cf. [54, Theorem 22.27]). For each 1 �
ξ < ω1, we have A ∈ Δ0

ξ+1 iff there exists a Σ0
ξ-resolution for A.

Proof of (⇐). If 〈Aβ ; β � α〉 is a Σ0
ξ-resolution for A, then

A =
⋃

{Aβ �
⋃
γ<β

Aγ ; β � α has different parity from that of α},
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and since the difference of two Σ0
ξ sets is a Δ0

ξ+1 set, it follows that A ∈ Σ0
ξ+1.

Likewise,

ωω � A =
⋃

{Aβ �
⋃
γ<β

Aγ ; β � α has the same parity as α},

so ωω � A ∈ Σ0
ξ+1 as well.

We omit the general proof of the converse direction; the case ξ = 1 will be
obtained as a corollary of Theorem 5.9.

For A ∈ Δ0
ξ+1, the least α < ω1 for which A has a Σ0

ξ-resolution of length
α + 1 is called the Hausdorff-Kuratowski rank of A and denoted by rkξHK(A).
It is also a classical result that for every α < ω1 there exists a Δ0

ξ+1 set of
Hausdorff-Kuratowski rank α.

1.20 Definition (Folklore). Let 〈sn ; n ∈ ω〉 be a sequence of elements of ω�ω,
and let s ∈ ω�ω. We say 〈sn ; n ∈ ω〉
(1) converges pointwise to s, denoted s = limn∈ω sn, if for every n < |s| there

exists M ∈ ω such that for every m � M we have n < |sm| and sm(n) = s(n),
and for every n ∈ ω for which there exists M ∈ ω such that for every m � M
we have n < |sm|, |sM | and sm(n) = sM (n), we have n < |s| and s(n) = sM (n).

(2) converges monotonically to s if sn ∈ ω<ω and sn ⊆ sn+1 hold for every n ∈ ω,
and s =

⋃
n∈ω sn.

We say s is the pointwise or monotone limit of 〈sn ; n ∈ ω〉 respectively in each
case. We say a function f : ωω ωω is the pointwise limit of a sequence of
functions 〈fn : ωω ωω ; n ∈ ω〉, denoted f = limn∈ω fn, if dom(f) = dom(fn)
holds for every n ∈ ω and f(x) = limn∈ω fn(x) holds for every x ∈ dom(f).

1.21 Definition (Folklore). Let f : ωω ωω.

(1) We say f is of Baire class 0 if it is continuous, and recursively, for α > 0 we
say f is of Baire class α if it is the pointwise limit of a countable sequence of
functions, each of which is of Baire class less than α.

(2) Given a class Γ of subsets of ωω, we say f is Γ-measurable if the preimage of
any open set under f is relatively in Γ, i.e., if for any open set U ⊆ ωω there
exists V ∈ Γ such that f−1[U ] = V ∩ dom(f).

(3) We say f is a Δ0
α-function if the preimage of any Δ0

α set under f is also a
(relative) Δ0

α set.

It is easy to see that a function f : ωω ωω is a Δ0
α-function iff the preimage

of any Σ0
α set under f is also a Σ0

α set iff the preimage of any Π0
α set under f is

also a Π0
α set.



518165-L-bw-Nobrega518165-L-bw-Nobrega518165-L-bw-Nobrega518165-L-bw-Nobrega
Processed on: 21-3-2018Processed on: 21-3-2018Processed on: 21-3-2018Processed on: 21-3-2018 PDF page: 28PDF page: 28PDF page: 28PDF page: 28

16 Chapter 1. Introduction

1.22 Theorem (Lebesgue, Hausdorff, & Banach; cf. [54, Theorem 24.3]). A
function f : ωω ωω is Baire class α iff it is Σ0

α+1-measurable.

Proof of (⇒). By induction on α, with the α = 0 case following by definition.
For α > 0, suppose f is the pointwise limit of 〈fn ; n ∈ ω〉 where each fn is of
Baire class less than α. Since Σ0

α+1 is closed under countable unions, it suffices to
show that for each σ ∈ ω<ω the preimage of [σ] under f is in Σ0

α+1. The fact that
f = limn∈ω fn implies f−1[σ] =

⋃
n∈ω

⋂
n�m<ω f

−1
m [σ]. Since [σ] is a closed set and

by induction each fm is Σ0
α-measurable, it follows that f−1

m [σ] ∈ Π0
α. Therefore f

is Σ0
α+1-measurable.

The proof of the converse direction is more involved, and will be given as a
corollary of our game characterizations of the Baire classes, Theorem 4.12.
1.23 Corollary (Folklore). A function is Borel measurable iff it is of Baire
class α for some α < ω1.

Proof. The right-to-left direction is immediate, and for the converse, if f : ωω ωω

is Borel measurable then for each σ ∈ ω<ω there exists ασ < ω1 such that
f−1[σ] ∈ Σ0

ασ
. Thus, for α := supσ∈ω<ω ασ, we have that f is Σ0

α-measurable.
Since ω1 is a regular cardinal, it follows that α < ω1.

1.24 Definition (Folklore). Given a class Λ of partial functions on ωω and a
class Γ of subsets of ωω, we say a function f : ωω ωω is piecewise Λ on a Γ
partition if there exists a sequence 〈An ; n ∈ ω〉 of subsets of ωω such that

(1) for each n ∈ ω we have An ∈ Γ;

(2) the sequence 〈An ∩ dom(f) ; n ∈ ω〉 is a partition of dom(f);

(3) for each n ∈ ω we have f�An ∈ Λ.

The class of functions which are piecewise Λ on a Γ cover is defined in the
obvious analogous way, substituting “cover” in the place of “partition” everywhere
in Definition 1.24.
1.25 Lemma (Folklore). Let α > 0 and A ⊆ ωω. Any set in Σ0

α(A) can be
partitioned into countably many Π0

<α(A) sets.

Proof. By induction on α. For the base case α = 1, let X ⊆ ω<ω be such that
B =

⋃
σ∈X([σ] ∩ A), and let Y be the set of ⊆-minimal elements of X. Now we

have that the sets {[σ] ∩ A ; σ ∈ Y } form a Π0
0(A) partition of B.

Suppose the result holds for each β < α, and let B ∈ Σ0
α(A). Then B =

⋃
k Bk

where each Bk is in Π0
<α(A). Let C0 := B0 and Ck+1 = Bk+1 ∩ (ωω �

⋃
m�k Cm).

Note that these sets partition B, and that for each k there exists β < α such that
Dk = (ωω �

⋃
m�k Cm) ∈ Σ0

β(A). Hence, by the induction hypothesis each Dk can
be partitioned into countably many Π0

<β(A) sets, and intersecting each part of
this with Bk+1 we get a Π0

<β(A) partition of each Ck+1. Putting these together
we get a Π0

<α(A) partition of B.
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1.26 Corollary (Folklore). For any A ⊆ ωω and α > 0, any Π0
α(A) cover of A

can be refined to a Π0
α partition of A. In other words, for any sequence 〈An ; n ∈ ω〉

of Π0
α sets such that A =

⋃
n∈ω An, there exists a partition 〈Ak

n ; n, k ∈ ω〉 of A
into Π0

α(A) sets such that Ak
n ⊆ An for each n, k ∈ ω.

Proof. Let B0 := A0, Bn+1 := An+1�
⋃

m�n Bm, so that 〈Bn ; n ∈ ω〉 is a partition
of A into Σ0

α+1(A) sets such that Bn ⊆ An for each n ∈ ω. Now, by the previous
result each Bn can be partitioned into countably many Π0

α(A) sets 〈Ak
n ; k ∈ ω〉,

so we are done.

Figure 1.4 illustrates the proof of Corollary 1.26.

� �

Figure 1.4: Refining a Π0
α(A) cover of a set A first into a Σ0

α+1(A) partition of A,
then refining that into a Π0

α(A) partition of A, as in the proof of Corollary 1.26.

1.27 Corollary (Folklore). Let Λ be a class of partial functions on ωω closed
under taking restrictions, i.e., such that if f ∈ Λ then f�A ∈ Λ for any A ⊆
dom(f). Then, for any α > 0 and any f : ωω ωω, the following are equivalent:

(1) f is piecewise Λ on a Π0
α partition;

(2) f is piecewise Λ on a Π0
α cover;

(3) f is piecewise Λ on a Σ0
α+1 partition.

Proof. (1) ⇒ (2) is immediate, we have (2) ⇒ (3) because any Π0
α(dom(f)) cover

of dom(f) can be refined to a Σ0
α+1(dom(f)) partition of dom(f), and likewise we

have (3) ⇒ (1) because any Σ0
α+1(dom(f)) partition of dom(f) can be refined to

a Π0
α(dom(f)) partition of dom(f).

1.28 Theorem (Jayne & Rogers [51]). A function f : ωω ωω is piecewise
continuous on a Π0

1 partition iff it is a Δ0
2-function.
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18 Chapter 1. Introduction

The Jayne-Rogers theorem as proved in [51] applies to more general topological
spaces, but for our interests in this thesis the case of ωω suffices. The Jayne-Rogers
theorem and its generalizations are an important and active topic of research in
descriptive set theory and generalized computability theory [23,25,52,57,70,71,
81, 84, 92, 93]. However, since it is not the focus of this thesis, we will not give its
(quite involved) proof. We should like to mention that Semmes has given a proof
of that theorem based on an in-depth analysis of the eraser and backtrack games
[92, § 3.4], and that Kačena, Motto Ros, and Semmes have also given another
proof of the Jayne-Rogers theorem which is simpler than the original [52,71].

Semmes also proved the following analogues of the Jayne-Rogers for functions
preserving higher levels of the Borel hierarchy.

1.29 Theorem (Semmes’s decomposition theorem [92, Theorems 4.3.7 and 5.2.8]).
A function f : ωω ωω is

(1) piecewise continuous on a Π0
2 partition iff it is a Δ0

3-function;

(2) piecewise Baire class 1 on a Π0
2 partition iff the preimage of any Δ0

2 set under
f is a Δ0

3 set.

1.2.4 Represented spaces and Weihrauch reducibility

Represented spaces and continuous or computable maps between them form the
setting for computable analysis. The classical reference for computable analysis is
the textbook by Weihrauch [101]; for a comprehensive introduction more in line
with the style of this thesis we refer to [79].

A represented space X = (X, δX) is given by a set X and a partial surjection
δX : ωω X. We will always consider ωω as represented by idωω , and ω as
represented by the function δω(p) = n iff p = 0n1ω. Given a represented space
X and n ∈ ω, Xn is the represented space of n-tuples represented in the natural
way since ωω inherits particularly nice tupling functions � ␣ � of all finite arities
from ω. The coproduct of a family of represented spaces {Yx ; x ∈ X} indexed
by X is the represented space denoted by

∐
x∈X Yx which is composed of pairs

(x, y) such that y ∈ Yx, with the representation given in the natural way, letting
a name for (x, y) be a ωω-pair of a name for x and one for y. We denote by X<ω

the represented space
∐

n∈ω X
n; thus ω<ω can be seen as the represented space in

which σ is named by p iff p encodes the length |σ| of σ as well as the |σ| elements
of σ Finally, Xω is the represented space in which tuples 〈xn〉n∈ω are named by
infinite tuples composed of a name for each xn—recall that ωω has a countable
tupling function � ␣ � : (ωω)ω ωω given by �pn�n∈ω = p iff p(�n, k�) = pn(k) for
each n, k ∈ ω.

A (multi-valued) function between represented spaces is just a (multi-valued)
function between the underlying sets. We say that a partial function F : ωω ωω

is a realizer for a multi-valued function f : X Y, denoted by F � f , if
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1.2. Preliminaries and notation 19

δY(F (p)) ∈ f(δX(p)) holds for all p ∈ dom(fδX); note that realizers are always
required to be single-valued. Then, given a class Λ of partial functions in ωω, we
say f : X Y is in (δX, δY)-Λ if it has a realizer in Λ. When X and Y are clear
from the context, we will just say f is in Λ; thus we have computable, continuous,
etc., functions between represented spaces. Note that, for any represented space X,
both δX and δ−1

X are realized by idωω . In particular, viewed as functions between
represented spaces, δX and δ−1

X are always computable.
Of course, if X and Y are also topological spaces, then it is ambiguous to say

a function f : X Y is, e.g., continuous. However, for the following standard
representation of Polish spaces there is no such ambiguity. Let (X, τ) be a Polish
space, fix a countable dense sequence 〈ai ; i ∈ ω〉 in X and a compatible metric
d. Now define δX by δX(p) = x iff d(ap(i), x) < 2−i holds for all i ∈ ω. In other
words, we represent a point by a sequence of basic points converging to it with
a prescribed speed. It is a foundational result in computable analysis that the
notion of continuity for the represented space (X, δX) coincides with that for the
Polish space (X, τ).

1.30 Definition (Folklore). Let f and g be multi-valued partial functions
between represented spaces. We say that f is Weihrauch-reducible to g, in symbols
f �W g, if there are computable functions H,K : ωω ωω such that for any G � g,
the function p �→ H(�p,G ◦K(p)�) is a realizer for f . We say that f is strongly
Weihrauch-reducible to g, in symbols f �sW g, if there are computable functions
H,K : ωω ωω such that for any G � g, the function HGK is a realizer for f .
We call t-Weihrauch reducibility and strong t-Weihrauch reducibility, in symbols
�t

W and �t
sW, the variations where “computable” is replaced with “continuous”.

We denote by ≡W, ≡sW, ≡t
W, and ≡t

sW the corresponding equivalence relations,
i.e., defined by letting f ≡W g if both f �W g and g �W f , and likewise in the
other cases.

Figure 1.5 shows an intuitive graphical depiction of (strong) Weihrauch re-
ducibility.

(a) f �W g (b) f �sW g

Figure 1.5: Weihrauch reducibility of f to g; in each case, the depicted function
realizes f for whatever realizer G � g that is plugged in.

We refer the reader to [16] for a recent comprehensive survey on Weihrauch
reducibility.

For any represented space X, let ΔX : X X × X be the total computable
function given by ΔX(x) = (x, x). The following result illustrates how the notion
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20 Chapter 1. Introduction

of tightening is a good tool for expressing concepts in Weihrauch reducibility
theory.

1.31 Proposition (Folklore; cf., e.g., [76, Chapter 4]). Let F : ωω ωω,
f : X Y, and g : Z W.

(1) The following are equivalent:

(a) F � f ;

(b) δYF � fδX;

(c) δYFδ−1
X � f .

(2) The following are equivalent:

(a) f �sW g (f �t
sW g)

(b) there exist computable (continuous) k : X Z and h : W Y such that
hgk � f .

(3) The following are equivalent:

(a) f �W g (f �t
W g);

(b) there exist computable (continuous) k : X Z and h : X×W Y such
that f � h ◦(idX × gk)ΔX;

(c) there exist computable (continuous) k : X Z and h : X×W Y such
that f = h ◦(idX × gk)ΔX.

Proof. We will only prove (3), since (1) is a simple unpacking of definitions and
(2) is similar to (3) but simpler.

(3a ⇒ 3b) Suppose f �W g. Then there exist computable K : ωω ωω and
H : ωω ×ωω ωω such that H ◦(idωω ×GK) � f whenever G � g. Let k : X Z
and h : X × W Y be defined by k = δZKδ−1

X and h = δYH ◦(δ−1
X × δ−1

W ).
Clearly both k and h are computable. Now suppose x ∈ dom(f), and let us show
x ∈ dom(h ◦(idX × gk)ΔX) and h ◦(idX × gk)ΔX(x) ⊆ f(x).

Since H ◦(idωω ×GK) � f whenever G � g, it follows that x ∈ dom(gδZKδ−1
X ),

i.e., x ∈ dom(k) and k(x) ⊆ dom(g). Note that for any y ∈ gk(x), any δW-name
p for y, and any δX-name q for x, there exists some realizer G of g such that p =
GK(q). Therefore (q, p) ∈ dom(δYH), i.e., (x, gk(x)) ∈ dom(δYH ◦(δ−1

X × δ−1
W )) =

dom(h). Hence x ∈ dom(h ◦(idX × gk)ΔX). Finally, we have

h ◦(idX × gk)ΔX(x) = h(x, gk(x))
= δYH ◦(δ−1

X (x), δ−1
W gδZKδ−1

X (x)).

Let y ∈ h ◦(idX×gk)ΔX(x), i.e., let p0, p1 ∈ δ−1
X , let w ∈ gδZK(p1), let p2 ∈ δ−1

W (w),
and let y = δYH(p0, p2). Again, since there exists a realizer G � g such that



518165-L-bw-Nobrega518165-L-bw-Nobrega518165-L-bw-Nobrega518165-L-bw-Nobrega
Processed on: 21-3-2018Processed on: 21-3-2018Processed on: 21-3-2018Processed on: 21-3-2018 PDF page: 33PDF page: 33PDF page: 33PDF page: 33
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G(K(p1)) = G(K(p0)) = p2, from H ◦(idωω×GK) � f it now follows that y ∈ f(x)
as desired.

(3b ⇒ 3c) Suppose h ◦(idX × gk)ΔX � f . Let k′ = k�dom(f), so that
dom(h ◦(idX × gk′)ΔX) = dom(f). Now let h′ : X × W Y with dom(h′) =
dom(h) be given by h′(x, y) = f(x)∪h(x, y). Since h is computable, so is h′. Now,
for any x ∈ dom(f) = dom(h′ ◦(idX × gk′)ΔX) we have h′ ◦(idX × gk′)ΔX(x) =
h′(x, gk(x)) = f(x) ∪ h(x, gk(x)) = f(x), as desired.

(3c ⇒ 3a) Suppose f = h ◦(idX×gk)ΔX. Let H � h and K � k be computable.
Then, also using that idωω � idX and Δωω � ΔX, we have

f = h ◦(idX × gk)ΔX

� δYH ◦(δ−1
X × δ−1

W ) ◦(δXidωωδ−1
X × gδZKδ−1

X ) ◦(δX × δX)Δωωδ−1
X

= δYH ◦(δ−1
X δXidωωδ−1

X δX × δ−1
W gδZKδ−1

X δX)Δωωδ−1
X

� δYH ◦(idωω × δ−1
W gδZK)Δωωδ−1

X .

Therefore, for any G : ωω ωω, we have that if G � g, i.e., if G � δ−1
W gδZ, then

δYH ◦(idωω ×GK)Δωωδ−1
X � f , i.e., H ◦(idωω ×GK)Δωω � f , as desired.

1.32 Corollary. If f is tightened by g and g is (strongly) Weihrauch-reducible
to h, then f is (strongly) Weihrauch-reducible to h.

Although the Weihrauch degrees form a very rich algebraic structure (cf.,
e.g., [14, 17,47] for surveys covering this aspect of the Weihrauch lattice), in this
thesis we only need two operations on the Weihrauch degrees, parallelization and
sequential composition. Given a map f : X Y between represented spaces,
its parallelization is the map f̂ : Xω Yω given by 〈yn〉n∈ω ∈ f̂(〈xn〉n∈ω) iff
yn ∈ f(xn) for each n ∈ ω. We say that f is parallelizable if f ≡W f̂ . It is not
hard to see that parallelization is a closure operator in the Weihrauch degrees.
Rather than defining the sequential composition operator � explicitly as in [17],
we will make use of the following characterization:

1.33 Theorem (Brattka & Pauly [17, Corollary 18]). For any f and g, we have

f � g ≡W max
�W

{f ′ ◦ g′ ; f ′ �W f ∧ g′ �W g ∧ f ′ ◦ g′ is defined}.

Represented spaces of continuous functions

It is a foundational result in effective descriptive set theory that the continuous
single-valued partial functions on ωω are exactly those which are computable
relative to some oracle (cf. also Theorem 2.8 below), and that therefore the
continuous multi-valued partial functions between two represented spaces X and
Y are exactly those possessing some realizer which is computable relative to some
oracle. With this in mind, it is a natural idea to attempt to define a represented
space of the continuous multi-valued partial functions between X and Y by letting
p be a name for f iff p = 0n1q and the nth Turing machine computes some realizer
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Fp for f when given oracle q. However, with this naive definition the representation
fails to be a single-valued function, and this happens for two reasons. First, since
a realizer of a function also realizes any restriction of that function, it follows that
p as above would also be a name for any proper restriction of f . And second, it
could be that there exists a different multi-valued function g : X Y, say with
dom(g) = dom(f), such that f(x) ∩ g(x) 	= ∅ holds for all x ∈ dom(f). Then if
the realizer Fp of f happens to satisfy δY ◦Fp(r) ∈ (f ◦ δX(r))∩ (g ◦ δX(r)), we will
have that p is also a name for g.

There are (at least) two ways of solving these problems, and they result in
two different represented spaces. First, since the problems pointed out came from
the fact that f was partial and multi-valued, the idea works completely if f is
total and single-valued. We thus define the represented space C(X,Y) of the total
single-valued continuous functions between X and Y, as above.

For the second solution, intuitively we want to change the way the function Fp

simulates f by making it capture all values in the range of f , and only computing
on valid inputs for f . Since realizers are required to be single-valued, the first of
these requirements is met by using a second oracle for the Turing machine, so that
varying this oracle will allow us to capture the different outputs of f for a same
fixed input. For the second requirement, we stipulate that the Turing machine
must only compute names of elements of Y on inputs which are names of elements
of dom(f). Concretely, the space M(X,Y) of the strongly continuous functions
between X and Y is defined by letting p be a name for f iff p = 0n1q and, letting
M be the nth Turing machine, we have

(1) for every r ∈ dom(fδX) and every r′ ∈ ωω we have that M computes a
δY-name for an element of fδX(r) when given �r, r′� as input and q as oracle;

(2) for every x ∈ dom(f) and every y ∈ f(x) there exist a δX-name r for x and
an r′ ∈ ωω such that M computes a δY-name for y when given �r, r′� as input
and q as oracle;

(3) for every x ∈ X� dom(f), every δX-name r for x, and every r′ ∈ ωω, we have
that M does not compute an element in dom(δY) when given �r, r′� as input
and q as oracle.

In this case we also say that f is strongly continuous, and that M strongly
computes f with oracle p. As expected, if the oracle q ∈ ωω in the definition above
is computable then f is called strongly computable.

Every strongly continuous or strongly computable function is of course contin-
uous or computable, respectively. The converse fails, since the set of names for
elements in the domain of a strongly continuous function is a Π0

2 set—an element
is in that set iff for every length n there exists some stage of the computation of
the corresponding Turing machine with corresponding oracle at which at least
n numbers are written on the output tape—, and of course not every partial
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continuous or computable function has that property. However, for our purposes,
these strong notions capture the corresponding weaker notions well enough, due
to the following result.

1.34 Theorem (Brattka & Pauly [17, Lemma 13]). Every computable or con-
tinuous f : X Y has a strongly computable or strongly continuous, respectively,
tightening g : X Y.

Proof. We can assign to each Turing machine M and oracle q a function gM,q :
X Y given by dom(gM,q) = {δX(r) ; M produces an element of dom(δY) when
run on input r with oracle q} and gM,q(x) = {δY(q′) ; there exists a δX-name r for
x such that q′ is the output of M when run with input r and oracle q}. Now, if M
with oracle q computes a realizer for f : X Y, then it immediately follows that
gM,q � f . Finally, to see that gM,q is strongly continuous or strongly computable
(in case q is computable), let M ′ be the Turing machine which, on input �r, r′�
and with oracle q, simply runs the Turing machine M on input r and oracle q.
We now have that M ′ strongly computes gM,q with oracle q.
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Chapter 2

Games for functions on Baire space

Summary. In this chapter, we provide game characterizations of several
classes of functions. In § 2.1, we review games characterizing the class
of functions which are piecewise continuous on a countable partition of
their domains with closed parts, the Baire class 1 functions, the class
of functions which are piecewise continuous on a countable partition of
their domains with Π0

2 parts, the class of functions which are piecewise
Baire class 1 on a countable partition of their domains with Π0

2 parts,
the Baire class 2 functions, and the Borel measurable functions. Then,
in § 2.2, we present the main result of this chapter (Theorem 2.31), viz.
the definition of a family of games which characterize the Baire class α
functions for each α < ω1. Finally, in § 2.3, we present a construction
which transforms a game characterizing a subclass Γ of the Borel
measurable functions into a game characterizing the class of functions
which are piecewise Γ on a countable partition of their domains with
Π0

α parts (Theorem 2.61). This construction generalizes games due to
Andretta and Semmes from the literature (Corollary 2.64).

Remarks on authorship

Unless stated otherwise, definitions and results presented in this chapter are due
to the author.

2.1 Definitions and known results
Our general definitions of games and strategies, Definitions 2.1–2.3 below, are slight
modifications of the corresponding definitions given by Motto Ros in [69, § 3.1].

2.1 Definition. A game for functions, or simply a game when there is no risk
of ambiguity, is a tuple G = (M1,R1, ι1,M2|,R2|, ι2|) where, for p ∈ {1, 2|}, the set

25
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26 Chapter 2. Games for functions on Baire space

Mp 	= ∅ is called the set of moves for player p, the set Rp ⊆ Mω
p is called the set

of rules for p, and the function ιp : Rp ωω is called the interpretation function
for p.

Informally, we think of G as being played in ω rounds by two players, a male
player 1 and a female player 2|, who are both given knowledge of a partial function
f : ωω ωω beforehand. A run of G for f is a sequence of ω alternating moves
〈m0

1,m
0
2|,m

1
1,m

1
2|,m

2
1,m

2
2|, . . . ,m

n
1,m

n
2| , . . .〉 by 1 and 2|, starting with 1. We then say

that 2| wins the run if one of the following conditions is satisfied:

(1) m1 := 〈mn
1 ; n ∈ ω〉 	∈ ι−1

1 [dom(f)].

(2) m1 ∈ ι−1
1 [dom(f)], m2| := 〈mn

2| ; n ∈ ω〉 ∈ R2|, and ι2|(m2|) = f ◦ ι1(m1).

We depict a run of G for f in Figure 2.1.

Round 0 Round 1 Round 2 · · · After ω rounds

Player 1 m0
1 m1

1 m2
1 −→ m1 ∈ ι−1

1 [dom(f)]

Player 2| m0
2| m1

2| m2
2| −→ m2| ∈ R2|

Figure 2.1: Depiction of a run of G for f which 2| wins iff ι2|(m2|) = f ◦ ι1(m1).

Still informally, a strategy for player p is a function which takes as input a
partial run of the game at which it is now player p’s turn to play, and outputs
a move for p. A strategy ϑ for p in G for f is a winning strategy if p wins any
run of the game in which he or she plays according to ϑ. Finally, we say that G
characterizes a class Λ of partial functions on ωω if, for any f : ωω ωω, we have
f ∈ Λ iff 2| has a winning strategy in G for f .

We make these concepts mathematically precise as follows.

2.2 Definition. Let G = (M1,R1, ι1,M2|,R2|, ι2|) be a game. A run of G is a
sequence r ∈ (M1 ∪M2|)

�ω such that, for any n < |r|, we have r(n) ∈ M1 iff n is
even. Given a run r of G, we denote by r1 the sequence given by r1(n) = r(2n)
for each n such that 2n < |r|, and by r2| the sequence given by r2|(n) = r(2n+ 1)
for each n such that 2n+ 1 < |r|. A strategy for player p in G is a function which
associates to each finite run of G of even length, if p = 1, or of odd length, if
p = 2|, an element of Mp. We usually denote strategies for 1 by ζ and for 2| by
ϑ. Given a strategy ζ for 1 and sequence m2| ∈ Mω

2| , we define a run ζ ∗m2| of
G by recursion, letting (ζ ∗m2|)(0) = ζ(〈〉), and (ζ ∗m2|)(2n + 1) = m2|(n) and
(ζ ∗m2|)(2n + 2) = ζ((ζ ∗m2|)�(2n+ 2)) for each n ∈ ω. Analogously, given a
strategy ϑ for 2| and a sequence m1 ∈ Mω

1, we define a run m1 ∗ϑ of G by the
recursion (m1 ∗ϑ)(2n) = m1(n) and (m1 ∗ϑ)(2n+ 1) = ϑ((m1 ∗ϑ)�(2n+ 1)) for
each n ∈ ω.
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2.1. Definitions and known results 27

Note that the definitions of a game, of a run of a game, and of a strategy for a
player in a game do not depend on any particular given function in order to make
sense. However, the situation is different for the next definition.

2.3 Definition. Let G = (M1,R1, ι1,M2|,R2|, ι2|) be a game and f : ωω ωω

be a function. A strategy ζ for 1 is legal in G for f if (ζ ∗m2|)1 ∈ ι−1
1 [dom(f)]

holds for any m2| ∈ Mω
2| , and a legal ζ is a winning strategy for 1 in G for f if

f ◦ ι1((ζ ∗m2|)1) 	= ι2|(m2|) holds for any m2| ∈ Mω
2| . A strategy ϑ for 2| in G is legal

for m1 ∈ Mω
1 if (m1 ∗ϑ)2| ∈ R2| holds, and ϑ is legal for f if it is legal for any

m1 ∈ ι−1
1 [dom(f)]. Finally, if ϑ is legal strategy for 2| in G for f , then it is a

winning strategy if f ◦ ι1(m1) = ι2|((m1 ∗ϑ)2|) holds for any m1 ∈ ι−1
1 [dom(f)].

2.4 Convention. In all games we will consider from now on in this chapter,
the sets of moves and rules, as well as the interpretation function for 1, will be
fixed as M1 = ω, R1 = ωω, and ι1 = idωω , the identity function on ωω. In such
a setting, we can simplify matters considerably from the point of view of player
2|: a strategy ϑ for 2| is legal in G = (ω, ωω, idωω ,M2|,R2|, ι2|) for f if (x ∗ϑ)2| ∈ R2|

holds for any x ∈ dom(f), and a legal ϑ is a winning strategy for 2| in G for f if
f(x) = ι2|((x ∗ϑ)2|) holds for any x ∈ dom(f).

The prototypical example of a game for functions is the following.

2.5 Definition (Folklore). The Wadge game is the game in which 2| plays
elements of ω<ω, with the rule that they must converge monotonically to some
element of ωω. Formally, the Wadge game is the game (ω, ωω, idωω ,MW

2| ,RW
2| , ιW2| ),

with MW
2| = ω<ω, RW

2| = {m2| ∈ (MW
2| )ω ; ∀n < k(m2|(n) ⊆ m2|(m))∧∀∃n(|m2|(n)| �

)}, and ιW2| (m2|) =
⋃

n∈ω m2|(n).

2.6 Theorem (Folklore). The Wadge game characterizes the class of continuous
functions.

Proof. Given a function f : ωω ωω, define a strategy ϑ for 2| in the Wadge
game for f by letting ϑ(σ) be the longest τ ∈ ω<ω of length at most |τ | such
that f [σ] ⊆ [τ ]. If f is continuous, then for each x ∈ dom(f) we have that
〈|ϑ(x�n)| ; n ∈ ω〉 is unbounded in ω, implying that ϑ is a winning strategy for 2|
in the Wadge game for f .

Conversely, given a winning strategy ϑ for 2| in the Wadge game for f , for
any σ ∈ ωω we have that f−1[σ] = {x ∈ dom(f) ; ∃n ∈ ω(σ ⊆ ϑ(x�n))} is a
Σ0

1(dom(f)) set.

In what follows, games for functions will usually be defined only informally,
with the formal definitions being easily deduced in each case. One important
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28 Chapter 2. Games for functions on Baire space

motivation for considering games for functions is related to the following notion,
which goes back to the work of Turing.†

2.7 Definition. A function f : ωω ωω is type-two computable, or simply
computable, if there exists a Turing machine M with the property that for any
x ∈ dom(f), when M is started with x written on its input tape it writes all of
f(x) on its output tape without ever halting. In this case we also say that M
computes f . The function f is computable with an oracle if there exist an element
z ∈ ωω and a Turing machine M which computes f when given access to z as an
oracle.

The following result is a straightforward consequence of the definition; note
that a strategy for 2| in the Wadge game is a function of type ϑ : ω<ω ω<ω.

2.8 Theorem (Folklore). A function f : ωω ωω is

(1) type-two computable iff 2| has a winning strategy in the Wadge game for f
which is computable by a Turing machine.

(2) continuous iff it is computable with an oracle.

Therefore, in an intuitive sense, the Wadge game is what results from a Turing
machine when one relaxes the requirement that a program—i.e., the analogue of a
strategy—be computable. Following this paradigm, a game which characterizes a
class of functions makes explicit how much more powerful we have to make Turing
machines so that the resulting machines compute the functions in that class, and
in this way the complexity of that class is succinctly encapsulated. Furthermore,
also in the spirit of Theorem 2.8, one can use a game which characterizes a class
of functions to define a computable counterpart of that class in a natural way by
requiring computable winning strategies in the game.

2.9 Definition (Duparc, implicit in [29–31]). The eraser game is the game in
which 2| plays elements of ω<ω, with the rule that they must converge pointwise
to some element of ωω.

2.10 Theorem (Duparc, implicit in [29–31]). The eraser game characterizes the
class of Baire class 1 functions.

†Although computability theory has classically mostly been associated with the study of the
computable functions of natural numbers and other countable structures, it is interesting to
note that Turing’s seminal papers on the subject are in fact concerned with what we have called
type-two computations of real numbers and real-valued functions. In fact, the very opening
sentence of [94] reads ‘The “computable” numbers may be described briefly as the real numbers
whose expressions as a decimal are calculable by finite means,’ i.e., the computable real numbers
are those with decimal expressions which are writable by a Turing machine in the type-two sense.
(See also the correcting addendum to [94] showing that there are better ways of representing
real numbers than by their decimal expansions [95].) We refer the reader to [6, § 2.3] for a
thorough historical account of Turing’s interest and involvement in computable real numbers
and computable real analysis.



518165-L-bw-Nobrega518165-L-bw-Nobrega518165-L-bw-Nobrega518165-L-bw-Nobrega
Processed on: 21-3-2018Processed on: 21-3-2018Processed on: 21-3-2018Processed on: 21-3-2018 PDF page: 41PDF page: 41PDF page: 41PDF page: 41

2.1. Definitions and known results 29

Proof. Given a Baire class 1 function f : ωω ωω, there exists a family {Aσ,n ∈
Σ0

1(dom(f)) ; σ ∈ ω<ω
�=0 ∧ n ∈ ω} of sets such that f−1[σ] =

⋃
n∈ω Aσ,n holds for

each σ ∈ ω<ω
�=0 . For each  > 0, fix some enumeration b� of all pairs (σ, n) where

σ ∈ ω� and n ∈ ω. We define a strategy ϑ for 2| in the eraser game for f as
follows. Given σ ∈ ω<ω

�=0 , for each i ∈ {1, . . . , |σ|} let (τi, ni) be the least element
according to the enumeration bi satisfying [σ] ∩ Aτi,ni

	= ∅ . Then let N � |σ| be
greatest such that τ1 ⊂ τ2 ⊂ · · · ⊂ τN , and define ϑ(σ) := τN . Let x ∈ dom(f)
and  > 0. There exists some least i ∈ ω such that b�(i) = (τ, n) satisfies x ∈ Aτ,n.
In particular τ = f(x)�|τ |. It now follows that there exists some m such that
τ ⊆ ϑ(x�k) for all k � m, and we are done.

Conversely, if ϑ is a winning strategy for 2| in the eraser game for f : ωω ωω,
then for each σ ∈ ω<ω

�=0 we have that f−1[σ] = {x ∈ dom(f) ; ∃n∀m � n(σ ⊆
ϑ(x�m))} is a Σ0

2(dom(f)) set.

We can now prove the α = 1 case of the missing direction of Theorem 1.22.

2.11 Corollary (Folklore). If a function f : ωω ωω is Σ0
2-measurable then it

is the pointwise limit of a sequence of continuous functions.

Proof. If ϑ is a winning strategy for 2| in the eraser game for f , then for each
n ∈ ω let fn : dom(f) ωω be given by fn(x) = ϑ(x�n)�0ω. Clearly each fn is a
continuous function, and since 〈ϑ(x�n) ; n ∈ ω〉 converges pointwise to f(x) for
each x ∈ dom(f), the same holds true for 〈fn(x) ; n ∈ ω〉.

The proof of Corollary 2.11 is a simple but illustrative example of how games
can be useful in proving results about classes of functions on ωω.

2.12 Definition (Van Wesep [97] apud Andretta [3]). The backtrack game is the
game in which 2| plays elements of ω<ω, with the rule that after some finite number
of rounds the finite sequences of natural numbers played by 2| must converge
monotonically to some element of ωω.

