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J. B. S. Haldane’s Contribution to the
Bayes Factor Hypothesis Test
Alexander Etz and Eric-Jan Wagenmakers

Abstract. This article brings attention to some historical developments that
gave rise to the Bayes factor for testing a point null hypothesis against a com-
posite alternative. In line with current thinking, we find that the conceptual
innovation—to assign prior mass to a general law—is due to a series of three
articles by Dorothy Wrinch and Sir Harold Jeffreys (1919, 1921, 1923a).
However, our historical investigation also suggests that in 1932, J. B. S. Hal-
dane made an important contribution to the development of the Bayes factor
by proposing the use of a mixture prior comprising a point mass and a con-
tinuous probability density. Jeffreys was aware of Haldane’s work and it may
have inspired him to pursue a more concrete statistical implementation for
his conceptual ideas. It thus appears that Haldane may have played a much
bigger role in the statistical development of the Bayes factor than has hitherto
been assumed.

Key words and phrases: History of statistics, induction, evidence, Sir
Harold Jeffreys.

1. INTRODUCTION

Bayes factors grade the evidence that the data pro-
vide for one statistical model over another. As such,
they represent “the primary tool used in Bayesian in-
ference for hypothesis testing and model selection”
(Berger, 2006, p. 378). In addition, Bayes factors can
be used for model-averaging (Hoeting et al., 1999) and
variable selection (Bayarri et al., 2012). Bayes factors
are employed across widely different disciplines such
as astrophysics (Lattimer and Steiner, 2014), forensics
(Taroni et al., 2014), psychology (Dienes, 2014), eco-
nomics (Malikov, Kumbhakar and Tsionas, 2015) and
ecology (Cuthill and Charleston, in press). Moreover,
Bayes factors are a topic of active statistical interest
(e.g., Fouskakis, Ntzoufras and Draper, 2015, Holmes
et al., 2015, Sparks, Khare and Ghosh, 2015; for a more
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pessimistic view, see Robert, 2016). These modern ap-
plications and developments arguably find their roots
in the work of one man: Sir Harold Jeffreys.

Jeffreys is a towering figure in the history of Bayes-
ian statistics. His early writings, together with his co-
author Dorothy Wrinch (Wrinch and Jeffreys, 1919,
1921, 1923a), championed the use of probability the-
ory as a means of induction and laid the conceptual
groundwork for the development of the Bayes factor.
The insights from this work culminated in the mono-
graph Scientific Inference (Jeffreys, 1931), in which
Jeffreys gives thorough treatment to how a scientist
can use the laws of inverse probability (now known as
Bayesian inference) to “learn from experience” (for a
review, see Howie, 2002 and an earlier version of this
paper available at http://arxiv.org/abs/1511.08180v2).

Among many other notable accomplishments, such
as the development of prior distributions that are invari-
ant under transformation and his work in geophysics
and astronomy, where he discovered that the Earth’s
core is liquid, Jeffreys is widely recognized as the in-
ventor of the Bayesian significance test, with seminal
papers in 1935 and 1936 (Jeffreys, 1935, 1936a). The
centerpiece of these papers is a number, which Jef-
freys denotes K , that indicates the ratio of posterior to
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prior odds; much later, Jeffreys’s statistical tests would
come to be known as Bayes factors (Good, 1958).1

Once again these works culminated in a comprehen-
sive book, Theory of Probability (Jeffreys, 1939).

When the hypotheses in question are simple point
hypotheses, the Bayes factor reduces to a likelihood
ratio, a method of measuring evidential strength which
dates back as far as Johann Lambert in 1760 (Lambert
and DiLaura, 2001) and Daniel Bernoulli in 1777
(Kendall et al., 1961; see Edwards, 1974 for a histor-
ical review); C. S. Peirce had specifically called it a
measure of ‘weight of evidence’ as far back as 1878
(Peirce, 1878; see Good, 1979). Alan Turing also inde-
pendently developed likelihood ratio tests using Bayes’
theorem, deriving decibans to describe the intensity of
the evidence, but this approach was again based on
the comparison of simple versus simple hypotheses.
For example, Turing used decibans when decrypting
the Enigma codes to infer the identity of a given let-
ter in German military communications during World
War II (Turing, 1941/2012).2 As Good (1979) notes,
Jeffreys’s Bayes factor approach to testing hypotheses
“is especially ‘Bayesian’ [because] either [hypothesis]
is composite” (p. 393).

Jeffreys states that across his career his “chief in-
terest is in significance tests” (Jeffreys, 1980, p. 452).

1See Good (1988) and Fienberg (2006) for a historical review.
The term ‘Bayes factor’ comes from Good, who attributes the in-
troduction of the term to Turing, who simply called it the ‘factor’.

2Turing started his Maths Tripos at King’s College in 1931, grad-
uated BA in 1934, and was a Fellow of King’s College from 1935–
1936. Anthony (A. W. F.) Edwards speculates that Turing might
have attended some of Jeffreys’s lectures while at Cambridge,
where he would have learned about details of Bayes’ theorem
(Edwards, 2015, personal communication). According to the col-
lege’s official record of lecture lists, Jeffreys’s lectures ’Probabil-
ity’ started in 1935 (or possibly Easter Term 1936), and in the year
1936 they were in the Michaelmas (i.e., Fall) Term. Turing would
have had the opportunity of attending them in the Easter Term or
the Michaelmas Term in 1936 (Edwards, 2015, personal communi-
cation). Jack (I. J.) Good has also provided speculation about their
potential connection, “Turing and Jeffreys were both Cambridge
dons, so perhaps Turing had seen Jeffreys’s use of Bayes factors;
but, if he had, the effect on him must have been unconscious for he
never mentioned this influence and he was an honest man. He had
plenty of time to tell me the influence if he was aware of it, for I
was his main statistical assistant for a year” (Good, 1980, p. 26).
Later, in an interview with David Banks, Good remarks that “Tur-
ing might have seen [Wrinch and Jeffreys’s] work, but probably he
thought of [his likelihood ratio tests] independently” (Banks, 1996,
p. 11). Of course, Turing could have learned about Bayes’ theo-
rem from any of the standard probability books at the time, such
as Todhunter (1858), but the potential connection is of interest. For
more detail on Turing’s work on cryptanalysis, see Zabell (2012).

Moreover, in an (unpublished) interview with Dennis
Lindley (DVL) for the Royal Statistical Society on Au-
gust 25, 1983, when asked “What do you see as your
major contribution to probability and statistics?” Jef-
freys (HJ) replies,

HJ: The idea of a significance test, I sup-
pose, putting half the probability into a con-
stant being 0, and distributing the other half
over a range of possible values.
DVL: And that’s a very early idea in your
work.
HJ: Well, I came on to it gradually. It was
certainly before the first edition of ‘Theory
of Probability’.
DVL: Well, of course, it is related to those
ideas you were talking about to us a few
minutes ago, with Dorothy Wrinch, where
you were putting a probability on. . .
HJ: Yes, it was there, of course, when the
data are counts. It went right back to the be-
ginning.
(“Transcription of a Conversation between
Sir Harold Jeffreys and Professor D.V. Lind-
ley,” Exhibit A25, St John’s College Li-
brary, Papers of Sir Harold Jeffreys)

That Jeffreys considers his greatest contribution to
statistics to be the development of Bayesian signifi-
cance tests, tests that compare a point null against a
distributed (i.e., composite) alternative, is remarkable
considering the range of his accomplishments.

