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UNIDIMENSIONAL FACTOR MODELS IMPLY WEAKER PARTIAL CORRELATIONS
THAN ZERO-ORDER CORRELATIONS

Riet van Bork , Raoul P. P. P. Grasman and Lourens J. Waldorp

UNIVERSITY OF AMSTERDAM

In this paperwe present a new implication of the unidimensional factormodel.We prove that the partial
correlation between two observed variables that load on one factor given any subset of other observed
variables that load on this factor lies between zero and the zero-order correlation between these two
observed variables. We implement this result in an empirical bootstrap test that rejects the unidimensional
factor model when partial correlations are identified that are either stronger than the zero-order correlation
or have a different sign than the zero-order correlation. We demonstrate the use of the test in an empirical
data example with data consisting of fourteen items that measure extraversion.

Key words: factor models, partial correlations, zero-order correlations.

Unidimensional factor models (UFMs) are widely used throughout the social and behavioral
sciences, and many of its implications have already been revealed. In this paper, we reveal yet
another implication, namely that the partial correlation between two observed variables given
any subset of other observed variables is always closer to zero than the zero-order correlation
between these observed variables. Aswewill show, this implication adds to a series of implications
generated by theworkof, amongothers,Holland andRosenbaum(1986), Ellis (2014) andGuttman
(1940) and can be used to detect misfit of the UFM for the observed data.

In the remainder of this section we describe some of the implications of the UFM that have
been revealed previously in order to situate our contribution. We then turn to the actual proof of
our contribution, before discussing possible ways in which it can be used in future research. To
illustrate the potential use of the result, we consider its use in a bootstrap test that can detect misfit
of the UFM and can also indicate for which observed variables this misfit is obtained.

The basic assumption of UFMs is that the observed variables are conditionally independent
given the latent factor. This condition is sometimes called latent conditional independence (Hol-
land & Rosenbaum, 1986) but is more widely known as local independence in item response
theory (IRT; Lord, 1980). The model implied covariance matrix of a UFM with local indepen-
dence equals the sum of a diagonal matrix representing the residual covariance matrix and a
matrix of rank one. This characteristic of the UFM has resulted in multiple implications for the
covariance structure of the observed variables.

For example, building on Rosenbaum (1984)’s work on IRT models, Holland and Rosen-
baum (1986) showed that nonnegative associations between observed variables in a UFM imply
nonnegative conditional associations. When the observed variables are multivariate Gaussian, the
result of Holland and Rosenbaum (1986) implies that nonnegative correlations imply nonnegative
partial correlations. That is, for any set of multivariate Gaussian observed variables that load on a
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single factor, partial correlations cannot have the opposite sign of their corresponding zero-order
correlation.

Ellis (2014) shows that in a unidimensional latent variable model for any pair of two binary
observed variables given any subset of the other binary observed variables and their products, the
partial correlation is nonnegative. This condition implies that the unconditional correlation matrix
must show a certain ordinal pattern (Ellis, 2014). Yet another implication of the UFM is that the
partial correlation between two observed variables given the other observed variables cannot equal
zero (de Fátima Salgueiro, Smith, & McDonald, 2008). In addition, de Fátima Salgueiro et al.
(2008) show that certain patterns of signs in the partial correlation matrix are incompatible with
a UFM.

A final implication of the factor model that is of importance here is that Guttman claimed that
as the number of observed variables increases to infinity the square of the multiple correlation
coefficient of an observed variable on the other observed variables tends to the communality and
all partial correlations between this observed variable and the other observed variables tend to
zero (Guttman, 1940; 1953).

In this paper we present a related implication of the UFM: the partial correlation between two
observed variables given any subset of the other observed variables is always closer to zero than
the zero-order correlation between these observed variables. This, together with the implications
mentioned previously that partial correlations cannot equal zero and cannot switch sign compared
to the zero-order correlations, means that the UFM implies that the partial correlation between
any two observed variables given any subset of the other observed variables lies between zero and
the zero-order correlation between these two observed variables. This result implies that as the
number of observed variables increases to infinity the partial correlations not only tend to zero
but tend monotonically to zero.