Equivalently, the backtrack game is the game in which 2| builds finitely many
sequences of elements of ω<ω, without any a priori bound on how many, each
sequence monotonically converging to an element of ω�ω. The rule is that exactly
one of these sequences must converge to an element of ωω.

We refer to the elements of the nth sequence of elements of ω<ω built by 2|
during a run of the backtrack game as the contents of the nth tape.

2.13 Theorem (Van Wesep [97] apud Andretta [3]). The backtrack game char-
acterizes the class of functions which are piecewise continuous on a Π0

1 partition.

Proof. Let f be piecewise continuous on the Π0
1 partition 〈An ; n ∈ ω〉. For each

n, let ϑn be a winning strategy for 2| in the Wadge game for f�An. Then it is easy
to check that a winning strategy ϑ for 2| in the backtrack game for f can be given
by ϑ(σ) = ϑn(σ) for n least such that [σ] ∩ An 	= ∅.
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30 Chapter 2. Games for functions on Baire space

Conversely, if ϑ is a winning strategy for 2| in the backtrack game for f , then
letting An = {x ∈ dom(f) ; 〈ϑ(x�m) ; m � n〉 is monotone} it follows that f�An

is continuous. Indeed, a winning strategy for 2| in the Wadge game for f�An is
simply to play 〈〉 for n rounds, then follow ϑ. Since 〈An ; n ∈ ω〉 is a Π0

1 cover of
dom(f), by Corollary 1.27 we are done.

By the Jayne-Rogers theorem, Theorem 1.28, the backtrack game also charac-
terizes the Δ0

2 functions.
The study of games for functions on ωω was greatly advanced by Semmes’s

PhD thesis [92] containing (among other things) the multitape game, the multitape
eraser game, the tree game, and the game he called G1,3.

2.14 Definition (Semmes [91, § 6]). In the multitape game, player 2| builds
countably-many sequences of elements of ω<ω, each sequence monotonically con-
verging to an element of ω�ω. The rule is that exactly one of these sequences must
converge to an element of ωω.

2.15 Theorem (Andretta & Semmes [91, Theorem 6.1]). The multitape game
characterizes the class of functions which are piecewise continuous on a Π0

2 parti-
tion.

Proof. Let f be piecewise continuous on the Π0
2 partition 〈An ; n ∈ ω〉. For each

n, let 〈An,m ; m ∈ ω〉 be Σ0
1(dom(f)) sets such that An =

⋂
m∈ω An,m. Also, for

each n ∈ ω let ϑn be a winning strategy for 2| in the Wadge game for f�An.
We define a strategy ϑ for 2| in the multitape game for f as follows. We have
ω-many tapes; on the nth we play according to ϑn. However, if ϑn(σ) tells 2|
to play a different sequence on tape n for the mth time, we will only do this if
[σ] ⊆ ⋂

k�m An,k. In this way exactly one tape—the nth tape where n is such that
the sequence x ∈ dom(f) that player 1 is building belongs to An—contains a
sequence of elements of ω<ω which converges to an element of ωω, and it is now
easy to see that ϑ is a winning strategy.

Conversely, if ϑ is a winning strategy for 2| in the multitape game for f , then
letting An = {x ∈ dom(f) ; the nth tape is infinite when 2| follows ϑ against
x} it follows that f�An is continuous. Indeed, a winning strategy for 2| in the
Wadge game for f�An is simply to copy the moves 2| makes on her nth tape when
following ϑ and ignore all other tapes. Since 〈An ; n ∈ ω〉 is a partition of dom(f),
all that remains is to show that each An ∈ Π0

2. This follows by noting that
An = {x ∈ dom(f) ; for each  ∈ ω there exists some round r of the game when 2|
follows ϑ against x at which 2| adds an element of ω<ω of length at least  to her
nth tape}.

By Semmes’s decomposition theorem, Theorem 1.29, the multitape game also
characterizes the class of Δ0

3-functions.
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2.16 Definition (Semmes [91, § 7]). In the multitape eraser game, player 2|
builds ω-many sequences of elements of ω<ω, each sequence converging pointwise
to an element of ω�ω. The rule is that exactly one of these sequences must converge
to an element of ωω.
2.17 Theorem (Semmes [91, Theorem 7.1]). The multitape eraser game charac-
terizes the class of functions which are piecewise Baire class 1 on a Π0

2 partition.

Proof. Analogous to the proof of Theorem 2.15, using the eraser game instead of
the Wadge game.

Again by Semmes’s decomposition theorem, the multitape eraser game also
characterizes the class of functions for which the preimage of any Δ0

2 set is a Δ0
3

set.
2.18 Definition (Semmes [92]). In the tree game, player 2| plays finite labeled
trees, with the rule that the sequence of labeled trees played be a chain with
respect to the labeled subtree relation and that the union of this chain, which we
call the final tree, have exactly one infinite branch. The interpretation function
associates to the final tree the sequence of labels along its unique infinite branch.

Thus, in a typical run of the tree game for a function f : ωω ωω, player
1 builds some x ∈ dom(f) one element at a time, as usual, and 2| responds at
each round by adding finitely many new nodes and their labels to the tree she is
building. Intuitively, with the running labels of the labeled tree she is building, 2|
is trying to approximate the sequence f(x). It is her task to ensure that these
approximations cohere correctly, in the sense that the final tree she is building
towards has only one infinite branch, and that this branch has as running label
exactly f(x).

Since the tree game and restrictions thereof will be central to the discussion
for the remainder of this chapter and most of this thesis, it will be convenient
to introduce the following notation. Given x ∈ ωω and a strategy ϑ for 2| in the
tree game which is legal for x, we denote by Υϑ

x the final tree built by 2| in a run
of the tree game in which player 1 plays x and 2| follows ϑ. In other words, if
(x ∗ϑ)2| = 〈(Tn, ϕn) ; n ∈ ω〉 then Υϑ

x := (
⋃

n∈ω Tn,
⋃

n∈ω ϕn).
2.19 Theorem (Semmes [92, Theorem 2.0.9]). The tree game characterizes the
class of all Borel measurable functions.
2.20 Definition (Semmes [92]). The game G1,3 is the tree game with additional
rule that the final tree must be finitely branching outside of its infinite branch.
2.21 Theorem (Semmes [92, Theorem 4.1.1]). The game G1,3 characterizes the
Baire class 2 functions.

We omit the proofs of Theorems 2.19 and 2.21 since they are fairly involved
and follow from our main results of this chapter, Theorems 2.31 and 2.50. For
now, let us note that these theorems naturally suggest the following avenue for
investigation.
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2.22 Problem. Given a subclass Λ of the class of all Borel measurable functions,
find a rule that when added to the tree game results in a game characterizing Λ.

It is not hard to restate the game characterizations we have seen in this section
in the framework of Problem 2.22.

2.23 Theorem (Folklore). The tree game with additional rule that the final tree
must be

(1) linear

(2) finitely branching

(3) finitely branching at the root and linear elsewhere

(4) linear outside the root

(5) finitely branching outside the root

characterizes the class of

(1′) continuous functions

(2′) Baire class 1 functions

(3′) functions which are piecewise continuous on a Π0
1 partition

(4′) functions which are piecewise continuous on a Π0
2 partition

(5′) functions which are piecewise Baire class 1 on a Π0
2 partition,

respectively.

Proof. In each case, we want to prove that a game G which we know characterizes
the class in question, e.g., the Wadge game, the eraser game, etc., is equivalent to
the corresponding restricted tree game, i.e., that 2| has a winning strategy in one
game iff she has a winning strategy in the other.

Starting from a winning strategy ϑ for 2| in G, a winning strategy ϑ′ for her in
the restricted tree game can be obtained as follows. For the Wadge and eraser
games, at any round of the game ϑ′ tells 2| to play the least tree which contains
all of the finite sequences that ϑ has told her to play up to and including that
round, with ⊥ as the labeling function (i.e., so that each node of the tree is equal
to its own running label). For the backtrack, multitape, and multitape eraser
games, whenever ϑ tells 2| to add some element τ ∈ ω<ω

�=0 to her nth tape, ϑ′ tells
her to add 〈n〉�(shift(τ)�m) to her tree with label τ(m − 1), for each non-zero
m � |τ |. It is now routine to check that the rules of the Wadge, eraser, backtrack,
multitape, and multitape eraser games, respectively, imply that ϑ′ builds a final
tree as specified in (1)–(5), and that ϑ′ is a winning strategy follows directly from
the fact that ϑ is.
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Conversely, given a winning strategy ϑ for 2| in one of the restricted tree games,
one can define a winning strategy ϑ′ for 2| in the corresponding game among the
Wadge, eraser, backtrack, multitape, and multitape eraser game, respectively, as
follows.

For the Wadge and eraser games, for each σ let σ∗ be the longest running label
of ϑ(σ) with the property that all running labels of ϑ(σ) which were not present
in ϑ(σ−) are compatible with σ∗, and then define ϑ′(σ) = σ∗. It is easy to see
that, for any x ∈ dom(f), the sequence 〈ϑ′(x�n) ; n ∈ ω〉 converges monotonically
or pointwise to the unique infinite running label of Υϑ

x, when ϑ is a legal strategy
for 2| in the Wadge or eraser game, respectively, for f .

For the backtrack, multitape and multitape eraser games, we just repeat the
idea above for each tree Com(ϑ(σ), 〈n〉), i.e., for each σ and n ∈ ω let σ∗

n be the
longest running label of ϑ(σ) of nodes compatible with 〈n〉 with the property that
all running labels of ϑ(σ) of nodes compatible with 〈n〉 which were not present in
ϑ(σ−) are compatible with σ∗

n. Then add σ∗
n to the nth tape. It is again routine

to check that, for any x ∈ dom(f),

(i) when ϑ is a legal strategy for 2| in the backtrack, multitape, or multitape
eraser game for f , then each sequence 〈(x�m)∗n ; m ∈ ω〉 converges monoton-
ically, in the backtrack and multitape cases, or pointwise, in the multitape
eraser case, to some element of ω�ω;

(ii) exactly one such sequence converges in the appropriate way to an element
of ωω;

(iii) that element of ωω is exactly the unique infinite running label of Υϑ
x.

Since ϑ is assumed to be a winning strategy for 2| in the corresponding game for
f , in any of the five cases the infinite running label of Υϑ

x is exactly f(x), so we
are done.

Labeled versus unlabeled trees

It is natural to question† whether the use of labeled trees in Theorems 2.19, 2.21,
and 2.23 is in some way essential, or if they can be done away with in favor of the
conceptually simpler unlabeled trees.

This is indeed the case for the classes of continuous and Baire class 1 functions.
For continuous functions this is immediate, since it is intuitive that labels are of
no use on a linear tree: instead of adding a node σ with running label τ to her
tree, 2| can simply add τ to her tree directly. For finitely branching trees, we have
that a labeled tree Υ is a finitely branching tree with a unique infinite branch
labeled y ∈ ωω iff the set of running labels occurring in Υ is a finitely branching
tree with y as its unique infinite branch, from which the result follows.

†Indeed, it is reported that this question was asked by many readers of Semmes’s thesis.
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However, labeled trees are necessary even for the tree version of the backtrack
game as stated. Consider, for example, the set A of those x ∈ ωω for which
there exists a unique n ∈ ω such that n 	∈ ran(x), let An be the closed subset
of A formed by those x which do not contain n in their range, and finally let
f : A ωω be given by f(x) = 0n+1�1ω iff x ∈ An. Then f is constant on the
closed partition 〈An ; n ∈ ω〉 of its domain, but 1 has a winning strategy in the
unlabeled tree game with the additional rule that the final tree must be finitely
branching at the root and linear elsewhere: for example, 1 can start by playing
r + 1 at each round r, so that it looks like 0 will be left out, until a round R at
which 2| adds the sequence 〈0, 1〉 to her tree—note that if no such round exists
then 1 wins. At the next round, i.e., round R+1, player 1 plays 0 then goes back
to playing r + 1 at each subsequent round r > R + 1, so that only R + 2 is left
out of her infinite sequence. But now 2| cannot make 0R+3�1ω an infinite branch
of her tree without adding a non-root branching node to her tree, so she loses.

One could argue that the requirement in the tree version of the backtrack
game, viz. that the final tree must be finitely branching only at the root and
linear elsewhere, is too restrictive. For example, the (unlabeled) tree game with
additional rule that the final tree must be finitely branching with only finitely
many branching nodes does characterize the class of functions which are piecewise
continuous on a closed partition, as we will see in Proposition 2.24 below.

However, the situation with proper superclasses of the Baire class 1 functions
shows that labels are necessary in a deeper sense. Consider, for example, the
class of functions characterized by the multitape game. There exist functions
g in that class which are not of Baire class 1 but such that ran(g) ⊆ 2ω. Thus
a winning strategy for 2| in the unlabeled tree game for g would always build
finitely branching final trees, a contradiction since g is not Baire class 1. To see
an example of such a function g, let us say that x ∈ ωω hits n ∈ ω infinitely
often if x(m) = n for infinitely many m. Now let A be the set of those x ∈ ωω

for which there exists a unique n ∈ ω which x hits infinitely often, let An be the
Π0

2(A) subset of A formed by those x which hit n infinitely often, and finally let
g : A ωω be given by g(x) = 0n�1ω iff x ∈ An. A winning strategy for 1 in the
finitely branching unlabeled tree game can be defined by playing 1 repeatedly
until 2| adds 〈0, 1〉 to her tree, at which point 1 plays a 0 then plays 2 repeatedly
until 2| adds 〈0, 0, 1〉 to her tree, at which point 1 plays a 0 then plays 3 repeatedly
until 2| adds 〈0, 0, 0, 1〉 to her tree, and so on. Then either 2| builds a tree with
infinitely many branching nodes or she does not build a tree with the correct
infinite branch, losing either way.

2.24 Proposition (N.). The unlabeled tree game with additional rules that
the final tree must be finitely branching and have only finitely many branching
nodes characterizes the class of functions which are piecewise continuous on a Π0

1

partition.

Proof. Given a function f which is piecewise continuous on a Π0
1 partition 〈An ; n ∈
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ω〉, let ϑ be a winning strategy for 2| in the (labeled) tree game version of the
backtrack game. Then the strategy ϑ′ defined by letting ϑ′(σ) be the collection of
all running labels of ϑ(σ) is easily seen to be winning for 2| in the unlabeled tree
game described in question.

Conversely, let ϑ be a winning strategy for 2| in the unlabeled tree game
described in question for f . Given σ ∈ ω<ω

�=0 , we define σ∗ as the longest element of
ϑ(σ) such that all elements of ϑ(σ) which are not elements of ϑ(σ�n) for any n < |σ|
are compatible with σ∗. Let us say that ϑ changes mind about σ if (σ−)∗ � σ∗.
Since ϑ is a winning strategy for 2|, it follows that for any x ∈ dom(f) we have
that ϑ changes mind about x some finite number N of times, i.e., ϑ changes mind
about x�m for exactly N natural numbers m. Now let An := {x ∈ dom(f) ; ϑ
changes mind about x exactly n times}. Then f�An is continuous, since a winning
strategy for 2| in the Wadge game for f�An is to play 〈〉 until ϑ has changed mind
n times, then follow ϑ. Finally, each An set is the intersection of an open and a
closed set, and therefore a Σ0

2(dom(f)) set, so by Corollary 1.27 we are done.

In the remainder of the present chapter we will give a solution to Problem 2.22
for the class of Baire class α functions for each α < ω1 (Theorem 2.31), and
a construction which transforms a solution of Problem 2.22 for a class Λ into
solution for the class of functions which are piecewise Λ on a Π0

α partition, for
any α > 0 (Theorem 2.61). In particular we get games characterizing the class of
functions which are piecewise Baire class β on a Π0

α partition, for any α, β < ω1

with α > 0 (Corollary 2.64).

In [69], Motto Ros also defined games characterizing these classes; however, he
describes his game characterizing the Borel measurable functions as being “less
informative than [the tree game]”, and makes similar comments about his game
construction which entails games characterizing the functions of any fixed Baire
class, calling them “quite trivial” [69, p. 105]. Since they are direct modifications
of Semmes’s tree game, the games and constructions we define are certainly more
in the spirit of what Motto Ros would call informative.

We should also like to mention that Louveau has announced that, in collabo-
ration with Semmes, he has independently obtained a level-by-level analysis of
Semmes’s tree game (such an announcement was made, e.g., at a talk given by
Louveau in Amsterdam in 2010 [62]); thus it is possible that game characteriza-
tions of the Baire classes were independently proved by Louveau and Semmes.
Unfortunately, we do not know any more details about the Louveau-Semmes
results, since their results are as yet unpublished and no written version has been
made publicly available.
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2.2 Games for each fixed Baire class

2.2.1 The relaxed tree game

Our first step towards modifying the tree game to characterize any given Baire
class is noting that the requirement that the final tree have a unique infinite branch
can be somewhat loosened, which will make some of the proofs to come easier,
in particular when characterizing the class of Baire class α functions for even α.
This modification is not essential; in Section 2.2.3 we describe how to modify our
proofs so as to obtain corresponding results using restrictions of Semmes’s original
tree game.

2.25 Definition. The relaxed tree game is the modification of the tree game
obtained by requiring that the final tree played by 2| must have at least one infinite
branch but only one infinite running label. The interpretation function associates
to the final tree its unique infinite running label.

To avoid confusion, in what follows we will refer to Semmes’s original tree
game, Definition 2.18, as the strict tree game.

2.26 Theorem. The relaxed tree game characterizes the class of Borel measurable
functions.

Proof. If f is Borel measurable, then by Semmes’s theorem (Theorem 2.19) it
follows that there exists a winning strategy for 2| in the strict tree game for f , and
that same strategy is of course also a winning strategy for 2| in the relaxed tree
game for f .

Conversely, if ϑ is a winning strategy for 2| in the relaxed tree game for f , then
for each σ ∈ ω<ω we have that

f−1[σ] = {x ∈ dom(f) ; there exists an infinite branch of Υϑ
x

whose running label extends σ}

is an analytic set. Since [σ] is clopen, this suffices to show that f is Borel
measurable.

We will give a standalone proof of Theorem 2.26, i.e., one that does not appeal
to Semmes’s theorem, as a consequence of our main theorem of this section,
Theorem 2.31.

2.2.2 The pruning derivative

We now define the main operation on trees which will be used through most of
this thesis.
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2.2. Games for each fixed Baire class 37

2.27 Definition. Given a tree T ⊆ ω<ω, the pruning derivative of T , denoted
PD(T ), is the tree

PD(T ) = {σ ∈ T ; the subtree of T rooted at σ has infinite rank}.
As usual, we can define transfinite iterations of the derivative operation by the
following recursion.

PD�(T, 0) := T
PD�(T, α + 1) := PD(PD�(T, α))

PD�(T, λ) :=
⋂
α<λ

PD�(T, α) for limit λ > 0.

Note that PD(T ) = T iff T is a pruned tree and that for any tree T ⊆ ω<ω

there exists some countable ordinal α such that PD�(T, α) is a pruned tree.
2.28 Lemma (N. & Pauly). For σ ∈ T , we have σ ∈ PD�(T, α) iff rkT (σ) � ω ·α.

Proof. By induction on α, the base case α = 0 being immediate. For the limit
case, we have

σ ∈ PD�(T, α) iff σ ∈ PD�(T, β) for every β < α
iff rkT (σ) � ω · β for every β < α
iff rkT (σ) � ω · α.

Finally, for the successor step, let α = β + 1. Then

σ ∈ PD�(T, α) iff ∀n ∈ ω∃τ ∈ PD�(T, β)(σ ⊂ τ ∧ |τ | � |σ|+ n)
iff ∀n ∈ ω∃τ ∈ T (rkT (τ) � ω · β ∧ σ ⊂ τ ∧ |τ | � |σ|+ n)
iff rkT (σ) � ω · β + ω = ω · α,

which concludes the proof.

As indicated in Remark 1.15, we can extend these operations to labeled trees
by letting PD�((T, ϕ), α) be the subtree of (T, ϕ) induced by PD�(T, α), for each
ordinal α.
2.29 Corollary. If Υ � Υ′ then PD�(Υ, α) � PD�(Υ′, α) for any α < ω1.

Proof. Follows directly from Lemmas 1.17 and 2.28.

2.2.3 The α-tree game
Given an ordinal α = λ+ n, we define two ordinals α↓ and α

� by letting

α↓ = λ+ �n
2
 

α

�

= λ+ !n
2
".

Clearly, α � � α↓ � α

�

+ 1, and α is even iff α

�

= α↓.
We are now ready to define the game which characterizes the class of Baire

class α functions.
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2.30 Definition. The α-tree game is the relaxed tree game with additional rule
that the final tree Υ built by player 2| must satisfy that

(1) PD�(Υ, α

�

)) is bisimilar to a finitely branching tree; and

(2) PD�(Υ, α↓)) is bisimilar to a linear tree.

2.31 Theorem. The α-tree game characterizes the class of Baire class α func-
tions.

As usual for game characterizations, one direction of Theorem 2.31 is signifi-
cantly easier to prove.
2.32 Lemma. Given a strategy ϑ for 2| in the relaxed tree game, a limit ordinal
λ, a natural number n, and σ ∈ ω<ω, let X(ϑ, σ, λ + n) := {x ∈ ωω ; σ ∈
PD�(Υϑ

x, λ+n)}. Then X(ϑ, σ, 0) ∈ Σ0
1 and X(ϑ, σ, λ+n) ∈ Π0

λ+2n for λ+n > 0.

Proof. We have x ∈ X(ϑ, σ, 0) iff there exists a round r at which ϑ tells 2| to add
σ to her tree when following ϑ against x, which is a Σ0

1 condition.
The other cases are done by induction on λ+ n. For the base case λ+ n = 1,

note that σ ∈ PD�(Υϑ
x, 1) iff for all d ∈ ω there exists σ′ ∈ ω<ω such that

σ ⊆ σ′, |σ′| � d, and x ∈ X(ϑ, σ′, 0). By the previous case of the proof, it then
follows that X(ϑ, σ, 1) ∈ Π0

2. For the limit case λ > 0 and n = 0, note that
x ∈ X(ϑ, σ, λ) iff x ∈ X(ϑ, σ, γ) for all γ < λ. By induction hypothesis we have
X(ϑ, σ, γ) ∈ Π0

<λ = Σ0
<λ for each γ < λ, so X(ϑ, σ, λ) ∈ Π0

λ. The successor
step λ + n + 1 is similar to the base case; we have x ∈ X(ϑ, σ, λ + n + 1) iff
for all d there exists σ′ such that σ ⊆ σ′, |σ′| � d, and x ∈ X(ϑ, σ′, λ + n). By
induction hypothesis we have X(ϑ, σ′, λ + n) ∈ Π0

λ+2n, so it now follows that
X(ϑ, σ, λ+ n+ 1) ∈ Π0

λ+2n+2 as desired.

Partial proof of Theorem 2.31. Let ϑ be a winning strategy for 2| in the α-tree
game, and let us prove that f−1[σ] ∈ Σ0

α+1(dom(f)) holds for each σ ∈ ω<ω
�=0 .

Note that Lemma 2.32 immediately gives the desired result in case α = λ+2n,
since then α↓ = λ + n and since by assumption we have that PD�(Υϑ

x, α↓) is
bisimilar to an infinite linear tree, it follows that for each σ ∈ ω<ω we have
σ ⊂ f(x) iff there exists τ ∈ PD�(Υϑ

x, λ+ n) such that ϕ̃x(τ) = σ. From this we
get f−1[σ] ∈ Σ0

λ+2n+1, as desired.
For the case α = λ+ 2n+ 1, note that since Υϑ

x := PD�(Υϑ
x, α

�

) is bisimilar to
a finitely branching tree for each x ∈ dom(f), it follows that for each such x and
m ∈ ω there exists H ∈ ω such that any node of Υϑ

x of length m is either on the
infinite branch of Υϑ

x or has no descendants in Υϑ
x of length at least H. Therefore

we have σ ⊂ f(x) iff there exists H ∈ ω such that for any τ ∈ Level(Υϑ
x, H), either

σ ⊂ ϕ̃x(τ) or τ 	∈ Υϑ
x. From this we get f−1[σ] ∈ Σ0

λ+2n+2, as desired.

The remainder of this section is dedicated to the proof of the converse direction,
so let f : ωω ωω be a given function of Baire class α and let us define a winning
strategy for 2| in the α-tree game for f .
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Idea of the proof. The heart of the idea behind the proof is the following. Given
σ ∈ ω<ω and x ∈ dom(f), deciding whether σ ⊂ f(x) holds is equivalent to
deciding the membership of x in a certain Σ0

α+1 set which we denote [[σ]]. Via
diligent coding, we make each node τ in ω<ω with length n > 0 encode a guess
for a node σ ∈ ωn, intentionally claiming that σ ⊂ f(x), i.e., that x ∈ [[σ]] will
hold for the x that player 1 is building. If [[σ]] is an open set, then we can make
sure to only add τ to the tree Υ we are building when this claim proves to be
true; otherwise, if [[σ]] is more complex, then there exist countably many sets from
lower levels of the Borel hierarchy, which we denote [[〈σ〉 ⊕ n]] for n ∈ ω, such that
[[σ]] =

⋃
n∈ω[[〈σ〉 ⊕ n]]. Then our diligent coding will also ensure that τ encodes a

guess for some n ∈ ω, again intentionally claiming that x ∈ [[〈σ〉 ⊕ n]] will hold. If
[[〈σ〉 ⊕ n]] is a closed set and at some stage of the construction of Υ we find that
x 	∈ [[〈σ〉 ⊕ n]] holds, then we will cease adding extensions of τ to Υ. Otherwise,
if [[〈σ〉 ⊕ n]] is more complex, then again there exist countably many sets from
lower levels of the Borel hierarchy, which we denote [[〈σ〉 ⊕ n ⊕ m]] for m ∈ ω,
such that [[〈σ〉 ⊕ n]] =

⋂
m∈ω[[〈σ〉 ⊕ n ⊕ m]]. In this case, the task of verifying or

falsifying the claim x ∈ [[〈σ〉 ⊕ n]] is distributed among the descendants of τ in Υ.
For each m ∈ ω, if [[〈σ〉 ⊕ n ⊕ m]] is an open set, then we only add descendants
of τ of length |τ | +m + 1 to the tree after x ∈ [[〈σ〉 ⊕ n ⊕ m]] is proven to be
true. Otherwise, if [[〈σ〉 ⊕ n ⊕ m]] is more complex, then again there exist sets
from lower in the Borel hierarchy, which we denote [[〈σ〉 ⊕ n ⊕ m ⊕ k]], such
that [[〈σ〉 ⊕ n ⊕ m]] =

⋃
k∈ω[[〈σ〉 ⊕ n ⊕ m ⊕ k]]. Via coding we make it so that

each descendant τ ′ of τ in ω<ω of length |τ | +m + 1 encodes a guess for some
k, intentionally claiming x ∈ [[〈σ〉 ⊕ n ⊕ m ⊕ k]], and the whole process is then
iterated. Then we will have that only nodes of Υ which only make correct guesses
survive α↓ pruning derivatives, which will imply that PD�(Υ, α↓) is bisimilar to a
linear tree.

In case α is odd, one additional caveat is that we want to make sure that the
first guess made by τ , viz. of some σ and n intentionally claiming x ∈ [[σ ⊕ n]], is
actually the least witness for x ∈ ⋃

n′∈ω[[σ ⊕ n′]]. Thus, for each n′ < n, denoting
[[σ $ n′]] = ωω� [[σ ⊕ n′]], the node τ also makes the claim that x ∈ [[σ $ n′]]. Once
more, if [[σ $ n′]] is an open set, then we only add τ to the tree after this claim is
proven true; otherwise, there exist sets from lower levels of the Borel hierarchy,
which we denote [[σ $ n′ ⊕ m]], satisfying [[σ $ n′]] =

⋃
m∈ω[[σ $ n′ ⊕ m]], and

τ encodes a guess for some m intentionally claiming [[σ $ n′ ⊕ m]]. This idea is
then iterated, as above. As we will see, if x ∈ [[σ $ n′]] actually holds for some
n′ < n, then τ will not survive α

� derivatives of the tree. This will imply that
PD�(Υ, α

�

) is bisimilar to a finitely branching tree.

Let us start by defining

T := {〈σ, n0, . . . , nk−1〉 ; σ ∈ ω<ω, k ∈ ω, and ni ∈ ω for each i < k}.
Elements of T are called trails, and for a nonempty trail t ∈ T the sequence t(0)



518165-L-bw-Nobrega518165-L-bw-Nobrega518165-L-bw-Nobrega518165-L-bw-Nobrega
Processed on: 21-3-2018Processed on: 21-3-2018Processed on: 21-3-2018Processed on: 21-3-2018 PDF page: 52PDF page: 52PDF page: 52PDF page: 52

40 Chapter 2. Games for functions on Baire space

is called the owner of t. Given u ∈ T ∪ ω<ω and n ∈ ω, let

u ⊕ n = u�〈2n〉
u $ n = u�〈2n+ 1〉.

In an intuitive sense, trails provide paths through certain families of Borel codes
in the following definition. Let g : ωω ωω. A complete system for g is
a triple C = (C Σ,C Π, [[·]]) where C Σ and C Π are disjoint subsets of T and
[[·]] : C Σ ∪ C Π P(ωω), such that C satisfies the following properties.

(C1) For each t ∈ C Σ ∪C Π the set [[t]] is a Borel subset of ωω; we define the Borel
rank of t, denoted rk(t), as the least ordinal β such that [[t]] ∈ Σ0

β, if t ∈ C Σ,
or such that [[t]] ∈ Π0

β, if t ∈ C Π.

(C2) For each σ ∈ ω<ω
�=0 we have 〈σ〉 ∈ C Σ, with [[σ]] of least possible Borel rank

such that g−1[σ] = [[σ]] ∩ dom(g).

(C3) For each σ ∈ ω<ω
�=0 , if rk(σ) = 1 then for each n ∈ ω we have 〈σ〉 ⊕ n ∈ C Σ

and [[〈σ〉 ⊕ n]] = [[σ]].

(C4) For each t ∈ C Σ with rk(t) > 1 and each n ∈ ω we have t ⊕ n ∈ C Π with
rk(t ⊕ n) < rk(t) and [[t]] =

⋃
n∈ω[[t ⊕ n]].

(C5) For each t ∈ C Π with rk(t) > 1 and each n ∈ ω we have t ⊕ n ∈ C Σ with
rk(t ⊕ n) < rk(t) and [[t]] =

⋂
n∈ω[[t ⊕ n]].

(C6) If α is odd, then for each σ in ω<ω
�=0 and each n ∈ ω we have 〈σ〉 $ n ∈ C Σ

with [[〈σ〉 $ n]] = ωω � [[〈σ〉 ⊕ n]].

(C7) For any C Σ
0 ⊆ C Σ and C Π

0 ⊆ C Π such that C Σ
0 ∪C Π

0 ⊂ C Σ ∪C Π, one of the
conditions (C1)–(C6) above is not satisfied for (C Σ

0 ,C Π
0 , [[·]]�(C Σ

0 ∪ C Π
0 )).

Using the axiom of choice, the fact that there exists a complete system for
any Borel measurable function is straightforward. However, without assuming
(countable) choice, the very definition of Borel sets and the Borel hierarchy is more
involved, since, e.g., it is consistent with ZF that every subset of ωω is a countable
union of countable sets [36]. Since singletons are Π0

1 sets, countable sets are Σ0
2,

and countable unions of countable sets are therefore Σ0
4—recall that without the

axiom of countable choice we cannot assume that the class Σ0
2 is closed under

countable unions. Hence, with the naive definition of the Borel hierarchy, in the
Feferman-Lévy model of [36] every Borel measurable function would be of Baire
class 3. In this context, the more interesting notion is that of a Borel code of a
set (cf., e.g., [54, Section 35.B]), and indeed in our case we have complete systems
for those functions for which the preimage of any basic open has a Σ0

α+1(dom(f))
Borel code, and our proof goes through in that setting.

We will use a fixed complete system C = (C Σ,C Π, [[·]]) for f in the remainder
of this section.
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2.2. Games for each fixed Baire class 41

The associating, coding, guessing, unraveling, and witnessing functions

In this section we will define the main technical machinery which will be used
to define the winning strategy for player 2| in the α-tree game for f . Our main
objective here is to define a guessing function g : I ω, where I := {t ∈ T ; |t| �
2 and 0 < t(1) � |t(0)|} is called the set of inherited trails, the intuition being
that a trail t ∈ I is built from other trails which were owned by predecessors of
t(0), ultimately having its origin in some trail owned by t(0)�t(1). However, in
defining g we will define and use several auxiliary functions, viz. an associating
function a : I C , a coding function cn : {σ ∈ ω<ω ; |σ| � n} ω for each
n > 0, a witnessing function w : ω<ω

�=0 ω, and a function ϕ : ω<ω
�=0 ω, whose

restrictions will be used as the labeling functions for the trees player 2| plays when
following the strategy we define in the next section. If α is odd, then we will also
define an unraveling function u : ω<ω

�=0 ω.
Recall from Convention 1.8 that we have fixed bijections bij : ω ω<ω and

bijn : ω ωn for each n > 0, and that the inverses of the bijections bijn are
collectively denoted � ␣ �. We denote by � the strict linear order induced on ω<ω

by bij−1, i.e., the linear order defined by σ � τ iff bij−1(σ) < bij−1(τ).
We start by defining the functions cn by ⊥(σ) = �c1(σ), c2(σ), . . . , c|σ|(σ)�, and

defining ϕ, w, and u (in case α is odd) by

c|σ|(σ) =

{
�ϕ(σ),w(σ)�, if α is even
��ϕ(σ),w(σ)�, u(σ)�, if α is odd.

(2.1)

The functions a and g will be defined by ⊂-recursion on the first coordinate of
their arguments, so let σ ∈ ω<ω

�=0 and suppose all values of a and g for arguments
starting with proper nonempty initial segments of σ have already been defined.
We start by letting 〈σ, |σ|〉 ∈ dom(a) ∩ dom(g), setting

a(σ, |σ|) := 〈ϕ̃(σ)〉
g(σ, |σ|) := �ϕ(σ),w(σ)�.

We also let 〈σ, |σ|〉 ⊕ g(σ, |σ|) ∈ dom(a), setting

a(〈σ, |σ|〉 ⊕ g(σ, |σ|)) := a(σ, |σ|) ⊕ w(σ).

If α is odd, then for each m = �p, q� < g(σ, |σ|) let 〈σ, |σ|〉 $ m ∈ dom(a),
setting a(〈σ, |σ|〉 $ m) := 〈bij|σ|(p)〉 $ q. Let

U(σ) := {m < g(σ, |σ|) ; rk(a(〈σ, |σ|〉 $ m)) > 1}, (2.2)

and if U(σ) 	= ∅ then let eσ : |U(σ)| U(σ) be an increasing enumeration
of U(σ) and define new values of a and g from u(σ) as follows. First, for each
i < |U(σ)| let ti := 〈σ, |σ|〉 $ eσ(i). Then read

u(σ) = �g(t0), g(t1), . . . , g(t|U(σ)|−1)�. (2.3)
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42 Chapter 2. Games for functions on Baire space

We call the process of starting from the guess g(σ, |σ|) and recursively defining new
values of g from u the unraveling of the guess g(σ, |σ|). Now, for each i < |U(σ)|
let ti ⊕ g(ti) ∈ dom(a), setting a(ti ⊕ g(ti)) := a(ti) ⊕ g(ti).

If |σ| > 1 then let τ ⊂ σ be nonempty and let  := |σ| − |τ | − 1. Let

inh(σ, τ) := {t ∈ dom(a) ; t(0) = τ , a(t) ∈ C Π, rk(a(t)) > 1,
and rk(a(t) ⊕ ) > 1}. (2.4)

This notation is due to the fact that the elements of inh(σ, τ) are those that σ
inherits from τ , in the sense that σ must make new guesses about those elements
in order to help verify or falsify some guess made by τ . Note that |inh(σ, τ)|
is finite by construction; therefore there exists a bijection eσ,τ : |inh(σ, τ)|
inh(σ, τ) which is increasing with respect to �. For each i < |inh(σ, τ)| let
ti := 〈σ〉�shift(eσ,τ (i)) ⊕  ∈ dom(a), setting a(ti) := a(eσ,τ (i)) ⊕ , and read new
values of g from c|τ |(σ) by

c|τ |(σ) = �g(t0), g(t1), . . . , g(t|inh(σ,τ)|−1)�. (2.5)

Now, for each i < |inh(σ, τ)| let ti ⊕ g(ti) ∈ dom(a), setting a(ti ⊕ g(ti)) :=
a(ti) ⊕ g(ti).