In their influential introductory paper on Bayes fac-
tors, Kass and Raftery (1995) state,

In a 1935 paper and in his book Theory of
Probability, Jeffreys developed a method-
ology for quantifying the evidence in favor
of a scientific theory. The centerpiece was a
number, now called the Bayes factor, which
is the posterior odds of the null hypothe-
sis when the prior probability on the null is
one-half. (p. 773, abstract)

Many distinguished statisticians and historians of sta-
tistics consider the development of the Bayes factor to
be one of Jeffreys’s greatest achievements and a land-
mark contribution to the foundation of Bayesian statis-
tics. In a recent discussion of Jeffreys’s contribution
to Bayesian inference, Robert, Chopin and Rousseau
(2009) recall the importance and novelty of Jeffreys’s
significance tests,



HALDANE’S CONTRIBUTION TO THE BAYES FACTOR 315

If the hypothesis to be tested is H0 : θ = 0,
against the alternative H1 that is the aggre-
gate of other possible values [of θ], Jef-
freys initiates one of the major advances
of Theory of Probability by rewriting the
prior distribution as a mixture of a point
mass in θ = 0 and of a generic density π on
the range of θ . . . This is indeed a stepping
stone for Bayesian Statistics in that it ex-
plicitly recognizes the need to separate the
null hypothesis from the alternative hypoth-
esis within the prior, lest the null hypothesis
is not properly weighted once it is accepted
(p. 157). [emphasis original]

Some commentators on Robert, Chopin and Rousseau
(2009) shared their sentiment. Lindley (2009) re-
marked that Jeffreys’s “triumph was a general method
for the construction of significance tests, putting a con-
centration of prior probability on the null value. . . and
evaluating the posterior probability using what we now
call Bayes factors” (p. 184). Kass (2009) noted that a
“striking high-level feature of Theory of Probability is
its championing of posterior probabilities of hypothe-
ses (Bayes factors), which made a huge contribution to
epistemology” (p. 180). Moreover, Senn (2009) is sim-
ilarly impressed with Jeffreys’s innovation in assigning
a concentration of probability to the null hypothesis,
calling it “a touch of genius, necessary to rescue the
Laplacian formulation [of induction]” (p. 186).3

In discussions of the development of the Bayes fac-
tor, as above, most authors focus on the work of Jef-
freys, with some mentioning the early related work by
Turing and Good. A piece of history that is missing
from these discussions and commentaries is the con-
tribution of John Burdon Sanderson (J. B. S.) Haldane
(pictured in Fig. 1), whose application of these ideas
potentially spurred Jeffreys into making his conceptual
ideas about scientific learning more concrete—in the
form of the Bayes factor.4 In a paper entitled “The
Bayesian Controversy in Statistical Inference,” after
discussing some of Jeffreys’s early Bayesian develop-
ments, Barnard (1967) briefly remarks,

Another man whose views were closely re-
lated to Jeffreys was Haldane, who. . . pro-
posed a prior having a ‘lump’ of probability

3However, see Senn’s recent in-depth discussion at http://tinyurl.
com/ow4lahd for a less enthusiastic perspective.

4Howie (2002), p. 125, gives a brief account of some ways Hal-
dane might have influenced Jeffreys’s thoughts, but does not draw
this connection.

at the null hypothesis with the rest spread
out, in connexion [sic] with tests of signifi-
cance. (p. 238)

Similarly, the Biographical Memoirs of the Fellows of
the Royal Society includes an entry for Haldane (Pirie,
1966), in which M. S. Bartlett recalls,

In statistics, [Haldane] combined an objec-
tive approach to populations with an occa-
sional cautious use of inverse probability
methods, the latter being apparently envis-
aged in frequency terms. . . [Haldane’s] idea
of a concentration of a prior distribution at a
particular value was later adopted by Harold
Jeffreys, F.R.S. as a basis for a theory of sig-
nificance tests. (p. 233)

However, we have not seen Haldane’s connection to
the Bayes factor hypothesis test mentioned in the mod-
ern statistics literature, and we are not aware of any
in-depth accounts of this particular innovation to date.

Haldane is perhaps best known in the statistics liter-
ature by his proposal of a prior distribution suited for
estimation of the rate of rare events, which has become
known as Haldane’s prior (Haldane, 1932, 1948).5

References to Haldane’s 1932 paper focus mainly on
its proposal of the Haldane prior, and they largely miss
his formulation of a mixture prior comprising a point
mass and a smoothly distributed alternative—a crucial
component in the Bayes factor hypothesis tests that Jef-
freys would later develop. Among Haldane’s various
biographies (e.g., Clark, 1968, Crow, 1992, Lai, 1998,
Sarkar, 1992) there is no mention of this development;
while they sometimes mention statistics and mathemat-
ics among his broad list of interests, they understand-
ably tend to focus on his major advances made in bi-
ology and genetics. In fact, this result is not mentioned
even in Haldane’s own autobiographical account of his
career accomplishments (Haldane, 1966).

The primary purpose of this paper is to review the
work of Haldane and discuss how it may have spurred
Jeffreys into developing his highly influential Bayesian
significance tests. We begin by reviewing the develop-
ments made by Haldane in his 1932 paper, followed by
a review of Jeffreys’s earliest work on the topic. We go
on to draw parallels between their respective works and
speculate on the nature of the connection between the
two men.

5Interestingly, Haldane’s prior appears to be an instance of
Stigler’s law of eponymy, since Jeffreys derived it in his book Sci-
entific Inference (Jeffreys, 1931, p.194) eight months before Hal-
dane’s publication.

http://tinyurl.com/ow4lahd
http://tinyurl.com/ow4lahd
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2. HALDANE’S CONTRIBUTION: A MIXTURE
PRIOR

J. B. S. Haldane was a true polymath; White (1965)
called him “probably the most erudite biologist of his
generation, and perhaps of the [twentieth] century” (as
cited in Crow, 1992, p. 1). Perhaps best known for
his pioneering work on mathematical population ge-
netics (alongside Ronald Fisher and Sewall Wright, see
Smith, 1992), Haldane is also recognized for making
substantial contributions to the fields of physiology,
biochemistry, mathematics, cosmology, ethics, religion
and (Marxist) philosophy.6 In addition to this already
impressive list of topics, in 1932 Haldane published
a paper in which he presents his views regarding the
foundations of statistical inference (Haldane, 1932). At
the time, this was unusual for Haldane, as most of his
academic work before 1932 was primarily concerned
with physical sciences.

By 1931, Haldane had been working for twenty
years developing a mathematically rigorous account
of the chromosomal theory of genetic inheritance; this
work began in 1911 (at age 19) when, during a Zool-
ogy seminar at New College, Oxford, he announced his
discovery of genetic linkage in vertebrates (Haldane,
1966). This would become the basis of one of his most
influential research lines, to which he intermittently ap-
plied Bayesian analyses.7 Throughout his career, Hal-
dane would also go on to publish many papers pertain-
ing to classical (non-Bayesian) mathematical statistics,
including a presentation of the exact moments of the
χ2 distribution (Haldane, 1937), a discussion of how
to transform various statistics so that they are approx-
imately normally distributed (Haldane, 1938), an ex-
ploration of the properties of inverse (i.e., negative)
binomial sampling (Haldane, 1945), a proposal for a
two-sample rank test (Haldane and Smith, 1947) and
an investigation of the bias of maximum likelihood es-
timates (Haldane, 1951). Despite his keen interest in

6Haldane (1966) provides an abridged autobiography, and Clark
(1968) is a more thorough biographical reference. For more de-
tails on the wide-reaching legacy of Haldane, see Crow (1992), Lai
(1998) and Pirie (1966). Haldane was also a prominent public fig-
ure during his time and wrote many essays for the popular press
(e.g., Haldane, 1927).