1. Unidimensional Factor Models

We first define UFMs before presenting a proof. Let � denote the covariance matrix of y, in
which y denotes the vector of observed variables. We assume that � is nondegenerate and so is
positive definite. Let λ denote the vector of factor loadings and � the residual covariance matrix.
In a UFM all observed variables in y are a linear function of the same factor, η, and independent
residuals, ε:

yi = λiη + εi . (1)

We assume var(η) = 1. We also assume mutually uncorrelated residuals, that is, � is diagonal.
In the following, we take � to be standardized and assume ∀i, |λi | ∈ (0, 1), so that the observed
variables are correlated with the factor but not perfectly correlated with the factor. The model
implied covariance matrix of the observed variables is a function of the factor loadings and the
residual covariance matrix:

� = λλ′ + �. (2)

Equation (2) implies that the covariance among observed variables is a function of their factor
loadings. More precisely, because � is a diagonal matrix, the covariance between two variables
yi and y j equals λiλ j .

Consider three variables y1, y2 and z. The partial correlation between y1 and y2 given z can
be expressed in terms of their zero-order correlations by (e.g., Chen & Pearl, 2014):

ρy1y2·z = ρy1y2 − ρy1zρy2z√
(1 − ρ2

y1z)(1 − ρ2
y2z)

(3)
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Some correlation structures for three variables imply that the partial correlation is stronger than
the correlation. For example, a negative ρy2z in combination with a positive ρy1y2 and ρy1z results
in a partial correlation ρy1y2.z that is stronger than the zero-order correlation ρy1y2 . Langford,
Schwertman, and Owens (2001) point out that the property of being positively correlated is not
transitive: for three variables it is possible to have a correlation structure with one negative and
two positive correlations. However, a structure with one negative and two positive correlations is
not possible under a UFM as it is impossible to choose factor loadings such that they result in two
positive correlations and one negative correlation. In fact, all possible correlation structures that
result in some partial correlations that are stronger than their corresponding zero-order correlation
appear to be impossible under a UFM. For example, for three variables y1, y2 and z that are all
elements of y, we can substitute each correlation in Eq. (3) with factor loadings:

ρy1y2·z = λy1λy2(1 − λ2z )√
1 − λ2y1λ

2
z

√
1 − λ2y2λ

2
z

(4)

Note that both the denominator
√
1 − λ2y1λ

2
z

√
1 − λ2y2λ

2
z and (1 − λ2z ) are positive and that

√
1 − λ2y1λ

2
z

√
1 − λ2y2λ

2
z > (1− λ2z ). It follows that 0 <

1−λ2z√
1−λ2y1

λ2z

√
1−λ2y2

λ2z

< 1 and thus that the

partial correlation ρy1y2·z is weaker than the zero-order correlation λy1λy2 . While this example
only serves as a proof for p = 3 variables, in the following section it is proved that for any p the
UFM implies that the partial correlations are necessarily weaker than the zero-order correlations.

2. Weaker Partial Correlations Than Zero-Order Correlations

We start with providing the assumptions defined in the previous section.

Assumption.

1. � = λλ′ + �, and �i i = 1 for all i
2. � is diagonal and positive definite,
3. |λi | ∈ (0, 1) for all i .

These assumptions imply the following lemma.

Lemma Assume 1–3 above. For a set of p continuous random variables that load on one common
factor, the partial correlation between any two of them, conditional on any nonempty subset of
the other p − 2 variables, is weaker than their marginal correlation.

Proof The proof is for the partial correlation conditional on all p − 2 remaining variables. That
the result holds for any subset follows from restricting � to the subset of variables.

Let y = [y1, y2, . . . , yp]′. Partition y′ = (Y′,Z′), where Y = (y1, y2)′, and Z =
(y3, . . . , yp)′. Partition λ′ = (λ′

Y ,λ′
Z ) accordingly. The partitioned covariance matrix of y is

� =
(

�YY �Y Z

�ZY �Z Z

)
=

(
λYλ′

Y + �YY λYλ′
Z

λZλ′
Y λZλ′

Z + �Z Z

)
,

where�YY = diag(1−λ21, 1−λ22), and�Z Z = diag(1−λ23, . . . , 1−λ2p). The partial correlation
between y1 and y2, conditioned on all the other variables, can be computed from the partial
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covariance matrix

�YY ·Z = �YY − �Y Z�−1
Z Z�ZY

= (λYλ′
Y + �YY ) − λYλ′

Z (λZλ′
Z + �Z Z )−1λZλ′

Y

= λYλ′
Y [1 − λ′

Z (λZλ′
Z + �Z Z )−1λZ ] + �YY .