This concludes the definition of a and g for arguments starting with σ; note
that there are only finitely many of these.

Definition of the strategy ϑ

Suppose we are at round r of a run of the α-tree game for f , let τ be the sequence
of natural numbers played by 1 so far, and let T−1 := {〈〉}. Assume we have
already defined the notion σ is active at round r′ for all σ ∈ ω<ω

�=0 and r′ < r, and
let us now define what it means for σ to be active at round r. Suppose σ ∈ ω<ω

�=0

has been active at exactly N rounds strictly before r. We say that t ∈ dom(g)
demands attention of σ if

(D1) t(0) = σ and a(t ⊕ g(t)) ∈ C Π has Borel rank 1; in this case, we say t is
satisfied at round r if [τ�(N + 1)] ∩ [[a(t ⊕ g(t))]] 	= ∅;

(D2) t(0) = σ and a(t ⊕ g(t)) ∈ C Σ has Borel rank 1; in this case, we say t is
satisfied at round r if [τ ] ⊆ [[a(t ⊕ g(t))]];

(D3) α is odd, t = 〈σ, |σ|〉, and there exists n < g(t) such that a(t $ n) ∈ C Σ has
Borel rank 1; in this case, we say t is satisfied at round r if [τ ] ⊆ [[a(t $ n)]]
holds for each such n; or

(D4) t(0) ⊂ σ and with  = |σ|−|t(0)|−1 we have a(t ⊕ g(t) ⊕ ) ∈ C Σ has Borel
rank 1; in this case, we say t is satisfied at round r if [τ ] ⊆ [[a(t ⊕ g(t) ⊕ )]].
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2.2. Games for each fixed Baire class 43

Then we say that σ is active at round r if σ = 〈〉, or every t ∈ dom(g) that
demands attention of σ is satisfied at round r and every predecessor of σ has been
active for at least N + 1 rounds before (and possibly including) r.

We now define ϑ(τ) := (Tr, ϕr), where ϕr = ϕ�Tr as usual and

Tr := Tr−1 ∪ {σ ∈ ω<ω ; bij−1(σ) � r and σ is active at round r}. (2.6)

Analysis

Consider a run of the game in which 1 builds x ∈ dom(f) and 2| follows the
strategy ϑ defined above, at each round r playing the labeled tree (Tr, ϕr), and
let T :=

⋃
r Tr and ϕ :=

⋃
r ϕr. The following is an easy consequence of the

definitions.

2.33 Lemma. The tree T is composed exactly of the elements of ω<ω which were
active at some round of the game.

We say that σ makes a guess about t ∈ dom(g) if t(0) = σ, and in this case
we say the guess is right or wrong depending whether x belongs or does not
belong, respectively, to [[a(t ⊕ g(t))]], and the rank of the guess is the Borel rank
of a(t ⊕ g(t)).

2.34 Lemma. If σ ∈ T makes a wrong guess of rank β about t ∈ dom(g), then
σ 	∈ PD�(T, β↓). In particular σ 	∈ PD�(T, α↓).

Proof. Let t′ := t ⊕ g(t). Recall that if β = rk(a(t′)) > 1 then [[a(t′)]] =⋂
n∈ω[[a(t

′ ⊕ n)]]. Hence in case β > 1 there exists some least n ∈ ω such
that x 	∈ [[a(t′ ⊕ n)]], and we let γ = rk(t′ ⊕ n) < β. Note that if β > 1
and γ = 1, i.e., if [[a(t′ ⊕ n)]] is an open set, then for every r ∈ ω we have
[x�r] 	⊆ [[a(t′ ⊕ n)]]. Since t′ demands attention of all descendants σ′ ∈ ω<ω

�=0 of σ
with |σ′| = |σ|+ n+ 1 but is never satisfied, it follows that no such descendant is
ever active. Therefore the subtree of T rooted at σ has rank at most |σ|+ n, and
thus σ 	∈ PD�(T, 1) ⊇ PD�(T, β↓).

From now on we assume γ > 1 in the cases where β > 1, and the result
will be proved by induction on β. The base case is β = 1, i.e., when [[a(t′)]] is
a closed set. Since by assumption we have x 	∈ [[a(t′)]], there exists r ∈ ω such
that [x�r] ∩ [[a(t′)]] = ∅. Thus from round r onwards σ is never active, implying
that the subtree of T rooted at σ is finite, and therefore that σ 	∈ PD�(T, 1).
For the induction step, let β > 1 and suppose the result holds for all ordinals
ξ < β. Since γ > 1 and x 	∈ [[a(t′ ⊕ n)]], it follows that each descendant τ of
σ of length |σ| + n + 1 makes a wrong guess about t′ ⊕ n. Therefore by the
induction hypothesis for each such descendant τ there exists an ordinal ξτ < γ such
that τ 	∈ PD�(T, ξτ ↓) ⊇ PD�(T, γ↓). If γ↓ < β↓ then we are done, for in this case
σ 	∈ PD�(T, γ↓ + 1) ⊇ PD�(T, β↓) as desired. Otherwise, if γ↓ = β↓, then we have
β = λ+ 2m+ 2 and γ = λ+ 2m+ 1 for some limit λ and natural m. In this case,
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44 Chapter 2. Games for functions on Baire space

for every ξ < γ we have ξ↓ < γ↓, thus no descendant τ of σ of length |σ|+ n+ 1
is in PD�(T, γ↓ − 1), and we can conclude that σ 	∈ PD�(T, γ↓) = PD�(T, β↓) as
desired.

If α is odd, then we say that σ overshoots if there exists n < g(σ, |σ|) such
that x 	∈ [[a(〈σ, |σ|〉 $ n)]]. If α is even, then we stipulate by definition that no σ
overshoots.

2.35 Lemma. If α is odd and σ overshoots then σ 	∈ PD�(T, α

�

).

Proof. Let β = rk(a(〈σ, |σ|〉 $ n)). If β > 1 then σ makes a wrong guess about
t′ := 〈σ, |σ|〉 $ n, so letting γ := rk(a(t′ ⊕ g(t′))) < α by Lemma 2.34 we have
σ 	∈ PD�(T, γ↓) ⊇ PD�(T, α

�

). Otherwise, if β = 1, then t = 〈σ, |σ|〉 demands
attention of σ but is never satisfied, and therefore σ 	∈ T ⊇ PD�(T, α

�

).

We say that σ ∈ ω<ω is exact if it makes no wrong guesses and does not
overshoot, and we say that σ is hereditarily exact if σ and all its proper predecessors
are exact.

2.36 Lemma. If σ is hereditarily exact then σ is activated at some round and
never deactivated thereafter. In particular σ ∈ T .

Proof. We prove this by induction on |σ|. Therefore suppose the result holds for
all σ�n with 0 < n < |σ|, and suppose σ is hereditarily exact. Let r0 be the least
round at which all σ�n with 0 < n < |σ| are already active. Suppose t ∈ dom(g)
demands attention of σ.

Case (D1): t(0) = σ and a(t ⊕ g(t)) ∈ C Π has Borel rank 1. Then x ∈ [[a(t ⊕
g(t))]] holds since σ is exact, therefore we have that t is satisfied at all rounds. In
this case, let rt := r0.

Case (D2): t(0) = σ and a(t ⊕ g(t)) ∈ C Σ has Borel rank 1. By construction,
this can only happen in case t = 〈σ, |σ|〉 and [[a(t)]] = [[ϕ̃(σ)]] = [[ϕ̃(f(x)�(n+ 1))]]
is an open set. But then [[a(t ⊕ g(t))]] = [[ϕ̃(f(x)�(n+ 1))]] as well, so there exists
a least rt � r0 such that t is satisfied at all rounds r � rt.

Case (D3): α is odd, t = 〈σ, |σ|〉, and there exists n < g(t) such that a(t $ n) ∈
C Σ has Borel rank 1. Then since σ does not overshoot we have x ∈ [[a(t $ n)]].
Hence there exists some least rt � r0 such that t is satisfied at all rounds r � rt.

Case (D4): t(0) ⊂ σ and with  = |σ|− |t(0)|−1 we have a(t ⊕ g(t) ⊕ ) ∈ C Σ

has Borel rank 1. Then let n < |σ| be such that t(0) = σ�n. Since σ�n is exact,
we have that

x ∈ [[a(t ⊕ g(t))]]

=
⋂
p∈ω

[[a(t ⊕ g(t) ⊕ p)]],

so in particular x ∈ [[a(t ⊕ g(t) ⊕ )]]. Hence there exists some least rt � r0 such
that t is satisfied at all rounds r � rt. It now follows that σ is active at all rounds
r � min{rt ; t demands attention of σ}.
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2.2. Games for each fixed Baire class 45

2.37 Lemma. If σ is hereditarily exact, then σ is part of some infinite branch of
T . In particular, T has at least one infinite branch.

Proof. By induction on |σ|, we will show that if σ is hereditarily exact then σ has
an exact child in T . Since 〈〉 ∈ T is hereditarily exact, this suffices.

Thus suppose the result holds for any sequence shorter than σ, and suppose
σ is hereditarily exact. Let d := |σ| + 1. We want to define a child σ′ of σ, so
our task is to define ⊥(σ′). To this end, we define certain objects g and cn for
n ∈ {1, . . . , d}, as follows. The function g will be defined by a recursion mimicking
the definition of g.

We start by defining cd. Let m = f(x)(|σ|) and let k ∈ ω be least such that
x ∈ [[〈f(x)�d〉 ⊕ k]]. Then let 〈d〉 ∈ dom(g), setting g(d) := �m, k�. Now, if
α is odd let S := {�p, q� < g(d) ; rk(〈bijd(p)〉 $ q) > 1}. Note that since σ is
hereditarily exact, in particular we have for any �p, q� ∈ S

x 	∈ [[〈bijd(p)〉 ⊕ q]]
= ωω � [[〈bijd(p)〉 $ q]],

i.e.,
x ∈ [[〈bijd(p)〉 $ q]]

=
⋃
r∈ω

[[〈bijd(p)〉 $ q ⊕ r]].

Now, for each �p, q� ∈ S let 〈d〉 $ �p, q� ∈ dom(g), with g(〈d〉 $ �p, q�) set to
be any r ∈ ω such that x ∈ [[〈bijd(p)〉 $ q ⊕ r]]. If S = ∅ then let u be any
natural number. Otherwise, let e : |S| S be an increasing enumeration of S
and define u := �g(〈d〉 $ e(0)), g(〈d〉 $ e(1)), . . . , g(〈d〉 $ e(|S| − 1))�. Finally, let
cd := �g(d), u�.

Let n ∈ {1, . . . , |σ|} and  := d− n− 1 = |σ| − n. We will now define cn. Let

inh(n) := {t ∈ dom(a) ; t(0) = σ�n, a(t) ∈ C Π, rk(a(t)) > 1,
and rk(a(t) ⊕ ) > 1}.

If inh(n) = ∅ then let cn be any natural number. Otherwise let en : |inh(n)|
inh(n) be an increasing bijection with respect to �. For each i < |inh(n)|
let δi ∈ ω<ω be such that en(i) = 〈σ�n〉�δi. Now let δ′i := δi ⊕  ∈ dom(g),
letting g(δ′i) be any natural number such that x ∈ [[a(en(i) ⊕ ) ⊕ g(δ′i)]]. Note
that such a natural number must indeed exist, since σ�n is exact. Finally, let
cn = �g(δ′0), g(δ′1), . . . , g(δ′|inh(n)|−1

)� and σ′ := σ�〈�c1, c2, . . . , cd�〉. Note that this
gives

cn(σ
′) = cn for all n ∈ {1, . . . , d}

g(〈σ′〉�δ) = g(δ) for all δ ∈ dom(g).

This concludes the definition of σ′, which is easily seen to be exact by construction.
Finally, by Lemma 2.36, it follows that σ′ ∈ T .
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2.38 Theorem. The tree PD�((T, ϕ), α↓) is bisimilar to an infinite linear tree.

Proof. By Lemma 2.37 we have that T has infinite branches, and by Lemma 2.34
all of them are labeled f(x), since any element of T whose running label is
not a prefix of f(x) will necessarily make a wrong guess, and thus will not be
a part of any infinite branches of T . It remains to be shown that PD�(T, α↓)
is pruned, so suppose σ ∈ PD�(T, α↓) is not part of any infinite branches of
PD�(T, α↓). Therefore, σ is also not a part of any infinite branches of T , and thus
by Lemma 2.37 we have that σ is not hereditarily exact. But then either σ or a
proper predecessor σ′ of σ makes a wrong guess or overshoots, and by Lemmas 2.34
and 2.35 it follows that σ 	∈ PD�(T, α↓), a contradiction. Thus PD�((T, ϕ), α↓) is
an infinite pruned tree all of whose infinite branches have f(x) as label, and it is
easy to see that any such tree is bisimilar to an infinite linear tree.

In particular, if α is even then PD�((T, ϕ), α

�

) = PD�((T, ϕ), α↓) and thus ϑ
is a winning strategy for player 2| in the α-tree game for f , as desired. Therefore,
from now on we assume that α is odd.

Define an equivalence relation ≡ on ω<ω by σ ≡ τ iff

(1) |σ| = |τ |;
(2) g(σ, |σ|) = g(τ, |τ |);
(3) for all δ ∈ ω<ω such that |δ| > 1 and tσ := 〈σ〉�δ ∈ dom(g), letting tτ := 〈τ〉�δ

one of the following holds:

(a) tτ 	∈ dom(g) and x ∈ [[a(tσ ⊕ g(tσ))]]; or

(b) tτ ∈ dom(g), and g(tσ) = g(tτ ) or x ∈ [[a(tσ ⊕ g(tσ))]] ∩ [[a(tτ ⊕ g(tτ ))]];

(4) for all δ ∈ ω<ω
�=0 such that |δ| > 1 and tτ := 〈τ〉�δ ∈ dom(g), letting tσ := 〈σ〉�δ

one of the following holds:

(a) tσ 	∈ dom(g) and x ∈ [[a(tτ ⊕ g(tτ ))]]; or

(b) tσ ∈ dom(g), and g(tσ) = g(tτ ) or x ∈ [[a(tσ ⊕ g(tσ))]] ∩ [[a(tτ ⊕ g(tτ ))]];

and

(5) for all n < |σ|, recursively we have σ�n ≡ τ�n.

Note that σ ≡ τ implies ϕ̃(σ) = ϕ̃(τ).

2.39 Lemma. If σ ≡ τ and σ′ ⊃ σ, then there exists τ ′ ⊃ τ such that σ′ ≡ τ ′.

Proof. It is enough to prove the result in case σ′ is a direct child of σ, since the
general case will follow by induction on |σ′| − |σ|. Therefore our task is to define
⊥(τ ′). To this end, we proceed similarly to the proof of Lemma 2.37 and define
certain objects g and cn for n ∈ {1, . . . , |σ′|}, as follows. First let c|σ′| = c|σ′|(σ′).
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2.2. Games for each fixed Baire class 47

The function g will be defined by a recursion mimicking the definition of g and
using σ′.

Let n ∈ {1, . . . , |τ |} and  := |σ′| − n− 1 = |τ | − n. Let

inh(n) := {t ∈ dom(a) ; t(0) = τ�n, a(t) ∈ C Π, rk(a(t)) > 1,
and rk(a(t) ⊕ ) > 1}.

If inh(n) = ∅ then let cn be any natural number. Otherwise let en : |inh(n)|
inh(n) be an increasing bijection with respect to �. For each i < |inh(n)| let
δi ∈ ω<ω be such that en(i) = 〈τ�n〉�δi. Now let δ′i := δi ⊕  ∈ dom(g), letting
g(δ′i) := g(〈σ′〉�δ′i), if 〈σ′〉�δ′i ∈ dom(g), or letting g(δ′i) be any natural number such
that x ∈ [[a(en(i) ⊕ ) ⊕ g(δ′i)]], otherwise. Note that such a natural number must
indeed exist, since in this case we have en(i) = 〈τ�n〉�δ ⊕ g(〈τ�n〉�δ) for some
δ ∈ ω<ω

�=0 . Thus, since 〈σ′〉�δ′i 	∈ dom(g), we must either have 〈σ�n〉�δ 	∈ dom(g)
or g(〈τ�n〉�δ) 	= g(〈σ�n〉�δ). Hence, since τ�n ≡ σ�n, in either case we have

x ∈ [[a(en(i))]]

=
⋂
m∈ω

[[a(en(i) ⊕ m)]],

and thus in particular

x ∈ [[a(en(i) ⊕ )]]

=
⋃
m∈ω

[[a(en(i) ⊕ ) ⊕ m]]

as desired. Finally, let

cn = �g(δ′0), g(δ′1), . . . , g(δ′|inh(n)|−1
)�

τ ′ = τ�〈�c1, c2, . . . , c|σ′|�〉.
Note that this gives

cn(τ
′) = cn for all n ∈ {1, . . . , |τ ′|}

g(〈τ ′〉�δ) = g(δ) for all δ ∈ dom(g).

This concludes the definition of τ ′.

2.40 Claim. σ′ ≡ τ ′.

Indeed, first note that |σ′| = |τ ′|, that g(σ′, |σ′|) = g(τ ′, |τ ′|), and that σ′�n ≡
τ ′�n for all n < |σ′| hold immediately by construction.

Now let δ ∈ ω<ω
�=0 be such that tσ′ := 〈σ′〉�δ ∈ dom(g) and let tτ ′ := 〈τ ′〉�δ. If

tτ ′ ∈ dom(g), then by construction we have g(tσ′) = g(tτ ′). Otherwise, there exist
n < |σ′| and δ′ ∈ ω<ω such that δ = δ′ ⊕ g(〈σ′�n〉�δ′) ⊕ (|σ′| − n− 1). Thus,
since tτ ′ 	∈ dom(g), we must either have 〈τ ′�n〉�δ′ 	∈ dom(g) or g(〈σ′�n〉�δ′) 	=
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g(〈τ ′�n〉�δ′). Hence, since τ ′�n ≡ σ′�n, in either case we have x ∈ [[a(tσ′ ⊕ g(tσ′))]],
as desired.

Finally, let δ ∈ ω<ω
�=0 be such that tτ ′ := 〈τ ′〉�δ ∈ dom(g) and let tσ′ := 〈σ′〉�δ.

Now, we either have tσ′ ∈ dom(g), in which case g(tτ ′) = g(tσ′) by construction,
or tσ′ 	∈ dom(g), in which case again by construction we have x ∈ [[a(tτ ′ ⊕ g(tτ ′))]],
as desired.

2.41 Lemma. Let σ ≡ τ and suppose δ ∈ ω<ω
�=0 is such that tσ := 〈σ〉�δ ∈ dom(g),

tτ := 〈τ〉�δ ∈ dom(g), and g(tσ) = g(tτ ). Then

a(tσ ⊕ g(tσ)) = a(tτ ⊕ g(tτ )).

Proof. By induction on |σ|, the base case being vacuous. For the induction step,
if δ(0) = |σ|, then either δ = 〈|σ|〉, in which case

a(tσ ⊕ g(tσ)) = 〈ϕ̃(σ)〉 ⊕ w(σ)
= 〈ϕ̃(τ)〉 ⊕ w(τ)
= a(tτ ⊕ g(tτ )),

or δ = 〈|σ|〉 $ m for some m = �p, q� < g(σ, |σ|) = g(τ, |τ |). Note that
a(tσ) = 〈bij|σ|(p)〉 $ q = a(tτ ), so

a(tσ ⊕ g(tσ)) = a(tσ) ⊕ g(tσ)
= a(tτ ) ⊕ g(tτ )
= a(tτ ⊕ g(tτ )).

Otherwise, if δ(0) = n < |σ|, then we have δ = δ′ ⊕ g(〈σ�n〉�δ′) ⊕ (|σ| − n− 1),
and since tτ ∈ dom(g) we must have 〈τ�n〉�δ′ ∈ dom(g) and g(〈σ�n〉�δ′) =
g(〈τ�n〉�δ′). Thus, by induction hypothesis, we get

a(〈σ�n〉�δ′ ⊕ g(〈σ�n〉�δ′)) = a(〈τ�n〉�δ′ ⊕ g(〈τ�n〉�δ′)),
and therefore

a(tσ ⊕ g(tσ)) = a(tσ) ⊕ g(tσ)
= a(〈σ�n〉�δ′ ⊕ g(〈σ�n〉�δ′)) ⊕ (|σ| − n− 1) ⊕ g(tσ)
= a(〈τ�n〉�δ′ ⊕ g(〈τ�n〉�δ′)) ⊕ (|τ | − n− 1) ⊕ g(tτ )
= a(tτ ⊕ g(tτ )),

as desired.

2.42 Lemma. If σ ≡ τ and σ is active for at least n rounds, then τ is also active
for at least n (possibly different) rounds.

Proof. By induction on |σ|, the base case being trivial since 〈〉 is always active.
Now suppose the result holds for all σ�m with m < |σ| and all n ∈ ω, and let us
prove that it holds for σ. This is also done by induction, the base case n = 0 being
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trivially true. Now let n > 0 and suppose σ is active for at least n rounds. Using
both induction hypotheses there are a least round r0 at which all predecessors
of τ have been active at least n times and a round r1 at which τ was active for
the (n− 1)th time, with r1 = −1 in case n = 1. Suppose t := 〈τ�m〉�δ ∈ dom(g)
demands attention of τ , with m � |τ |. If tσ := 〈σ�m〉�δ 	∈ dom(g) or tσ ∈ dom(g)
but g(tσ) 	= g(t), then since σ�m ≡ τ�m we must have x ∈ [[a(t ⊕ g(t))]], and thus
there is some least number rt such that t is satisfied at all rounds r � rt. Otherwise,
if g(tσ) = g(t), then by Lemma 2.41 we have a(tσ ⊕ g(tσ)) = a(t ⊕ g(t)). It then
easily follows that tσ demands attention of σ, and we now consider the four cases
(D1)–(D4).

Case (D1), i.e., tσ(0) = σ and a(tσ ⊕ g(tσ)) ∈ C Π has Borel rank 1. Then
since σ is active for at least n > 0 rounds it follows that

∅ 	= [x�(n+ 1)] ∩ [[a(tσ ⊕ g(tσ))]]
= [x�(n+ 1)] ∩ [[a(t ⊕ g(t))]],

so t is satisfied at all rounds up to the round at which τ is active for the nth time,
if such a round exists at all, otherwise t is always satisfied. Define rt := 0.

Case (D2), i.e., tσ(0) = σ and a(tσ ⊕ g(tσ)) ∈ C Σ has Borel rank 1. Then
since σ is active for at least n > 0 rounds it follows that

x ∈ [[a(tσ ⊕ g(tσ))]]
= [[a(t ⊕ g(t))]],

so again there is some least rt such that t is satisfied at all rounds r � rt.
Case (D3), i.e., α is odd, tσ = 〈σ, |σ|〉, and there exists �p, q� < g(tσ) such that

a(tσ $ �p, q�) ∈ C Σ has Borel rank 1. Note that a(tσ $ �p, q�) = 〈bij|σ|(p)〉 $ q =
a(t $ �p, q�), so since σ is active for at least n > 0 rounds it follows that there is
some least rt such that tσ and t are satisfied at all rounds r � rt.

Case (D4), i.e., tσ(0) = σ�m with m < |τ | and setting  := |σ| − m − 1 we
have a(tσ ⊕ g(tσ) ⊕ ) ∈ C Σ with Borel rank 1. Then since σ is active for at least
n > 0 rounds it follows that there is some least rt such that tσ and t are satisfied
at all rounds r � rt.

Now let R := max({r0, r1 + 1} ∪ {rt ; t demands attention of τ}). Then τ is
active for the nth time at round R.

2.43 Lemma. For every ordinal β, the tree PD�(T, β) is closed under ≡.

Proof. For the base case β = 0, note that by Lemmas 2.33 and 2.42 we have that
σ ≡ τ and σ ∈ T imply τ ∈ T . The limit step is immediate, so let us prove the
successor step. Suppose σ ≡ τ and σ ∈ PD�(T, β + 1). Thus σ ∈ PD�(T, β), and
therefore by induction hypothesis we have τ ∈ PD�(T, β). Now let n ∈ ω. Since
σ ∈ PD�(T, β + 1), there exists σ′ ∈ PD�(T, β) such that σ ⊂ σ′ and |σ|+ n+ 1.
By Lemma 2.39, there exists τ ′ ⊃ τ such that σ′ ≡ τ ′, and thus by the induction
hypothesis we have τ ′ ∈ PD�(T, β), which concludes the proof.
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Now let Υ′ := PD�((T, ϕ), α

�

).

2.44 Lemma. The restriction of ≡ to (Υ′ ×Υ′) is a bisimulation of Υ′ with itself.

Proof. We have already seen (label), condition (parent) is immediate, and by
symmetry we have that (back) and (forth) are equivalent. So suppose σ, τ ∈ Υ′

are such that σ ≡ τ and let σ′ ∈ Υ′ be a child of σ. By Lemmas 2.39 and 2.43, it
follows that there is a child τ ′ of τ in Υ′ such that σ′ ≡ τ ′, as desired.

2.45 Lemma. For every σ ∈ Υ′ and every child σ′ of σ in Υ′, there are only
finitely many children σ′′ of σ in Υ′ such that σ′ 	≡ σ′′.

Proof. Let n := |σ| + 1, let m be such that bijn(m) = f(x)�n, and let k be
least such that x ∈ [[〈f(x)�n〉 ⊕ k]]. Since by Lemma 2.35 no element of Υ′

overshoots, we must have g(τ, n) � �m, k� for any child τ of σ in Υ′. Now, by
Lemma 2.34, for any t ∈ dom(g) such that t(0) ∈ Υ′ and rk(a(t ⊕ g(t))) < α we
have x ∈ [[a(t ⊕ g(t))]]. Thus, all but possibly one clause in the definition of ≡ are
satisfied for any pair of children of σ in Υ′. Hence, if σ′ 	≡ σ′′ are children of σ
in Υ′ then we must have g(σ′, n) 	= g(σ′′, n), and since g(σ′, n), g(σ′′, n) � �m, k�
this concludes the proof.

2.46 Lemma. Let Υ = (T, ϕ) be a labeled tree and for simplicity denote �Υ,Υ by
�. Define Υ� := (T�, ϕ�) as the subtree of Υ induced by T� = {σ ∈ T ; �τ ∈
T (τ � σ and τ <lex σ)}. Then Υ� is a labeled tree and Υ � Υ�.

Proof. We first prove that all initial segments of any σ ∈ T� are in T� by induction
on |σ|. The cases |σ| = 0 and |σ| = 1 are immediate, so let |σ| = n > 1. By
the induction hypothesis, it is enough to prove σ− ∈ T�. So suppose for a
contradiction that σ− 	∈ T�, and let τ � σ− be such that τ <lex σ−. Then by
(forth) for � there exists some child τ ′ of τ in T such that τ ′ � σ, a contradiction
since τ ′ <lex σ.

Finally, let B be the restriction of � to T ×T� and suppose σ B τ . Conditions
(label), (parent), and (back) are easily seen to hold. To see that (forth) holds, let
σ′ ∈ T be such that σ ⊂ σ′. By the (forth) condition for �, the set X = {τ ′ ∈
T ; τ ⊂ τ ′ and σ′ � τ ′} is not empty, so let τ ′ be the <lex-least element in X.

2.47 Claim. τ ′ ∈ T�.

Indeed, suppose not, and let τ ′′ ∈ T be such that τ ′′ � τ ′ and τ ′′ <lex τ
′. Now

(parent) for � implies that τ ′ � τ ′′�(|τ |), but τ 	⊂ τ ′′ since τ ′′ 	∈ X. Therefore we
have τ ′′�(|σ|) <lex τ which contradicts the fact that τ ∈ T�.

Hence σ′ B τ ′ and that concludes the proof.

2.48 Corollary. If α is odd then PD�((T, ϕ), α

�

) is bisimilar to a finitely
branching tree.
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This concludes the proof of Theorem 2.31.
We can now give a new proof of Theorem 2.26 without appealing to Semmes’s

theorem, Theorem 2.19.

2.49 Corollary (Theorem 2.26). The relaxed tree game characterizes the class
of Borel measurable functions.

Proof. By Corollary 1.23, any Borel measurable function is of Baire class α for
some α < ω1, so 2| has a winning strategy in the α-tree game for f , which of course
also wins the relaxed tree game for f . The converse direction of the original proof
of Theorem 2.26 did not use Semmes’s theorem, so we are done.

Requiring unique infinite branches

The more forgiving condition for the infinite branches of the final tree in the
relaxed tree game is merely a convenience; the proof of Theorem 2.31 can be
modified in a straightforward way to show the following.

2.50 Theorem. The class of Baire class α functions is characterized by the
strict tree game with the additional rule that the final tree Υ built by 2| must have
PD�(Υ, α

�

) finitely branching and PD�(Υ, α↓) linear.

Sketch of proof. The modification is a natural, if slightly cumbersome, extension
of an idea already present in the odd case of the proof of Theorem 2.31, viz. that
of unraveling guesses. Recall that, in that proof, we get PD�(Υ, α

�

) to be bisimilar
to a finitely branching tree by controlling guesses of rank α, using condition (C6)
and the unraveling function u as defined in (2.1). A node σ of Υ encodes a
guess g(σ, |σ|) = �φ(σ),w(σ)� for its own label φ(σ) and corresponding witness,
intentionally claiming that

(1) we have x ∈ [[〈ϕ̃(σ)〉 ⊕ w(σ)]], and

(2) for each p, q ∈ ω such that �p, q� < g(σ, |σ|), we have x 	∈ [[bij|σ|(p) ⊕ q]], i.e.,
x ∈ [[bij|σ|(p) $ q]]

Thus, for each such �p, q� < �ϕ(σ),w(σ)� for which [[bij|σ|(p) $ q]] has Borel rank
> 1, the node σ also encodes a guess of a natural number n intentionally claiming
that x ∈ [[bij|σ|(p) $ q ⊕ n]]. The collection of all these guesses is coded into
u(σ) by (2.3). This ensures that, if x ∈ [[bij|σ|(p) ⊕ q]] actually holds for some
�p, q� < �ϕ(σ),w(σ)�, then σ makes a wrong guess of rank < α, and therefore
σ 	∈ PD�(Υ, α

�

).
To prove Theorem 2.50 we unravel all guesses made by nodes of Υ. There will

no longer be a case distinction between even and odd α. We start by tweaking
the definition of a complete system: (C6) becomes

(C6′) For each t ∈ C Σ with rk(t) > 1 and each n ∈ ω we have t $ n ∈ C Σ with
[[t $ n]] = ωω � [[t ⊕ n]].
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We will change u so as to have dom(u) = dom(g); the definition is by recursion,
with the basic cases coming from changing (2.1) and (2.5) to

c|σ|(σ) = ��φ(σ),w(σ)�, u(σ, |σ|)�
= �g(σ, |σ|), u(σ, |σ|)�, (2.1′)

c|τ |(σ) = �g(t0), u(t0), g(t1), u(t1), . . . , g(t|inh(σ,τ)|−1), u(t|inh(σ,τ)|−1)�. (2.5′)

Since before we were only using u to unravel one guess for each σ, in (2.2) we only
needed to define a single set U(σ); now, for each t ∈ dom(g) we define

U(t) = {m < g(t) ; rk(a(t) $ m) > 1}. (2.2′)

If U(t) = ∅, then the value of u(t) has no bearing on the definition of the winning
strategy for 2|. However, in order to have a tree with a unique infinite branch, we
stipulate that if U(t) = ∅ but u(t) 	= 0, then the owner σ of t is never active at
any round of the game (and is therefore never added to the tree). If U(t) 	= ∅,
then we define t0, . . . , t|U(t)|−1 as before, and (2.3) becomes

u(t) = �g(t0), u(t0), g(t1), u(t1), . . . , g(t|U(t)|−1), u(t|U(t)|−1)�. (2.3′)

Of course, these newly defined guesses also get unraveled, but since rk(a(t′)) <
rk(a(t)) holds for any t′ ∈ U(t), the whole recursion is well defined. Finally, we
also need to adjust the definition of when a trail t ∈ dom(g) demands attention of
a node σ: (D3) becomes

(D3′) t(0) = σ and there exists n < g(t) such that a(t $ n) ∈ C Σ has Borel rank
1; in this case, we say t is satisfied at round r if [τ ] ⊆ [[a(t $ n)]] holds for
each such n.

Now consider a fixed run of the game in which 1 plays x ∈ dom(f) and 2|
follows her winning strategy ϑ defined using these modified definitions, therefore
playing the labeled tree Υ := Υϑ

x. We say that a node σ overshoots if there exists
a trail t ∈ dom(g) owned by σ and some n < g(t) such that x 	∈ [[t $ n]].

It is straightforward to check that only the hereditarily exact nodes survive α↓
pruning derivatives of Υ, and in particular PD�(Υ, α↓) is an infinite linear tree. To
see that PD�(Υ, α

�

) is finitely branching we now no longer use Lemmas 2.39–2.45,
but prove it directly.

2.51 Claim. The tree PD�(Υ, α

�

) is finitely branching.

For each n > 0 let n = �p, q� be least such that bijn(p) = f(x)�n and x ∈
[[(f(x)�n) ⊕ q]]. For any node σ ∈ PD�(Υ, α

�

), we have that σ�n makes no wrong
guesses of rank < α nor overshoots on guesses of any rank, for each n ∈ {1, . . . , |σ|}.
In other words, for each n ∈ {1, . . . , |σ|} we must have g(σ�n, n) � n, with g(t)
the least number such that x ∈ [[a(t ⊕ g(t))]] for any other trail t ∈ dom(g) owned
by σ�n. It now follows that any node σ ∈ PD�(Υ, α

�

) can have at most |σ|+1

children in PD�(Υ, α

�

).
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2.3 Games for partition classes

2.3.1 The (α,Ψ)-tree game

Given σ, τ ∈ ω<ω with |σ| = |τ |, we denote by �σ, τ� the element of ω<ω with
|(�σ, τ�)| = |σ| and �σ, τ�(n) = �σ(n), τ(n)� for every n < |σ|.
2.52 Lemma. (1) For any ξ ∈ ω<ω there exist unique σ, τ ∈ ω<ω such that

ξ = �σ, τ�.

(2) If |σ| = |τ | and |σ′| = |τ ′|, then �σ, τ� ⊆ �σ′, τ ′� iff σ ⊆ σ′ and τ ⊆ τ ′.

Given a tree T and n ∈ ω, we define the subtree of T restricted to n, denoted
T �〈n〉, as the least subtree of T containing {�σ, τ� ∈ T ; σ(0) = n}.
2.53 Lemma. For every α we have (PD�(T, α))�〈n〉 = PD�(T �〈n〉, α).
Proof. If σ ∈ S = T �〈n〉 then rkS(σ) = rkT (σ), so the result follows from
Lemma 2.28.

2.54 Definition. Given trees S and T , we define their product as the tree
S⊗T := {�σ, τ� ; σ ∈ S and τ ∈ T}, and given a tree S and a labeled tree
Υ = (T, ϕ), we define their product as the labeled tree S⊗Υ := (S⊗T, ϕ′), where
ϕ′(�σ, τ�) = ϕ(τ).

2.55 Lemma. rkS⊗T (�σ, τ�) = min{rkS(σ), rkT (τ)}.
Proof. By induction, we have rkS⊗T (�σ, τ�) � α iff for every β < α there exists
�σ′, τ ′� ∈ S⊗T such that �σ, τ� ⊆ �σ′, τ ′� and rkS⊗T (�σ′, τ ′�) = β iff for
every β < α there exist σ′ ∈ S and τ ′ ∈ T such that σ ⊆ σ′, τ ⊆ τ ′, and
min{rkS(σ′), rkT (τ ′)} = β iff min{rkS(σ), rkT (τ)} � α.

2.56 Corollary. For any α we have PD�(S⊗T, α) = PD�(S, α)⊗PD�(T, α).

Proof. This follows directly from Lemmas 2.28 and 2.55.

2.57 Definition. Let S be a tree with a unique infinite branch and let Ψ be a
property of labeled trees. We say a labeled tree Υ is Ψ over S if

(1) for each n ∈ ω there exists a labeled tree Υn with Υ�〈n〉 = Com(S, 〈n〉)⊗Υn;

(2) there exists a unique n ∈ ω such that Υ�〈n〉 is illfounded, and for this n we
have that Υn satisfies Ψ.