7In one such analysis, Haldane (1919) used Bayesian updating
of a uniform prior (as was customary in that time) to find the prob-
able error of calculated linkage estimates (proportions). It is un-
clear from where exactly Haldane learned inverse probability, but
over the years he occasionally made references to probabilistic con-
cepts put forth by von Mises (e.g., the idea of a “kollective” from
Von Mises, 1931) or to proofs for his formulas given by Todhunter
(1865).

FIG. 1. John Burdon Sanderson (J. B. S.) Haldane (1892–1964)
in 1941. (Photograph by Hans Wild, LIFE Magazine.)

mathematical statistics, Haldane’s work pertaining to
its foundations are confined to a single paper published
in the early 1930s. So, while unfortunate, it is per-
haps understandable that the advances he made in 1932
are not widely known: This work is something of an
anomaly, buried and forgotten in his sizable corpus.

Haldane’s paper, “A note on inverse probability,” was
received by the Mathematical Proceedings of the Cam-
bridge Philosophical Society on November 19, 1931,
and read at the Society meeting on December 7, 1931
(Haldane, 1932). He begins by stating his goal, “Bayes’
theorem is based on the assumption that all values of
the parameter in the neighbourhood of that observed
are equally probable a priori. It is the purpose of this
paper to examine what more reasonable assumption
may be made, and how it will affect the estimate based
on the observed sample” (p. 55). Haldane frames his
paper as giving Fisher’s method of maximum likeli-
hood a foundation through inverse probability (much
to Fisher’s chagrin, see Fisher, 1932). Haldane gives a
short summary of his problem of interest (we will re-
peatedly quote at length to provide complete context):

Let us first consider a population of which a
proportion x possess the character X, and of
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which a sample of n members is observed,
n being so large that one of the exponential
approximations to the binomial probability
distribution is valid. Let a be the number of
individuals in the sample which possess the
character X. (p. 55)

The problem, in slightly archaic notation, is the typical
binomial sampling setup. Haldane goes on to say,

It is an important fact that in almost all sci-
entific problems we have a rough idea of the
nature of f (x) [the prior distribution] de-
rived from the past study of similar popula-
tions. Thus, if we are considering the pro-
portion of females in the human population
of any large area, f (x) is quite small unless
x lies between .4 and .6. (p. 55)

Haldane appeals to availability of real scientific infor-
mation to justify using non-uniform prior distributions.
It is stated as a fact that we have information indicat-
ing that various regions for x are more probable than
others. Haldane goes on to derive familiar posteriors
for x starting from a uniform prior (pp. 55–56) before
discussing possible implications that deviations from
uniform priors have on the posteriors. His description
of one such interesting deviation follows:

If [the slope of the prior probability den-
sity], though small compared with n1/2

in the neighborhood of x = a/n, has an
infinity or becomes very large for some
other value of x (other than 0 or 1), and
if a/n is finite [i.e., a �= 0 and n �= ∞],
then the [posterior] probability distribution
is approximately Gaussian in the neighbor-
hood of x = a/n, but has an infinity or
secondary maximum at the other point or
points. (pp. 56–57)

In other words, when a prior distribution has a distinct
mass of probability at some point between 0 and 1, and
a large binomial sample is obtained that contains some
a’s and some not-a’s, the posterior distribution can be
approximated by a Gaussian except for a separate in-
finity.

Haldane avoids the trouble of an infinite density
in the prior8 by marginalizing across two orthogonal

8Incidentally, Jeffreys is struggling to solve a similar problem
of infinite densities in a prior distribution around this time (see
Jeffreys, 1931, pp. 194–195).

models to obtain a single mixture prior distribution
that consists of a point hypothesis and a smoothly dis-
tributed alternative. Haldane first clarifies with an ex-
ample and then solves the problem. We quote at length:

An illustration from genetics will make the
point clear. The plant Primula sinensis pos-
sesses twelve pairs of chromosomes of ap-
proximately equal size. A pair of genes se-
lected at random will lie on different chro-
mosomes in 11/12 of all cases, giving a pro-
portion x = .5 of “cross-overs.” In 1/12 of
all cases, they lie on the same chromosome,
the values of the cross-over ratio x rang-
ing from 0 to .5 without any very marked
preference for any part of this range, ex-
cept perhaps for a tendency to avoid values
very close to .5. f (x) is thus approximately
1/6 for 0 ≤ x <.5; it has a discontinuity at
x = .5, such that the probability is 11/12;
while, for .5 < x ≤ 1, f (x) = 0.
Now if a family of 400 seedlings from the
cross between [two plants] contains 160
“cross-overs” we have two alternatives. The
probability of getting such a family from
a plant in which the genes lie in differ-
ent chromosomes is 11/12400C1602−400, or
1.185 × 10−5. The probability of getting it
from a plant in which they lie in the same
chromosome is

1

6
400C160

∫ .5

0
x160(1 − x)240 dx.

Since this integral is very nearly equal to∫ 1

0
x160(1 − x)240 dx, or

160! 240!
401! ,

this probability is approximately 1
6×401 , or

4.56 × 10−4. Thus, the probability that the
family is derived from a plant where the
genes lie in different chromosomes and x =
.5 is .028. Otherwise, the mean value of x

is .4, with standard error .0245. The overall
mean value, or mathematical expectation,
of x is .4028, and the graph of the [poste-
rior probability density] is an approximately
normal error curve centred at x = .4 with
standard deviation .0245, together with an
infinity at x = .5. (p. 57)

Haldane’s passage may be hard to parse since the ex-
ample is somewhat opaque and the notation is dated.
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However, the passage is crucial and, therefore, we un-
pack Haldane’s problem as follows. When Haldane
speaks of “pairs of genes,” he means that there are two
different genes that are responsible for different traits,
such as genes for stem length and leaf color in Prim-
ula sinensis. Since the DNA code for particular genes
are located in specific parts of specific chromosomes,
during reproduction they can randomly have their al-
leles switch from mother chromosome to father chro-
mosome, which is called “cross-over.” We are cross-
breeding plants and we want to know the cross-over
rate for these genes, which depends on whether the pair
of genes are on the same of different chromosomes.
For example, if the gene for petal color and the gene
for stem length are in different chromosomes, then
they would cross-over independently in their respec-
tive chromosomes during cell division, and the children
should show new mixtures of color and length at a cer-
tain rate (50% in Haldane’s example). If they are in
the same chromosome, it is possible for the two genes
to be located in the same segment of the chromosome
that crosses over, and because their expression varies
together they will show less variety in trait combina-
tion on average (i.e., < 50%).