Reading off the partial variances (�YY ·Z )11, (�YY ·Z )22 and covariance (�YY ·Z )12, the partial
correlation can be expressed as

ρy1y2·Z = λ1λ2(1 − γ 2)√
λ21(1 − γ 2) + (1 − λ21)

√
λ22(1 − γ 2) + (1 − λ22)

= λ1λ2√
λ21 + (1 − λ21)/(1 − γ 2)

√
λ22 + (1 − λ22)/(1 − γ 2)

, (5)

where γ 2 = λ′
Z (λZλ′

Z + �Z Z )−1λZ > 0 by the assumption that λi �= 0. Note that ρy1y2·Z =
ρy1y2 = λ1λ2 is the marginal correlation if and only if γ 2 ≡ 0. The Sherman–Morrison formula
(Sherman & Morrison, 1950) shows that γ 2 < 1:

λ′
Z (λZλ′

Z + �Z Z )−1λZ = λ′
Z (�−1

Z Z − �−1
Z ZλZ [1 + λ′

Z�−1
Z ZλZ ]−1λ′

Z�−1
Z Z )λZ

= λ′
Z�−1

Z ZλZ

1 + λ′
Z�−1

Z ZλZ
< 1.

As a consequence, 0 < 1 − γ 2 < 1, and hence, the denominator in (5) is greater than 1, and
ρy1y2·Z shrinks to 0 relative to ρy1y2 . ��

The factor γ 2 in the proof can be interpreted as themultiple correlation coefficient (coefficient
of determination) between the latent variable η and the remaining p − 2 variables. The smaller
this multiple correlation is, the closer the partial correlation is to the marginal correlation; the
larger this multiple correlation, the closer to zero the partial correlation is. This is because a larger
multiple correlation implies that the variables that are partialled out have strong factor loadings
and thus conditioning on these variables pulls out much of the shared variance between y1 and
y2.

In our proof, we defined Z as consisting of all p − 2 variables other than Y . However, the
vector of variables that are partialled out does not need to include all variables loading on the
factor other than Y in order for the partial correlation to be necessarily weaker than the zero-order
correlation. In fact, the proof also holds for any subset of Z . Given that the UFM also implies that
the partial correlation cannot equal zero (de Fátima Salgueiro et al., 2008) and also cannot have a
different sign as the zero-order correlation (Holland & Rosenbaum, 1986), we can conclude that
the partial correlation implied by a UFM is bounded on two sides: the partial correlation between
any two observed variables given a set of the other observed variables lies between zero and the
zero-order correlation between these observed variables.

The proof implies thatwhen aUFMis hypothesized to underlie somedataset, the identification
of partial correlations stronger than their corresponding zero-order correlations is an indication
of model misfit.
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3. Application of the Result

In the previous section we proved that the UFM implies that the partial correlation between
any two variables is the product of the zero-order correlation between these two variables and
a constant between zero and one. However, while this should hold for the correlations in the
population, sampling variability can result in partial correlations that are not between zero and
the zero-order correlation in the sample, even though a UFM is the true data-generating model.
For example, the upper triangle of the matrix in Table 1 represents a sample correlation matrix of
which the true data-generating model is a UFM. The lower triangle represents the corresponding
partial correlations. In this sample correlation matrix there are multiple partial correlations that
are not between zero and the zero-order correlations (i.e., r16, r23, r24, r25, r26, r34, r35, r36, r46).
To decide whether the UFM should be rejected based on these observations, a test for statistical
significance is needed. In the followingwe propose one possible version of such a test, an empirical
bootstrap test that uses the result developed in this paper to identify misfit of the UFM. There are
four observations we use for the test that provide evidence against a UFM:

1. The correlation and corresponding partial correlation are both positive, but the partial
correlation is more strongly positive than the correlation.