2.58 Definition. A tree T is a Π0
α partition tree if

(PT1) PD�(T, α↓) is infinite and linear;

(PT2) if α is a successor ordinal, then PD�(T, α↓ − 1) is linear outside the root;
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(PT3) PD�(T, α

�

) is finitely branching.

In other words, given a limit ordinal λ and n ∈ ω, a tree T which has a unique
infinite branch is

(1) a Π0
λ partition tree iff PD�(T, λ) is linear;

(2) a Π0
λ+2n+1 partition tree iff PD�(T, λ + n) is finitely branching at the root

and linear elsewhere;

(3) a Π0
λ+2n+2 partition tree iff PD�(T, λ+ n) is linear outside the root.

2.59 Definition. Let Ψ be a property of labeled trees.

(1) The Ψ-tree game is the relaxed tree game with addional rule that the final
tree must satisfy Ψ.

(2) The (α,Ψ)-tree game is the relaxed tree game with additional rule that the
final tree must be Ψ over some Π0

α partition tree.

2.60 Lemma. Given a strategy ϑ for 2| in the relaxed tree game, a limit ordinal
λ, and natural numbers n and h, we have {x ∈ ωω ; PD�(Υϑ

x, λ+ n) has height �
h} ∈ Σ0

λ+2n+1.

Proof. Just note that, with the sets X(σ, λ + n) as defined in Lemma 2.32, we
have {x ∈ ωω ; PD�(Υϑ

x, λ + n) has height � h} = {x ∈ ωω ; there exists σ ∈
ω<ω such that |σ| = h and x ∈ X(σ, λ+ n)} ∈ Σ0

λ+2n+1.

2.61 Theorem. Let α > 0. If the Ψ-tree game characterizes a class Λ of
functions, then the (α,Ψ)-tree game characterizes the class of functions which are
piecewise Λ on a Π0

α partition.

Proof sketch. Let ϑ be a winning strategy for 2| in the (α,Ψ)-tree game for f ,
and let us prove that f is piecewise Λ on a Π0

α partition. For each n ∈ ω,
let An := {x ∈ dom(f) ; Υϑ

x�〈n〉 is illfounded}. Note that 〈An ; n ∈ ω〉 is a
partition of dom(f) on which f is Λ. Indeed, we can define a strategy ϑ′ for 2|
in the Ψ-tree game for f�An by letting ϑ′(ξ) be the least labeled tree containing
the nodes τ ∈ ω<ω for which there exists some σ ∈ ω<ω with σ(0) = n and
�σ, τ� ∈ ϑ(ξ), letting the label of τ in ϑ′(ξ) be equal to the label of any such
node �σ, τ� in ϑ(ξ). Then, given x ∈ An, since Υϑ

x�〈n〉 is illfounded it follows
that Υϑ′

x is an illfounded labeled tree satisfying Ψ whose infinite branches have
the same running labels as those of Υϑ

x. Therefore ϑ′ is a winning strategy for
2| in the Ψ-tree game for f . By Corollary 1.27, all that remains to be proved is
that each An is a Σ0

α+1(dom(f)) set, for which we use Lemma 2.60 repeatedly.
If α is a limit ordinal, then An = {x ∈ dom(f) ; (PD�(Υϑ

x, α))�〈n〉 has height �
1} ∈ Σ0

α+1(dom(f)). If α = λ + 2k + 1 for some limit λ and k ∈ ω, then
α

�

= λ+k and An = {x ∈ dom(f) ; there exists h such that (PD�(Υϑ
x, λ+ k))�〈n〉
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has height at least h and for every n′ 	= n the height of (PD�(Υϑ
x, λ+ k))�〈n〉 is

less than h)} ∈ Σ0
α+1(dom(f)) Finally, if α = λ + 2k + 2 for some limit λ and

k ∈ ω, then α↓ − 1 = λ + k and An = {x ∈ dom(f) ; for every h the height of
(PD�(Υϑ

x, λ+ k))�〈n〉 is at least h} ∈ Π0
α(dom(f)).

Conversely, let 〈An〉n∈ω be a Π0
α(dom(f)) partition of dom(f) on which f is

Λ, and let us define a winning strategy for 2| in the (α,Ψ)-tree game for f . We
can use the idea of guessing as in the proof of Theorem 2.50 to define a strategy
ϑ′ that builds a Π0

α partition tree Υϑ′
x , as follows†. Nodes of length 1 in Υϑ′

x make
guesses for the n such that x ∈ An will hold, and as in the proof of Theorem 2.50,
these guesses get recursively unraveled. The task of verifying guesses is left for
the elements of ω<ω of length more than 1, and in each case we also recursively
unravel all guesses. The specifics of how nodes are added to Υϑ′

x are the same as
those in the proof of Theorem 2.50, i.e., at round r of the game we add to Υϑ′

x the
nodes σ which are active at that round and satisfy bij−1(σ) � r.

2.62 Claim. The tree Υϑ′
x is a Π0

α partition tree.

Let us call a node σ ∈ Υϑ′
x exact if σ makes no wrong guesses, and heredi-

tarily exact if σ�n is exact for every n ∈ {1, . . . , |σ|}. Thus, as in the proof of
Theorem 2.50, it follows that the hereditarily exact nodes form the unique infinite
branch of Υϑ′

x .
To see that (PT1) holds, since all guesses by nodes of Υϑ′

x have rank � α,
the nodes which make some wrong guess are not in PD�(Υϑ′

x , α↓). It follows that
PD�(Υϑ′

x , α↓) is composed of the hereditarily exact nodes of Υϑ′
x , i.e., PD�(Υϑ′

x , α↓)
is infinite and linear.

For (PT2), suppose α = β + 1. Note that nodes of Υϑ′
x of length more than 1

only make guesses of rank < β, so any such node which makes a wrong guesses is
not in PD�(Υϑ′

x , γ↓) ⊇ PD�(Υϑ′
x , α↓ − 1). Hence PD�(Υϑ′

x , α↓ − 1) is linear outside
the root.

For (PT3), if α is even, i.e., if α �

= α↓, then the result follows from (PT1). If
α is odd, i.e., if α �

= α↓ − 1, then by (PT2) it is enough to show that the root
has only finitely many children in PD�(Υϑ′

x , α

�

). Let n be such that x ∈ An. If
a node σ of length 1 in Υϑ′

x makes a guess that x ∈ An′ for some n′ > n, via
unraveling σ also makes a guess for a witness to the formula x 	∈ An, if An has
Borel rank > 1, or σ is only added to Υϑ′

x when it becomes clear that x 	∈ An,
in case An is a closed set. In either case, we have σ 	∈ PD�(Υϑ′

x , α

�

). Thus the
nodes of length 1 in PD�(Υϑ′

x , α

�

) only make guesses for n′ such that x ∈ An′ for
n � n′, and furthermore the guesses resulting from unraveling this guess are all
exact. Together, these facts imply that PD�(Υϑ′

x , α

�

) has only finitely many nodes
of length 1, as desired.

†Since we went into detail in the proofs of Theorems 2.31 and 2.50, we will only give a sketch
here. Working out the details would involve defining trails, complete systems, active nodes, etc.,
in a manner analogous to that of the proofs of Theorems 2.31 and 2.50.
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56 Chapter 2. Games for functions on Baire space

We can finally define a strategy ϑ for 2| in the (α,Ψ)-tree game for f . For each
n, let ϑn be a winning strategy for 2| in the Ψ-tree game for f�An. Now let ϑ(ξ) be
the least tree containing the nodes {�σ, τ� ; σ ∈ ϑ′(ξ) ∧ σ�1 makes the guess x ∈
An ∧ τ ∈ ϑn(ξ)}, with the label for �σ, τ� coming from ϑn(ξ), where n is such that
σ�1 guesses x ∈ An.

Let x ∈ dom(f). The tree Υϑ′
x is a Π0

α partition tree and therefore has a unique
infinite branch, say, one whose initial segment of length 1 makes the correct guess
x ∈ An. In this case we have that Υϑn

x satisfies Ψ and is an illfounded labeled tree
whose only infinite running label is f(x). Therefore ϑ is a winning strategy for 2|
in the (α,Ψ)-tree game for f .

2.3.2 A sharper (α,Ψ)-tree game

For a large class of properties Ψ, we can get a sharper version of Theorem 2.61
with the same proof, as follows.

If a labeled tree Υ is Ψ over a tree S, then we say Υ is strongly Ψ over S
if for each n ∈ ω there exists a labeled tree Υn satisfying Ψ such that Υ�〈n〉 =
Com(S, 〈n〉)⊗Υn. We say that a strategy ϑ for 2| in the Ψ-tree game for f is
strong if Υϑ

x satisfies Ψ for every x ∈ ωω. Finally, we say that the Ψ-tree game
strongly characterizes a class Λ of partial functions on ωω if, for any f : ωω ωω,
we have f ∈ Λ iff 2| has a strong winning strategy in the Ψ-tree game for f .

2.63 Theorem. If the Ψ-tree game strongly characterizes a class Λ of functions,
then the class of functions which are piecewise Λ on a Π0

α partition is characterized
by the strict tree game with additional rule that the final tree must be strongly Ψ
over a Π0

α partition tree.

As mentioned above, the proof of Theorem 2.63 is the same as that of Theo-
rem 2.61.

It is straightforward to check that the winning strategy for 2| in the strict
α-tree game given in the proof of Theorem 2.50 is strong. In particular, we get
the following generalizations of Theorems 2.13, 2.15, and 2.17.

2.64 Corollary. Let λ be a limit ordinal and n ∈ ω.

(1) The class of functions which are piecewise Baire class λ+2n on a Π0
λ+2n+1

partition is characterized by the strict tree game with additional rule that the final
tree Υ must satisfy that PD�(Υ, λ+ n) is finitely branching at the root and linear
elsewhere.

(2) The class of functions which are piecewise Baire class λ+2n on a Π0
λ+2n+2

partition is characterized by the strict tree game with additional rule that the final
tree Υ must satisfy that PD�(Υ, λ+ n) is linear outside the root.
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2.3. Games for partition classes 57

(3) The class of functions which are piecewise Baire class λ + 2n + 1 on a
Π0

λ+2n+2 partition is characterized by the strict tree game with additional rule that
the final tree Υ must satisfy that PD�(Υ, λ+ n) is finitely branching outside the
root.
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Chapter 3

Parametrized Wadge games

Summary. In this chapter, we show that game characterizations and
Weihrauch degrees correspond closely to each other, so that we can
employ the results and techniques developed for Weihrauch reducibility
to study function classes in descriptive set theory and vice versa. In
§ 3.1, we develop some of the theory of transparent cylinders, one
of the main tools from Weihrauch reducibility theory which we use
in this chapter. In § 3.2, we define our generalization of the Wadge
game: a general definition of a Wadge-style game taking two parame-
ters (Definition 3.12), and resulting in a game which characterizes a
class of functions related to the Weihrauch degrees of the parameters
(Theorem 3.17). These games are equipped to deal with multi-valued
functions between arbitrary represented spaces, and we show that they
provide characterizations for many classes of functions of interest, such
as continuous, Baire class 1, and Δ0

2-multi-valued functions between
represented spaces (i.e., the classes of the multi-valued functions which
have a realizer in the corresponding class). Then, in § 3.3 we briefly
discuss issues regarding the determinacy of parametrized Wadge games
and relations with a generalization of Wadge reducibility. Finally, in
§ 3.4, as a further proof of concept of our definition we show how the
games for functions of a fixed Baire class, from Chapter 2, can also be
obtained as parametrized Wadge games (Corollary 3.73).

An early version of the material presented in §§ 3.1–3.3 has appeared in
the proceedings volume of Computability in Europe 2017, held 12–16
June 2017 in Turku, Finland [73].

Remarks on co-authorship

The material presented in this chapter is the result of a collaboration with the
author’s copromotor Arno Pauly, building on the work of the author presented
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in Chapter 2. This collaboration was funded by the Royal Society International
Exchange Grant Infinite games in logic and Weihrauch degrees, and developed
in part while both collaborators were Visiting Fellows at the Isaac Newton Insti-
tute for Mathematical Sciences in the program Mathematical, Foundational and
Computational Aspects of the Higher Infinite.

Unless stated otherwise, definitions and results in this chapter are jointly due
to the author and Pauly.

3.1 Transparent cylinders
In this section we study properties of transparent cylinders, which were introduced
by Brattka and Gherardi [13], and which will play a central role in our parametrized
version of the Wadge game. While the traditional scope of descriptive set theory is
that of Polish spaces, their subsets, and functions between them, these restrictions
are immaterial for the approach presented here; our results naturally hold for
multi-valued functions between represented spaces. Therefore this work is part
of a larger trend of extending descriptive set theory to more general settings, cf.,
e.g., [18, 58,77,80,82,85].

3.1 Definition (Brattka & Gherardi [13]). Let f : X Y. We call f

(1) a cylinder if idωω × f �sW f ;

(2) transparent iff for any computable or continuous g : Y Y there is a
computable or continuous, respectively, fg : X X such that f ◦ fg � g ◦ f .

Note that f is a cylinder iff g �W f and g �sW f are equivalent for all g. The
transparent (single-valued) functions on Baire space were studied by de Brecht
under the name jump operator in [19]. One of the reasons for their relevance is
that they induce endofunctors on the category of represented spaces, which in
turn can characterize function classes in descriptive set theory [80]. The term
transparent was coined by Brattka, Gherardi, and Marcone in [15]. Our extension
of the concept to multi-valued functions between represented spaces is rather
straightforward, but requires the use of the notion of tightening. Note that the
definition of computability and continuity for functions between represented spaces
implies that δX is transparent for any X.

Two examples of transparent cylinders which will be relevant in what follows
are the functions lim and limΔ : ωω ωω defined by letting lim(p) = limn∈ω(p)n
and letting limΔ(p) be the restriction of lim to the domain {p ∈ ωω ; ∃n ∈
ω∀k � n((p)k = (p)n)}. To see a further example, related to Semmes’s tree
game characterizing the Borel functions, one first needs to define the appropriate
represented space of labeled trees. For this, it is best to work in a quotient space of
labeled trees under bisimilarity. The resulting quotient space can be thought of as
the space of labeled trees in which the order of the subtrees rooted at the children
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3.1. Transparent cylinders 61

of a node, and possible repetitions among these subtrees, are abstracted away.
Then the map Prune, which removes from (any representative of the equivalence
class of) a labeled tree which has one infinite branch all of the nodes which are not
part of that infinite branch, is a transparent cylinder. This idea will be developed
in full in § 3.4 below.

3.2 Proposition. Let f : X Y and g : Y Z be cylinders. If f is transparent
then g ◦ f is a cylinder and g ◦ f ≡W g � f . Furthermore, if g is also transparent
then so is g ◦ f .

Proof. (g ◦ f is a cylinder) As g is a cylinder, there are computable h : Z ωω×Z
and k : ωω ×Y Y such that idωω × g � h ◦ g ◦ k. Likewise, there are computable
h′ : Y ωω × Y and k′ : ωω × X X such that idωω × f � h′ ◦ f ◦ k′. As
composition respects tightening [83, Lemma 2.4(1b)], we conclude that (idωω ×
g) ◦(idωω × f) = idωω × (g ◦ f) � h ◦ g ◦ k ◦h′ ◦ f ◦ k′. Note that (k ◦h′) : Y Y
is computable, and as f is transparent, there is some computable fk ◦h′ : X X
with (k ◦h′) ◦ f � f ◦ fk ◦h′ . But then idωω × (g ◦ f) � h ◦ g ◦ k ◦h′ ◦ f ◦ k′ �
h ◦ g ◦ f ◦ fk ◦h′ ◦ k′, thus h and fk ◦h′ ◦ k′ witness that idωω × (g ◦ f) �sW (g ◦ f),
i.e., g ◦ f is a cylinder.

(g ◦ f ≡W g � f) The direction g ◦ f �W g � f is immediate. Let f ′ and
g′ be such that f ′ �W f , g′ �W g, and g′ ◦ f ′ is defined. We need to show
that g′ ◦ f ′ �W g ◦ f . As g and f are cylinders, we find that already g′ �sW g
and f ′ �sW f . Let h, k witness the former and h′, k′ the latter. We conclude
h ◦ g ◦ k ◦h′ ◦ f ◦ k′ � g′ ◦ f ′. As above, there then is some computable fk ◦h′ with
k ◦h′ ◦ f � f ◦ fk ◦h′ . Then h and fk ◦h′ ◦ k′ witness that g′ ◦ f ′ �sW g ◦ f .

Now suppose that g is also transparent.
(g ◦ f is transparent) Let h : Z Z be computable. By assumption that g is

transparent, there is some computable gh : Y Y such that g ◦ gh � h ◦ g. Then
there is some computable fh : X X with f ◦ fh � gh ◦ f . As composition respects
tightening [83, Lemma 2.4.1.b], we find that h ◦ g ◦ f � g ◦ gh ◦ f � g ◦ f ◦ fh,
which is what we need.

3.3 Definition. Given a function f : A B and C ⊆ B, the corestriction of f
to C, denoted f	C, is the restriction of f to domain {x ∈ dom(f) ; f(x) ⊆ C}.
This notion extends to functions between represented spaces in a natural way. A
represented space (X, δX) is a subspace of (Y, δY ), denoted (X, δX) ⊆ (Y, δY ), if
X ⊆ Y and δX = δY 	X.

3.4 Proposition. If f : X Y and Z ⊆ W ⊆ Y, then f	Z �sW f	W.

3.5 Proposition. Any corestriction of a transparent map is transparent.

Proof. Let f : X Y be transparent, and let Z be a subspace of Y. Let
g : Z Z be computable. Then g : Y Y, and therefore there exists a
computable fg : X X such that f ◦ fg � g ◦ f . Note that dom(g ◦ f) ⊆
dom((f	Z) ◦ fg). Indeed, if x ∈ dom(g ◦ f), then f ◦ fg(x) ⊆ g ◦ f(x) ⊆ Z, so
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62 Chapter 3. Parametrized Wadge games

fg(x) ⊆ dom(f	Z) and therefore x ∈ dom((f	Z) ◦ fg) as desired. From this
it immediately follows that ((f	Z) ◦ fg)�dom(g ◦ f) = (f ◦ fg)�dom(g ◦ f), from
which we conclude (f	Z) ◦ fg � g ◦(f	Z).
3.6 Theorem. Any multi-valued function between represented spaces is strongly-
Weihrauch-equivalent to a multi-valued function on ωω.

Proof. Let f : X Y be given. Define f ′ : ωω ωω by dom(f ′) = dom(f ◦ δX)
and q ∈ f ′(p) iff δY(q) ∈ f ◦ δX(p). To see that f ≡sW f ′, first suppose F � f ,
i.e., for any p ∈ dom(f ◦ δX) we have δY ◦F (p) ∈ f ◦ δX(p). Then F (p) ∈ f ′(p),
so F � f ′. Conversely, suppose for any p ∈ dom(f ′) = dom(f ◦ δX) we have
F (p) ∈ f ′(p). But this happens iff δY ◦F (p) ∈ f ◦ δX(p), i.e., F � f .

3.7 Theorem (Brattka & Pauly, implicit in [17, § 3.2]). Every multi-valued
function f is strongly Weihrauch-equivalent to some transparent cylinder f tc,
which can furthermore be taken to have codomain ωω.

Proof. By Theorem 3.6, it is enough to prove the result for f : ωω ωω. Let
f tc : M(ωω, ωω)× ωω ωω be given by f tc(h, x) = h ◦ f(x).

That f tc �sW f holds is of course immediate, and conversely we have f �sW f tc

since idωω has a computable name in M(ωω, ωω), so the function K(x) = (idωω , x)
is computable and f = f tc ◦K.

To see that f tc is a cylinder, define computable K : ωω × (M(ωω, ωω) ×
ωω) ωω and H : ωω × ωω ωω × ωω by K(p, (h, x)) = (hp, x) where hp(y) =
�p, h(y)� and H(�p, y�) = (p, y). Then H ◦ f tc ◦K(p, (h, x)) = H(hpf(x)) =
H(�p, f(x)�) = (p, f(x)), so idωω × f �sW f tc. Since f ≡sW f tc, this suffices.

Finally, to see that f tc is transparent, let g : ωω ωω be continuous or
computable. Define g′ : M(ωω, ωω)×ωω M(ωω, ωω)×ωω by g′(h, x) = (g ◦h, x).
Note that g′ is continuous or computable, respectively, since g is. Furthermore, we
have f tc ◦ g′(h, x) = f tc(g ◦h, x) = g ◦h ◦ f(x) = g ◦ f tc(h, x), i.e., f tc ◦ g′ = g ◦ f tc

as desired.

3.8 Definition. We say that a represented space X (strongly) encodes ωω if any
f : ωω ωω is (strongly) Weihrauch-equivalent to some f ′ : ωω X.

Note that if X has a subspace which is computably isomorphic to ωω, then X
strongly encodes ωω.

3.9 Theorem. Let f : X Y be a transparent cylinder. If Z ⊆ Y (strongly)
encodes ωω, then f	Z is transparent and (strongly) Weihrauch-equivalent to f . In
the strong case, f	Z is also a cylinder.

Proof. Note that f	Z �sW f holds for any f and Z, and if f is transparent then
so is f	Z. Now, by Theorem 3.6, there is some g : ωω ωω which is strongly
Weihrauch-equivalent to f . Therefore, by assumption, there exists g′ : ωω Z
such that g′ is (strongly) Weihrauch-equivalent to f . Since f is a transparent
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cylinder, there exists a computable h : ωω ωω such that g′ � f ◦h. Hence, since
the codomain of g′ is Z, it follows that g′ � f	Z ◦h, i.e., g′ �sW f	Z and therefore
f is (strongly) Weihrauch-reducible to f	Z. Finally, if Z strongly encodes ωω,
then we have idωω × f	Z �sW idωω × f �sW f ≡sW f	Z, so f	Z is a cylinder.

3.2 Parametrized Wadge games

In order to deal with general multi-valued functions between represented spaces,
we need to adapt the definition of a game, as follows.

3.10 Definition. A game for multi-valued functions, or simply a game when
there is no risk of ambiguity, is a tuple G = (M1,R1, ι1,M2|,R2|, ι2|) where, for
p ∈ {1, 2|}, the set Mp 	= ∅ is called the set of moves for player p, the set Rp ⊆ Mω

p

is called the set of rules for p, and the function ιp : Rp ωω is called the
interpretation function for p.

Runs and strategies in games for multi-valued functions are defined in exactly
the same way as in games for functions.

3.11 Definition. Let G = (M1,R1, ι1,M2|,R2|, ι2|) be a game for multi-valued
functions and let f : X Y be given. A strategy ζ for 1 is legal in G for f
if (ζ ∗m2|)1 ∈ (δX ◦ ι1)−1[dom(f)] holds for all m2| ∈ Mω

2| . A legal ζ is a winning
strategy for 1 in G for f if δY ◦ ι2|(m2|) � f ◦ δXι1((ζ ∗m2|)1) holds for any m2| ∈
dom(δY ◦ ι2|). A strategy ϑ for 2| is legal in G for f if (m1 ∗ϑ)2| ∈ ι−1

2| [dom(δY)] holds
for any m1 ∈ (δX ◦ ι1)−1[dom(f)]. Finally, a legal ϑ is a winning strategy for 2| in G
for f if δY ◦ ι2|((m1 ∗ϑ)2|) ⊆ f ◦ δX ◦ ι1(m1) holds for any m1 ∈ (δX ◦ ι1)−1[dom(f)].

We are ready to define our parametrization of the Wadge game.

3.12 Definition. Let Ξ : X Y and π : Y ωω. The Wadge game parametrized
by Ξ and π, in short the (Ξ, π)-Wadge game, is the game for multi-valued functions
(ω, ωω, idωω ,MW

2| ,RW
2| , ι2|), where ι2| = π ◦Ξ ◦ δX ◦ ιW2| and MW

2| , RW
2| are the moves

and rules from the original Wadge game, Definition 2.5.

Thus, the (Ξ, π)-Wadge game is like the Wadge game but, instead of 1 building
an element x ∈ dom(f) and 2| trying to build f(x), now 1 builds a name for some
element x ∈ dom(f) and 2| tries to build a name for some element y ∈ Y which
is transformed by πΞ into a name for an element in f(x). Intuitively, the idea is
that the main transformation is done by Ξ, but because fixing a parametrized
game entails fixing Ξ, in order for a fixed game to be able to deal with functions
between different represented spaces there needs to be some map which will work
as an intermediary between the target space of Ξ and the source space, say Z, of
the function in question. This role will be played by δZπ, which in the cases we
are interested in will be a computable map.
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It is easy to see that, restricted to single-valued functions on ωω, the original
Wadge game is the (idωω , idωω)-Wadge game, the eraser game is the (lim, idωω)-
Wadge game, and the backtrack game is the (limΔ, idωω)-Wadge game. Semmes’s
tree game for the Borel functions is the (Prune,Label)-Wadge game, where Label
is the function extracting the infinite running label from (any representative of the
equivalence class of) a pruned labeled tree consisting of exactly one infinite branch.
The details of this last example, including the definitions of the represented spaces
involved, will be given in § 3.4 below.

3.13 Lemma. Let Ξ : X Y and π : Y ωω. If 2| has a (computable) winning
strategy in the (Ξ, π)-Wadge game for f : Z W, then there exists a continuous
(computable) k : ωω ωω such that δWπΞδXkδ−1

Z � f . In particular f �t
sW π ◦Ξ

(f �sW π ◦Ξ).

Proof. Any (computable) legal strategy ϑ for player 2| in the game for f gives
rise to a continuous (computable) function k : ωω ωω with domain dom(k) =
dom(fδZ), defined by k(x) = ιW2| (x ∗ϑ). Now suppose ϑ is winning, i.e., suppose
δWπΞδXι

W
2| (x ∗ϑ) ⊆ fδZ(x) holds for any x ∈ dom(fδZ) = dom(k). This means

δWπΞδXk � fδZ, which implies δWπΞδXkδ
−1
Z � fδZδ

−1
Z = f . Thus the continuous

(computable) maps δW and δXkδ
−1
Z witness that f �t

sW π ◦Ξ (f �sW π ◦Ξ).

In order to see under which conditions we have the converse of Lemma 3.13,
first we need the following notion, which is just the dual notion to being an
admissible representation as in [87].

3.14 Definition. A computable partial function π : Y ωω is a probe for
Y if for every computable or continuous f : Y ωω there is a computable or
continuous, respectively, g : Y Y such that πg � f .

Note that a probe is always surjective, since constant functions Y ωω are
continuous, and that a probe is also always transparent.

3.15 Theorem. Let Ξ : X Y be transparent and let π : Y ωω be a probe.
For any multi-valued function f between represented spaces, we have that player 2|
has a (computable) winning strategy in the (Ξ, π)-Wadge game for f iff f �t

sW Ξ
(f �sW Ξ).

Proof. If 2| has a (computable) winning strategy in the (Ξ, π)-Wadge game for f ,
then by Lemma 3.13 we have f �t

sW π ◦Ξ (f �sW π ◦Ξ), and we have π ◦Ξ �sW Ξ
since π is computable.

Conversely, suppose f �t
sW Ξ (f �sW Ξ). Thus, there are continuous (com-

putable) h, k with h ◦Ξ ◦ k � f . As δW ◦ δ−1
W = idW, we have δW ◦ δ−1

W ◦h ◦Ξ ◦ k �
f . Now δ−1

W ◦h : Y ωω is continuous (computable), so by definition of a probe,
there is some continuous (computable) g : Y Y with δW ◦ π ◦ g ◦Ξ ◦ k � f . As
Ξ is transparent, there is some continuous (computable) Ξg with Ξ ◦Ξg � g ◦Ξ,
thus δW ◦ π ◦Ξ ◦Ξg ◦ k � f . As Ξg ◦ k : Z X is continuous (computable), it has
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some (continuous) computable realizer K : ωω ωω. By Theorem 2.6, player 2|
has a (computable) winning strategy in the Wadge game for K, and it is easy to
see that this strategy also wins the (Ξ, π)-Wadge game for f for her.

We also have the following partial converse of Theorem 3.15, where for con-
venience we call the set of multi-valued functions which is (strongly) Weihrauch-
reducible to a given multi-valued function f the lower cone of f in the (strong)
Weihrauch degrees.

3.16 Proposition. Let Ξ : X Y and π : Y ωω. If the (Ξ, π)-Wadge game
characterizes a lower cone in the strong Weihrauch degrees, then it is the lower
cone of π ◦Ξ, and π ◦Ξ is transparent.

Proof. Whenever player 2| has a (computable) winning strategy in the (Ξ, π)-Wadge
game for f , by Lemma 3.13 we have f �t

sW π ◦Ξ (f �sW π ◦Ξ). Furthermore,
player 2| obviously has a winning strategy in the (Ξ, π)-Wadge game for π ◦Ξ: just
copy all the moves made by 1. Since by assumption the game characterizes a
lower cone in the strong Weihrauch degrees, this establishes the first part of the
result.

To see that π ◦Ξ : X ωω is transparent, let g : ωω ωω be continuous
(computable). Then g ◦ π ◦Ξ �t

sW π ◦Ξ (g ◦ π ◦Ξ �sW π ◦Ξ), hence player 2|
has a (computable) winning strategy in the (Ξ, π)-Wadge game for g ◦ π ◦Ξ. By
Lemma 3.13, this strategy induces some continuous (computable) k : ωω ωω

satisfying g ◦ π ◦Ξ � π ◦Ξ ◦ δX ◦ k ◦ δ−1
X . Therefore δX ◦ k ◦ δ−1

X is the desired
witness.

3.17 Theorem. Let Ξ : X Y be a transparent cylinder and let π : Y ωω be
a probe. For any multi-valued function f between represented spaces, we have that
player 2| has a (computable) winning strategy in the (Ξ, π)-Wadge game for f iff
f �t

W Ξ (f �W Ξ).

Proof. Follows immediately from Theorem 3.15 since the fact that Ξ is a cylinder
means that f �sW Ξ and f �W Ξ are equivalent.

3.18 Corollary. Suppose Λ ⊆ Λ′ are classes of multi-valued functions between
represented spaces for which there exists some multi-valued function f between rep-
resented spaces satisfying Λ = {g ∈ Λ′ ; g �W f}. Then there exists a parametrized
Wadge game characterizing Λ as a subclass of Λ′, i.e., there exist Ξ : X Y and
π : Y ωω such that, for any g ∈ Λ′, we have g ∈ Λ iff 2| has a winning strategy
in the (Ξ, π)-Wadge game for g.

Proof. By Theorem 3.7, there exists a transparent cylinder f tc : Z ωω such
that f ≡sW f tc. Therefore for any g we have g �W f iff g �W f tc. Now, by
Theorem 3.17, for any g ∈ Λ′ we have g ∈ Λ iff 2| has a winning strategy in the
(f tc, idωω)-Wadge game for g.
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3.19 Corollary. Let Ξ : X Y and Ξ′ : Y Z be transparent cylinders, and
let π : Y ωω and π′ : Z ωω be probes. If the (Ξ, π)-Wadge game characterizes
the class Λ and the (Ξ′, π′)-Wadge game characterizes the class Λ′, then the
(Ξ′ ◦Ξ, π′)-Wadge game characterizes the class Λ′ ◦Λ := {f ′ ◦ f ; f ′ ∈ Λ′ ∧ f ∈ Λ}.

Proof. If 2| has a (computable) winning strategy in the (Ξ′ ◦Ξ, π′)-Wadge game
for f : A B, then by Theorem 3.17 we have f �t

W Ξ′Ξ (f �W Ξ′Ξ). Thus, by
Proposition 1.31, there exist continuous (computable) k : A X and h : A×Z B
such that h ◦(idA×Ξ′Ξk)ΔA = f . Now let g′ = h ◦(idA×Ξ′) and g = (idA×Ξk)ΔA.
Then f = g′g, and since g′ �t

W Ξ′ (g′ �W Ξ′) and g �t
W Ξ (g �W Ξ), we have

g′ ∈ Λ′ and g ∈ Λ, as desired.
Conversely, if g = f ′ ◦ f with f ′ ∈ Λ′ and f ∈ Λ, then by Theorem 3.17 we have

f ′ �W Ξ′ and f �W Ξ. Now, by Proposition 3.2, it follows that f ′ ◦ f �W Ξ′ ◦Ξ.
Finally, since by Proposition 3.2 we have that Ξ′ ◦Ξ is a transparent cylinder, again
by Theorem 3.17 it follows that 2| has a winning strategy in the (Ξ′ ◦Ξ, π′)-Wadge
game for g.

We thus get game characterizations of many classes of functions, including,
e.g., ones not covered by Motto Ros’s constructions in [69]. For example, consider
the function Sort : 2ω 2ω given by Sort(p) = 0n1ω if p contains exactly n
occurrences of 0 and Sort(p) = 0ω otherwise. This map was introduced and
studied by Neumann and Pauly in [72]. From the results in [72] it follows that
the class Λ of total functions on ωω which are Weihrauch-reducible to Sort is
neither the class of pointwise limits of functions in some other class, nor the
class of Γ-measurable functions for any boldface pointclass Γ of subsets of ωω

closed under countable unions and finite intersections. By Theorem 3.7, Sort
is Weihrauch-equivalent to some transparent cylinder Sorttc with codomain ωω.
Thus, by Theorem 3.17, Λ is characterized by the (Sorttc, idωω)-Wadge game.

As before, we also have the following partial converse of Theorem 3.17.

3.20 Proposition. Let Ξ : X Y and π : Y ωω. If the (Ξ, π)-Wadge game
characterizes a lower cone in the Weihrauch degrees, then it is the lower cone of
π ◦Ξ, and π ◦Ξ is a transparent cylinder.

Proof. By Proposition 3.16, we only have to prove that π ◦Ξ is a cylinder. As
idωω × (π ◦Ξ) �W π ◦Ξ, the assumption that the (Ξ, π)-Wadge game characterizes
a lower cone in the Weihrauch degrees implies that player 2| wins the (Ξ, π)-Wadge
game for idωω × (π ◦Ξ). Thus, again by Lemma 3.13 we have idωω × (π ◦Ξ) �sW

π ◦Ξ, and we find π ◦Ξ to be a cylinder.
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3.3 Using game characterizations

3.3.1 Determinacy
One application of having game characterizations of a property is realized together
with determinacy: either by choosing the set-theoretic axioms accordingly, or by
restricting to simple cases and invoking, e.g., Martin’s Borel determinacy theorem
(cf., e.g., [53, Theorem 31.3]), we can conclude that if the property is false, i.e.,
player 2| has no winning strategy, then player 1 has a winning strategy. In this
way, player 1’s winning strategies serve as explicit, positive witnesses of the failure
of the property. Applying this line of reasoning to our parametrized Wadge games,
we obtain the following corollaries of Theorem 3.17:

3.21 Corollary (ZFC). Let Ξ be a transparent cylinder and π be a probe such
that π ◦Ξ is single-valued and dom(π ◦Ξ) is Borel. Then for any f : X Y such
that dom(δX) and f(x) are Borel for any x ∈ X, we find that f �t

W Ξ iff player 1

has a winning strategy in the (Ξ, π)-Wadge game for f .

3.22 Corollary (ZF + DC + AD). Let Ξ be a transparent cylinder and π be a
probe. Then f �t

W Ξ iff player 1 has a winning strategy in the (Ξ, π)-Wadge game
for f .

Unfortunately, as determinacy fails in a computable setting (e.g., Blass [10, The-
orem 2] has shown there exist recursive sets A—therefore, necessarily determined—
such that neither player has a computable winning strategy in the Gale-Stewart
game for A), we do not retain the computable counterparts of these results. More
generally, we lack a clear grasp on the connections between winning strategies
of player 1 in the (Ξ, π)-Wadge game for a function f and positive witnesses of
the fact that f is not in the class characterized by the game. As pointed out by
Carroy and Louveau in private communication, this is true even for the original
Wadge game for functions, i.e., the (idωω , idωω)-Wadge game. Here we already
have a notion of positive witnesses for discontinuity, viz. points of discontinuity,
and can therefore make this discussion mathematically precise:

3.23 Question. Let a point of discontinuity of a function f : ωω ωω be given
as a sequence (xn)n∈ω, a point x ∈ ωω, and σ ∈ ω<ω with σ ⊆ f(x) such that
xn�(n+ 1) = x�(n+ 1) holds for every n ∈ ω but σ 	⊆ f(xn). Let DiscPoint be
the multi-valued map that takes as input a winning strategy for player 1 in the
(idωω , idωω)-Wadge game for some function f : ωω ωω, and outputs a point of
discontinuity for that function. Is DiscPoint computable? More generally, what is
the Weihrauch degree of DiscPoint?