Haldane’s example uses this fact to go backwards,
from the number of “cross-overs” present in the child
plants to infer the chromosomal distance between the
genes. We will use θ , rather than Haldane’s x, to denote
the cross-over rate parameter. If the different genes lie
on different chromosomes, they cross-over indepen-
dently during meiosis, and so there is a 50% proba-
bility to see new combinations of these traits for any
given offspring. Hence, if traits are on different chro-
mosomes then θ = .5. If they lie on the same chromo-
some they have a cross-over rate of θ < .5, where the
percentage varies based on their relative location on the
chromosome. If they are relatively close together on
the chromosome, they are likely to cross-over together
and we will not see many offspring with new combi-
nations of traits, so the cross-over rate will be closer
to θ = 0. If they are relatively far apart on the chro-
mosome, they are less likely to cross-over together, so
they will have a cross-over rate closer to θ = .5.

Since there are 12 pairs of chromosomes, there is a
natural prior probability assignment for the two com-
peting models: 11/12 pairs of genes selected at random
will lie on different chromosomes (M0) and 1/12 will
lie on the same chromosome (M1); when they are on
the same chromosome they could be anywhere on the
chromosome, so the distance between them can range
from nearly nil to nearly an entire chromosome. To

capture this information, Haldane uses a uniform prior
from 0 to .5 for θ . When they are on different chro-
mosomes, θ = .5 precisely. Hence, Haldane’s mixture
prior comprises the prior distributions for θ from the
two models

π0(θ) = δ(.5)

π1(θ) = U(0, .5),

where δ(·) denotes the Dirac delta function, and with
prior probabilities (i.e., mixing weights) for the two
models of P(M0) = 11/12 and P(M1) = 1/12. The
marginal prior density for θ can be written as

π(θ) = P(M0)π0(θ) + P(M1)π1(θ)

= 11

12
× δ(.5) + 1

12
× U(0, .5),

using the law of total probability. Haldane is left with a
mixture of a point mass and a smooth probability den-
sity.

Haldane breeds his plants and obtains n = 400 off-
spring, a = 160 of which are cross-overs (an event we
denote D). The probability of the data, 160 cross-overs
out of 400, under M0 (now known as the marginal
likelihood) is

P(D | M0) =
(

400
160

)
(.5)400.

The probability of the data under M1 is

P(D | M1) = 2
(

400
160

)∫ .5

0
θ160(1 − θ)240 dθ.

The probabilities of the data can be used in conjunction
with the prior model probabilities to update the prior
mixing weights to posterior mixing weights (i.e., pos-
terior model probabilities) by applying Bayes’ theorem
as follows (for i = 0,1):

P(Mi | D)

= P(Mi )P (D | Mi )

P (M1)P (D | M1) + P(M0)P (D | M0)
.

Using the information found thus far, the posterior
model probabilities are P(M1 | D) = .972 and
P(M0 | D) = .028. The two conditional prior distri-
butions for θ are also updated to conditional posterior
distributions using Bayes’ theorem. Under M0, the
prior distribution is a Dirac delta function at θ = .5,
which is unchanged by the data. Under M1, the prior
distribution U(0, .5) is updated to a posterior distribu-
tion that is approximately N (.4, .02452). The marginal
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posterior density for θ can thus be written as a mixture,

π(θ | D)

= P(M0 | D)π0(θ | D) + P(M1 | D)π1(θ | D)

= .028 × δ(.5) + .972 ×N
(
.4, .02452)

.

Moreover, Haldane then uses the law of total probabil-
ity to arrive at a model-averaged prediction for θ , as
follows: E(θ) = .5 × .028 + 160

400 × .972 = .4028. This
appears to be the first concrete application of Bayesian
model averaging (Hoeting et al., 1999).9

Haldane uses a mixture prior distribution to solve an-
other challenging problem.10 We quote Haldane:

We now come to the case where a = 0. . .
Unless we have reasons to the contrary, we
can no longer assume that x = 0 is an in-
finitely improbable solution. . . In the case
of many classes both of logical and physical
objects, we can point to a finite, though un-
determinable, probability that x = 0. Thus,
there are good, but inconclusive, reasons
for the beliefs that there is no even num-
ber greater than 2 that cannot be expressed
as the sum of 2 primes, and that no hydro-
gen atoms have an atomic weight between
1.9 and 2.1. In addition, we know of very
large samples of each containing no mem-
bers possessing these properties. Let us sup-
pose then, that k is the a priori probability
that x = 0, and that the a priori probability
that it has a positive [nonzero] value is ex-
pressed by f (x), where Lt

ε→0

∫ 1
ε f (x) dx =

1 − k. (pp. 58–59)

There is an explicit (albeit data-driven, by the sound
of it) interest in a special value of the parameter, but
under a continuous prior distribution the probability of
any point is zero. To solve this problem, Haldane again

9Robert, Chopin and Rousseau (2009), p. 166, point out that Jef-
freys’s Theory of Probability (Jeffreys, 1939) “includes the seeds”
of model averaging. In fact, the seeds appear to go back to Wrinch
and Jeffreys (1921), p. 387, where they briefly note that if future
observation q2 is implied by law p (i.e., P(q2 | q1,p) = 1), “the
probability of a further inference from the law is not appreciably
higher than that of the law itself” since the second term in the sum
P(q2 | q1) = P(p | q1)P (q2 | q1,p)+P(∼ p | q1)P (q2 | q1,∼ p)

is usually “the product of two small factors” (p. 387).
10The way Haldane (1932) sets up the problem shows a great

concurrence of thought with Jeffreys, who was tackling a similar
problem at the time in his book Scientific Inference (Jeffreys, 1931,
pp. 194–195).

uses a mixture prior; in modern notation, k denotes the
prior probability P(M0) of the point-mass component
of the mixture, a Dirac delta function at θ = 0, with a
second component that is a continuous function of θ

with prior probability P(M1) = 1 − k.
In a straightforward application of Bayes’ theorem,

Haldane finds that “the probability, after observing the
sample, that x = 0 is

k

k + ∫ 1
0 (1 − x)nf (x) dx

.

“If f (x) is constant this is (n + 1)k/(nk + 1). . . This
is so even if f (x) has a logarithmic infinity at x =
0. . . Hence, as n tends to infinity the probability that
x = 0 tends to unity, however small be the value of k”
(Haldane, 1932), p. 59. Haldane again goes on to per-
form Bayesian model-averaging to find “the probabil-
ity that the next individual observed will have the char-
acter X” (p. 59).

In sum, in 1932 Haldane publishes his views on the
foundations of statistical inference, and proposed to
use a two-component mixture prior comprising a point
mass and smoothly distributed alternative. He went on
to apply this mixture prior to concrete problems involv-
ing genetic linkage, and in doing so also performed the
first instances of Bayesian model-averaging. To assess
the importance and originality of Haldane’s contribu-
tion, it is essential to discuss the related earlier work of
Dorothy Wrinch and Harold Jeffreys (pictured in Fig. 2
and Fig. 3, respectively), and the later work by Jeffreys
alone.