2. The correlation and corresponding partial correlation are both negative, but the partial
correlation is more strongly negative than the correlation.

3. The correlation is negative, while the corresponding partial correlation is positive.
4. The correlation is positive, while the corresponding partial correlation is negative.

In the bootstrap test that we lay out in the following, the goal is to identify correlations for
which any of the four observations above holds, accounting for sampling variability.

These four points can be summarized in one implication of the UFM, that is, the UFM implies
0 < ρyi y j ·Z/ρyi y j < 1. If and only if observation (1) or (2) is the case ρyi y j ·Z/ρyi y j > 1. If and
only if observation (3) or (4) is the case ρyi y j ·Z/ρyi y j < 0. Note that 0 < ρyi y j ·Z/ρyi y j < 1 if and
only if |2ρyi y j ·Z/ρyi y j −1| < 1, and so the latter statistic can be used to test for all four observations
above.1 The distribution of this ratio is not easily obtained. We therefore constructed a bootstrap
procedure to test whether |2ρyi y j ·Z/ρyi y j −1| > 1. Finding that |2ρyi y j ·Z/ρyi y j −1| > 1 provides
evidence against the UFM.

3.1. Bootstrap Test

We propose the following empirical bootstrap procedure to test the hypothesis that the data
come from a UFM:

1. Sample n observations with replacement from the original data set
2. From the m-th bootstrap sample, for all i, j = 1, . . . , p, i �= j ,

(a) compute the correlations ryi y j and partial correlations ryi y j ·Zi j , where Zi j =
{yk}k �=i, j , |Zi j | = p − 2

(b) Compute the statistics smi j = |2ryi y j ·Zi j /ryi y j − 1|
3. Repeat steps 1 through 2b M times (e.g., M = 1000)
4. Use the bootstrapped {smi j }Mm=1 to construct a one-sided 95% confidence interval (CI).

Any pair of variables yi , y j for which the 95% CI only includes values greater than one
indicates misfit of the UFM.

1Let x = ρyi y j ·Z /ρyi y j . It follows that 0 < x < 1 ⇐⇒ 0 < (x − 0.5) + 0.5 < 1 ⇐⇒ −0.5 < x − 0.5 <

0.5 ⇐⇒ |x − 0.5| < 0.5 ⇐⇒ 2|x − 0.5| < 1 ⇐⇒ |2x − 1| < 1.
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Table 1.
Upper triangle of matrix represents sample correlation matrix of dataset with 60 observations that is simulated from UFM
with both positive and negative factor loadings.

V1 V2 V3 V4 V5 V6

V1 1 0.212 0.139 0.231 0.193 0.079
V2 0.129 1 0.296 0.170 0.010 0.042
V3 0.128 0.319 1 −0.157 0.065 −0.060
V4 0.207 0.210 −0.266 1 0.193 −0.101
V5 0.158 −0.074 0.084 0.166 1 −0.088
V6 0.122 0.071 −0.110 −0.137 −0.076 1

The absolute factor loadings are sampled from a uniform distribution over [0.05, 0.2]. The lower triangle of
the matrix represents the corresponding partial correlations.

Table 2.
Lower bound of the CI obtainedwith the bootstrap test for each zero-order correlation and corresponding partial correlation
in Table 1.

V1 V2 V3 V4 V5 V6

V1 – 0.028 0.08 0.076 0.045 0.117
V2 – – 0.216 0.129 0.065 0.084
V3 – – – 0.633 0.063 0.080
V4 – – – – 0.068 0.103
V5 – – – – – 0.049
V6 – – – – – –

The supplementary materials provide an R function named onefactor.test() that
implements the above algorithm. The output of the test provides a 95% CI of the parameter
|2ρyi y j ·Z/ρyi y j − 1| for each of the p(p − 1)/2 unique correlations and their corresponding par-
tial correlation. The default significance level α is set to 0.05 corresponding to a 95% CI, but one
can adjust α to account for multiple testing. The test constructs a CI for each pair of variables in
the data and thus performs p(p − 1)/2 tests.