3.3.2 Generalized Wadge reducibility
Recall that given A,B ⊆ ωω, we say that A is Wadge-reducible to B, in symbols
A �W B, if there exists a continuous f : ωω ωω such that f−1[B] = A (we
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use the notation �W instead of the more established �W in order to help avoid
confusion with Weihrauch reducibility, �W). Equivalently, we could consider
the multi-valued total function B

A
: ωω ωω defined by B

A
(x) = B if x ∈ A

and B
A
(x) = (ωω�B) if x /∈ A. It is easy to see that we have A �W B iff B

A
is

continuous. By Wadge’s famous lemma (cf. § 1.1) and Borel determinacy, it follows
that for any Borel A,B ⊆ ωω, either A �W B or ωω�B �W A. In particular, the
Wadge hierarchy on the Borel sets is a strict weak order of width 2.†

Both definitions generalize in a natural way to the case where A ⊆ X and B ⊆ Y
for represented spaces X, Y: A �′

W B iff there exists a continuous f : X Y such
that A = f−1[B], and B

A
: X Y is defined by letting B

A
(x) = B, if x ∈ A, and

B
A
(x) = Y � B, otherwise. It is easy to see that if A �′

W then B
A

is continuous,
since if f : X Y is such that A = f−1[B], then any realizer of f also realizes
B
A
. However, since not every continuous multi-valued function has a continuous

uniformization, the converse does not hold in general. As noted, e.g., by Hertling
[46], the relation �′

W restricted to X = Y = R already introduces infinite antichains
in the resulting degree structure, and Ikegami showed that in fact the partial
order (℘(ω),⊆fin) can be embedded into that degree structure [50, Theorem 5.1.2].
The generalization of B

A
was proposed by Pequignot [85] as an alternative,‡ and

we adopt it for the remainder of this section. Thus, we define A �W B iff B
A

is
continuous.

3.24 Definition. Given a multi-valued function Ξ and A ⊆ X, B ⊆ Y for
represented spaces X and Y, let A �Ξ B iff B

A
�t

W Ξ.

3.25 Proposition. If Ξ �Ξ ≡W Ξ, then �Ξ is a quasiorder.

3.26 Theorem. Let Ξ : X Y be a transparent cylinder and π : Y ωω be a
probe, and let A ⊆ Z and B ⊆ W be such that the (Ξ, π)-Wadge game for B

A
is

determined. Then either A �Ξ B or B �W ωω�A.

Proof. If player 2| has a winning strategy in the (Ξ, π)-Wadge game for B
A
, then

by Theorem 3.17, we find that B
A
�t

W Ξ, hence A �Ξ B. Otherwise, player 1 has
a winning strategy in that game. This winning strategy induces a continuous
function s : ωω ωω, such that if player 2| plays y ∈ ωω, then player 1 plays
s(y) ∈ ωω. As Ξ is a transparent cylinder and π a probe, since idωω �W Ξ,
by Theorem 3.17 player 2| has a winning strategy in the (Ξ, π)-Wadge game for
idωω . Thus, by Lemma 3.13, there is a continuous function t : ωω ωω such
that (π ◦Ξ ◦ δX ◦ t) � idωω , and since idωω is total and single-valued, we have

†A relation R is a strict weak order on a set X if there exists some ordinal number α and a
partition 〈Xβ ; β < α〉 of X such that x R y holds iff x ∈ Xβ , y ∈ Xγ , and β < γ. The width of
R is the supremum of the cardinalities of the parts in the partition.

‡While Pequignot only introduces the notion for second countable T0 spaces, the extension
to all represented spaces is immediate. Note that one needs to take into account that for general
represented spaces, the Borel sets can show unfamiliar properties, e.g., even singletons can fail
to be Borel (cf. also [88,89]).
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that t is total and (π ◦Ξ ◦ δX ◦ t) = idωω Now we consider s ◦ t : ωω ωω. If
δZ(x) ∈ A, then if player 2| plays t(x), player 1 needs to play some s(t(x)) such
that δW(s(t(x))) /∈ B. Likewise, if δZ(x) /∈ A, then for player 1 to win, it needs to
be the case that δW(s(t(x))) ∈ B. Thus, s ◦ t is a continuous realizer of B

ωω�A
, and

B �W ωω�A follows.

3.27 Corollary (ZF + DC + AD). Suppose Ξ �Ξ ≡W Ξ. Then <Ξ is a strict
weak order of width at most 2.

In [68], Motto Ros has identified sufficient conditions on a generalized re-
ducibility (although in a different formalism) to ensure that its degree structure is
equivalent to the Wadge degrees. We leave for future work the task of determining
precisely for which Ξ the degree structure of �Ξ (restricted to subsets of ωω) is
equivalent to the Wadge degrees, and which other structure types are realizable.

3.4 Games for functions of a fixed Baire class
revisited

3.4.1 Spaces of trees

Given p ∈ ωω and σ ∈ ω<ω, we say that σ is a path through p if p(0) 	= 0 and
recursively shift(σ) is a path through (shift(p))σ(0) in case σ 	= 〈〉. We define UT
as the space of (unlabeled) trees represented by the total function δUT given by

δUT(p) := {σ ∈ ω<ω ; σ is a path through p}.

If σ 	= 〈〉 is a path through p, then its label according to p is p(σ(0)) − 1, if
|σ| = 1, or the label of shift(σ) according to (shift(p))σ(0), otherwise. We now
define LT as the space of labeled trees represented by the total function δLT given
by δLT(p) = (δUT(p), ϕ), where ϕ(σ) is the label of σ according to p. It is not hard
to see that there exist a computable enumeration eLT : ω LT of all finite labeled
trees and a computable function size : ω ω such that eLT(m) ⊂ eLT(n) implies
m < n, and such that eLT(n) has exactly size(n) nodes.

An abstract labeled tree, or simply abstract tree is an equivalence class of labeled
trees under the relation of bisimilarity. We define AT as the space of abstract
trees represented by the total function δAT given by δAT(p) = δLT(p)/�, i.e., the
equivalence class of δLT(p) under bisimilarity. We typically denote abstract trees
by A, with or without sub- or superscripts.

As usual with quotient constructions, any property of labeled trees can be
extended to abstract trees by stipulating that an abstract tree has the property
in question if one of its representatives does. Note that for some properties this
extension behaves better than for some others. For example, the property of
having rank α behaves well, since by Lemma 1.17 any two bisimilar labeled trees
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have the same rank. On the other hand, the property of being finitely branching
does not behave as well, since every finitely branching labeled tree is bisimilar to
an infinitely branching one.

Informal trees†

Note that, according to our definition, formally speaking an abstract tree is not
itself a tree but only a certain type of set of labeled trees. However, for the sake
of intuition it can be helpful to think of an abstract tree as an unordered tree
without any concrete underlying set of vertices, as follows. We call an informal
tree a (possibly empty) countable set I of objects of the form (n, J), where n is a
natural number and J is again an informal tree. The intuition is that such a tree
I is the tree for which each such object (n, J) represents a child of the root of I
with label n and whose subtree is exactly J . See Figure 3.1 for the depiction of a
simple informal tree.

Figure 3.1: Depiction of the informal tree {(0, {(3,∅)}), (0,∅), (2,∅)}.

To see how informal trees correspond to abstract trees, let δIT be the partial
function defined by corecursion with

δIT(p) = {(n, δIT(q)) ; ∃k((p)k = 〈n+ 1〉�q)}.

Then we say an informal tree I corresponds to an abstract tree A if there exists
p ∈ dom(δIT) with δIT(p) = I and δAT(p) = A.

3.28 Proposition. In ZFC, the domain of δIT is the set of p ∈ ωω for which
δAT(p) is wellfounded. Therefore, in ZFC no informal tree corresponds to an
illfounded abstract tree.

This is, of course, because if p is such that δAT(p) is illfounded, then in order
for p ∈ dom(δIT) to hold there would have to exist an infinite ∈-descending chain
of sets starting at δIT(p), contradicting the axiom of foundation.

However—as is often the case with definitions by corecursion [66]—, this
definition and the correspondence would also work for illfounded trees if one were
to work in a system of non-wellfounded set theory such as ZFC− + AFA, where
AFA is the axiom of anti-foundation first formulated by Forti and Honsell [37]

†This section concerns a connection of abstract trees with alternative set theories and has
no mathematical relevance for the rest of this chapter.
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and later popularized by Aczel [1]—in the style of Aczel [1, Chapter 6], in ZFC− +
AFA the set of informal trees can be defined as the greatest fixed point of the class
operator Φ defined by letting Φ(X) be the class of all countable sets of elements
of the form (n, T ), with n ∈ ω and T a countable subset of X. Thus in ZFC− +
AFA the set of informal trees is exactly⋃

{x ∈ V ; x ⊆ Φ(x)}.
3.29 Proposition (ZFC− + AFA). The correspondence between abstract and
informal trees is a bijection.

We will not pursue this line of investigation any further; we thus now move
back to our setting of ZFC for the remainder of the thesis.

Computable functions between abstract trees

We denote by O(ω) the represented space of subsets of ω given by enumeration, i.e.,
so that p is a name for X ⊆ ω iff X = {n ∈ ω ; ∃k ∈ ω(p(k) = n+ 1)}. Note that
any computable function of type O(ω) O(ω) has a computable realizer which
uses only positive information, by which we mean that it works by only following
rules of the form “enumerate a certain natural number into the output set only
after having seen some finite set of natural numbers enumerated into the input
set”, i.e., via the so-called enumeration operators (cf., e.g., [74, Chapter XIV]).
Let SubTrees : LT O(ω) be defined by letting SubTrees(Υ) = {n ∈ ω ; eLT(n)
is a subtree of Υ}. It is easy to see that SubTrees is computable.
3.30 Lemma. There exists a computable map ConsTree : O(ω) LT such
that ConsTree ◦ SubTrees(Υ) is total and Υ′ ∈ ConsTree ◦ SubTrees(Υ) implies
Υ′ � Υ.

Proof. The function ConsTree can be defined as follows. Suppose we are at stage
k of the construction, when some n ∈ ω is enumerated into the input. If some m
has been enumerated at some earlier stage such that eLT(m) ⊃ eLT(n), then we
proceed to the next stage. Otherwise let X be the set of m ∈ ω such that eLT(m)
is a maximal subtree of eLT(n) among those m which have been enumerated at
earlier stages. By construction, for each m ∈ X we have defined an associated
a(m) ∈ ω and an isomorphism ιm : eLT(m) eLT(a(m)), and we have guaranteed
that eLT(a(m)) will be a subtree of the output tree we are constructing. Let N � n
be least such that there exists an isomorphism ιn : eLT(n) eLT(N) extending ιm
for each m ∈ X (in particular eLT(a(m)) ⊂ eLT(N) for every m ∈ X) and such
that no node of eLT(N) which is not in

⋃
m∈X eLT(a(m)) has been promised to be

part of our current partial output. Then let a(n) := N and guarantee that eLT(N)
will be a subtree of our output tree.

It is now straightforward to check that running the algorithm above on a name
for SubTrees(Υ), we have Υ =

⋃
n∈dom(a) eLT(n) and that ι :=

⋃
n∈dom(a) ιn is an

isomorphism between Υ and Υ′ :=
⋃

n∈dom(a) eLT(a(n)).
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3.31 Lemma. Let G � g : AT AT. Suppose F : ωω ωω and H : ωω ωω

are such that δLTF (p) � δLT(p) and δLTH(q) � δLT(q) for any p ∈ dom(F ) and
q ∈ dom(H), and dom(G) ⊆ dom(HGF ). Then HGF � g.

Proof. We have δATHGF (p) = δATGF (p) and δATF (p) = δAT(p), from which it
follows that δATHGF (p) = δATG(p).

3.32 Corollary. Let F,H be computable realizers of ConsTree and SubTrees,
respectively. If G is a computable realizer of some g : AT AT, then so is
FHGFH.

Proof. Indeed, we have δLTFH(p) ∈ ConsTree ◦ SubTrees ◦ δLT(p), and therefore
δLTFH(p) � δLT(p). Lemma 3.31 now applies.

Note that HGF is a computable realizer of some function g′ : O(ω) O(ω);
thus we can assume that FHGFH works by only following rules of the form “make
a certain finite labeled tree a subtree of the output only after having seen some
finite set of finite labeled trees as subtrees of the input”, which is to say, “make a
certain finite labeled tree a subtree of the output only after having seen a certain
finite labeled tree as a subtree of the input”.

3.4.2 The Weihrauch degree of the pruning derivative
Having defined the represented spaces of trees, labeled trees, and abstract trees, we
immediately have the corresponding operations of pruning derivative PD : UT
UT, PD : LT LT, and PD : AT AT. Note that Corollary 2.29 guarantees
that PD as defined on abstract trees is a well-defined operation.

In order to see PD� as an operation on represented spaces, let us first recall
the definition from [78] of the space CO of countable ordinals, represented by the
function δnK defined recursively by

(1) δnK(0p) = 0

(2) δnK(1p) = δnK(p) + 1

(3) δnK(2�pn�n∈ω) = supn∈ω δnK(pn).

We now have the operations PD� : UT×CO UT, PD� : LT×CO LT, and
PD� : AT× CO AT. The fact that the notation PD and PD� is so overloaded
will not be a problem, since which version is meant will usually be clear from the
context. Whenever this is not the case, PD and PD� will refer to the operations
on abstract trees.

In order to analyze the Weihrauch degree of PD�, we will first introduce and
analyze several operations on trees. We introduce and analyze them as modularly
as possible, in the hope that this will increase the clarity of the presentation and
the potential for applicability of the operations in other situations.
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3.33 Definition. Given σ0, . . . , σn−1 ∈ ω<ω such that |σi| = |σj| =  for each
i, j < n, let �σ0, . . . , σn−1� ∈ ω� be defined by

�σ0, . . . , σn−1�(m) = �σ0(m), . . . , σn−1(m)�

for each m < . Note that �σ0, . . . , σn−1� ⊆ �τ0, . . . , τn−1� iff σi ⊆ τi for every
i < n. Now, given trees T0, . . . , Tn−1, let their product be the tree

⊗
i<n Ti :=

{�σ0, . . . , σn−1� ; ∀i < n(σi ∈ Ti)}. If n = 2 then we use the smaller infix notation
T0 ⊗T1 to denote the product, thus matching Definition 2.54 exactly.

3.34 Proposition. The operation
⊗

: UT<ω UT is computable and

(1)
⊗

i<n Ti = ∅ iff Ti = ∅ for some i < n.

(2) PD(
⊗

i<n Ti) =
⊗

i<n PD(Ti).

(3)
⋂

β<α

⊗
i<n T

β
i =

⊗
i<n

⋂
β<α T

β
i for any ordinal α.

In particular, PD�(
⊗

i<n Ti, α) =
⊗

i<n PD
�(Ti, α) for any ordinal α.

Recall that we extend the binary product ⊗ to type LT×UT LT by letting
(T, ϕ)⊗S = (T ⊗S, ϕ′), where ϕ′(�σ, τ�) = ϕ(σ).

3.35 Proposition. If S is pruned and nonempty then (T, ϕ) � (T, ϕ)⊗S.

Proof. Let B ⊆ T × (T ⊗S) be given by σ B τ iff τ = �σ, ξ� for some ξ ∈ S. It
is easy to see that B satisfies conditions (label) and (parent). Suppose σ B τ ,
and let ξ ∈ S be such that τ = �σ, ξ�. For (forth), let σ′ be a child of σ in (T, ϕ).
Since S is pruned, ξ has a child ξ′ in S, and therefore τ ′ := �σ′, ξ′� is a child of τ
in (T, φ)⊗S. Now σ′ B τ ′ follows. For (back), let τ ′ be a child of τ in (T, φ)⊗S.
Thus σ′ is a child of σ in (T, ϕ), from which σ′ B τ ′ follows.

For our next operation on trees, let us first define some auxiliary notation
[σ0, . . . , σn−1], for σ0, . . . , σn−1 ∈ ω<ω.

3.36 Definition. We define [ ] := 〈〉. Then, given σ0, . . . , σn−1 ∈ ω<ω such that
n = |σ0| > 0 and |σi| = n− i for each i < n, let [σ0, . . . , σn−1] be defined by

[σ0, . . . , σn−1](m) = �σ0(m), σ1(m), . . . , σm(m)�

for each m < n. Note that [σ0, . . . , σn−1] ⊆ [τ0, . . . , τm−1] iff n � m and σi ⊆ τi
for each i < n. Now, given trees 〈Tn〉n∈ω, let their countable product be the tree



n∈ω

Tn := {[σ0, . . . , σn−1] ; ∀n ∈ ω(σn ∈ Tn)}.

Note that 〈〉 ∈
n∈ω Tn always holds. In particular, we will not always have
PD�(
n∈ω Tn, α) = 
n∈ω PD

�(Tn, α) for all α, as we had for finite products of
trees.
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3.37 Proposition. The operation 
 : UTω UT is computable and

(1) For m > 0 we have rkS([σ0, . . . , σm−1]) � mini<m rkTi
(σi), with equality in

case rk(Tj) � mini<m rkTi
(σi) holds for each j � m. As a consequence, we

have rk(S) � minn∈ω(rk(Tn) + n).

(2) For every α we have PD�(
n∈ω Tn, α) ⊆
n∈ω PD
�(Tn, α), with equality in

case α = 0 or PD�(Tn, α) 	= ∅ for all n ∈ ω.

(3) If all Tn are pruned and nonempty then so is 
n∈ω Tn.

Proof. The computability of 
 is straightforward.
(1) By induction on rkTi

(σi), we show that rkS([σ0, . . . , σm−1]) � rkTi
(σi). If

rkTi
(σi) = 0, this is easy to see. For rkTi

(σi) > 0 we have that every descendant of
σi in Ti has rank less than rkTi

(σi), so by inductive hypothesis every descendant of
[σ0, . . . , σm−1] in S has rank less than rkTi

(σi), and therefore rkS([σ0, . . . , σm−1]) �
rkTi

(σi). Conversely, by induction on α we show that if rkTi
(σi), rk(Tj) � α

holds for all i < m and j � m, then rkS([σ0, . . . , σm−1]) � α as well. The case
α = 0 is clear. Now suppose α > 0. Given β < α, for each i < m let σ′

i be an
immediate child of σi in Ti of rank at least β, and let σ′

m ∈ Tm have length 1
and rank at least β. Then [σ′

0, . . . , σ
′
m] is an immediate child of [σ0, . . . , σm−1]

in S. Since rk(Tj) � β for each j � m + 1, by induction hypothesis we get
rkS([σ

′
0, . . . , σ

′
m]) � β. Therefore rkS([σ0, . . . , σm−1]) > β, and since β < α was

arbitrary we get rkS([σ0, . . . , σm−1]) � α, as desired. Finally τ ∈ S has length
n + 1, then τ = [σ0, . . . , σn] where σi ∈ Ti for every i � n. In particular,
rkS(τ) � rkTn(σn) < rk(Tn), so rk(S) = rkS(〈〉) � rk(Tn) + n.

(2) Follows by combining (1) with Lemma 2.28.
(3) Follows from (1) since a tree is pruned and nonempty iff all its nodes have

rank ∞.

3.38 Definition. Given trees T0, . . . , Tn−1, let their mix be the tree
⊕

i<n Ti

such that
⊕

i<n Ti = ∅ iff Ti = ∅ for some i < n, and otherwise 〈〉 ∈ ⊕
i<n Ti and

Conc(
⊕

i<n Ti, 〈�m, k�〉) = Conc(Tm, 〈k〉) for each m < n and k ∈ ω. Intuitively,
the mix of T0, . . . , Tn−1 is the tree obtained by merging the roots of those trees
into a single root. If n = 2 then we use the smaller infix notation T0 ⊕T1 to denote
the mix.

3.39 Proposition. The operation
⊕

: UT<ω UT is computable and

(1) PD(
⊕

i<n Ti) =
⊕

i<n PD(Ti).

(2)
⋂

β<α

⊕
i<n T

β
i =

⊕
i<n

⋂
β<α T

β
i for any ordinal α.

In particular, PD�(
⊕

i<n Ti, α) =
⊕

i<n PD
�(Ti, α) for any ordinal α
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3.40 Definition. Given trees 〈Tn〉n∈ω, let their countable mix be the tree
�n∈ω Tn such that 〈〉 ∈�n∈ω Tn and Conc(�n∈ω Tn, 〈�m, k�〉) = Conc(Tm, 〈k〉)
for each m, k ∈ ω. As before with countable products, � will not commute with
PD�( ␣ , α) for all α in general.

3.41 Proposition. The operation � : UTω UT is computable and sat-
isfies PD�(�n∈ω Tn, α) ⊆ �n∈ω PD

�(Tn, α), with equality in case α = 0 or
PD�(Tn, α) 	= ∅ for some n ∈ ω.

To proceed, we need the notion of a Borel truth value. This represented
space was introduced in [44, Definition 5.8] (built on ideas from [65]), and further
investigated in [78]. Our definition differs slightly from the one given in the
literature, but is easily seen to be equivalent.

3.42 Definition. A Borel truth value is a pair b = (T, μ) such that T is a
wellfounded tree and μ is a function, called a tagging function, assigning to each
node of T one of the tags ⊥,', ∀, ∃, in such a way that each leaf is tagged ' or
⊥, and each non-leaf node is tagged ∀ or ∃ (in alternating fashion, i.e., so that
if a node tagged ∀ has a parent, then the parent is tagged ∃ and vice versa). A
name for a Borel truth value (T, μ) is an element p ∈ 5ω which is a δUT-code for T
and such that if σ ∈ T , i.e., if σ is a path through p, then

μ(σ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⊥, if σ = 〈〉 and p(0) = 1, or |σ| = 1 and p(σ(0)) = 1

', if σ = 〈〉 and p(0) = 2, or |σ| = 1 and p(σ(0)) = 2

∀, if σ = 〈〉 and p(0) = 3, or |σ| = 1 and p(σ(0)) = 3

∃, if σ = 〈〉 and p(0) = 4, or |σ| = 1 and p(σ(0)) = 4

μ′(shift(σ)), if |σ| > 1,

where (T ′, μ′) is the Borel truth value named by (shift(p))σ(0). In other words,
intuitively in a name for a Borel truth value, zeroes indicate absence of the
corresponding node, and nonzero values indicate both presence of the corresponding
node and its tag. The value Val(b) ∈ {',⊥} of a Borel truth value b is defined
by recursion on the rank of b in a straightforward way. The space of Borel truth
values is denoted by S(B). The Σ0

α-truth values (denoted S(Σ0
α)) are those with

rank � α and root tagged ∃, and the Π0
α-truth values (denoted S(Π0

α)) are those
with rank � α and root tagged ∀.

Given an ordinal α, with α = λ + n for some limit ordinal λ and n ∈ ω, let
α↑ = λ+ 2n and recall that α↓ = λ+ �n

2
 .

3.43 Proposition. The map isPresent : LT×CO×ω
∐

α∈CO S(Π0
α), mapping

(Υ, α, ) such that eLT() is linear to (max{1, α↑}, b) where Val(b) = ' iff eLT() ⊆
PD�(Υ, α), is computable.
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Proof. It is straightforward to see that α �→ max{1, α↑} : CO → CO is computable.
Computability of the second component is shown by induction over the δnK-name
q of α provided.

If q = 0q′, then we check whether eLT() ⊆ Υ and return either the tree of
rank 1 with root tagged ∀ and children tagged ' (if yes), or with root tagged ∀
and children tagged ⊥ (if no).

If q = 1q′, then α = β + 1 and q′ is a name for β. Let h be the height of
eLT(). We start searching for confirmation that β > 0. Until we find it, we add
children with tag ∃ to the root tagged ∀, and then for each ′ ∈ ω such that
eLT(

′) is a linear tree of height h′ > h extending eLT(), we add a grandchild
tagged ' or ⊥ to the (h′ − h)th child, depending on whether or not eLT(′) ⊆ Υ.
If we do receive confirmation that β > 0, we add a grandchild tagged ' to each
∃-child produced so far, and then ignore these children. Then, for each ′ ∈ ω
such that eLT(

′) is a linear tree of height h′ > h extending eLT(), we compute
b�′ ∈ S(Π0

max{1,β↑}) denoting whether or not eLT(
′) ⊆ PD�(Υ, β). Then we add

each b�′ as a grandchild of the root of b via the (h′ − h)th new child tagged ∃.
If q = 2�qi�i∈ω, then α = supi∈ω αi and each qi is a name for αi. For each i ∈ ω,

we compute whether eLT() ⊆ PD�(Υ, αi) as bi ∈ S(Π0
max{1,αi↑}). By induction,

each bi has root tagged ∀, and we now obtain the answer b as the mix of the bi.

3.44 Claim. Val(b) = ' iff eLT() ⊆ PD�(Υ, α).

By induction on the name q of α. If q = 0q′ then it is immediate to see that the
claim holds. Suppose the claim holds for q′ and let q = 1q′. Let β = δnK(q

′) and
suppose eLT() has height h. Then eLT() ⊆ PD�(Υ, α) iff for every n ∈ ω there
exists some ′ ∈ ω such that eLT(′) is a linear tree of height h+n extending eLT(),
with eLT(

′) ⊆ PD�(Υ, β). By induction, the result of iterating the algorithm for
(Υ, β, ′) gives the correct output. Therefore Val(b) = ' iff eLT() ⊆ PD�(Υ, α).
Finally, suppose the claim holds for each qn and let q = 2�qn�n∈ω. Let αn = δnK(qn).
Again, by induction the result of iterating the algorithm for (Υ, αn, ) gives the
correct output. Therefore Val(b) = ' iff all children of the roots of all bn have
value ' iff eLT() ⊆ PD�(Υ, αn) for all n ∈ ω iff eLT() ⊆ PD�(Υ, α), as desired.

3.45 Claim. The Borel truth value b has rank � max{1, α↑}.
We again proceed by induction on the name q of α. If q = 0q′ then by

construction b has rank 1. If q = 1q′ and β := δnK(q
′) = 0, then again by

construction b has rank � 2 = 1↑. If q = 1q′ and β := δnK(q
′) > 0, then by

induction each bτ as defined in the algorithm has rank � β↑, and therefore b has
rank � β↑ + 2 = α↑. Finally, if q = 2�qi�i∈ω, for each i let αi = δnK(qi). By
induction, each bi as defined in the algorithm has rank � max{1, αi↑}, and by
construction b has rank � max{1, supi∈ω αi↑} = max{1, α↑}.
3.46 Proposition. The map Witness : S(B) UT, mapping b of rank α > 0 to
some T such that if Val(b) = ' then PD�(T, α↓) is a nonempty pruned tree, and
if Val(b) = ⊥ then PD�(T, α↓) = ∅, is computable.
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Proof. If b is composed of a single node, then we output ω<ω or ∅ according
to whether Val(b) = ' or Val(b) = ⊥. Otherwise, we iteratively compute trees
(Tn)n∈ω for all the subtrees rooted at the children of the root of b, and output

n∈ω Tn if the root of b is tagged ∀, or output �n∈ω Tn if the root of b is tagged
∃.

3.47 Claim. Suppose β > 0 is such that PD�(Tn, β) is pruned for each n ∈ ω.
Then PD�(T, β) is pruned, if the root of b is tagged ∀, and PD�(T, β + 1) is
pruned, if the root of b is tagged ∃. Furthermore, if PD�(T, δ) is pruned, then it is
nonempty in case Val(b) = ' and empty in case Val(b) = ⊥.

If b is composed of a single node then the claim follows easily. Otherwise,
suppose the root of b is tagged ∀, so that T =
n∈ω Tn. If Val(b) = ' then each
PD�(Tn, β) is pruned and nonempty, and therefore the same holds for PD�(T, β).
Conversely, if Val(b) = ⊥ then PD�(Tn0 , β) = ∅ for some n0 ∈ ω. Thus there
is some γ < β and H ∈ ω such that PD�(Tn0 , γ) has height � H < ω. Then
PD�(T, γ) has height � H ′ < ω for some H ′ depending on H and n0, and therefore
PD�(T, β) = ∅. Now suppose the root of b is tagged ∃, so that T =�n∈ω Tn. If
Val(b) = ' then some PD�(Tn, β) is pruned and nonempty. Therefore the same
holds for PD�(T, β). Otherwise, if Val(b) = ⊥ then each PD�(Tn, β) is empty.
Therefore PD�(T, β) ⊆ {〈〉}, and thus PD�(T, β + 1) is empty.

3.48 Claim. Let b′ be a Borel truth value and let T ′ be the result of applying
the algorithm above to b′. For β = rk(b′), we have that if the root of b′ has tag ∀
then PD�(T ′, β↓) is pruned, and if the root of b′ has tag ∃ then PD�(T ′, β↓ + 1) is
pruned.

By induction on β. If β = 0, i.e., if b′ is a single node, then by construction
T ′ is pruned. Now suppose β > 0, and let the nth child σn of the root of b′ have
rank βn < β. Suppose the root of b′ has tag ∃, so that each σn is either a leaf or
has tag ∀. By induction, the result Tn of applying the algorithm to the subtree
of b′ rooted at σn is such that PD�(Tn, β↓n) is pruned. Since supn∈ω β↓n � β↓, by
the preceding claim it follows that PD�(T, β↓ + 1) is pruned. Finally, suppose the
root of b′ has tag ∀, so that each σn is either a leaf or has tag ∃. By induction,
the result Tn of applying the algorithm to the subtree of b′ rooted at σn is such
that PD�(Tn, β↓n + 1) is pruned. If supn∈ω(β↓n + 1) � β↓ for each n, then by
the preceding claim we are done. Otherwise, say β↓n = β↓ for some n. Then βn

is odd and β = βn + 1. In particular βn = γn + 1 for some γn, and therefore
δ↓ � γ↓n < β↓n for each δ < βn. Hence, since by induction the result S of
applying the algorithm to any subtree of β′ rooted at some child of σn is such
that PD�(S, δ↓) is pruned for some δ < βn, by the preceding claim it follows that
PD�(Tn, γ↓n + 1) = PD�(Tn, β↓n) is pruned. Thus, again by the preceding claim,
PD�(T, β↓) is pruned.

3.49 Proposition. For each α ∈ CO we have that PD�( ␣ , α) is parallelizable.
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Proof. Given abstract trees 〈An〉n∈ω with respective representatives 〈Υn〉n∈ω, let
A be the abstract tree represented by the tree Υ in which the root has a child σn

labeled n for each n ∈ ω such that Υn 	= ∅, and such that Conc(Υ, σn) = Υn in
the positive case. It is now straightforward to see that each PD�(An, α) can be
reconstructed from PD�(A, α).

Let 2 be the represented space composed of two elements, ' and ⊥, the first
represented by 1ω and the latter by 0ω.

3.50 Corollary. For each α > 0 we have that PD�( ␣ , α) is Weihrauch-
equivalent to the parallelization of idα : S(Π0

α↑) → 2. Furthermore, the reductions
in both directions can be taken to be uniform in α.

Proof. To reduce PD�( ␣ , α) to the parallelization of idα, note that we can use
isPresent from Proposition 3.43 to compute for each finite linear labeled tree
whether or not it is present in PD�(Υ, α) as a S(Π0

α↑)-truth value. We then use
the parallelization of idα : S(Π0

α↑) → 2 to convert all of these into booleans, and
can thus construct PD�(Υ, α).

For the converse, we use Witness(α↑, b) from Proposition 3.46 to obtain some
Υ such that PD�(Υ, α) = ∅ if Val(b) = ⊥ and PD�(Υ, α) 	= ∅ if Val(b) = '. As
{∅} is a decidable subset of LT, we can therefore write a 2-name for b if given an
LT-name for PD�(Υ, α).

3.51 Theorem (Folklore). If A ⊆ ωω is Wadge-complete for Π0
α, then χ̂A is

t-Weihrauch-complete for Baire class α, where χA : ωω 2 is given by χA(x) = '
iff x ∈ A.

Proof. That χ̂A is Baire class α follows from noticing that

χ̂A
−1[σ] =

⋂
n<|σ|
σ(n)=0

{x ∈ ωω ; (x)n ∈ A} ∩
⋂

n<|σ|
σ(n)=1

{x ∈ ωω ; (x)n 	∈ A},

which is the intersection of a Π0
α set with a Σ0

α set.
Now let F : ωω ωω be a Baire class α realizer of f : X Y. Let 〈σn ; n ∈ ω〉

be some enumeration of ω<ω. Since F is Baire class α, there exists some countable
collection 〈Xn,m ; n,m ∈ ω〉 of Σ0

α sets such that F−1[σn] =
⋃

m∈ω Xn,m. Since A is
Wadge-complete for Π0

α, for each n,m ∈ ω there exists a continuous fn,m : ωω ωω

such that Xn,m = f−1
n,m[ω

ω � A]. Now, defining a continuous K : ωω ωω

by (K(x))�n,m� = fn,m(x), we have σn ⊆ F (x) iff x ∈ Xn,m for some m iff
χ̂A(K(x))(�n,m�) = 1 for some m. Finally, defining a continuous H : ωω ωω by
H(x) =

⋃{σn ; ∃m(x(�n,m�) = 1} with its natural domain, we have Hχ̂AK � F .
Therefore F �sW χ̂A, and f �sW χ̂A as well.

3.52 Corollary. For each α > 0 the parallelization of the map idα : S(Π0
α↑) → 2

is t-Weihrauch-complete for Baire class α.
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Proof. It is enough to show that for each α > 0 the characteristic function of any
Π0

α set is Weihrauch-reducible to idα, and that idα is Weihrauch-reducible to the
characteristic function of some Π0

α set. Both of these claims can be easily proved
by induction.

3.53 Corollary. The operation PD�( ␣ , α) is Weihrauch-complete for Baire
class α↑.

3.4.3 The transparency of the pruning derivative
3.54 Proposition. The map isAbsent : LT×CO×ω

∐
α∈CO S(Π0

α), mapping
(Υ, α, ) such that eLT() is linear to (max{1, α↑}, b) where Val(b) = ' iff eLT() 	⊆
PD�(Υ, α), is computable.

Proof. We just run isPresent on (Υ, α, ) then dualize the output by exchanging
tags ∀ with ∃ and ' with ⊥.

3.55 Corollary. The operation Neg : LT × CO × ω UT, given by S ∈
Neg(Υ, α,m) iff PD�(S, α) is a pruned tree and PD�(S, α) 	= ∅ iff eLT(m) ⊆
PD�(Υ, α), is computable.

Proof. Let Υ0, . . . ,Υn be the linear subtrees of eLT(m), and for each i � n let
i ∈ ω be such that eLT(i) = Υi. By Propositions 3.43 and 3.46, letting Si ∈
Witness ◦ isPresent(Υ, α, i), we have that PD�(Si, α) is pruned and PD�(Si, α) 	=
∅ iff Υi ⊆ PD�(Υ, α). Now letting S =

⊗
i�n Si we have that PD�(S, α) is pruned

and that PD�(S, α) 	= ∅ iff eLT(m) ⊆ PD�(Υ, α), as desired.

3.56 Corollary. The operation WitnessAbsence : LT×CO× ωω UT, given
by S ∈ WitnessAbsence(Υ, α, x) iff in case α > 0 then PD�(S, α) is a pruned tree
and PD�(S, α) = ∅ iff eLT(x(m)) ⊆ PD�(Υ, α) for some m ∈ ω, is computable.

Proof. For each m and each linear subtree Υm
0 , . . . ,Υ

m
nm

of eLT(x(m)), let mi ∈ ω
be such that eLT(

m
i ) = Υm

i . By Propositions 3.54 and 3.46, letting Sm
i ∈

Witness ◦ isAbsent(Υ, α, mi ), we have that PD�(Sm
i , α) is a pruned tree and

PD�(Sm
i , α) = ∅ iff Υm

i ⊆ PD�(Υ, α). Now letting Sm =
⊗

i�nm
Sm
i we have

that PD�(Sm, α) is pruned and that PD�(Sm, α) = ∅ iff eLT(x(m)) ⊆ PD�(Υ, α).
Now let S =
m∈ω S

m.
Suppose α > 0, and first suppose that eLT(x(m)) ⊆ PD�(Υ, α) for some

m ∈ ω. Then PD�(Sm, α) = ∅, so for some β < α we have that PD�(Sm, β) has
some finite height H. Hence PD�(S, β) also has some finite height H ′ (which
depends on H and m), and therefore PD�(S, α) = ∅, as desired. Now suppose
eLT(x(m)) 	⊆ PD�(Υ, α) for all m ∈ ω. Then each PD�(Sm, α) is pruned and
nonempty, and therefore the same holds for PD�(S, α).