3. WRINCH AND JEFFREYS’S DEVELOPMENT OF
THE BAYES FACTOR BEFORE HALDANE (1932)

Jeffreys was interested in the philosophy of science
and induction from the beginning of his career. He
learned of inverse probability at a young age (circa
1905, when he would have been 14 or 15 years old)
from reading his father’s copy of Todhunter (1858)
(Exhibit H204, St John’s College Library, Papers of
Sir Harold Jeffreys). To Jeffreys, Toddhunter explained
“inverse probability absolutely clearly and I [Jeffreys]
never saw there was any difficulty about it” (Tran-
scribed by AE from the audio-cassette in Exhibit H204,
St John’s College Library, Papers of Sir Harold Jef-
freys). His views were refined around the year 1915
while studying Karl Pearson’s influential Grammar of
Science (Pearson, 1892), which led Jeffreys to see in-
verse probability as the method that “seemed. . . the
sensible way of expressing common sense” (“Tran-
scription of a Conversation between Sir Harold Jeffreys
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FIG. 2. Dorothy Wrinch (1894–1976) circa 1920–1923. (Photograph by Sir Harold Jeffreys, included by permission of the Master and
Fellows of St John’s College, Cambridge.)

and Professor D.V. Lindley,” Exhibit A25, St John’s
College Library, Papers of Sir Harold Jeffreys). This
became a theme that permeated his early work, done in
conjunction with Dorothy Wrinch, which sought to put
probability theory on a firm footing for use in scientific
induction.11

Their work was motivated by that of Broad (1918),
who showed12 that when one applies Laplace’s princi-

11More background for the material in this section can be found
in Aldrich (2005) and Howie (2002). See Howie (2002), Chap-
ter 4, and Senechal (2012), Chapter 8, for details on the personal
relationship between Wrinch and Jeffreys. Many of the ideas pre-
sented by Wrinch and Jeffreys are similar in spirit to those of W.
E. Johnson; as a student, Wrinch attended Johnson’s early lectures
on advanced logic at Cambridge (see Howie, 2002, p. 86). Jeffreys
would later emphasize Wrinch’s important contributions their work
on scientific induction, “I should like to put on record my apprecia-
tion of the substantial contribution she [Wrinch] made to this work
[(Wrinch and Jeffreys, 1919, 1921, 1923a, 1923b)], which is the
basis of all my later work on scientific inference” (Hodgkin and
Jeffreys, 1976, p. 564). See Senechal (2012) for more on Wrinch’s
far-reaching scientific influence.

12For an in-depth discussion about the law of succession, in-
cluding Broad’s insights, see Zabell (1989). Zabell points out that

ple of insufficient reason—assigning equal probability
to all possible states of nature—to finite populations,
one is lead to an inductive pathology: A general law
could virtually never achieve a high probability. This
was a result that flew in the face of the common scien-
tific view of the time that “an inference drawn from a
simple scientific law may have a very high probability,
not far from unity” (Wrinch and Jeffreys, 1921, p. 380).
Jeffreys (1980) later recalled Broad’s result,

Broad used Laplace’s theory of sampling,
which supposes that if we have a popula-
tion of n members, r of which may have a
property ϕ, and we do not know r , the prior
probability of any particular value of r (0
to n) is 1/(n+1). Broad showed that on this
assessment, if we take a sample of number
m and find all of them with ϕ, the posterior
probability that all n are ϕ’s is (m+1)/(n+1).

Broad’s result had been derived earlier by others, including Prevost
and LH̀uilier (1799), Ostrogradski (1848) and Terrot (1853). In-
terested readers should see Zabell (1989), p. 286, as well as the
mathematical appendix beginning on p. 309.
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A general rule would never acquire a high
probability until nearly the whole of the
class had been sampled. We could never
be reasonably sure that apple trees would
always bear apples (if anything). The re-
sult is preposterous, and started the work of
Wrinch and myself in 1919–1923. (p. 452)

The consequence of Wrinch and Jeffreys’s series of
papers was the derivation of two key results. First, they
found a solution to Broad’s quandary in the assignment
of a finite initial probability, independent of the popu-
lation’s size, to the general law itself, which allows a
general law to achieve a high probability without need-
ing to go so far as to sample nearly the entire popu-
lation. Second, they derived the odds form of Bayes’
theorem (Wrinch and Jeffreys, 1921, p. 387): “If p de-
note the most probable law at any stage, and q an addi-
tional experimental fact, [and h the knowledge we had
before the experiment,]” (p. 386) a new form of Bayes’
theorem can be written as

P(p | q.h)

P (∼ p | q.h)
= P(q | p.h)

P (q |∼ p.h)
· P(p | h)

P (∼ p | h)
.

At the time, the conception of Bayes’ rule in terms of
odds was novel. Good (1988) remarked, “[the above
equation] has been mentioned several times in the lit-
erature without citing Wrinch and Jeffreys. Because it
is so important I think proper credit should be given”
(p. 390). We agree with Good; the importance of this
innovation should not be understated, because it lays
the foundation for the future of Bayesian hypothesis
testing. A simple rearrangement of terms highlights
that the Bayes factor is the ratio of posterior odds to
prior odds,

P(q | p,h)

P (q |∼ p,h)︸ ︷︷ ︸
Bayes factor

= P(p | q,h)

P (∼ p | q,h)︸ ︷︷ ︸
Posterior odds

/
P (p | h)

P (∼ p | h)︸ ︷︷ ︸
Prior odds

.

Wrinch and Jeffreys went on to show how the Bayes
factor—which is the amount by which the data, q , shift
the balance of probabilities for p versus ∼ p—can
form the basis of a philosophy of scientific learning
(Ly, Verhagen and Wagenmakers, 2016).

4. JEFFREYS’S DEVELOPMENT OF THE BAYES
FACTOR AFTER HALDANE (1932)

Remarkably, the Bayes factor remained a conceptual
development until Jeffreys published two seminal pa-
pers in 1935 and 1936. In 1935, Jeffreys published his
first significance tests in the Mathematical Proceedings

of the Cambridge Philosophical Society, with the title,
“Some Tests of Significance, Treated by the Theory
of Probability” (Jeffreys, 1935). This was shortly af-
ter his published dispute with Fisher (for an account of
the controversy, see Aldrich, 2005, Howie, 2002, Lane,
1980).

In his opening statement to the 1935 article, Jeffreys
states his main goal:

It often happens that when two sets of data
obtained by observation give slightly differ-
ent estimates of the true value we wish to
know whether the difference is significant.
The usual procedure is to say that it is sig-
nificant if it exceeds a certain rather arbi-
trary multiple of the standard error; but this
is not very satisfactory, and it seems worth
while to see whether any precise criterion
can be obtained by a thorough application
of the theory of probability. (p. 203)

Jeffreys calls his procedures “significance tests” and
surely means for this work to contrast with that of
Fisher’s. Even though Jeffreys does not mention Fisher
directly, Jeffreys does allude to their earlier dispute by
reaffirming that his probabilities express “no opinion
about the frequency of the truth of [the hypothesis]
among any real or imaginary populations” (presum-
ably addressing one of Fisher’s 1934 objections to Jef-
freys’s solution to the theory of errors) and that assign-
ing equal probabilities to propositions “is simply the
formal way of saying that we do not know whether it
is true or not of the actual populations under consider-
ation at the moment” (Jeffreys, 1935, p. 203).