Earlier we stressed the need for a test by arguing that sampling variability can result in partial
correlations that are not between zero and the zero-order correlation even when a UFM underlies
the data. The correlation matrix in Table 1, for example, corresponds to data that were simulated
from a UFMwith factor loadings close to zero. Sampling data from a UFMwith small factor load-
ings result in a partial correlation matrix that is close to the marginal correlation matrix. (When
factor loadings are exactly zero, the population correlation matrix and the population partial cor-
relation matrix are both diagonal matrices.) For an illustration of the test, it is most interesting to
sample data from a population in which the partial correlation matrix is close to the marginal cor-
relation matrix, because in that situation sampling variability can easily lead to partial correlations
that are not between zero and the zero-order correlation. As mentioned earlier, the sample correla-
tion and sample partial correlation matrices included in Table 1 include many partial correlations
that are stronger than the zero-order correlation.Applying the bootstrap test to the data correspond-
ing to this correlationmatrix did not result in any significant results (all CIs for |2ρyi y j ·Z/ρyi y j −1|
included the value 1, see Table 2), and thus, theUFMwas not rejected.We included amore detailed
description of the results of this analysis in supplementary materials, as well as R code to replicate
the example. Furthermore, the supplementary materials include (a) a similar illustration of the
test on data simulated from a random correlation matrix, and (b) a simulation study that shows
that the performance of the test in terms of controlling type I errors is adequate.
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Table 3.
Upper triangle of this matrix represents the zero-order correlations of the extraversion item responses.

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14

V1 1 0.34 0.36 0.37 0.41 0.45 0.42 0.45 0.22 0.56 0.60 0.25 0.37 0.45

V2 0.08 1 0.16 0.3 0.13 0.33 0.16 0.27 0.24 0.26 0.28 0.04 0.40 0.35

V3 0.07 -0.02 1 0.26 0.26 0.40 0.22 0.21 0.14 0.38 0.30 0.13 0.17 0.28

V4 0.04 0.11 0.04 1 0.17 0.49 0.32 0.23 0.28 0.31 0.36 0.14 0.28 0.24

V5 0.07 -0.08 0.09 -0.02 1 0.24 0.23 0.57 0.06 0.43 0.33 0.27 0.20 0.31

V6 0.11 0.08 0.22 0.28 -0.03 1 0.31 0.35 0.37 0.37 0.41 0.10 0.31 0.31

V7 0.10 -0.08 0.01 0.10 -0.03 0.03 1 0.28 0.24 0.39 0.40 0.31 0.31 0.27

V8 0.11 0.10 -0.06 -0.02 0.46 0.1 0.05 1 0.19 0.38 0.38 0.17 0.28 0.33

V9 -0.04 0.06 -0.01 0.07 -0.07 0.21 0.1 0.06 1 0.15 0.28 0.01 0.24 0.18

V10 0.19 0.03 0.14 0.03 0.16 0.05 0.11 0.01 -0.04 1 0.46 0.32 0.29 0.47

V11 0.32 0.02 0.03 0.08 0.05 0.05 0.13 0.05 0.11 0.11 1 0.16 0.33 0.36

V12 0.05 -0.05 -0.01 0.04 0.13 -0.06 0.21 -0.03 -0.06 0.14 -0.06 1 0.14 0.21

V13 0.05 0.23 -0.03 0.05 0.00 0.03 0.13 0.03 0.07 -0.02 0.05 0.01 1 0.41

V14 0.11 0.14 0.07 -0.03 0.05 0.01 -0.02 0.03 0.03 0.21 0.01 0.05 0.21 1

The lower triangle of thismatrix represents the corresponding partial correlations. Each zero-order correlation
with a gray background corresponds to a partial correlation with a gray background, and the combination
refers to a pair for which the bootstrap test was significant. (The CI obtained with the bootstrap test did not
include one.)