3.57 Proposition (Pauly [78, Theorem 31]). The function min : CO×CO CO
is computable.
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3.58 Proposition. The function TreeWithRank : CO UT, given by

T ∈ TreeWithRank(α) iff T is a wellfounded tree and rk(T ) = α,

is computable.

Proof. We will define a computable F � TreeWithRank. Given p ∈ dom(δnK), if
p(0) = 0 we let F (p) = 10ω, i.e., a code for the tree {〈〉}. If p = 1q, we let F (p) be
a code for the tree T := {〈〉} ∪ {〈0〉�σ ; σ ∈ δUT ◦F (p)}. Finally, if p = 2q0q1 . . .,
we let F (p) be a code for the mix of the trees coded by the F (qn). It is now
routine to check that F � TreeWithRank.

3.59 Corollary. The operation Pos : LT × CO × ω UT, given by S ∈
Pos(Υ, α, n) iff

PD�(S, α) =

{
{〈〉}, if eLT(n) ⊆ PD�(Υ, α)

∅, otherwise,

is computable.

Proof. Given a labeled tree Υ = (T, ϕ), a countable ordinal α, and a natural
number n, we output a tree S of rank β := min({ω · α} ∪ {rkT (σ) ; σ ∈ eLT(n)}).

We have PD�(S, α) = {〈〉} iff β = ω · α iff rkT (σ) � ω · α for each σ ∈ eLT(n)
iff σ ∈ PD�(Υ, α) for each σ ∈ eLT(n) iff eLT(n) ⊆ PD�(Υ, α), and PD�(S, α) = ∅
otherwise.

3.60 Definition. We define Graft : LT× UT× UT× ω<ω LT by

(1) Graft(Υ, S, U, σ)�Ext(ω<ω, σ) = Υ�Ext(ω<ω, σ)

(2) Conc(Graft(Υ, S, U, σ), σ) = (Conc(Υ, σ)⊗S)⊕U

3.61 Definition. We define Aux : LT× LT×UT×CO× ω<ω × ω<ω LT as
follows. Given Υ,Υaux ∈ LT, α ∈ CO, and σ, τ ∈ ω<ω such that |σ| = |τ | > 0, let
Υ′ ∈ Aux(Υ,Υaux, U, α, σ, τ) iff Υ′ = Graft(Υ, SN, SP ⊗U, σ) for some

SN ∈ Neg(Υaux, α,⊥(τ))
SP ∈ [

⊗
n<|τ |−1(Neg(Υaux, α, τ(n)))]⊗Pos(Υaux, α,⊥(τ)).

Recall from Theorem 1.34 that every computable or continuous multi-valued
function between represented spaces is tightened by a strongly computable or
strongly continuous, respectively, multi-valued function between the same spaces.
Therefore, in order to conclude that PD�( ␣ , α) is transparent for each α, it is
enough to prove the following stronger result.

3.62 Theorem. There is a computable operation Trans : M(AT,AT)× CO
M(AT,AT) such that g ∈ Trans(f, α) iff dom(f ◦PD�( ␣ , α)) ⊆ dom(g) and
PD�(Ag, α) ∈ f(PD�(A, α)) for any A ∈ dom(f ◦PD�( ␣ , α)) and Ag ∈ g(A).
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Proof. Let f ∈ M(AT,AT) be given in the form of a Turing machine M which
strongly computes f with some given oracle q. Let F : ωω ωω be defined
with dom(F ) = dom(fδAT) by letting F (p) be the output of M on input �p, 0ω�
and oracle q. Thus F is a computable realizer of f , so by Corollary 3.32 we
can assume that for each m there exists a computable subset Xm ⊆ ω such that
eLT(m) ⊆ δLTF (p) iff eLT(n) ⊆ δLT(p) for some n ∈ Xm. Thus we can construct a
computable labeled tree ΥF which represents F , as follows. The nodes of length 1
of ΥF are bijectively associated to the pairs (n, ) such that eLT() is a linear tree
of height 1 and n ∈ X�. If σ ∈ ΥF is associated to (n, ), then

(1) the label of σ in ΥF is the label of the node of eLT() at height |σ|, and

(2) the children of σ in ΥF are bijectively associated to the pairs (n′, ′) such that
eLT(

′) is a linear tree of height |σ|+ 1, n′ ∈ X�′ , and eLT() ⊆ eLT(
′).

It is now straightforward to check that if δLT ◦F (p) is not empty then it is
bisimilar to the subtree Υp of ΥF composed of the root plus those σ which are
associated to (n, ) with eLT(n) ⊆ δLT(p).

Formally, our goal now is to computably define a Turing machine M ′ from
M , q, and α, such that the function g := gM ′,q from the proof of Theorem 1.34
has the desired properties. To simplify the presentation, we will define g directly
and leave the definition of M ′ implicit. Thus, we want to define a computable
g : LT LT such that for any p ∈ dom(F ) and any Υ′ ∈ g(δLT(p)), letting
δLT(p

′) = PD�(δLT(p), α), we have:

(1) if δLT ◦F (p) 	= ∅ then PD�(Υ′, α) � Υp′ ;

(2) if δLT ◦F (p) = ∅ then PD�(Υ′, α) = ∅.

Again, since F is computable, there exists a computable z ∈ ωω such that
δLT ◦F (p) = ∅ iff eLT(z(n)) ⊆ δLT(p) holds for some n ∈ ω. Given p ∈
dom(f ◦PD�( ␣ , α) ◦ δAT), let Υ := δLT(p) and U ∈ WitnessAbsence(Υ, α, z).
Therefore, if δLT ◦F (p) 	= ∅ then eLT(z(m)) 	⊆ δLT(p) for all m ∈ ω and thus
PD�(U, α) is pruned and nonempty, and if δLT ◦F (p) = ∅ then eLT(z(m)) ⊆ δLT(p)
for some m ∈ ω and thus PD�(U, α) = ∅. Let V ∈ TreeWithRank(ω · α), so
that PD�(V, α) = {〈〉}. Let Υ0 = (ΥF ⊕V )⊗U , so that if δLT ◦F (p) 	= ∅ then
PD�(Υ0, α) � PD�(ΥF , α), and if δLT ◦F (p) = ∅ then PD�(Υ0, α) = ∅. We
let any node in Υ0 coming from ΥF be associated to the same pair (n, ) as the
corresponding node in ΥF .

Now suppose we are at stage s > 0 of the construction, so that we have
already built a tree Υs−1. Let σ := bij(s), with bij : ω ω<ω the bijection fixed in
Convention 1.8. If σ 	∈ Υs−1 or σ ∈ Υs−1 but is not associated to any (n, ), then let
Υs = Υs−1. Otherwise suppose σ�(m+ 1) is associated to some (nm, m) for each
m < |σ|. Let ∗σ := 〈n0, . . . , n|σ|−1〉 and define Υs := Aux(Υs−1,Υ, U, α, σ, ∗σ).
Recall that in this case we have

Conc(Υs, σ) = (Conc(Υs−1, σ)⊗SN)⊕(SP ⊗U)
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for some SN, SP as in the definition of Aux. Hence we let each descendant σ�τ of
σ in Υs in which τ comes from the Conc(Υs−1, σ)⊗SN component of ⊕ above be
associated to the same (n, ) as the corresponding node in Υs−1.

We then define Υ′ by letting σ ∈ Υ′ iff σ ∈ Υs for s = bij−1(σ), with the label
for σ being its label in Υs in the positive case.

3.63 Claim. Every node of PD�(Υ′, α) other than the root is associated to some
pair (n, ).

Indeed, it is easy to see that this is true of Υ0. Thus if a node ξ ∈ PD�(Υ′, α)
is not associated to some such pair, this means that ξ was added to Υ′ at
some stage s > 0 of the construction. Let σ = bij(s). In this case we have
Υs := Aux(Υs−1,Υ, U, α, σ, ∗σ), i.e., Υs = Graft(Υs−1, SN, SP ⊗U, σ) for some

SN ∈ Neg(Υ, α,⊥(∗σ)) and
SP ∈ [

⊗
m<|σ|−1(Neg(Υ, α, ∗σ(m)))]⊗Pos(Υ, α,⊥(∗σ)).

The fact that ξ is not associated to any pair (n, ) implies that ξ = σ�η for some
η 	= 〈〉 coming from SP ⊗U . By construction the subtree of ξ in Υ′ is the same as
in Υs, since for any s′ > s such that bij(s′) ⊇ ξ we have Υs′ = Υs′−1, and for any
s′ > s such that σ′ = bij(s′) 	⊇ ξ we have Υs′�Ext(ω<ω, σ′) = Υs′−1�Ext(ω<ω, σ′).
Hence Conc(PD�(Υ′, α), ξ) ⊆ Conc(PD�(SP ⊗U, α), η) = ∅, i.e., ξ 	∈ PD�(Υ′, α).

3.64 Claim. If δLT ◦F (p) = ∅ then PD�(Υ′, α) = ∅.

Indeed, if δLT ◦F (p) = ∅ then PD�(U, α) = ∅. Hence PD�(Υ0, α) = ∅, and
at each stage s > 0 we either keep Υs = Υs−1, or else Υs differs from Υs−1 only in
that

Conc(Υs, σ) = (Conc(Υs−1, σ)⊗SN)⊕(SP ⊗U)

for some SN, SP as in the definition of Aux(Υs−1,Υ, U, α, σ, ∗σ), where σ = bij(s).
But then we have that

Conc(PD�(Υs, α), σ)
= (Conc(PD�(Υs−1, α), σ)⊗PD�(SN, α))⊕PD�(SP ⊗U, α)
= Conc(PD�(Υs−1, α), σ)⊗PD�(SN, α),

so assuming by induction that PD�(Υs−1, α) = ∅ holds, it follows that we have
Conc(PD�(Υs, α), σ) = ∅ as well. But then PD�(Υs, α) = ∅, as desired. Therefore
we have PD�(Υ′, α) = ∅.

For the rest of the proof we assume that δLT ◦F (p) 	= ∅, which implies that
PD�(U, α) is a pruned and nonempty tree. Furthermore, since PD�(V, α) = {〈〉},
we have 〈〉 ∈ PD�(Υ′, α).

3.65 Claim. Suppose σ ∈ Υ′�{〈〉}. Then σ ∈ PD�(Υ′, α) iff eLT(∗σ(m)) ⊆
PD�(Υ, α) for each m < |σ|.
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Let s = bij−1(σ). Suppose eLT(∗σ(m)) 	⊆ PD�(Υ, α) for some m < |σ|.
Let s′ = bij−1(σ�(m+ 1)). Note that PD�(SN, α) = PD�(SP ⊗U, α) = ∅ for
any SN ∈ Neg(Υ, α, ∗σ(m)) and SP ∈ Pos(Υ, α, ∗σ(m)). Thus we also have
Conc(PD�(Υs, α), σ�(m+ 1)) = ∅. Put together, and also considering the preced-
ing claim, the two last statements imply τ 	∈ PD�(Υs′′ , α) for any τ ⊇ σ�(m+ 1).
Thus σ 	∈ PD�(Υ′, α). Conversely, suppose eLT(∗σ(m)) ⊆ PD�(Υ, α) for every
m < |σ|. Then for any

SP ∈ [
⊗

m<|σ|−1

(Neg(Υ, α, ∗σ(m)))]⊗Pos(Υ, α,⊥(∗σ))

we have PD�(SP ⊗U, α) = PD�(SP, α) = {〈〉}. In particular, since Υs =
Aux(Υs−1,Υ, U, α, σ, ∗σ), it follows that the descendants of σ in Υs which are not
associated to any (n, ) already guarantee that σ ∈ PD�(Υ′, α), as desired.

Let p′ be such that δLT(p
′) = PD�(Υ, α).

3.66 Claim. The trees PD�(Υ′, α) and Υp′ are bisimilar.
Define B ⊆ PD�(Υ′, α) × Υp′ by letting σ B τ iff σ = τ = 〈〉 or |σ| = |τ |,

σ�n B τ�n for each n < |σ|, and σ and τ are associated to the same pair (n, ).
In order to verify that B is a bisimulation, the only nontrivial properties to check
are (back) and (forth). So suppose σ B τ and for (back) let τ ′ be a child of τ in
Υp′ . Then τ ′ is associated to some (n′, ′) where eLT(n

′) ⊆ δLT(p
′) = PD�(Υ, α).

But then by construction σ has some child σ′ in Υ′ associated to (n′, ′). By
Claim 3.65 we have σ′ ∈ PD�(Υ′, α), and σ′ B τ ′ follows. Finally, for (forth) let
σ′ be a child of σ in PD�(Υ′, α). Again by Claim 3.65 we get that σ′ is associated
to some (n′, ′) such that eLT(n′) ⊆ PD�(Υ, α). But then τ must have a child τ ′

in Υp′ which is also associated to (n′, ′), and therefore σ′ B τ ′.
Our assumption that δLT ◦F (p) 	= ∅ implies that both PD�(Υ′, α) and Υp′ are

nonempty trees, and B 	= ∅. Hence we have PD�(Υ′, α) � Υp′ as desired.

3.67 Theorem. The operation PD�( ␣ , α) is a transparent cylinder.

Proof. Transparency follows directly from Theorem 3.62. To see that PD�( ␣ , α) is
a cylinder, given a code p of an abstract tree A, let Ap be the abstract tree obtained
from A by changing each of its labels  to �1, � plus adding an infinite path with
induced label 〈�0, p(n)�〉n∈ω. Then PD�(Ap, α) is obtained from PD�(A, α) by
the same change of labels as above plus the addition of the same infinite path.
Now both p and PD�(A, α) can easily be reconstructed from PD�(Ap, α) without
needing direct access to p; in other words, idωω × PD�( ␣ , α) �sW PD�( ␣ , α).

Let ATlin be the subspace of AT composed of the linear abstract trees, and let
AT∗

lin be the subspace of ATlin composed of the linear abstract trees which have a
unique infinite induced label. The spaces ATfb and AT∗

fb are defined analogously
for finitely branching trees. Note that AT∗lin is composed exactly of the nonempty
pruned linear trees. Let Prunefb be the restriction of PD to AT∗

fb, and note that
Prunefb : AT∗

fb AT∗
lin.
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3.68 Lemma. The operation Prunefb is Weihrauch-equivalent to lim.

Proof. (lim �W Prunefb) Given p ∈ dom(lim), we can build an abstract finitely
branching tree whose induced labels are exactly the sequences of the form (p)n�n.
Since lim(p) is well defined, this tree is in the domain of Prunefb; applying this
map to this tree results in a linear tree with an infinite branch labeled lim(p).

(Prunefb �W lim) Given a name p of an abstract tree A in the domain of
Prunefb, let Υ = δLT(p) be one of its representatives. Since Υ is bisimilar to a
finitely branching tree, for each σ ∈ Υ by Kőnig’s lemma we have that σ ∈ PD(Υ)
iff Conc(Υ, σ) has infinite height. Therefore deciding whether σ ∈ PD(Υ) holds
can be done with a single use of lim, and since lim is parallelizable, one application
of lim suffices to decide this for all σ ∈ Υ at once. With this information we can
construct Prunefb(A).

3.69 Theorem. The operation Prunefb is transparent.

Proof. The proof is a simplified version of the proof of Theorem 3.62.
Let f : AT∗

lin AT∗
lin be computable. Then f has a realizer F such that for

each τ ∈ ω<ω there exists a computable Xτ ⊆ ω<ω such that τ is an induced label
of the tree δAT ◦F (p) iff ξ is an induced label of δAT(p) for some ξ ∈ Xτ .

Let p be given and Υ := δLT(p). We can computably define a labeled tree
ΥG with the following properties. The nodes at level 1 of ΥG are bijectively
associated to the pairs (ξ, τ) such that |τ | = 1 and ξ ∈ Xτ is an induced label of
Υ. Recursively, if σ 	= 〈〉 is in ΥG and is associated to a pair (ξ, τ), then we have:

(1) The induced label of σ in ΥG is τ .

(2) If some node of Υ with induced label ξ has rank at least |τ | + 1, then the
children of σ in ΥG are bijectively associated to the pairs (ξ′, τ ′) such that
|τ ′| = |τ |+ 1, τ ′ ⊃ τ , and ξ′ ∈ Xτ ′ is an induced label of Υ; otherwise σ is a
leaf of ΥG.

3.70 Claim. The trees PD(ΥG) and ΥFH := δLT ◦F ◦H(p) are bisimilar.

Let H � PD : LT LT. To see that PD(ΥG) � ΥFH , let σ B τ iff σ = τ = 〈〉
or σ and τ have the same induced labels in PD(ΥG) and ΥFH , respectively. Now
suppose σ B τ , and let σ be associated to (ξ0, τ1). Let σ′ be a child of σ in PD(ΥG).
It follows that σ′ is associated to some pair (ξ1, τ1) such that τ0 ⊆ τ1. Since σ′

is in the pruning derivative of δLT ◦G(p), by condition 2 of the construction it
follows that there are nodes of Υ of arbitrary length whose labels extend ξ1. Since
Υ is bisimilar to a finitely branching tree, this implies that some node ν of Υ
with induced label ξ1 is the root of a subtree of Υ of infinite height. Thus ν is in
δLT ◦H(p), and since ξ1 ∈ Xτ1 it follows that some node with induced label τ1 is
in ΥFH . Finally, since ΥFH is linear, it follows that τ has a child τ ′ with induced
label τ1, and thus σ′ B τ ′. Conversely, let τ ′ be a child of τ in ΥFH , and let τ1
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be its induced label. Therefore, some ξ1 ∈ Xτ1 is an induced label in PD(Υ), and
thus some node ν of Υ has τ1 as its induced label and is the root of a subtree of
Υ of infinite height. This implies that some child σ′ of σ in ΥG is associated to
(ξ1, τ1), and that such σ′ is also in PD(ΥG). Therefore σ′ B τ ′. Finally, note that
ΥFH contains an infinite path since f : AT∗

lin AT∗
lin, which implies that ΥG and

PD(ΥG) also contain an infinite path. Therefore B 	= ∅ and PD(ΥG) is bisimilar
to ΥFH .

3.71 Claim. The tree ΥG is bisimilar to a finitely branching tree.

By construction, nodes of ΥG which have the same induced label have bisimilar
(indeed, isomorphic) subtrees. Thus if some node σ of ΥG has infinitely many
children σn which are roots of non-bisimilar subtrees, then the labels of the σn

are pairwise distinct. Therefore the σn must be associated to elements (ξn, τn)
such that the τn are pairwise ⊆-incomparable. But Υ is bisimilar to a finitely
branching tree; thus in particular only finitely many different labels occur on each
of its levels. This implies that limn∈ω |τn| = ∞, and therefore arbitrarily long
prefixes of the infinite induced label of Υ occur among the prefixes of the τn. But
then we cannot have that all ξn have the same length |σ|+ 1, a contradiction.

3.72 Lemma. The operation Prunefb is a cylinder.

Proof. Given a name p of an abstract tree A ∈ dom(Prunefb), let Ap be the tree
obtained from A by changing the label  of any node σ 	= 〈〉 to �, p(|σ|)�. Then
Prunefb(Ap) is obtained from Prunefb(A) via the same transformation, and since
Prunefb(A) has an infinite branch, it is easy to reconstruct both p and Prunefb(A)
from Prunefb(Ap). In other words, idωω × Prunefb �sW Prunefb.

3.4.4 Games for functions of a fixed Baire class
For an even ordinal α , let Pruneα be the corestriction of PD�( ␣ , α↓) to AT∗

lin, let
Pruneαfb be the corestriction of PD�( ␣ , α↓) to AT∗

fb, and finally let Pruneα+1 =
Prunefb ◦Pruneαfb.
3.73 Corollary. Let α < ω1. We have that Pruneα is a transparent cylinder
which is Weihrauch-complete for the Baire class α functions. Therefore the
(Pruneα,Label)-Wadge game characterizes the Baire class α functions.

Proof. Suppose α = λ+2n. We have that PD�( ␣ , λ+n) is a transparent cylinder
which is Weihrauch-complete for the Baire class λ+ 2n functions, so to see that
the same holds for Pruneλ+2n, by Theorem 3.9 it is enough to show that AT∗

lin

strongly encodes ωω. But any F : ωω ωω is easily seen to be strongly Weihrauch-
equivalent to the map F ′ : ωω AT∗

lin which assigns x ∈ dom(F ) to any linear
abstract tree whose unique infinite label is in F (x).

Now suppose α = λ+ 2n+ 1. Since AT∗
lin ⊆ AT∗

fb ⊆ AT, by Proposition 3.4
and the fact that Pruneλ+2n is Weihrauch-complete for Baire class λ+2n it follows
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86 Chapter 3. Parametrized Wadge games

that Pruneλ+2n
fb also has this property. Now, since Prunefb is a transparent cylinder

which is Weihrauch-complete for the Baire class 1 functions, the result follows.

In other words, for even α, the restriction of the tree game in which the final
tree built by player 2| must have α↓th pruning derivative bisimilar to a linear tree
characterizes the Baire class α functions, and for odd α, the restriction of the tree
game in which the final tree built by player 2| must have α

� th pruning derivative
bisimilar to a finitely branching tree characterizes the Baire class α functions.
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Chapter 4

Games and computable analysis
on generalized Baire spaces

Summary. In this chapter we generalize some of the results from
the previous chapters from the setting of Baire space ωω to that of
generalized Baire spaces κκ with κ > ω. In § 4.1 we briefly review
definitions and results concerning generalized Baire spaces from the
literature, as well as introducing a couple of our own. In § 4.2, we
generalize the α-tree game, from Chapter 2, to κκ (Definition 4.9) and
show that it characterizes the generalized version of the Baire class
α functions (Corollary 4.13). Finally, in § 4.3, we introduce a notion
of type-two computability for κκ and 2κ, and generalize computable
analysis to the generalization of the real line of cardinality 2κ, defined
by Galeotti using Conway’s surreal numbers. As a proof of concept of
our definitions, we analyze the Weihrauch degree of the intermediate
value theorem for the generalized real line (Theorem 4.34).

An early version of the material presented in § 4.3 has appeared in
the proceedings volume of Computability in Europe 2017, held 12–16
June 2017 in Turku, Finland [42], where it was awarded Best Student
Paper.

Remarks on co-authorship

The material presented in § 4.3 is the result of a collaboration with Lorenzo Galeotti,
building on Galeotti’s Master’s thesis written under the supervision of the author
and Benedikt Löwe at the University of Amsterdam. This collaboration was further
developed while both collaborators were Visiting Fellows at the Isaac Newton
Institute for Mathematical Sciences in the program Mathematical, Foundational
and Computational Aspects of the Higher Infinite.

Unless stated otherwise, definitions and results in § 4.2 are due to the author,
and those in § 4.3 are jointly due to Galeotti and the author.
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88 Chapter 4. Games and computable analysis on generalized Baire spaces

4.1 Introduction and definitions

The interest in generalized Baire spaces has been growing considerably among
set theorists in recent years. Although much of the earlier interest in the topic
stemmed from applications to other areas, such as classification problems in model
theory (cf., e.g., [38] for a detailed account of this application), the area has
evolved to a point where it is considered interesting in its own right, with a
large part of the research internally motivated. The recent paper [56] contains
a community-produced list of open questions in several directions of research
involving generalized Baire spaces.

Given an infinite cardinal κ, we consider the space κκ as endowed with the
so-called bounded topology, viz. the topology generated by the basis {[σ] ; σ ∈ κ<κ},
where as usual [σ] := {x ∈ κκ ; σ ⊂ x}. Note that for κ > ω this does not coincide
with the product topology of κ copies of the discrete space κ. As is customary for
generalized Baire spaces, we assume κ<κ = κ. This assumption guarantees the
space κκ is reasonably well-behaved. For example, under this assumption it follows
that each level κ-Σ0

α of the appropriate generalized version of the Borel hierarchy
is closed under unions of length κ, cf. Theorem 4.1 below. Cf. [38, § 2.1] for more
detailed motivations for this assumption. Since for any infinite cardinal κ we have
κcf(κ) > κ (cf., e.g., [61, Lemma I.10.40]), the assumption κ<κ = κ implies that κ
is regular.

We now proceed to define generalizations of some classical notions from Baire
space, as laid out in § 1.2.3, to generalized Baire space κκ.

Given a sequence 〈wα〉α<κ of elements in κ<κ, we define an element [wα]α<κ ∈ κκ

as the concatenation of the wα. Furthermore, as in the κ = ω case, given p ∈ κκ

and α < κ, we define (p)α ∈ κκ by letting (p)α(β) = p(�α, β�) for all β < κ, where
� ␣ � is the Gödel pairing function from Convention 1.8.

The collection of κ-Borel sets is the least collection of subsets of κκ which
contains all open sets and is closed under complementation (relative to κκ) and
unions of length κ. The collection of κ-Borel sets is stratified into the κ-Borel
hierarchy, in a manner entirely analogous to the κ = ω case (cf. § 1.2.3), including
the relativized hierarchy for any X ⊆ κκ. Thus, concretely we have

κ-Σ0
0(X) = {∅, X} ∪ {X � [σ] ; σ ∈ κ<κ}

κ-Π0
α(X) = {κκ � Y ; Y ∈ κ-Σ0

α(X)}
κ-Σ0

α(X) = {⋃β<κ Xβ ; ∀β < κ(Xβ ∈ κ-Π0
<α)} for α > 0,

where κ-Π0
<α =

⋃
γ<α κ-Π0

γ.
The regularity of κ+ implies that the κ-Borel hierarchy has length at most κ+,

and in fact with some more work than in the κ = ω case one can show that its
length is exactly κ+ (cf., e.g., [5, Proposition 6.2(g)]).



518165-L-bw-Nobrega518165-L-bw-Nobrega518165-L-bw-Nobrega518165-L-bw-Nobrega
Processed on: 21-3-2018Processed on: 21-3-2018Processed on: 21-3-2018Processed on: 21-3-2018 PDF page: 101PDF page: 101PDF page: 101PDF page: 101

4.1. Introduction and definitions 89

4.1 Theorem (Folklore). Let α < κ+. If α is a successor ordinal, then κ-Σ0
α is

closed under intersections of length less than κ. If α is a limit ordinal, then κ-Σ0
α

is closed under intersections of length less than the cofinality of α.

Proof. First note that if β < κ then the intersection of β-many basic open sets is
either ∅ or a basic open set. Indeed, let 〈σγ ; γ < β〉 be a sequence of elements
of κ<κ. If there exist δ, δ′ < β such that σδ and σδ′ are incompatible, then⋂

δ<β[σδ] = ∅. Otherwise, the regularity of κ implies that
⋃

δ<β σδ is an element
of κ<κ. Since

⋂
δ<β[σδ] = [

⋃
δ<β σδ], this establishes the claim.

The general result now follows by using Skolemization as follows. Let Aγ ∈
κ-Σ0

α for each γ < β < κ, where if α is a limit ordinal we have that β is less
than the cofinality of α. For each γ < β let 〈Aγ

δ ∈ κ-Π0
<α ; δ < κ〉 be such that

Aγ =
⋃

δ<κA
γ
δ . Then, by Skolemization, we have⋂

γ<β

Aγ =
⋃
f∈κβ

⋂
γ<β

Aγ
f(γ).

If α is a successor ordinal, then either using the claim above and the closure
of κ-Σ0

1 under arbitrary unions, in case α = 1, or the closure of κ-Π0
α−1 under

intersections of length at most κ, the fact that κ<κ = κ implies |κβ| = κ, and
the closure of κ-Σ0

α under unions of length κ, in case α > 1, it follows that⋂
γ<β Aγ ∈ κ-Σ0

α as well. Finally, if α is a limit ordinal, then since β is less than
the cofinality of α it follows that for each f : β κ we have

⋂
γ<β A

γ
f(γ) ∈ κ-Π0

<α.
Therefore

⋂
γ<β Aγ ∈ κ-Σ0

α.

4.2 Definition. Given a class Γ of subsets of κκ, we say a function f : κκ κκ

is (relatively) Γ-measurable if for any open set X ⊆ κκ there exists Y ∈ Γ such
that f−1[X] = Y ∩ dom(f).

We will usually omit the word “relatively”, considering it to be implied by the
context. Clearly, if Γ is closed under unions of length κ, then we can equivalently
substitute “open set” for “basic open set” in this definition. Recall that we denote
by κ<κ

succ the subset of κ<κ composed of the elements whose lengths are successor
ordinals. It now follows that if Γ is closed under intersections of length less than κ,
then f : κκ κκ is Γ-measurable iff f−1[σ] ∈ Γ holds for each σ ∈ κ<κ

succ. Indeed,
if σ ∈ κ<κ has limit length, then f−1[σ] =

⋂{f−1[σ�α] ; α < |σ| is a successor
ordinal}. Therefore if each such f−1[σ�α] is in Γ then since |σ| < κ it follows that
f−1[σ] ∈ Γ as well.
4.3 Definition. Let λ � κ be a limit ordinal. We say a sequence s = 〈xα ∈
κκ ; α < λ〉 converges pointwise to x ∈ κκ, or that x is the pointwise limit
of s, denoted x = limα<λ xα, if for every β < κ there exists αβ < λ such
that for all α with αβ � α < λ we have xα�β = x�β. We say a sequence
s = 〈fα : κκ κκ ; α < λ〉 of functions converges pointwise to f : κκ κκ, or
that f is the pointwise limit of s, denoted f = limα<λ fα, if dom(f) = dom(fα)
holds for every α < λ and f(x) = limα<λ fα(x) holds for every x ∈ dom(f).
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90 Chapter 4. Games and computable analysis on generalized Baire spaces

If λ < κ, the regularity of κ implies that x = limα<λ xα iff there exists β < λ
such that x = xα holds whenever β � α < λ, so that the convergence is trivial in
this case. Similarly, we have f = limα<λ fα iff for every x ∈ dom(f) there exists
βx < λ such that f(x) = fα(x) holds whenever βx � α < λ, but since βx depends
on x it can now be the case that f 	= fα for every α < λ.

4.4 Definition. Let f : κκ κκ be given. We say f is of κ-Baire class 0 if it
is continuous, and recursively for α > 0 we say f is of κ-Baire class α if f is the
pointwise limit of a sequence 〈fα ; α � λ〉 of functions, each of which is of κ-Baire
class less than α, with λ � κ.

The following is a completely straightforward generalization of the correspond-
ing direction of Theorem 1.22.

4.5 Proposition (Folklore). If f : κκ κκ is κ-Baire class α, then it is
κ-Σ0

α+1-measurable.

For the converse direction, one could generalize the classical work of Lebesgue,
Hausdorff, and Banach (Theorem 1.22), but we will instead obtain that result
as a corollary of our game characterization of that class of functions in the next
section.

4.2 Games for functions of a fixed κ-Baire class
4.6 Definition. Let T ⊆ κ<κ be a κ-tree. We call T a κ-simple tree if for any
α < κ there exists β < κ such that, for any σ ∈ Level(T, α), we have that σ has
descendants at level β of T iff σ is on a κ-branch of T .

The κ-simple trees will be used as the analogues of the finitely branching trees
from the κ = ω case. Of course, a more immediate candidate for such an analogue
would be the trees in which each node has fewer than κ immediate successors,
or the trees whose levels have cardinality strictly less than κ. These last two
conditions are of course equivalent for κ = ω, but this is not the case in general.
For example, if CH holds and κ = ω1 (in particular κ<κ = κ), then in the tree
T = 2<κ each node has two immediate successors, but there are 2ω = κ nodes of
length ω in T . Now, by Kőnig’s lemma, any finitely branching ω-tree is ω-simple.
However, for κ > ω the situation is more complex, and depending on the value of
κ and the ambient set theory, the relationship between a tree being κ-simple and
having levels with cardinality strictly less than κ can vary. A κ-tree which has
fewer than κ-many nodes at each level, height κ, and no κ-branches is an instance
of what is called a κ-Aronszajn tree in the literature. Thus a κ-Aronszajn tree
is not κ-simple, even though it has levels with cardinality strictly less than κ.
The nonexistence of κ-Aronszajn trees for a given cardinal κ is called the tree
property for κ, and an inaccessible cardinal for which the tree property holds is
called weakly compact, a well-studied and important large cardinal property. Now,
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4.2. Games for functions of a fixed κ-Baire class 91

Kőnig’s lemma is precisely the statement of the tree property for ω, it is provable
in ZFC that the tree property for ω1 fails (cf., e.g., [61, Theorem II.5.9]), and if CH
holds then the tree property for ω2 fails as well (cf., e.g., [61, Exercise II.37]). On
the other hand, Mitchell has shown that the tree property for ω2 is independent
of ZFC + 2ω = ω2 [64]. Since it is actually ω-simplicity that plays a key role in
the proof of Theorem 2.31, for the purposes of this section it is the κ-simple trees
which are important.

4.7 Definition. Given a κ-tree T , we define its κ-pruning derivative by

PDκ(T ) := {σ ∈ T ; ∀α < κ ∃τ ∈ Conc(T, σ)(|τ | � α)}.

As before, we define the iterated variant PD�
κ( ␣ , ␣ ) by the recursion

(1) PD�
κ(T, 0) = T ;

(2) PD�
κ(T, α + 1) = PDκ(PD

�
κ(T, α));

(3) PD�
κ(T, λ) =

⋂
α<λ

PD�
κ(T, α), for λ a limit ordinal.

Again, it is easy to see that for any κ-tree T we have T = PDκ(T ) iff T is
pruned, i.e., if every node of T lies on some κ-branch of T . Furthermore, for any
κ-tree T there exists an ordinal α < κ+ such that PD�

κ(T, α) = PD�
κ(T, α + 1).

4.8 Definition. A game for functions on κκ, or simply a game in the remainder
of this section, is the natural generalization of a game for function on ωω, Def-
inition 2.1, to the setting of κκ. The crucial difference is that sets of rules for
a player are sets of κ-sequences of moves for that player. The notions of runs,
strategies, etc., are entirely analogous to the ω case.

4.9 Definition. Given α < κ+, the (α, κ)-tree game is the game where player 1
plays elements of κ, with rule set κκ and interpretation function idκκ , and 2| plays
labeled κ-trees of cardinality strictly less than κ, with the rules that the sequence
of labeled κ-trees played must be a chain with respect to ⊆, that the limit Υ of
this chain, which we call the final tree, must have exactly one κ-branch, and that

(1) the tree PD�
κ(Υ, α↓) must be linear;

(2) the tree PD�
κ(Υ, α

�

) must be κ-simple.

The interpretation function for 2| associates to the final tree the sequence of labels
along its unique κ-branch.

4.10 Theorem. The (α, κ)-tree game characterizes the class of κ-Σ0
α+1-measur-

able functions on κκ.
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92 Chapter 4. Games and computable analysis on generalized Baire spaces

The proof of Theorem 4.10 is a generalization of the proof of Theorem 2.50,
which is itself a modified version of the proof of Theorem 2.31. In general, the
generalization goes through in a straightforward way, with, e.g., the role of ω
being played by κ and that of ω<ω

�=0 by κ<κ
succ. In the interest of avoiding tedious

repetitions, we will provide a sketch of the proof of Theorem 4.10 by only going
through the parts of the proofs of Theorems 2.50 and 2.31 where the generalization
is not completely straightforward.

The proof that 2| can only have a winning strategy in the (α, κ)-tree game for
f : κκ κκ in case f is κ-Σ0

α+1-measurable is entirely analogous to the proof of
the corresponding direction of Theorem 2.31. For odd α, the requirement that
the final tree Υ must satisfy that PD�

κ(Υ, α
�

) is κ-simple is precisely what allows
the proof of the corresponding case of Theorem 2.31 to generalize directly.

Moving on to the proof of the converse direction, let f : κκ κκ be a fixed
function of κ-Σ0

α+1-measurable.
We begin by fixing bijections bijκ : κ κ<κ and bijκ,α : κ κα for each

0 < α < κ; such bijections exist because of the assumption κ<κ = κ. Following
the same overload of notation from the κ = ω case, we denote all of the inverses
of the bijections bijκ,α by � ␣ �, calling these inverses tupling functions; thus

bijκ,α(β) = σ iff |σ| = α and β = �σ(γ) ; γ < α�.