Jeffreys strives to use the theory of probability to find
a satisfactory rule to determine whether differences be-
tween observations should be considered “significant,”
and he begins with a novel approach to test a differ-
ence of proportions as present in a contingency table.
Jeffreys first posits the existence of two “large, but not
infinite, populations” and that these “have been sam-
pled in respect to a certain property” (Jeffreys, 1935,
p. 203). He continues,13

One gives [x0] specimens with the prop-
erty, [y0] without; the other gives [x1] and
[y1] respectively. The question is, whether
the difference between [x0/y0] and [x1/y1]

13To facilitate comparisons to Haldane’s section we have trans-
lated Jeffreys’s unconventional notation to a more modern form.
See Ly, Verhagen and Wagenmakers (2016), Appendix D, for de-
tails about translating Jeffreys’s notation.
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FIG. 3. Sir Harold Jeffreys (1891–1989) in 1928. (Photographer unknown, included by permission of the Master and Fellows of St John’s
College, Cambridge.)

gives any ground for inferring a difference
between the corresponding ratios in the
complete populations. Let us suppose that in
the first population the fraction of the whole
possessing the property is [θ0], in the sec-
ond [θ1]. Then we are really being asked
whether [θ0 = θ1]; and further, if [θ0 = θ1],
what is the posterior probability distribution
among values of [θ0]; but, if [θ0 �= θ1], what
is the distribution among values of [θ0] and
[θ1]. (p. 203)

Take M0 to represent the proposition that θ0 = θ1, so
that M1 represents θ0 �= θ1. Jeffreys takes the prior

probability of both M0 and M1 as .5. This problem
can be restated so that M0 represents the difference
between θ0 and θ1, namely, θ0 − θ1 = 0. This is Jef-
freys’s point null hypothesis which is assigned a finite
prior probability of .5. If the null is true, and θ0 = θ1,
then Jeffreys assigns θ0 a uniform prior distribution in
the range 0 − 1. The remaining half of the prior prob-
ability is assigned to M1, which specifies θ0 and θ1
have their probabilities “uniformly and independently
distributed” in the range 0 − 1 (p. 204). Thus,

π0(θ0) = U(0,1)

π1(θ0) = U(0,1)
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π1(θ1) = U(0,1)

and π1(θ0, θ1) = π1(θ0)π1(θ1). Subsequently,

P(M0, θ0) = P(M0)π0(θ0)

P (M1, θ0, θ1) = P(M1)π1(θ0, θ1),

which follows from the product rule of probability,
namely,

P(p,q) = P(p)P (q | p).

Jeffreys then derives the likelihood functions for D

(i.e., the data, or compositions of the two samples) on
the null and the alternative. Under the null hypothesis,
M0, the probability of D is

f (D | θ0,M0) = (x0 + y0)!
x0!y0!

(x1 + y1)!
x1!y1!

· θx0
0 (1 − θ0)

y0 θ
x1
0 (1 − θ0)

y1 .

Under the alternative hypothesis, M1, the probability
of D is

f (D | θ0, θ1,M1) = (x0 + y0)!
x0!y0!

(x1 + y1)!
x1!y1!

· θx0
0 (1 − θ0)

y0θ
x1
1 (1 − θ1)

y1 .

In other words, the probability of both sets of data
(x0 + y0 and x1 + y1), on M0 or M1, is equal to the
product of their respective binomial likelihood func-
tions and constants of proportionality. Since the prior
distributions for θ0 and θ1 are uniform and the prior
probabilities of M0 and M1 are equal, the posterior
distributions of θ0 and (θ0, θ1) are proportional to their
respective likelihood functions above. Thus, the poste-
rior distributions for θ0 and (θ0, θ1) under the null and
alternative are, respectively,

π0(θ0 | D) ∝ θ
x0+x1
0 (1 − θ0)

y0+y1,

and

π1(θ0, θ1 | D) ∝ θ
x0
0 (1 − θ0)

y0 θ
x1
1 (1 − θ1)

y1 .

Now Jeffreys has two contending posterior distribu-
tions, and to find the posterior probability of M1 he
integrates P(M0, θ0 | D) with respect to θ0 and in-
tegrates P(M1, θ0, θ1 | D) with respect to both θ0

and θ1. Using the identity
∫ 1

0 θ
x0
0 (1 − θ0)

y0 dθ0 =
(x0!y0!)/(x0 +y0 +1)!, he derives the relative posterior
probabilities of M0 and M1. For M0, it is simply the
previous identity with the additional terms of x1 and y1
added to the respective factorial terms,

P(M0 | D) ∝ (x0 + x1)!(y0 + y1)!
(x0 + x1 + y0 + y1 + 1)! .

To obtain the posterior probability of M1, the product
of the integrals with respect to each of θ0 and θ1 is
needed,

P(M1 | D) ∝ x0!y0!
(x0 + y0 + 1)!

x1!y1!
(x1 + y1 + 1)! .

Their ratio gives the posterior odds, P(M0 | D)/

P (M1 | D), and is the solution to Jeffreys’s signifi-
cance test. When this ratio is greater than 1, the data
support M0 over M1 and vice versa.

Jeffreys ends his paper with a discussion of the im-
plications of his approach.14 One crucial point is that
if the prior odds are different from unity then the fi-
nal calculations from Jeffreys’s tests yield the marginal
likelihoods of the two hypotheses, P(D | M0) and
P(D | M1), whose ratio gives the Bayes factor. We
quote at length,

We have in each case considered the exis-
tence and the nonexistence of a real dif-
ference between the two quantities esti-
mated as two equivalent alternatives, each
with prior probability 1/2. This is a com-
mon case, but not general. If, however,
the prior probabilities are unequal the only
difference is that the expression obtained
for [P(M0 | D)/P (M1 | D)] now rep-
resents [P(M0|D)

P (M1|D)
/

P (M0)
P (M1)

] [NB: the Bayes
factor, which is the posterior odds divided
by prior odds]. Thus, if the estimated ratio
exceeds 1, the proposition [M0] is rendered
more probable by the observations, and if it
is less than 1, [M0] is less probable than be-
fore. It still remains true that there is a crit-
ical value of the observed difference, such
that smaller values reduce the probability of
a real difference. The usual practice [NB:
alluding to Fisher] is to say that a difference
becomes significant at some rather arbitrary
multiple of the standard error; the present
method enables us to say what that value
should be. If, however, the difference ex-
amined is one that previous considerations
make unlikely to exist, then we are entitled
to ask for a greater increase of the probabil-
ity before we accept it and, therefore, for a
larger ratio of the difference to its standard
error. (p. 221)

14In this paper, Jeffreys gives many more derivations of new types
of significance tests, but one example suffices to convey the general
principle.
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Here, Jeffreys has also laid out the benefits his tests
possess over Fisher’s tests: The critical standard error,
where the ratio supports M0, is not fixed at an arbitrary
value but is determined by the amount of data (Jeffreys,
1935, p. 205); in Jeffreys’s test, larger sample sizes in-
crease the critical standard error, and thus increase the
barrier for ‘rejection’ at a given threshold (note that this
anticipates Lindley’s paradox, Lindley, 1957). Further-
more, if the phenomenon has unfavorable prior odds
against its existence we may reasonably require more
evidence (i.e., a larger Bayes factor) before we are rea-
sonably confident in its existence. That is to say, ex-
traordinary claims require extraordinary evidence.