4. Empirical Illustration

In this section, we illustrate the use of the statistical procedure by applying it to an empirical
example concerning extraversion. Extraversion is an interesting application because the appro-
priateness of the latent variable model for personality has been contested. For example, Eysenck
(1983) claims that extraversion and neuroticism are strong candidates for referring to a real trait
underlying the item responses and according to Eysenck ‘there seems to be little doubt that per-
sonality traits have a firm basis in the individual’s biological structure and functioning’, while
alternative theories of personality deny such an interpretation of the latent variables in psychome-
tric models for personality (Cramer et al., 2012). Thus, it is interesting to evaluate to what extent
the data are compatible with the unidimensional factor model, as Eysenck’s theory would predict.

We used data from the ‘Vijf PersoonlijkheidsFactoren Test’ (Five Personality Factors Test)
developed by Elshout en Akkerman (Elshout & Akkerman, 1975). The data consist of 8954
observations on 14 extraversion items on a seven-point Likert scale. For amore detailed description
of the dataset, we refer to the paper of Smits, Dolan, Vorst, Wicherts, and Timmerman (2013)
who made the data publicly available. We note that the exact wording of the items is not available
due to copyright issues (Smits et al., 2013). We here focus on the extraversion factor but because
the complete data for all five factors is publicly available anyone who is interested can perform
the test on any of the five personality factors.

The upper triangle of Table 3 includes the zero-order correlations between the 14 extraversion
items. The lower triangle of Table 3 includes the corresponding partial correlations. As can be seen
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Table 4.
Lower bound of the CI obtainedwith the bootstrap test for each zero-order correlation and corresponding partial correlation
between the extraversion items.

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14

V1 - 0.31 0.39 0.57 0.49 0.38 0.33 0.34 1.03 0.20 0.00 0.35 0.54 0.36

V2 - - 0.85 0.08 1.56 0.31 1.50 0.03 0.2 0.54 0.65 1.26 0.01 0.02

V3 - - - 0.44 0.11 0.00 0.61 1.18 0.68 0.09 0.57 0.62 0.91 0.29

V4 - - - - 0.84 0.05 0.17 0.82 0.28 0.57 0.38 0.01 0.43 0.92

V5 - - - - - 0.88 0.99 0.53 1.76 0.14 0.51 0.00 0.69 0.48

V6 - - - - - - 0.57 0.23 0.00 0.54 0.57 1.28 0.61 0.71

V7 - - - - - - - 0.44 0.00 0.29 0.21 0.21 0.00 0.86

V8 - - - - - - - - 0.10 0.72 0.53 0.91 0.50 0.59

V9 - - - - - - - - - 1.01 0.04 1.67 0.18 0.38

V10 - - - - - - - - - - 0.37 0.00 0.87 0.00

V11 - - - - - - - - - - - 1.22 0.47 0.70

V12 - - - - - - - - - - - - 0.38 0.20

V13 - - - - - - - - - - - - - 0.00

V14 - - - - - - - - - - - - - -

The values that have a gray background refer to a combination of a zero-order correlation and partial
correlation for which the CI obtained with the bootstrap test does not include one.

from Table 3, all zero-order correlations between the items are positive. We used the bootstrap
function ‘onefactor.test()’ that is included in the supplementary materials, and set the
number of bootstraps to 100.000. We used a Bonferroni correction to correct for multiple testing.
The results of the bootstrap test on the extraversion data are summarized in Table 4 which includes
the lower bounds of theCI’s for each pair of a zero-order correlation andpartial correlation between
two variables. For example, consider the zero-order correlation and partial correlation between
V3 and V12 (Table 3 shows that these are 0.13 and −0.01, respectively). The lower bound of the
CI associated with this pair is 0.62, which is not larger than one, and therefore we conclude that
although in the sample the sign for the partial correlation between V3 and V12 is different from
the sign of the zero-order correlation, this is not a significant result. Cells with a gray background
refer to pairs of variables for which the partial correlation is either significantly stronger than the
corresponding zero-order correlation or has a different sign (i.e., the lower bound of the CI is
larger than one). There are 10 pairs of variables for which the partial correlation had a different
sign than the corresponding zero-order correlation. This means that the bootstrap test rejects the
UFM based on the implication of UFMs that all partial correlations should be between zero and
the zero-order correlation.