The definitions of the set of trails T and of the operations ⊕ and $ now
become

T := {〈σ, β0, . . . , βk−1〉 ; σ ∈ κ<κ
succ, k ∈ ω, and βi ∈ κ for each i < k}

u ⊕ (λ+ n) := u�〈λ+ 2n〉
u $ (λ+ n) := u�〈λ+ 2n+ 1〉,

for any u ∈ T ∪ κ<κ, limit λ < κ, and n ∈ ω (in particular note that trails are
still finite sequences). We use the tupling function � ␣ � to define the associating,
coding, guessing, unraveling, and witnessing functions as before. However, there
are now κ-many coding functions: for each successor ordinal α < κ we define
cα : {σ ∈ κ<κ

succ ; |σ| � α} κ by letting

⊥(σ) = �cα(σ) ; α � |σ| is a successor ordinal�.

The remaining definitions and lemmas from the proofs of Theorems 2.31 and 2.50
are generalized in a straightforward way; one small caveat is that, because the
bijection bijκ is arbitrary, we of course do not know if bijκ(α) ⊂ bijκ(β) implies
α < β. Therefore, in defining the strategy, equation (2.6) becomes

Tα :=
⋃

β<α Tβ ∪ {σ ∈ κ<κ ; every τ ⊆ σ satisfies that bij−1
κ (τ) � α

and that τ is active at round α}. (2.6′)
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Thus we get a strategy ϑ for 2| such that if 1 plays x ∈ dom(f) and 2| follows ϑ,
then 2| builds a tree Υ with the property that, e.g., if σ ∈ Υ makes a wrong guess
about any trail then σ 	∈ PD�

κ(Υ, α↓). Furthermore, if σ ∈ Υ makes a guess about
a trail t ∈ dom(g) and there exists β < g(t) such that x 	∈ [[a(t $ β)]], then also
as before we get σ 	∈ PD�

κ(Υ, α

�

). Any node which is hereditarily exact lies on a
κ-branch of Υ. It follows that Υ has a unique κ-branch and that PD�

κ(Υ, α↓) is a
linear tree. The last lemma which is significantly different from the corresponding
result in the proofs of Theorems 2.50 and 2.31, and which also wraps up the proof
of Theorem 4.10, is the following.

4.11 Lemma. The tree PD�
κ(Υ, α

�

) is κ-simple.

Proof. Let Υ′ := PD�
κ(Υ, α

�

). By induction on β < κ we define γβ < κ such that,
for any σ ∈ Level(Υ′, β), we have that σ has descendants at level γβ of Υ′ iff σ is
on a κ-branch of Υ′.

If β is a limit ordinal then setting γβ = supδ<β γδ works, since γβ < κ because
κ is regular and furthermore if σ ∈ Level(Υ′, β) then σ is on a κ-branch of Υ′ iff
σ�δ is on a κ-branch of Υ′ for every δ < β.

Now suppose β is a successor ordinal. Let μ < κ be least such that x ∈
(f(x)�β) ⊕ μ, let ν < κ be such that bijκ,β(ν) = f(x)�β, and let δ = �ν, μ�. Thus
for any δ′ = �ν ′, μ′� < δ we have x 	∈ [[bijκ,β(ν

′) ⊕ μ′]]. If bijκ,β(ν ′) ⊕ μ′ has Borel
rank 1, let εδ′ = 0; otherwise, let εδ′ be least such that x 	∈ [[bijκ,β(ν

′) ⊕ μ′ ⊕ εδ′ ]].
Finally, define γβ := sup({γβ′ ; β′ < β} ∪ {β + εδ′ + 1 ; δ′ < δ}).

Suppose σ ∈ Level(Υ′, β) has a descendant at level γβ of Υ′. Then, since
γβ � γβ′ for each β′ < β, by induction each proper initial segment of σ of successor
length lies on the κ-branch of Υ′, and is in particular exact. Now let ν ′ be such
that bijκ,β(ν

′) = ϕ̃(σ) and let δ′ = �ν ′,w(σ)�. We have δ′ � δ, since otherwise σ
would overshoot and we would not have σ ∈ Υ′. But by what we saw above, if
δ′ < δ then σ has no descendant at level β + εδ′ + 1 � γβ of Υ′, since every such
descendant would have to make a wrong guess of rank less than α. Therefore
δ′ = δ, i.e., σ is exact as well and therefore lies on a κ-branch of Υ′.

We can now prove the converse of Proposition 4.5.

4.12 Theorem. If f : κκ κκ is κ-Σ0
α+1-measurable then it is κ-Baire class α.

Proof. Suppose f is κ-Σ0
α+1-measurable and let ϑ be a winning strategy for 2| in

the (α, κ)-tree game for f . For each x ∈ dom(f) let (Tx, ϕx) = Υϑ
x.

If α is a limit ordinal, then for each β < α define fβ : dom(f) κκ by letting
σ ⊂ fβ(x) iff σ is the running label of the lexicographically-least node of length
|σ| in PD�

κ(Υ
ϑ
x, β), i.e., σ ⊂ f(x) iff there exists τ ∈ PD�

κ(Υ
ϑ
x, β) with ϕ̃x(τ) = σ

such that for every η ∈ κ|τ |, either η �lex τ or η 	∈ PD�
κ(Υ

ϑ
x, β). By the generalized

version of Lemma 2.32, it follows that f−1
β [σ] ∈ κ-Σ0

β′ for some β′ < α which
depends on β but not on σ. Hence fβ is κ-Σ0

<α-measurable, and by induction fβ
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is of κ-Baire class less than α. Since PD�
κ(Υ

ϑ
x, α) =

⋂
β<α PD

�
κ(Υ

ϑ
x, β) is a linear

tree, it follows that f(x) = limβ<α fβ(x). Therefore f is κ-Baire class α.
Otherwise, if α = λ+ 2n+ 1 for some limit λ and natural n, then given β < κ

define fβ : dom(f) κκ as follows. For each x ∈ dom(f), by the κ-simplicity of
PD�

κ(Υ
ϑ
x, λ+n) there exists δxβ < κ such that any node of length β with descendants

of length δxβ in PD�
κ(Υ

ϑ
x, λ + n) is on the κ-branch of PD�

κ(Υ
ϑ
x, λ + n). Now let

fβ(x) = the running label of the node of length β which has a descendant at level
δxβ of PD�

κ(Υ
ϑ
x, λ+ n), concatenated with κ-many 0s. Thus for any σ ∈ κ<κ and

x ∈ dom(f) we have σ ⊆ fβ(x) iff σ(ξ) = 0 for any ξ such that β � ξ < |σ|, and
furthermore there exists τ ∈ Υϑ

x whose running label is σ�β and which has some
descendant of length δxβ in PD�

κ(Υ
ϑ
x, λ+ n). Again by the generalized version of

Lemma 2.32, it follows that f−1
β [σ] ∈ κ-Σ0

λ+2n+1, so by induction fβ is κ-Baire
class < α. Since f = limβ<κ fβ, it follows that f is κ-Baire class α, as desired.

Finally, if α = λ+ 2n+ 2 for some limit λ and natural n, then given β < κ
define fβ : dom(f) κκ by letting σ ⊂ fβ(x) iff σ is the running label of
the lexicographically-least node of length |σ| in PD�

κ(Υ
ϑ
x, λ + n) which has a

descendant of length |σ|+ β + 1 in PD�
κ(Υ

ϑ
x, λ+ n), i.e., σ ⊂ f(x) iff there exists

τ ∈ PD�
κ(Υ

ϑ
x, λ+ n) with ϕ̃x(τ) = σ such that

(1) the node τ has a descendant of length |τ |+ β + 1 in PD�
κ(Υ

ϑ
x, λ+ n);

(2) for every η ∈ κ|τ |, either η �lex τ or for every descendant ξ of η with length
|η|+ β + 1 we have ξ 	∈ PD�

κ(Υ
ϑ
x, λ+ n).

By the generalized version of Lemma 2.32, it follows that f−1
β [σ] ∈ κ-Σ0

λ+2n+2.
Therefore fβ is κ-Σ0

α-measurable, and by induction has κ-Baire class less than α.
Since PD�

κ(Υ
ϑ
x, λ+ n+ 1) is linear, it follows that f(x) = limβ<κ fβ(x). Therefore

f is κ-Baire class α.

4.13 Corollary. The (α, κ)-tree game characterizes the κ-Baire class α func-
tions on κκ.

4.3 Towards computable analysis on the gener-
alized real line

4.3.1 Introduction

As mentioned in the introduction, computable analysis is largely about the study
of the computational content of theorems in classical real analysis. This is done
by inducing a computability notion on spaces of cardinality at most 2ℵ0 , such as
R, through coding such spaces with ωω or 2ω as the space of codes, an approach
similar to the theory of numberings in classical computability theory (cf., e.g.,
[35]). In [41], Galeotti provided the foundational basis for the study of generalized
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computable analysis, the generalization of computable analysis where the spaces
of codes are generalized Baire or Cantor spaces. In particular, using Conway’s
surreal numbers, Galeotti introduced Rκ, a generalized version of the real line
suitable for doing analysis, and proved a version of the intermediate value theorem
for that space.

The work presented in this section is a continuation of [40, 41], strengthening
their results and answering in the positive the open question from [41] of whether
a natural notion of computability exists for 2κ. This is done by generalizing the
framework of type two computability to uncountable cardinals κ such that κ<κ = κ.
Then we use this framework to induce a well-behaved notion of computability
over the generalized real line Rκ, for example showing that, as in the classical
case, the field operations on Rκ are computable. Finally we generalize Weihrauch
reducibility to spaces of cardinality 2κ and give an example as a proof of concept,
showing that the generalized version of the intermediate value theorem introduced
in [41] is Weihrauch equivalent to a generalized version of the boundedness principle
BI.

4.3.2 The surreal numbers

4.14 Definition (Conway [27]). A surreal number is a function from an ordinal
α to {+,−}, i.e., a sequence of pluses and minuses of ordinal length. We denote
the class of surreal numbers by No, and the set of surreal numbers of length strictly
less than α by No<α. The length of a surreal number x, denoted |x|, is its domain.
For surreal numbers x and y, we say x is less than y, denoted x < y, if there
exists α � min{|x|, |y|} such that x(β) = y(β) for all β < α, and (i) x(α) = −
and either α = |y| or y(α) = +, or (ii) α = |x| and y(α) = +.

In Conway’s original idea, every surreal number is generated by filling some
gap between shorter numbers. The following theorem connects this intuition to the
surreal numbers as we have defined them. First, given sets of surreal numbers X
and Y , we write X < Y if for all x ∈ X and y ∈ Y we have x < y. In particular,
if X = ∅ or Y = ∅ then X < Y holds vacuously. Furthermore, given a surreal
number x we write x < X instead of {x} < X.

4.15 Theorem (Simplicity theorem; Conway [27, Theorem 11]). If L and R are
two sets of surreal numbers such that L < R, then there exists a unique surreal
x of minimal length such that L < x < R, denoted by [L | R ]. Furthermore,
for every x ∈ No we have x = [L | R ] for L = {y ∈ No ; x > y ∧ y ⊂ x} and
R = {y ∈ No ; x < y ∧ y ⊂ x}. The pair L,R is called the canonical cut of x.

Using the simplicity theorem Conway defined the field operations s+, s· , s−, and
s1

␣ (the multiplicative inverse over No), and proved that these operations satisfy
the axioms of real closed fields. These operations satisfy the following, where for
any (unary or binary) operation ∗, surreal number z, and sets X, Y of surreal
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numbers we use the notations ∗X := {∗x ; x ∈ X}, z ∗X := {z ∗ x ; x ∈ X}, and
X ∗ Y := {x ∗ y ; x ∈ X and y ∈ Y }.
4.16 Theorem (Conway [27, p. 5], Gonshor [43, § 3C]). Let x = [Lx | Rx ],
y = [Ly | Ry ] be surreal numbers. We have

x s+ y = [ (Lx
s+ y) ∪ (x s+ Ly) | (Rx

s+ y) ∪ (x s+Ry) ]
s−x = [ s−Rx | s−Lx ]

x s· y = [((Lx
s· y) s+ (x s· Ly)

s− (Lx
s· Ly)) ∪ ((Rx

s· y) s+ (x s· Ry)
s− (Rx

s· Ry))

| ((Lx
s· y) s+ (x s· Ry)

s− (Lx
s· Ry)) ∪ ((Rx

s· y) s+ (x s· Ly)
s− (Rx

s· Ly))]

Now let z = [L | R ] be a positive surreal number and assume L > 0. Let r〈〉 := 0
and recursively for every z0, . . . , zn ∈ (L ∪R)� {0} let

r〈z0,...,zn〉 := [1 s+ ((zn
s− z) s· r〈z0,...,zn−1〉)]

s· s1
zn

.

Then we have s1
z

= [L′ | R′ ], where L′ = {r〈z0,...,zn〉 ; n ∈ ω and zi ∈ L for
even-many i � n} and R′ = {r〈z0,...,zn〉 ; n ∈ ω and zi ∈ L for odd-many i � n}.

By considering the sequences with constant value +, it is easy to see that the
class of ordinal numbers can be embedded into No. Restricted to ordinals, the
operations s+ and s· are not the usual ordinal operations, but rather the so-called
natural or Hessenberg operations. It is a straightforward consequence of the fact
that every ordinal numbers has a unique Cantor normal form that for each pair α, β
of ordinals there exist a unique decreasing sequence of ordinals γ0 > γ1 > · · · > γn
and unique sequences of natural numbers m0, . . . ,mn and k0, . . . , kn such that
mi + ki > 0 for every i < n and

α = ωγ0m0 + ωγ1m1 + · · ·+ ωγnmn

β = ωγ0k0 + ωγ1k1 + · · ·+ ωγnkn.

Then we have
α s+ β = ωγ0(m0 + k0) + ωγ1(m1 + k1) + · · ·+ ωγn(mn + kn)

α s· β =
∑

i,j<n ω
(γi

s+γj)mikj,

where the summation is to be taken in non-increasing order w.r.t. the parameter
γi

s+ γj. Note that, in particular, we have α s+ n = α + n for every ordinal α
and natural number n. The Hessenberg operations can also be characterized
order-theoretically as follows.
4.17 Fact (Carruth [24, Theorems 1 and 2]). Let (X,�X) and (Y,�Y ) be disjoint
wellordered sets with respective order types α and β. Then α s+ β is the maximum
of the order types of wellorders on X ∪ Y which extend �X ∪�Y , and α s· β is the
maximum of the order types of wellorders on X × Y which extend the product
partial order (x, y) � (x′, y′) iff x �X x′ and y �Y y′.

In the remainder of this chapter, all operations on ordinals will be the surreal
operations. For this reason, and to improve readability, we will denote surreal
addition by +, subtraction by −, multiplication by · , and the multiplicative
inverse by 1

␣ .
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4.3.3 The generalized real line

A crucial property of the real line is its Dedekind completeness, forming a corner-
stone of many theorems in real analysis. However, it is a classical theorem that
there exist no real closed fields which properly extend R and which are Dedekind
complete (cf., e.g., [26, Theorem 8.7.3]). We therefore need to replace Dedekind
completeness with a weaker property. This was done in [40, 41], and we repeat
the central definitions here.

Let K be an ordered field. We call 〈L,R〉 a cut over K if L,R ⊆ K and L < R.
Moreover we say that 〈L,R〉 is a Cauchy cut if it is a cut and L has no maximum,
R has no minimum and for each positive ε ∈ K there exist  ∈ L and r ∈ R such
that r < + ε. We say that K is Cauchy complete if for each Cauchy cut 〈L,R〉
there exists x ∈ K such that L < x < R. Note that Cauchy completeness as just
defined is a reformulation of standard, sequential Cauchy completeness in terms of
cuts (cf., e.g., [33], where Cauchy cuts are called Veronese cuts), so we can define
the Cauchy completion of No<κ as follows.

4.18 Definition (Galeotti [41]). Rκ := No<κ ∪ {[L | R ] ; 〈L,R〉 is a Cauchy
cut over No<κ}.

Let (X,<) be an ordered set and κ be a cardinal. We say that X is an ηκ-set
if whenever L,R ⊆ X are such that L < R and |L|, |R| < κ, there exists x ∈ X
such that L < x < R.

4.19 Theorem (Galeotti [41]). The field Rκ is the unique Cauchy-complete real
closed field extension of R which is an ηκ-set of cardinality 2κ, whose smallest
dense subset has cardinality κ, and in which No<κ can be densely embedded.

In view of the previous theorem, from now on we will call No<κ the κ-rational
numbers and use the symbol Qκ instead of No<κ. Note that Qω is not the set of
rational numbers but rather the set of dyadic rational numbers, i.e., those of the
form n

2m
where n,m are integers and m 	= 0.

Note that, since Rκ is not Dedekind-complete, the order topology on Rκ is not
a good tool for doing analysis on that space. This is because many basic theorems
of analysis for the order topology of an ordered field, such as the intermediate
value theorem, actually imply the Dedekind completeness of the ordered field in
question. Indeed, let K be an ordered field which is not Dedekind-complete, which
is equivalent to the existence of a bounded nonempty subset X ⊂ K without a
least upper bound. Let f : K K be defined by f(x) = 1 if x is an upper bound
of X, with f(x) = −1 otherwise. Now, f is continuous, for if x is an upper bound
of X then there exists some δ > 0 such that every element of (x− δ, x+ δ) is also
an upper bound of X, and likewise if x is not an upper bound then for some δ > 0
no element of (x− δ, x+ δ) is an upper bound of X either. But obviously f has
no zeroes, so the intermediate value theorem does not hold for K. Thus what one
needs is a suitably coarser notion than that of a topology.
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4.20 Definition (Alling [2, § 0.02]). A κ-topology over a set X is a collection of
subsets τ of X satisfying:

(1) both ∅ and X are in τ ;

(2) for any α < κ, if 〈Ai ; i ∈ α〉 is a sequence of sets in τ then
⋃

i<α Ai ∈ τ ; and

(3) for all A,B ∈ τ , we have A ∩B ∈ τ .

With κ-topologies one can define direct analogues of many topological notions.
We refer to these with the prefix “κ-”; thus we have κ-open sets, κ-continuous
functions, κ-topologies generated by families of subsets of a set, etc. Note that,
unlike the classical case of the interval topology over R, the interval κ-topologies
over Rκ in which the intervals have endpoints in Rκ ∪ {−∞,+∞} or in Qκ ∪
{−∞,+∞} are different in general. In what follows we will only consider the
generalized real line Rκ equipped with the former.

4.21 Theorem (IVTκ; Galeotti [41]). Let a, b ∈ Rκ and f : [0, 1] → Rκ be a
κ-continuous function. Then for every r ∈ [f(0), f(1)] there exists c ∈ [0, 1] such
that f(c) = r.

Additionally, a generalized version of the extreme value theorem [40] and a
generalized version of the Bolzano-Weierstraß theorem (for κ weakly compact) [20]
have been proved to hold for Rκ. Thus Rκ is a suitable setting for generalizing
results from classical analysis.

4.3.4 Computability on generalized Cantor spaces
The idea of generalizing Turing machines to the transfinite is due to Hamkins and
Kidder in the late 1980s, whose results were only published years later after further
developments by Hamkins and Lewis [45]. Of course, the idea of extending the
classical notion of computability to the transfinite is much older, but an underlying
notion of computation was missing until the Hamkins-Kidder-Lewis machine (“no
machine model for admissible recursion theory was elaborated. Levy announced a
generalization of Turing machines working on regular cardinals . . . , but no further
details were published. Other approaches to ordinal recursion theory were based
on recursion schemata” [60, p. 311]). In the Hamkins-Kidder-Lewis machines,
called infinite time Turing machines, the “machinery” (tapes, heads, states, etc.)
is the same as for the classical Turing machines, but running times of machines are
allowed to be of any ordinal type. Building on this idea, Koepke [59] introduced a
further generalization into the model by stipulating that the tapes of the machine
also have unbounded ordinal length, with the resulting machines called ordinal
Turing machines. Infinite time Turing machines and ordinal Turing machines have
become the standard basic models of transfinite computations, from which new
models have arisen by stipulating different tape lengths and/or running times
(e.g., [28, 60,86]).
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In this section we define a generalized version of type two computability for 2κ
by building on the ordinal Turing machines whose tapes have length κ and whose
successful computations halt in time less than κ; for concreteness, we are going to
follow the definition of Koepke and Seyfferth [60, § 2]. We restrict ourselves to
2κ, instead of κκ, in the interest of avoiding cumbersome details of coding. Our
presentation will be fairly high level; in other words, we will not go into full detail
in defining the machines, which would involve talking about states, transition
functions, etc., in particular because these are the same as for the classical Turing
machine model.

A κ-Turing machine has the following tapes of length κ: finitely many read-
only tapes for the input, finitely many read and write scratch tapes and one
write-only tape for the output. Each cell of each tape has either 0 or 1 written in
it at any given time, with the default value being 0. These machines can run for
infinite time of ordinal type κ; at successor stages of a computation a κ-Turing
machine behaves exactly like a classical Turing machine, while at limit stages the
contents of each cell of each tape and the positions of the heads are computed
using inferior limits†.

A partial function f : 2<κ → 2<κ is computed by a κ-Turing machine M if
whenever M is given x ∈ dom(f) as input, its computation halts after fewer than
κ steps with f(x) written on the output tape. As in the classical case κ = ω, the
notion of type two computability for functions on 2κ also uses the machinery of
κ-Turing machines.

4.22 Definition. A partial function f : 2κ → 2κ is type two-computed by a κ-
Turing machine M , or simply computed by M , if whenever M is given x ∈ dom(f)
as input, for every α < κ there exists a stage β < κ of the computation at which
f(x) � α is written on the output tape. An oracle κ-Turing machine is a κ-Turing
machine with an additional read-only input tape of length κ, called its oracle
tape. A partial function f : 2κ → 2κ is computable with an oracle if there exists
an oracle κ-Turing machine M and x ∈ 2κ such that M computes f when x is
written on the oracle tape at the start of the computation.

By minor modifications of classical proofs one can prove that κ-Turing machines
are closed under recursion and composition, and that there exists a universal
κ-Turing machine.

The κ-Wadge game is the direct generalization of the Wadge game from
Definition 2.5 to the setting of κκ. Thus, it is the game for functions on κκ in
which player 1 plays elements of κ, with rule set κκ and interpretation function idκκ ,
and 2| plays elements of κ<κ, with the rule that they must converge monotonically

†Given a limit ordinal λ and a non-decreasing sequence s = 〈xα ; α < λ〉 of ordinals, the
limit of s is the unique ordinal γ such that for every γ′ < γ there exists λ′ < λ such that
γ′ < xα � γ holds whenever λ′ � α < λ. Now, given an arbitrary sequence s′ = 〈yα ; α < λ〉 of
ordinals, the inferior limit of s′, denoted lim inf s′, is the limit of the non-decreasing sequence
〈inf{yβ ; α � β < λ} ; α < λ〉.
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100 Chapter 4. Games and computable analysis on generalized Baire spaces

to some element of κκ. The following is a consequence of the case α = 0 of
Theorem 4.10, since that proof also works for functions on 2κ, or from 2κ to κκ,
or vice versa. Of course, a direct proof can also easily be obtained by adapting
the proof of Theorem 2.6.

4.23 Lemma (Folklore). Let λ, γ ∈ {2, κ}. The class of continuous partial
functions between λκ and γκ is characterized by the κ-Wadge game.

The following is a fundamental result about the notion of computability for
functions f : 2κ 2κ; in the κ = ω case, it is precisely this result that underlies
the rich interplay between effective and classical descriptive set theory.

4.24 Theorem. A partial function f : 2κ → 2κ is continuous iff it is computable
with some oracle.

Proof. Suppose that M is a κ-Turing machine that computes f when given oracle
x ∈ 2κ. Define a strategy ϑ for 2| in the κ-Wadge game for f by letting ϑ(σ) = τ
iff when M is given x as an oracle, after reading σ on the input tape, the output
tape contains exactly τ . It is easy to see that ϑ is a winning strategy.

For the converse direction, for each σ ∈ 2<κ, let us denote

ν(σ) := 10σ(0)+110σ(1)+110σ(2)+1 · · · 1.

Let M be an oracle κ-Turing machine which writes τ on the output tape after
having read σ on the input tape iff there exists some even α < κ such that
wα = σ and wα+1 = τ , where [ν(wα)]α<κ ∈ 2κ is the sequence on the oracle tape.
Let ϑ be a winning strategy for 2| in the κ-Wadge game for f . Since 2<κ = κ,
let bij′κ : κ → 2<κ be a bijection. Then M computes f when given as oracle
[(ν ◦ bij′κ(α))(ν ◦ ϑ ◦ bij′κ(α))]α<κ

Theorem 4.24 is therefore a strong justification to the claim that the notion of
type two computability by κ-Turing machines we introduced is the correct one for
computability of functions on 2κ.

4.3.5 Represented spaces

The basic notions of represented space theory generalize in an entirely straight-
forward way from ωω or 2ω to κκ or 2κ. Since we have defined a notion of
computability on 2κ, it will be convenient to use that as our space of codes as
well. Thus, e.g., a κ-represented space is a pair X = (X, δ) of a nonempty set
X and a partial surjection δ : 2κ X, for functions f : X Y and g : Z W
between κ-represented spaces, we say that f is strongly κ-Weihrauch reducible to
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g, in symbols f �κsW g, if there exist computable functions H,K : 2κ 2κ such
that HGK � f whenever G � g, and so on†.

We represent κ and κκ by the functions δκ and δκκ , respectively, given by
δκ(p) = α iff p = 0α10κ and δκκ(p) = x iff p = [0αβ+11]β<κ and x = 〈αβ〉β<κ.
It is straightforward to see that a function f : κ → κ is δκ-computable iff it is
computable by a κ-machine as in [60, Definition 2].

4.25 Lemma. The mutually inverse bijections � ␣ ��κ2 : κ2 κ and bijκ : κ κ2

are δκ-computable.

Proof. Note that it is enough to prove that bijκ is δκ-computable, since then
� ␣ ��κ2 can be δκ-computed by simulating the program for bijκ with each ordinal
in increasing order as input until the correct output is found (note that whether
an output is correct or not can be recognized in time less than κ, and thus this
whole process also takes time less than κ). To compute bijκ, given γ the idea is to
enumerate the first γ pairs of ordinals less than κ in the order ≺. This can be done
computably as follows. At successor stages, having listed 〈α, β〉 in the previous
stage, the next pair to be listed is 〈α + 1, β〉, if α + 1 < β; 〈β, 0〉, if α + 1 = β;
and 〈α, β + 1〉, if β + 1 � α. At limit stages, the counters keeping track of the
values of α and β along the computation get set to lim inf of those values. This
information allows us to decide the next pair to be listed by a straightforward
case distinction. For example, suppose the lim inf of the values of α is α′ and the
lim inf of the values of β is also α′. If it is the first time that we have reached the
pair 〈α′, α′〉 in this way, then the next pair to be listed is 〈α′, 0〉; otherwise the
next pair is indeed 〈α′, α′〉. The complete program is described in Algorithm 1 on
p. 107.

Let δ : 2κ → X and δ′ : 2κ → X be two representations of a space X. Then
we say that δ continuously reduces to δ′, in symbols δ �t δ′, if there exists
a continuous function h : 2κ → 2κ such that for every p ∈ dom(δ) we have
δ(p) = δ′(h(p)). Similarly we say that δ computably reduces to δ′, in symbols
δ � δ′, if h above can be taken computable. If δ �t δ

′ and δ′ �t δ we say that δ
and δ′ are continuously equivalent, and similarly for the computable case. Note
that as in classical computable analysis if δ � δ′ and f is δ-computable then f is
also δ′-computable.

4.26 Proposition. The representation δκκ is �-maximal (�t-maximal) among
the computable (continuous) representations of κκ.

†Carl has also introduced a notion of generalized (strong) Weihrauch reducibility in [21].
Because his goal is to investigate multi-valued (class) functions on V , the space of codes he
uses is the class of ordinal numbers, considered with the ordinal Turing machines of Koepke
[59]. Therefore his approach is significantly different from ours, and we do not know of any
connections between the two.
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Proof. We will prove the computable case, since the continuous case can easily
be obtained with a similar proof. Let δ be a computable representation of κκ.
We want to show that there exists a computable function f : 2κ → 2κ such that
δκκ(f(p)) = δ(p) for every p ∈ dom(δ). Since δ is computable, there exists a
computable winning strategy ϑ for 2| in the κ-Wadge game for δ. Given σ ∈ 2<κ

let ϑ′(σ) be the concatenation of the sequences 0ϑ(σ)(α)+11 for α < |ϑ(σ)|. Thus ϑ′

is computable, and trivially it is a winning strategy for 2| in the κ-Wadge game
for the function f : dom(δ) 2<κ given by f(p) =

⋃
α<κ ϑ

′(p�α). It is now easy
to see that δκκ(f(p)) = δ(p) holds for every p ∈ dom(δ), so we are done.

Representing Qκ and Rκ

In classical computable analysis one can show that many of the natural representa-
tions of R are well behaved with respect to type two computability, although, e.g.,
the naive decimal expansion representation is not (for example, multiplication by 3
fails to be computable under that representation, cf., e.g., [101, Example 2.1.4.7]).
In this section we show that some of these results extend to the κ > ω case. First
we introduce representations for generalized rational numbers, which will serve as
a starting point to representing Rκ. As we have seen in the introduction, surreal
numbers can be expressed as binary sequences and, because of the simplicity
theorem, as cuts. It is then natural to introduce two representations which reflect
this fact. Let p ∈ 2κ and q ∈ Qκ. We define δQκ(p) = q iff p = [wα]α<κ where
wα := 00 if α ∈ dom(q) and q(α) = −, wα := 01 if α /∈ dom(q), and finally
wα := 11 if α ∈ dom(q) and q(α) = +. In order to define a representation of Qκ

in terms of cuts, we start by defining a sequence 〈Xα〉α<κ of subsets of 2κ, letting
X0 := {10κ}, Xλ =

⋃
α<λ Xα for limit λ > 0, and Xα+1 = Xα ∪ {1p ∈ 2κ ; for

every β < κ, if (p)β(0) = 1 then (p)β ∈ Xα, and if (p)β(0) = 0 then (p)γ(0) = 0
for all γ � β of the same parity as β}. We define δcQκ

with domain
⋃

α<κ Xα by
recursion, letting δcQκ

(1p) = [L | R ], where

L = {δcQκ
((p)α) ; α < κ is even and (p)α(0) = 1}

R = {δcQκ
((p)α) ; α < κ is odd and (p)α(0) = 1}.

The structure of the sets Xα ensures that this is a well-defined recursion. Thus,
e.g., we have that 10κ is a δcQκ

-name for [∅ | ∅ ] = 0 and 1p with (p)0 = 10κ,
(p)α = 0κ for all α > 0 is a δcQκ

-name for [ {0} | ∅ ] = 1, etc.

4.27 Lemma. The representations δQκ and δcQκ
are computably equivalent.

Proof. (δQκ � δcQκ
) Let p ∈ dom(δQκ). If p is a δQκ-name for 0 (note that this is

decidable) we just return 10κ, which is a δcQκ
-name for [∅ | ∅ ] = 0. Otherwise

we compute two subsets L := {p′01 ; p′11 ⊂ p} and R := {p′01 ; p′00 ⊂ p}. Note
that there exists some even α < κ such that p(α′)p(α′ + 1) = 01 holds for all even
α′ � α, so the entire computation of L and R can be done in time less than κ.
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Then we recursively compute the cuts for the elements of L and R and return
them respectively as the left and right sets of the cut representation of p. It easy
to see that the algorithm computes a code for the canonical cut of δQκ(p) as in
Theorem 4.15.

(δcQκ
� δQκ) Let p ∈ dom(δcQκ

). If p is a code for the cut [∅ | ∅ ] we return
a representation of the empty sequence. Now suppose p is the code for the cut
[L | R ], with at least one of L,R not equal to ∅. We first recursively compute
the sequences for the elements of L and R, call the sets of these sequences Ls and
Rs respectively. Now suppose α < κ is even and we want to compute the value at
α and α+ 1 of the output sequence q. If for some even α′ < α we had q(α′) = 0
and q(α′ + 1) = 1, then likewise we set q(α) = 0 and q(α + 1) = 1. Therefore now
suppose otherwise. We first compute ML and mR respectively the minimal and
maximal elements in {00, 01, 11} such that for every p′ ∈ Ls and p′′ ∈ Rs we have
p′(α)p′(α + 1) <lex ML and mR <lex p′′(α)p′′(α + 1). Then by a case distinction
on ML and mR we can decide the values of q(α) and q(α+ 1). For example, if the
output is already smaller than Rs, ML = 00 (i.e., −) and mR = 11 (i.e., +) then
we set q(α)q(α+ 1) = 01 (i.e., undefined). All of the other combinations can be
treated similarly.

4.28 Lemma. The operations +, −, · , 1
␣ and the order < are δcQκ

-computable.

Proof. For the operations, this is an easy consequence of their inductive definitions
in terms of cuts, Theorem 4.16. For the order, just note that for δQκ-names px
and py of x and y, respectively, we have x < y iff px is lexicographically-less than
py.

Given that Rκ is the Cauchy completion of Qκ, the following is a natural
representation of Rκ. We let δRκ(p) = x iff for each α < κ we have (p)α ∈ dom(δQκ),
δQκ((p)α) < x+ 1

α+1
, and x < δQκ((p)α) +

1
α+1

.

4.29 Theorem. The field operations +, −, ·, and 1
␣ are δRκ-computable.

Proof. Let us do the proof for ·, the others being similar. Given codes p and q for
x, y ∈ Rκ respectively, let xα = δQκ((p)α) and yα = δQκ((q)α). Note that for each
ordinal α < κ we can compute some ordinal α′ < κ such that 1

α′+1
(x0+y0+3) � 1

α+1
.

We then output r ∈ 2κ, where (r)α is a δQκ-name for xα′yα′ .
We have xy−xα′yα′ = x(y−yα′)+yα′(x−xα′) < (x0+1) 1

α′+1
+(y0+2) 1

α′+1
� 1

α+1
,

as desired, and likewise we can prove xα′yα′ − xy < 1
α+1

.

On the other hand, the following is suggested by the definition of Rκ as the
collection of Cauchy cuts over Qκ. We let δVRκ

(p) = x iff for each α < κ we
have (p)α ∈ dom(δQκ) and x = [L | R ], with L = {δQκ((p)α) ; α < κ is even};
R = {δQκ((p)α) ; α < κ is odd}; and for each even α < κ we have δQκ((p)α+1) <
δQκ((p)α) +

1
α+1

.

4.30 Theorem. The representations δRκ and δVRκ
are computably equivalent.
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104 Chapter 4. Games and computable analysis on generalized Baire spaces

Proof. To reduce δVRκ
to δRκ , given p, we output q = by making (q)α equal to (p)β,

where β is the αth even ordinal. It is now easy to see that q is a δRκ-name for
δVRκ

(p).
For the converse reduction, given p, we output q = where for each even α

we let (q)α be a δQκ-name for δQκ((p)2α+2) − 1
2α+3

and (q)α+1 be a δQκ-name
for δQκ((p)2α+2) +

1
2α+3

. Then letting L := {δQκ((p)α) ; α < κ is even} and
R := {δQκ((p)α) ; α < κ is odd} we have L < x < R and for each even α < κ we
have δQκ((q)α+1) = δQκ((p)2α+2) +

1
2α+3

= δQκ((q)α) +
2

2α+3
< δQκ((q)α) +

1
α+1

, as
desired.

4.3.6 Generalized boundedness principles and the inter-
mediate value theorem

As shown in, e.g., [11,12], the so-called boundedness principles and choice principles
are important building blocks in characterizing the Weihrauch degrees of interest
in computable analysis. In this section, as a proof of concept for the notions
introduced in the previous sections, we focus on the study of the intermediate
value theorem and its relationship with the boundedness principle BI. Concretely,
we generalize a classical result from Brattka and Gherardi [12], proving that IVTκ

is Weihrauch equivalent to a generalized version of BI. This strengthens a result
from [41], viz. that BI is continuously reducible to IVTκ.

The theorem IVTκ as stated in Theorem 4.21 can be considered as the multi-
valued partial function IVTκ : C([0, 1],Rκ) [0, 1] defined by IVTκ(f) = {c ∈
[0, 1] ; f(c) = 0}, with f ∈ dom(IVTκ) iff f is κ-continuous and f(0) · f(1) < 0
(note that any κ-continuous function on Rκ is also continuous).