In a complementary paper, Jeffreys (1936a) ex-
panded on the implications of this method:

To put the matter in other words, if an ob-
served difference is found to be on order [of
one standard error from the null], then on
the hypothesis that there is no real differ-
ence this is what would be expected; but if
there was a real difference that might have
been anywhere within a range m it is a re-
markable coincidence that it should have
happened to be in just this particular stretch
near zero. On the other hand if the observed
difference is several times its standard er-
ror it is very unlikely to have occurred if
there was no real difference, but it is as
likely as ever to have occurred if there was
a real difference. In this case beyond a cer-
tain value of x [a distance from the null] the
more remarkable coincidence is for the hy-
pothesis of no real difference. . . The theory
merely develops these elementary consider-
ations quantitatively. . . (p. 417)

In sum, the key developments in Jeffreys’s signifi-
cance tests are that a point null is assigned finite prior
probability and that this point null is tested against
a distributed (composite) alternative hypothesis. The
posterior odds of the models are computed from the
data, with the updating factor now known as the Bayes
factor.

5. THE CONNECTION BETWEEN JEFFREYS AND
HALDANE

We are now in a position to draw comparisons be-
tween the developments of Haldane and Jeffreys. The
methods show a striking similarity in that they both
set up competing models with orthogonal parameters,

each with a finite prior model probability, and through
the calculation of each model’s marginal likelihood
find posterior model probabilities and posterior distri-
butions for the parameters. Where the methods differ
is primarily in the focus of their inference. Haldane fo-
cuses on the overall mixture posterior distribution for
the parameter, π(θ | D), marginalized across the com-
peting models. In Haldane’s example, this means to fo-
cus on estimating the cross-over rate parameter, using
relevant real-world knowledge of the problem to con-
struct a mixture probability distribution. It would have
been but a short step for Haldane to find the ratio of the
posterior and prior model odds as Jeffreys did, since the
prior and posterior model probabilities are crucial in
constructing the mixture distributions, but that aspect
of the problem was not Haldane’s primary interest.

Jeffreys’s focus is nearly the opposite of Haldane’s.
Jeffreys uses the models to instantiate competing sci-
entific theories, and his focus is on making an infer-
ence about which theory is more probable. In contrast
to Haldane, Jeffreys isolates the value of the Bayes fac-
tor as the basis of scientific learning and statistical in-
ference, and he takes the posterior distributions for the
parameters within the models as a mere secondary in-
terest. If one does happen to be interested in estimat-
ing a parameter in the presence of model uncertainty,
Jeffreys recognizes that one should ideally form a mix-
ture posterior distribution for the parameter (as Hal-
dane does), but that “nobody is likely to use it. In prac-
tice, for sheer convenience, we shall work with a single
hypothesis and choose the most probable” (Jeffreys,
1935, p. 222).

Clearly, there was a great concurrence of thought be-
tween Haldane and Jeffreys during this time period.
A natural question is whether the men knew of each
others’ work on the topic. In his paper, Haldane (1932)
makes no reference to any of Jeffreys’s previous works
(recall, Haldane’s stated goal was to extend Fisher’s
method of maximum likelihood and discuss the use of
nonuniform priors). Jeffreys’s first book, Scientific In-
ference (Jeffreys, 1931), came out a mere eight months
before Haldane submitted his paper, and it was not
widely read by Jeffreys’s contemporaries; around the
time the revised first edition was released in 1937, Jef-
freys remarked to Fisher in a letter (on June 5, 1937)
that he “should really have liked to scrap the whole
lot and do it again, but at the present rate it looked
as if the thing would take about 60 years to sell out”
(Bennett, 1990, p. 164).15 So it would be no surprise if

15Indeed, whereas 224 copies were sold in Great Britain and Ire-
land in 1931, only twenty copies in total were sold in 1932, sixty-
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Haldane had not come across Jeffreys’s book. In fact,
had Haldane known of Scientific Inference, he would
have surely recognized that Jeffreys had given the same
topics a thorough conceptual treatment. For example,
Haldane might have cited Wrinch and Jeffreys (1919),
who detached the theory of inverse probability from
uniform distributions over a decade before; or Haldane
might have recognized the complete form of the Hal-
dane prior presented by Jeffreys (1931), p. 194. There-
fore, according to the evidence in the literature, one
might reasonably conclude that by 1931/1932, Haldane
did not know of Jeffreys’s work. What about Jeffreys,
is there evidence in the literature that he knew of Hal-
dane’s work while working on his significance tests?

According to Jeffreys (1977), in the footnote in a
piece looking back on his career, he did recognize the
similarity of his work to Haldane’s:

The essential point [in solving Broad’s
quandary] is that when we consider a gen-
eral law we are supposing that it may possi-
bly be true, and we express this by concen-
trating a positive (nonzero) fraction of the
initial probability in it. Before my work on
significance tests, the point had been made
by J. B. S. Haldane (1932). (p. 95)

Jeffreys also acknowledges Haldane in a footnote of
his first edition of Theory of Probability (1939, retained
in subsequent editions) when he remarks, “This paper
[(Haldane, 1932)] contained the use of. . . the concen-
tration of a finite fraction of the prior probability in a
particular value, which later became the basis of my
significance tests”[emphasis added] (p. 114, footnote).
So it is clear that Jeffreys, at least some time later, rec-
ognized the similarity of his and Haldane’s thinking.

Jeffreys’s awareness of Haldane’s work must go
back even further. Jeffreys certainly knew of Haldane’s
work by 1932, because he wrote a critical commentary
on Haldane’s paper (which Jeffreys read at The Cam-
bridge Philosophical Society on November 7, 1932),
pointing out, inter alia, that Haldane’s proposed prior
distribution largely “agrees with a previous guess”
of his, but only after a slight correction to its form
(Jeffreys, 1933, p. 85).16 However, when publishing

nine in 1933, thirty-five in 1934, fourteen in 1935 and twenty-two
in 1936 (Exhibits D399-400, St John’s College Library, Papers of
Sir Harold Jeffreys).

16Notably, Jeffreys discusses Haldane’s assignment of separate
prior probability k to θ = 0, suggesting that for completeness
one should also give consideration to θ = 1. See Howie (2002),

his seminal significance test papers in 1935 and 1936
(Jeffreys, 1935, 1936a), Jeffreys does not mention Hal-
dane’s work. It may appear to a reader of those papers
as if Jeffreys’s tests are entirely his own invention; in-
deed, they are the natural way to apply his early work
with Wrinch on the philosophy of induction to quan-
titative tests of general laws. Perhaps Jeffreys simply
forgot, or did not realize the significance of Haldane’s
paper on his own thinking at the time. But in another
paper published at that time, Jeffreys (1936b), in point-
ing out how he and Wrinch solved Broad’s quandary,
remarked,

but we [Wrinch and Jeffreys] pointed out
that agreement with general belief is ob-
tained if we take the prior probability of a
simple law to be finite, whereas on the natu-
ral extension of the previous theory it is in-
finitesimal. Similarly, for the case of sam-
pling J. B. S. Haldane and I have pointed
out that general laws can be established with
reasonable probabilities if their prior proba-
bilities are moderate and independent of the
whole number of members of the class sam-
pled. (p. 344)

So it seems that Jeffreys did recognize the importance
and similarity of Haldane’s work in the very same
years he was publishing his own work on significance
tests (1935–1936). Why Jeffreys did not cite Haldane’s
work directly in connection with his own development
of significance tests is not clear just from looking at
the literature. There is, however, some potential clar-
ity to be gained by examining the personal relationship
between the two men.