Because the bootstrap test is a local test of model fit, we can use the significant results in Table
4 to eliminate items that cause misfit. To select variables for elimination, we used the selection
rule that the variable that is part of the most pairs of two variables for which the correlation and



RIET VAN BORK ET AL. 451

partial correlation are significant in the bootstrap test is removed. For example, Table 4 shows
that V12 is part of four pairs of variables for which the correlation has a different sign than the
partial correlation (r2,12, r6,12, r9,12 and r11,12). We thus started with eliminating the variables V9
and V12 because these both were part of four pairs of variables for which the bootstrap test was
significant. As a result, the number of pairs that were significant decreased from 10 to 4 pairs. V2
and V5 were both part of two pairs of variables for which the bootstrap test was significant, and
thus, we eliminated V2 and V5 as well. This resulted in a set of 10 variables (all variables except
for V2, V5, V9 and V12) for which the bootstrap test does not reject the UFM.

5. Discussion

In this paper we proved that the UFM implies that partial correlations between observed
variables given any subset of the other observed variables are always closer to zero than the zero-
order correlation between these observed variables. To the best of our knowledge, this is a new
result, which implies that the identification of partial correlations in the data that are significantly
stronger than the zero-order correlationmay cast doubt onwhether the UFM is the data-generating
model. To facilitate the use of this result in data analysis, we presented a bootstrap test to evaluate
the tenability of the implication and illustrated the use of the test in an empirical example.

Most of the fit indices for the UFM available in the literature rely on distributional assump-
tions or asymptotic normality (e.g., the gamut of fit measures based on normal theory LRT or
approximate asymptotic distributions; see Bollen and Ting (1993) for an overview). The main
result of this paper only relies on the structure of the covariance matrix and not on properties
of the statistical distribution such as the normal distribution. The proposed bootstrap method is
essentially distribution free. Furthermore, as argued in Browne and Cudeck (1992), the factor
model in itself is all but certain to be incorrect. Therefore, instead of focusing on the absolute
fit of the factor model, it is more sensible to assess where the lack of fit occurs (Browne &
Cudeck, 1992). Saris, Satorra, and Van der Veld (2009) show that global fit indices (FIs) vary in
their sensitivity to different types of misspecifications so that a model with a small substantively
irrelevant misspecification may be rejected because the FI is sensitive to such misspecifications,
while this FI may support the acceptance of a model with an important misspecification due to
its low sensitivity to such misspecifications. Claeskens and Hjort (2008) even argue that the ‘best
model’ depends on the parameter of interest and propose the use of focused information criteria
tailored to parameters of interest. The inequality of the main result of this paper allows for a local
fit evaluation that indicates where misfit occurs. In addition, the procedure can be used to guide
the selection of items in a test: Items that are consistently involved in violations of the proposition
should be considered for removal (see Clark andWatson (1995) for a discussion of item selection).

We believe that the result presented in this paper has the potential to help decide whether a
UFM is a plausible candidate to have generated the observed data. However, we also think that
the result is not useful to test the dimensionality of the factor model when comparing different
factor models. This is because we think it is likely that the implication presented in this paper
generalizes to, for example, correlated factor models or hierarchical factor models. That is, partial
correlations between zero and the zero-order correlation are a necessary condition for the UFM
but not a sufficient condition as this property likely holds for other factor models as well. In a
correlated factor model, for example, the correlation between two observed variables that load
on different factors equals the product of their factor loadings and the correlation between the
factors these observed variables load on. As such, the correlation matrix and partial correlation
matrix implied by such models will not only be a function of the factor loadings but also of 
,
the correlation matrix of the latent variables. Future research might reveal how 
 in the function
for the correlation and partial correlation influences the relative size of the partial correlation with
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respect to the correlation. Another interesting extension would be to investigate whether the result
presented in this paper generalizes to other types of latent variable models such as IRT models,
in which the test scores are not continuous. Finding such extensions of the result to other latent
variable models implies that this result should not be used to compare different factor models
with each other within the realm of factor modeling, but rather provides a first test of whether
one should enter the gateway to the factor modeling world at all. We hope that future research
explores how general the class of latent variable models is for which this property holds. For now
we can conclude that the identification of partial correlations that are not between zero and the
zero-order correlation provides evidence against a UFM.
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