To introduce the boundedness principle Bκ
I , we will need the following rep-

resented spaces. Let S↑
b be the space of bounded increasing sequences of κ-

rationals, represented by letting p be a name for 〈xα〉α<κ iff (p)α ∈ dom(Qκ) and
δQκ((p)α) = xα for each α < κ. The represented space S↓

b is defined analogously,
with bounded decreasing sequences of κ-rationals. Note that, unlike the classical
case of the real line, not all limits of bounded monotone sequences of length κ
exist in Rκ. Therefore, although for the real line the spaces S↑

b and S↓
b naturally

correspond to the spaces of lower reals R< and upper reals R>, respectively, in our
generalized setting the correspondence fails. We define Bκ

I as the principle which,
given an increasing sequence 〈qα〉α<κ and decreasing sequence 〈q′α〉α<κ in Qκ for
which there exists x ∈ Rκ such that {qα ; α < κ} � x � {q′α ; α < κ}, picks one
such x. Formally we have the multi-valued partial function Bκ

I : S↑
b × S↓

b ⇒ Rκ

with x ∈ Bκ
I (s, s

′) iff {s(α) ; α < κ} � x � {s′(α) ; α < κ}.
4.31 Lemma. Let f : [0, 1] → Rκ and x ∈ Rκ. Suppose there exists a sequence
〈xα〉α<κ of pairwise distinct elements of [0, 1] such that f(xα) = x if α < κ is even
and f(xα) 	= x otherwise, and such that for any odd α, β < κ there exists an even
γ < κ such that xγ is between xα and xβ. Then f is not κ-continuous.
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4.3. Towards computable analysis on the generalized real line 105

Proof. If such a sequence exists, then either the preimage of the κ-open set (x,+∞)
or of the κ-open set (−∞, x) under f must contain xα for κ-many of the odd
α < κ, but not contain xβ for any even β < κ. Such a set cannot be κ-open.

4.32 Lemma. Let f : [0, 1] → Rκ be κ-continuous, β, β′ < κ, y ∈ Rκ, and let
〈rα〉α<β and 〈r′α〉α<β′ be two sequences in [0, 1] such that {rα ; α < β} < {r′α ; α <
β′} and {f(rα) ; α < β} < y < {f(r′α) ; α < β′}. Then there exists x ∈ [0, 1] such
that {rα ; α < β} < x < {r′α ; α < β′} and f(x) = y.

Proof. Assume not. Note that, by the IVTκ, if there exist x, x′ ∈ [0, 1] such that
{rα ; α < β} < {x, x′} < {r′α ; α < β′} and f(x) < y < f(x′), then there exists
x′′ between x and x′ such that f(x′) = y, and we are done. Therefore assume
otherwise. Without loss of generality, we can assume that for every x such that
{rα ; α < β} < x < {r′α ; α < β′} we have f(x) > y (a similar proof works for
f(x) < y). Note that the set {rα ; α < β} has cofinality at most β < κ and, since
Rκ is an ηκ-set, it follows that X = {x ∈ [0, 1] ; ∀α < β(rα < x)} has coinitiality κ.
Therefore X is not κ-open. Now since f is κ-continuous we have that f−1[(y,+∞)]
is κ-open, say f−1[(y,+∞)] =

⋃
α∈γ(yα, zα) with γ < κ and yα, zα ∈ [0, 1] for

every α < γ. Now consider the set I := {α ∈ γ ; (yα, zα)∩X 	= ∅}. We have that
X ⊂ ⋃

α∈I(yα, zα). Note that since X is not κ-open we have X 	= ⋃
α∈I(yα, zα).

Now let x ∈ ⋃
α∈I(yα, zα)�X, so that there exists α ∈ I such that x ∈ (yα, zα).

Take x′ ∈ (yα, zα) ∩ X. By the fact that x /∈ X, there exists α′ < β such that
x < rα′ and by IVTκ there exists a root of f between rα′ and x′, but this is a
contradiction because (yα, zα) ⊂ f−1[(y,+∞)].

4.33 Corollary. Let f : [0, 1] → Rκ be κ-continuous, and let x ∈ [0, 1], 〈rα〉α<κ

and 〈r′α〉α<κ be respectively increasing and decreasing sequences in [0, 1] such that
for all α < κ we have f(rα) < x and f(r′α) > x. Then there exists y ∈ [0, 1] such
that f(y) = x and {rα ; α < κ} < y < {r′α ; α < κ}.
Proof. We construct a sequence 〈xα〉α<γ for some γ < κ as follows. First let
δ0 = 1. Having constructed 〈xβ〉β<α for some even α < κ, by Lemma 4.32 there
exists xα ∈ [0, 1] such that f(xα) = x and {rβ ; β < supν<α δν} < xα < {r′β ; β <
supν<α δν}. If {rβ ; β < κ} < xα < {r′β ; β < κ}, then we are done and γ = α.
Otherwise there exists β < κ such that rβ > x or r′β < x, so we let xα+1 = rβ or
xα+1 = r′β accordingly, and let δα = β + 1. If the construction goes on for κ steps,
then 〈xα〉α<κ is as in Lemma 4.31, a contradiction. Hence the construction ends
at some stage γ < κ, and therefore {rβ ; β < κ} < xγ < {r′β ; β < κ}.
4.34 Theorem. (1) If there exists an effective enumeration of a dense subset

of Rκ, then IVTκ �κW Bκ
I .

(2) We have Bκ
I �κW IVTκ.

(3) We have IVTκ �t
κW Bκ

I , and therefore IVTκ ≡t
κW Bκ

I .
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106 Chapter 4. Games and computable analysis on generalized Baire spaces

Proof. For item 1, let the κ-continuous function f : [0, 1] → Rκ be given, D be a
dense subset of Rκ and 〈dγ〉γ<κ be an effective enumeration of [0, 1] ∩D. Without
loss of generality we can assume f(0) < 0 and f(1) > 0, and start setting r0 = 0
and r′0 = 1. Now assume that for 0 < α < κ we have already defined an increasing
sequence 〈rβ〉β<α and a decreasing sequence 〈r′β〉β<α

of elements of [0, 1] ∩ D with
{rβ ; β < α} < {r′β ; β < α} and {f(rβ) ; β < α} < 0 < {f(r′β) ; β < α}. By
Lemma 4.32 there still exists a root of f between the two sequences. Note that,
since Rκ is an ηκ-set and again by applying Lemma 4.32, there exist rL, rR ∈ D
such that {rβ ; β < α} < rL < rR < {r′β ; β < α} and f(rL) < 0, f(rR) > 0.
Therefore, by searching in the sequence 〈dγ〉γ<κ and running the corresponding
algorithms in parallel, we can find such a pair rL, rR in fewer than κ computation
steps. Let β, γ, δ be such that �β, �γ, δ�� = α, where � ␣ � is the Gödel pairing
function, which has a computable inverse by Lemma 4.25. If rL < dγ < dδ < rR,
f(dγ) < 0, and f(dδ) > 0, where the last two comparisons are decided in fewer
than β steps of computation, then let rα = dγ and r′α = dδ; otherwise let rα = rL
and r′α = rR.

By Corollary 4.33 we have that there exists x ∈ [0, 1] such that {rα ; α < κ} <
x < {r′α ; α < κ}. It remains to be proved that f(x) = 0 for any such x. Suppose
not, say f(x) > 0 for some such x. Then also f(y) > 0 for some y ∈ D such that
{rα ; α < κ} < y < {r′α ; α < κ}. Now let β, γ, δ < κ be such that dγ = y, dδ = rν
for some ν such that y − rν < {r′α − rβ ; α, β < κ} and f(y) < 0, f(rν) > 0 are
decided in fewer than β computation steps. Then at stage α = �β, �γ, δ�� of the
computation we define a pair rα, r

′
α such that r′α − rα � y − rν , a contradiction.

This ends the proof of 1.
Item 2 can be proved by a straightforward generalization of the proof of

[12, Theorem 6.2], and the proof of item 3 is the same as that of item 1 without
the requirement that the enumeration 〈dγ〉γ<κ of the dense subset of [0, 1] ∩ D be
effective.

Note that the antecedent of item 1 of Theorem 4.34 is satisfied, e.g., in the
constructible universe L. We leave for future work the task of investigating the
set-theoretic properties of that condition more deeply.
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4.3. Towards computable analysis on the generalized real line 107

Algorithm 1: Pairing for κ.
Input: (A δκ-name for) γ < κ.
Output: (δκ-names for) the pair 〈α, β〉 at position γ in the order ≺.
Initialize α := 0, β := 0, η := 0, ξ := 0, ζ := 1, μ := 1, ν := 0
/* 〈α, β〉 iterates over all pairs of elements of κ in the order ≺,

η keeps track of what to do in case α = β at some stage,
ξ keeps track of the position of the current pair 〈α, β〉,
ζ is the least ordinal that has not appeared as a component in a pair
listed before,
μ and ν are counters for detecting limit stages. */

while true do
if μ > ν then // successor stage or beginning

if α = β = η = 0 then
η := 1

else if α = β and η = 1 then // 〈α, α〉 was already listed
α := 0, η := 0, β := β + 1
if β = ζ then

ζ := ζ + 1

else if α < β then
α := α+ 1
if α = β then

β := 0

else if α > β then
β := β + 1
if α = β then

η := 1

else if α = β then // limit stage and α = β
if α = 0 then

β := ζ, ζ := ζ + 1
else if η = 0 then // not time to list 〈α, α〉 yet

η := 1, β := 0

if ξ = γ then
return α, β

else // proceed to next stage
ξ := ξ + 1, μ := μ+ 2, ν := ν + 1
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Chapter 5

Ranks defined from games

Summary. In this chapter, we introduce a general framework for
defining a rank for a class of functions from a game characterizing
that class (Definition 5.1), apply it to the Wadge, backtrack, eraser,
multitape, 2-tree and 3-tree games, and study some basic properties
of the ranks thus obtained (§§ 5.2–5.4).

Remarks on co-authorship

The material presented in this chapter constitutes the starting point of a collabo-
ration of the author with Márton Elekes, Viktor Kiss, and Zoltán Vidnyánszky.
This collaboration began while the author and Elekes were Visiting Fellows at the
Isaac Newton Institute for Mathematical Sciences in the program Mathematical,
Foundational and Computational Aspects of the Higher Infinite, and was further
developed during two visits of the author to Budapest in 2017. However, the
results of this collaboration are at an early stage, and are not included in this
thesis.

Therefore, unless stated otherwise, definitions and results in this chapter are
due solely to the author.

5.1 Introduction
Ranks for classes of functions have been widely studied in the literature of
descriptive set theory and functional analysis. As a non-exhaustive list, we
mention the works of Motto Ros, for Δ0

2-functions on Baire space [67, § 5]; Carroy,
building on the work of Motto Ros and also mainly discussing Δ0

2-functions and
other subclasses of the Baire class 1 functions on Baire space [22], Kechris and
Louveau, for Baire class 1 functions on compact metrizable spaces [55], and Elekes,
Kiss, and Vidnyánszky, for Baire class α functions on Polish spaces, for any
α < ω1 [34].

109



518165-L-bw-Nobrega518165-L-bw-Nobrega518165-L-bw-Nobrega518165-L-bw-Nobrega
Processed on: 21-3-2018Processed on: 21-3-2018Processed on: 21-3-2018Processed on: 21-3-2018 PDF page: 122PDF page: 122PDF page: 122PDF page: 122

110 Chapter 5. Ranks defined from games

In each game for functions on ωω we have considered in this thesis, the structure
of the game is such that the legal strategies for 2| in the game for some function f
are those that only tell 2| to make a certain type of bad move (from the point of
view of player 2|) finitely often when following the strategy against any x ∈ dom(f).
For example, in the Wadge game the bad moves are the consecutive passes, and in
the backtrack game the bad moves are the backtracks, i.e., those moves which do
not extend the move made immediately before in a run. This requirement that a
certain type of move only be made finitely often corresponds to the wellfoundedness
of a certain related countable structure, which therefore has countable rank, from
which we can define a rank for f in a natural way.

Concretely, we have the following.

5.1 Definition. Let G� be a game characterizing a class C of functions, and let
B� be a function associating to each f ∈ C and each winning strategy ϑ for 2| in
G� for f a wellfounded structure B�(ϑ, f). Given such f and ϑ, the B� rank of ϑ
for f , denoted rk�(ϑ, f), is the wellfounded rank of B�(ϑ, f), and the B� rank of f
is the minimum B� rank of its winning strategies, i.e.,

rk�(f) := min{rk�(ϑ, f) ; ϑ is a winning strategy for 2| in G� for f}.

Winning strategies for 2| of B�-rank exactly rk�(f) are called optimal strategies.
Since it will be used repeatedly in the remainder of this chapter, for convenience

let us denote the set dom(ϑ) ∩ {(f(x))�n ; x ∈ dom(f) ∧ n ∈ ω} by dom(ϑ, f). In
the cases we will consider in this chapter, to each node s ∈ B�(ϑ, f) there will
correspond an element σs ∈ dom(ϑ, f), thus in particular satisfying [σs]∩dom(f) 	=
∅, in such a way that if s is less than s′ in the order of B�(ϑ, f) then σs ⊃ σs′

holds. Therefore, if dom(f) is a closed subset of ωω and there exists an infinite
descending chain 〈sn ; n ∈ ω〉 in B�(ϑ, f), then x =

⋃
n∈ω σsn is in dom(f) and will

cause 2| to make bad moves infinitely often when following ϑ against x. From this it
will follow that ϑ is not a winning strategy for 2| in G� for f , so by contraposition,
if ϑ is a winning strategy for 2| in G� for f then B�(ϑ, f) is wellfounded. For this
reason, in this chapter we only consider classes of functions whose members have
closed domains.

5.2 The Wadge game rank
As indicated above, in the Wadge game the bad moves are the consecutive passes,
i.e., the moves which do not properly extend the previous move in a run. Concretely,
for any continuous function f : ωω ωω and winning strategy ϑ for 2| in the
Wadge game for f we define

BW(ϑ, f) = (dom(ϑ, f),≺ϑ
W)

σ ≺ϑ
W σ′ iff σ ⊃ σ′ and ϑ(σ) = ϑ(σ′).
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The rank function rkW obtained from BW as in Definition 5.1 is called Wadge
game rank.

It is easy to see that a function f has Wadge game rank 0 iff f is a Lipschitz
function with constant 1, i.e., iff for any x, y ∈ dom(f) and n ∈ ω, if x�n = y�n
then f(x)�n = f(y)�n, and more generally, f has Wadge game rank k ∈ ω iff for any
x, y ∈ dom(f) and n ∈ ω, if x�(n(k + 1)) = y�(n(k + 1)) then f(x)�n = f(y)�n.

5.2 Theorem. For each α < ω1 there exists a continuous function with rank
greater than α.

Proof. Given a wellfounded tree T ⊆ ω<ω we define a continuous function f :
ωω ωω as follows. For each s ∈ ω�ω such that s 	∈ T ∪ [T ] there exists ns ∈ ω
such that bij(ns) is the longest node of T which is an initial segment of s, with
bij : ω ω<ω the bijection fixed in Convention 1.8. We also define s := |bij(ns)|.
Now let f(x) = 〈�nx, x(x)�〉�0ω.

5.3 Claim. The game rank of f is at least rk(T � {〈〉},⊃).

Indeed, suppose ϑ is a winning strategy for 2| in the Wadge game for f . Since
for any ξ ∈ T � {〈〉} there exist x, y ∈ [ξ] with f(x)(0) 	= f(y)(0), the fact that ϑ
is a winning strategy for 2| implies that ϑ(ξ) = 〈〉. Thus if ξ ⊃ ξ′ are in T � {〈〉}
then ξ ≺ϑ

W ξ′ in BW(ϑ, f), implying the claim.
The definition of f immediately suggests a winning strategy ϑ for 2| in the

Wadge game for f : pass (i.e., play 〈〉) up to (but not including) the round at
which the sequence 1 is building goes out of T ; at that point the value of the
function at the input player 1 it is building is completely determined, and 2| will
not have to pass again.

5.4 Claim. The strategy ϑ has Wadge game rank rk(T � {〈〉},⊃), and therefore
the same holds for f .

If σ 	∈ T � {〈〉} is not the empty sequence, then f has constant value
〈�nσ, σ(σ�〉�0ω on [σ], so in particular 2| does not pass again when facing σ
following ϑ. Therefore the nodes of rank greater than 0 in BW(ϑ, f) are also in
T � {〈〉}, so rkW(ϑ, f) � rk(T � {〈〉},⊃) as desired.

Since the ranks of countable trees are cofinal in ω1 (cf. Theorem 1.10), the
same holds for the Wadge game ranks of continuous functions.

5.3 The backtrack game rank
In the backtrack game, a bad move is—of course—backtracking, i.e., a move which
does not extend the previous move in a run. Concretely, we define

Bbt(ϑ, f) = (dom(ϑ, f),≺ϑ
bt)

σ ≺ϑ
bt σ

′ iff σ ⊃ σ′ and ϑ(σ) � ϑ(σ′).
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112 Chapter 5. Ranks defined from games

The rank function rkbt obtained from Bbt is called backtrack game rank.
It is easy to see that a function has backtrack game rank 0 iff it is continuous.

The backtrack game rank is also closely related to the following family of modified
backtrack games introduced by Motto Ros.

5.5 Definition (Motto Ros [67, § 5.2]). Let α < ω1. The α-backtrack game
is the game in which player 1 plays as in the Wadge game, and player 2| plays
pairs (σ, β) ∈ ω<ω × (α + 1), with rule set composed of the infinite sequences
〈(σn, βn) ; n ∈ ω〉 of moves such that

(1) if n < m then βm � βn,

(2) if σn � σm then βm < βn, and

(3) if N ∈ ω is such that βn = βN holds for all n � N then
⋃

n�N σn ∈ ωω.

The interpretation associates to a rule-respecting sequence of moves 〈(σn, βn) ; n ∈
ω〉 the element

⋃
n�N σn ∈ ωω, where N is least such that βn = βN holds for all

n � N .

Our definition differs slightly from the one given by Motto Ros, but the
differences are not essential.

5.6 Theorem. Suppose f : ωω ωω is a Δ0
2-function. Then rkbt(f) is the least

ordinal α such that 2| has a winning strategy in the α-backtrack game for f .

Proof. To see that 2| has a winning strategy in the rkbt(f)-backtrack game for
f , let ϑ be an optimal strategy for her in the backtrack game for f . Let ϑ′ be
the strategy for 2| in the rkbt(f)-backtrack game for f given by ϑ′(σ) = (ϑ(σ), β),
where β is the rank of σ in Bbt(ϑ, f). It is easy to see that ϑ′ is a winning strategy.

Conversely, if ϑ is a winning strategy in the α-backtrack game for f , then
let ϑ′ be the strategy for her in the backtrack game for f given by ϑ′(σ) = τ iff
ϑ(σ) = (τ, β) for some β � α. Since the function g : Bbt(ϑ

′, f) α+ 1 given by
g(σ) = β iff ϑ(σ) = (τ, β) for some τ ∈ ω<ω clearly satisfies g(σ) < g(σ′) whenever
σ ≺ϑ′

bt σ
′, by Theorem 1.11 it follows that the rank of Bbt(ϑ

′, f), and thus also
rkbt(f), is at most α, as desired.

Given A ⊆ ωω, we define its characteristic function χA : ωω ωω by

χA(x) =

{
1ω if x ∈ A

0ω if x 	∈ A.

5.7 Theorem (Folklore). A set A ⊆ ωω is in Δ0
2 iff χA is a Δ0

2-function.
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5.3. The backtrack game rank 113

Proof. (⇐) Immediate, since [〈1〉] ∈ Δ0
2 and A = χ−1

A [〈1〉].
(⇒) Let 〈Fn ∈ Π0

1 ; n ∈ ω〉 and 〈Gn ∈ Σ0
1 ; n ∈ ω〉 be such that A =

⋃
n∈ω Fn =⋂

n∈ω Gn. We define a winning strategy ϑ for 2| in the backtrack game for χA as
follows. Given σ ∈ ω<ω

�=0 , let ϑ(σ) = 1|σ| if the least n such that [σ]∩ Fn 	= ∅ holds
is less than or equal to the least m such that [σ] � Gm holds, with ϑ(σ) = 0|σ|

otherwise.

5.8 Claim. The strategy ϑ is winning for 2|.

Indeed, if x ∈ A then x ∈ Fn holds for some least n and x ∈ Gm holds for
all m. In this case, the strategy ϑ cannot tell 2| to play incompatible sequences
more than 2n times, since at some round m we will have that n is least such that
[x�m] ∩ Fn holds and for every n′ < n we have [x�m] � Gn′ . The case x 	∈ A is
similar, since then x 	∈ Fn holds for all n and x 	∈ Gm holds for some least m.

5.9 Theorem. For every A ∈ Δ0
2 there exists n ∈ ω such that rkbt(χA) �

rk1HK(A) � rkbt(χA) + n. In particular the backtrack ranks of Δ0
2-functions are

cofinal in ω1.

Proof. Let A ∈ Δ0
2 have Hausdorff-Kuratowski rank α.

Let 〈Aβ ; β � α〉 be a Σ0
1-resolution for A. Define a strategy ϑ for 2| in the

backtrack game for χA by letting ϑ(σ) = 0|σ| or ϑ(σ) = 1|σ| according to whether
the parity of the least β � α such that [σ] ⊆ Aβ holds is equal or different,
respectively, to that of α. Clearly ϑ is a winning strategy, since by associating
each node σ ∈ Bbt(ϑ, χA) to the least βσ � α such that [σ] ⊆ Aσβ

, it follows that
if σ ≺ϑ

bt σ
′ in Bbt(ϑ, χA) then βσ < βσ′ . Therefore ≺ϑ

bt-chains in Bbt(ϑ, χA) are
finite, and by Theorem 1.11 the association σ ∈ Bbt(ϑ, χA) �→ βσ also implies that
the backtrack game rank of ϑ, and thus also of χA, is at most α. In particular the
backtrack game rank of χA is at most the Hausdorff-Kuratowski rank of A.

Conversely, let ϑ be a winning strategy for 2| in the backtrack game for χA.
For each limit λ and natural n such that λ + n � rkbt(ϑ, χA), let Aλ+2n =⋃

γ<λ+2n Aγ ∪
⋃{[σ] ; σ has rank at most λ+n in Bbt(ϑ, χA) and ϑ(σ)(0) = 0} and

Aλ+2n+1 = Aλ+2n∪
⋃{[σ] ; σ has rank at most λ+n in Bbt(ϑ, χA) and ϑ(σ)(0) = 1}.

Finally, for the limit γ and n ∈ ω such that rkbt(ϑ, χA) = γ+n, let Aγ+2n+2 = ωω.

5.10 Claim. The sequence 〈Aβ ; β � γ + 2n+ 2〉 is a Σ0
1-resolution for A.

By construction 〈Aβ ; β � γ + 2n+ 2〉 is an increasing sequence of open sets,
so all that remains to be shown is A = diff〈Aβ ; β � γ + 2n+ 2〉, i.e., that x ∈ A
iff the least β � γ + 2n+ 2 for which x ∈ Aβ holds is odd. Suppose x ∈ A. If for
some m ∈ ω we have ϑ(x�m) = 0, then since χA(x) = 1ω there exists some k > m
such that x�k ≺ϑ

bt x�m. In particular the initial segment σ of x of lowest rank
in Bbt(ϑ, χA), say rank λ+m for some limit λ and m ∈ ω, satisfies ϑ(σ)(0) = 1.
Therefore λ+ 2m+ 1 is the least ordinal β such that x ∈ Aβ holds. Conversely,
if the least β � γ + 2n + 2 for which x ∈ Aβ holds is odd, then for the initial
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114 Chapter 5. Ranks defined from games

segment σ of x of lowest rank in Bbt(ϑ, χA) we have ϑ(σ)(0) = 1. Since ϑ is a
winning strategy, this implies χA(x) = 1ω as desired.

In particular the Hausdorff-Kuratowski rank α of A satisfies α � rkbt(χA) + k
for some k ∈ ω.

Note that the proof of Theorem 5.9 provides a proof of Theorem 1.19 for the
case ξ = 1 (also using Theorem 5.7).

5.4 The eraser game rank and beyond
In the eraser game, there are ω many types of bad moves: for each n ∈ ω, changing
the nth position of the output. Concretely, we define

Be(ϑ, f) = ({(σ, n) ∈ dom(ϑ, f)× ω ; |ϑ(σ)| > n},≺ϑ
e )

(σ, n) ≺ϑ
e (σ′, n′) iff σ ⊃ σ′, n = n′, and ϑ(σ)(n) 	= ϑ(σ′)(n).

The rank function rke obtained from Be is called eraser game rank.
It is easy to see that the continuous functions are those with eraser game rank

0, but for Δ0
2-functions the ranks are already cofinal in ω1, as the next result

shows.

5.11 Proposition. For any A ∈ Δ0
2 we have rke(χA) = rkbt(χA). In particular

the eraser game ranks of Δ0
2 functions are cofinal in ω1.

Proof. First note that if ϑ is a winning strategy for 2| in the backtrack game for
χA, then for σ, σ′ ∈ dom(ϑ, χA) and n ∈ ω such that |ϑ(σ)|, |ϑ(σ′)| > n, we have
(σ, n) ≺ϑ

e (σ′, n) iff σ ≺ϑ
bt σ

′, so Corollary 1.12 implies rkbt(ϑ, χA) � rke(ϑ, χA).
Conversely, since the range of χA is {0ω, 1ω}, any winning strategy ϑ for 2| in

the eraser game for χA can be transformed into a winning strategy ϑ′ for 2| in the
backtrack game for χA by letting

ϑ′(σ) =

⎧⎪⎨
⎪⎩

〈〉, if ϑ(σ) = 〈〉
1|ϑ(σ)|, if ϑ(σ)(0) = 1

0|ϑ(σ)|, otherwise.

It is easy to see that rkbt(ϑ
′, χA) � rke(ϑ, χA).

We say a sequence 〈fn ; n ∈ ω〉 of functions with the same domain X converges
uniformly to a function f : X ωω if

∀n∃n∗∀m � n∗∀x ∈ X(f(x)(n) = fm(x)(n)).

5.12 Theorem. If 〈fn ; n ∈ ω〉 is a sequence of Baire class 1 functions converging
uniformly to a function f , then rke(f) � sup{rke(fn) ; n ∈ ω}.
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5.4. The eraser game rank and beyond 115

Proof. For each n ∈ ω let n∗ be such that f(x)(n) = fm(x)(n) holds for all
m � n∗ and all x ∈ dom(f), and let ϑn be an optimal strategy for 2| in the
eraser game for fn. Define a strategy ϑ for 2| in the eraser game for f by letting
ϑ(σ)(n) = ϑn∗(σ)(n) with |ϑ(σ)| � |σ| maximum such that for all n < |ϑ(σ)| we
have n < |ϑn∗(σ)|.
5.13 Claim. The strategy ϑ is winning for 2| in the eraser game for f .

Indeed, for every n ∈ ω and every x ∈ dom(f) there exists m ∈ ω such
that ϑn∗(x�k)(n) = f(x)(n) holds for all k � m. Now let m′ � m be least
such that n < |ϑ�∗(x�k)| holds for all  � n and k � m′. It now follows that
ϑ(x�k)(n) = f(x)(n) holds for all k � m′.
5.14 Claim. rke(ϑ, f) � sup{rke(fn) ; n ∈ ω}

Indeed, (σ′, n) ≺ϑ
e (σ, n) implies (σ′, n) ≺ϑn∗

e (σ, n), so the rank of (σ, n) in
Be(ϑ, f) is bounded by the rank of (σ, n) in Be(ϑn∗ , fn∗). Therefore rke(ϑ, f),
which is the supremum of the ranks of the elements (σ, n) in Be(ϑ, f), is bounded
by sup{rke(ϑn∗) ; n ∈ ω}, which is itself bounded by sup{rke(fn) ; n ∈ ω} because
each strategy ϑn is assumed to be optimal for fn.

In [34, Theorem 6.1], Elekes, Kiss, and Vidnyánszky isolate five conditions
whose conjunction guarantees that an arbitrary rank function on the bounded
Baire class 1 functions on the real numbers is essentially the same as several
other rank functions known from the literature (corresponding to well-known
characterizations of Baire class 1 functions and also discussed in depth by Kechris
and Louveau in [55]). Theorem 5.9, Proposition 5.11, and Theorem 5.12 imply
that two of these conditions are satisfied by the eraser game rank. However,
because in [34] the authors are interested in real-valued functions, some of the
other conditions presented there use the field structure of the real numbers in a
seemingly fundamental way. Therefore, a natural line of investigation—which is
being pursued by the author, in collaboration with Elekes, Kiss, and Vidnyánszky—
is the following.
5.15 Question. (1) What is the analogue of [34, Theorem 6.1] for ranks of

Baire class 1 functions on Baire space?

(2) We can define a rank function for the real-valued Baire class 1 functions by
letting the rank of f be the least eraser rank of a realizer of f . Does this rank
function satisfy the conditions of [34, Theorem 6.1]?
We can define a rank for Δ0

3-functions based on the multitape game as follows.

Bmt(ϑ, f) = ({(σ, n,m) ∈ dom(ϑ, f)× ω × ω ; n 	= m and
〈n〉, 〈m〉 ∈ ϑ(σ)},≺ϑ

mt)

(σ, n,m) ≺ϑ
mt (σ

′, n′,m′) iff σ ⊃ σ′, n = n′, m = m′, and
min{rkϑ(σ′)(〈n〉), rkϑ(σ′)(〈m〉)}

< min{rkϑ(σ)(〈n〉), rkϑ(σ)(〈m〉)}
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116 Chapter 5. Ranks defined from games

It is not hard to see that a set is Δ0
3 iff its characteristic function is a Δ0

3-
function.

5.16 Theorem (Folklore). A set A ⊆ ωω is in Δ0
3 iff χA is a Δ0

3-function.

Sketch of proof. (⇐) Immediate, since [〈1〉] ∈ Δ0
3 and A = χ−1

A [〈1〉].
(⇒) Let 〈Bn,m ∈ Σ0

1 ; n,m ∈ ω〉 and 〈Cn,m ∈ Π0
1 ; n,m ∈ ω〉 be such that

A =
⋃

n∈ω
⋂

m∈ω Bn,m =
⋂

n∈ω
⋃

m∈ω Cn,m. We can now define a winning strategy
for 2| in the tree version of the multitape game (cf. Theorem 2.23(4)) for χA by
employing the notion of guessing as in the proof of Theorem 2.31. Each node
of length 1 with label 1 that 2| adds to her tree corresponds to a guess for the
least n such that x ∈ ⋂

m Bn,m, where x is the sequence 1 is building in a given
run of the game, and each node of length 1 with label 0 that 2| adds to her tree
corresponds to a guess for the least n such that x ∈ ⋂

m(ω
ω � Cn,m). In order

to satisfy the linearity condition of Theorem 2.23(4), we can stipulate that the
nodes of length greater than 1 be of the form 〈k〉�0m+1, with the same label as
〈k〉. (The guessing structure is so that such a node is only added to the tree if
x ∈ Bn,m or x ∈ ωω � Cn,m holds, depending on the case.)

If the guess n encoded by k is either wrong or not the least one that is correct,
then there will be a finite bound on the lengths of the descendants of 〈k〉 in the
tree, and if n is exact, i.e., the least one that is correct, then 〈k〉�0ω is an infinite
branch of Υϑ

x with running label χA.

5.17 Question. What is the relationship between the Hausdorff-Kuratowski
rank of a Δ0

3 set and the multitape game rank of its characteristic function?

We can of course also define ranks for the Baire class α functions for any given
α < ω1 by using the α-tree game we defined in Chapter 2. For α = 0 and α = 1
these coincide with the Wadge game rank and eraser game rank, respectively. For,
e.g., α ∈ {2, 3}, concretely we have

B2(ϑ, f) = ({(σ, τ, ξ) ∈ dom(ϑ, f)× ω<ω × ω<ω ; τ and ξ are
incompatible nodes of ϑ(σ)},≺ϑ

2)

(σ, τ, ξ) ≺ϑ
2 (σ′, τ ′, ξ′) iff σ ⊃ σ′, τ = τ ′, ξ = ξ′, and

min{rkϑ(σ′)(τ), rkϑ(σ′)(ξ)} < min{rkϑ(σ)(τ), rkϑ(σ)(ξ)}

B3(ϑ, f) = ({(σ, s) ∈ dom(ϑ, f)× (ω<ω)<ω ; elements of s are
pairwise incompatible nodes of ϑ(σ)},≺ϑ

3)

(σ, s) ≺ϑ
3 (σ′, s′) iff σ ⊃ σ′, s ⊃ s′, and min{rkϑ(σ′)s

′(n) ; n < |s′|}
< min{rkϑ(σ)s(n) ; n < |s′|}

We leave for future work the task of analyzing the properties of these ranks.
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Samenvatting

Spellen voor functies:
Baire klasses, Weihrauchgraden, transfinite berekeningen, en rang

Spelkarakteriseringen van functieklasses in de descriptieve verzamelingenleer
vinden hun oorsprong in het werk van Wadge en werden verder ontwikkeld door
onder andere Van Wesep, Andretta, Duparc, Motto Ros en Semmes. In dit proef-
schrift worden deze karakteriseringen vanuit verschillende perspectieven belicht.

We definieren aanpassingen van Semmes’s spelkarakterisering van de Borel
functies, om zo spelkarakteriseringen van de Baire klasse α functies voor elke
α < ω1 te verkrijgen. Sommige van deze resultaten zijn gelijktijdig bewezen
door Louveau en Semmes in nog niet gepubliceerd werk. Ook definiëren we
een constructie die een spelkarakterisering van een klasse Λ omvormt tot een
karakterisering van de klasse van functies die stuksgewijs Λ zijn op een aftelbare
deelpartitie bestaande uit Π0

α verzamelingen, voor iedere 0 < α < ω1.
Vervolgens definiëren we met behulp van technieken uit de berekenbare ana-

lyse een geparametriseerde versie van het Wadge spel, en laten we zien hoe de
parameterkeuze gebruikt kan worden om af te stellen welke functieklasse wordt
gekarakteriseerde door het resulterende spel. Het proefschrift beschrijft een toepas-
sing die de spelkarakterisering van de Baire klasses omvormt naar dit framework.

Verder wordt een generalisatie van de spelkarakterisering van functieklasses
naar gegeneraliseerde Baire-ruimtes beschreven. We laten ook zien hoe de notie
van berekenbaarheid kan worden uitgebreid naar gegeneraliseerde Baire-ruimtes,
en tonen aan dat dit geschikt is voor een algemenere vorm van berekenbare analyse
door een representatie van Galeotti’s gegeneraliseerde reële lijn te definiëren en de
Weihrauchgraad van de tussenwaardestelling in die ruimte te analyseren.

In het laatste gedeelte van dit proefschrift demonstreren we hoe uit de besproken
spelkarakteriseringen van functieklasses op een natuurlijke wijze tot een hiërarchie
leidt, die op een intuïtieve manier de complexiteit van de functies in de bijbehorende
klasses aangeeft. Dit idee en de genoemde resultaten openen nieuwe wegen voor
vervolgonderzoek.
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Abstract

Games for functions:
Baire classes, Weihrauch degrees, transfinite computations, and ranks

Game characterizations of classes of functions in descriptive set theory have
their origins in the seminal work of Wadge, with further developments by Van
Wesep, Andretta, Duparc, Motto Ros, and Semmes, among others. In this thesis
we study such characterizations from several perspectives.

We define modifications of Semmes’s game characterization of the Borel func-
tions, obtaining game characterizations of the Baire class α functions for each fixed
α < ω1. Some of our results were independently proved by Louveau and Semmes
in unpublished work. We also define a construction of games which transforms a
game characterizing a class Λ of functions into a game characterizing the class of
functions which are piecewise Λ on a countable partition of their domains by Π0

α

sets, for each 0 < α < ω1.
We then define a framework of parametrized Wadge games by using tools

from computable analysis, and show how the choice of parameters can be used
to fine-tune what class of functions is characterized by the resulting game. As
an application, we recast our games characterizing the Baire classes into this
framework.

Furthermore, we generalize our game characterizations of function classes to
generalized Baire spaces, i.e., the spaces of functions from an uncountable cardinal
to itself. We also show how the notion of computability on Baire space can be
generalized to the setting of generalized Baire spaces, and show that this is indeed
appropriate for developing a generalized version of computable analysis by defining
a representation of Galeotti’s generalized real line and analyzing the Weihrauch
degree of the intermediate value theorem for that space.

In the final part of the thesis, we show how the game characterizations of
function classes discussed lead in a natural way to a stratification of each class
into a hierarchy, intuitively measuring the complexity of functions in that class.
This idea and the results presented open new paths for further research.
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