Haldane and Jeffreys were both in Cambridge from
1922–1932 while working on these problems (Haldane
at Trinity College and Jeffreys at St John’s), after which
Haldane left for University College London. In an (un-
published) interview with George Barnard (recall we
quoted Barnard above as being one of the few to recog-
nize Haldane’s innovative “lump” of prior probability),
after Jeffreys (HJ) denies having known Fisher while
they were both at Cambridge, Barnard (GB) asks,

GB: But Haldane was in Cambridge, was
he?
HJ: Yes.

pp. 121–126, for more detail on the reactions to Haldane’s paper
by both Jeffreys and Fisher; Fisher (1932) was particularly pointed
in his commentary.
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GB: Because he joined in a bit I think in
some of the. . . [NB: interrupted]
HJ: Yes, well Haldane did anticipate some
things of mine. I have a reference to him
somewhere.
GB: But the contact was via the papers [NB:
Haldane, 1932, Jeffreys, 1933] rather than
direct personal contact.
HJ: Well I knew Haldane, of course. Very
well.
GB: Oh, ah.
HJ: Can you imagine him being in India?
(Transcribed by AE from the audio-cassette
in Exhibit H204, St John’s College Library,
Papers of Sir Harold Jeffreys)

So it would seem that Jeffreys and Haldane knew each
other personally very well in their time at Cambridge.
We cannot be sure of the extent to which they knew of
each others’ professional work at that time, because we
can find no surviving direct correspondence between
Jeffreys and Haldane during the 1920s to early 1930s;
we are unable to do more than speculate about what
topics they might have discussed in their time together
at Cambridge. However, there is some preserved corre-
spondence from the 1940s where they discuss, among
other topics, materialist versus realist philosophy, sci-
entific inference, geophysics, and Marxist politics.17 It
stands to reason that Haldane and Jeffreys would have
discussed similar topics in their time together at Cam-
bridge.

This personal relationship opens up the possibility
that Jeffreys and Haldane discussed their work in de-
tail and consciously chose not to cite each other in
their published works in the 1930s. Perhaps Haldane
brought up the genetics problems he was working on
and Jeffreys suggested the idea to Haldane to set up
orthogonal models as he did, an application which Jef-
freys thought of but had not yet published on. Haldane
goes on to publish his paper, and both men, realizing
the question of credit is somewhat murky, decide to ig-
nore the matter. This would explain why Haldane never
references these developments later in his career. Ad-
mittedly, this account leaves a few points unresolved.
It does not appear that Haldane used this method in

17This correspondence is available online thanks to the UCL Well-
come Library: http://goo.gl/9qHBF6. Interestingly, near the end of
this correspondence (undated, but from some time between 2 Octo-
ber 1942 and 29 March 1943) Haldane says to Jeffreys that he felt
“emboldened by your [Jeffreys’s] kindness to my views on inverse
probability.”

any of his later empirical investigations; if Haldane and
Jeffreys together developed this method in order to ap-
ply it to one of Haldane’s genetics problems, why did
Haldane never go on to actually apply it? And if Jef-
freys had thought of how to apply this revolutionary
method of inference, why was it not included in his
book? Under this account, Jeffreys would have had to
think of this development in the few months between
when he wrote and published Scientific Inference and
when Haldane began to write his paper. Moreover, in
his interview with Barnard and in his later published
works, Jeffreys readily notes that Haldane anticipated
some of his own ideas (although, it is not always en-
tirely clear to which ideas Jeffreys refers). Did Jeffreys
begin to feel guilty that he would be getting credit for
ideas that Haldane helped develop?

Today one might be surprised to hear that two people
could become good friends while potentially never dis-
cussing their work with each other; however, Jeffreys
has a history of remaining unaware of his close proba-
bilist contemporaries’ work. It is well known that Jef-
freys and fellow Cambridge probabilist Frank Ramsey
were good friends while at Cambridge and they never
discussed their work with each other either. Ramsey
was highly regarded in Cambridge at the time, and as
Jeffreys recalls in his interview with Lindley, “I knew
Frank Ramsey well and visited him in his last illness
but somehow or other neither of us knew that the other
was working on probability theory” (“Transcription of
a Conversation between Sir Harold Jeffreys and Pro-
fessor D.V. Lindley,” Exhibit A25, St John’s College
Library, Papers of Sir Harold Jeffreys).18 When one
realizes that the friendship between Jeffreys and Ram-
sey began with their shared interest in psychoanalysis
(Howie, 2002, p. 117), perhaps it makes sense that they
would not get around to discussing their work on such
an obscure topic as probability theory.

6. CONCLUDING COMMENTS

Around 1920, Dorothy Wrinch and Harold Jeffreys
were the first to note that in order for induction to be

18Jeffreys was also unaware of the work of Italian probabilist
Bruno de Finetti, another of his contemporary probabilists. In their
interview, Lindley asks Jeffreys if he and de Finetti ever made con-
tact. Jeffreys replies that, not only had he and de Finetti never been
in contact, “I’ve only just heard his name... I’ve never seen any-
thing that he’s done... I’m afraid I’ve just never come across him”
(“Transcription of a Conversation between Sir Harold Jeffreys and
Professor D.V. Lindley,” Exhibit A25, St John’s College Library,
Papers of Sir Harold Jeffreys).

http://goo.gl/9qHBF6


HALDANE’S CONTRIBUTION TO THE BAYES FACTOR 327

possible it is essential that general laws be assigned fi-
nite initial probability. This argument was revolution-
ary in that it went against their contemporaries’ blind
adherence to Laplace’s principle of indifference. It is
this brilliant insight of Wrinch and Jeffreys that forms
the conceptual basis of the Bayes factor. Later Jeffreys
would develop concrete Bayes factors in order to test a
point null against a smoothly distributed alternative to
evaluate whether the data justify changing the form of a
general law. For these reasons, we believe that Wrinch
and Jeffreys should together be credited as the progen-
itors of the concept of the Bayes factor, with Jeffreys
the first to put the Bayes factor to use in real problems
of inference.

However, our historical review suggests that in 1931
J. B. S. Haldane made an important intellectual ad-
vancement in the development of the Bayes factor. We
speculate that it was the specific nature of the linkage
problem in genetics that caused Haldane to serendipi-
tously adopt a mixture prior comprising a point mass
and smooth distribution; it does not appear as if Hal-
dane derived his result from a principled philosophical
stance on induction, in contrast to Jeffreys, but merely
through a pragmatic attempt at utilizing non-standard
(i.e., nonuniform) distributions with inverse probabil-
ity. And yet, Haldane never went on to employ this
method to any of his future applications, so we can-
not discount the possibility that he was simply mo-
mentarily inspired to address the foundations of sta-
tistical inference—as a polymath is wont to do. Then,
having lost interest, he never follows up on this work,
thereby dooming his important development to obscu-
rity. We may never know his true motivations. Never-
theless, Haldane’s work likely formed the impetus for
Jeffreys to make his conceptual ideas concrete, leading
to his thorough development of Bayes factors in the
following years.

The personal relationship between Haldane and Jef-
freys further complicates the story behind these devel-
opments. The two men were in close contact during the
period when they developed their ideas, and the extent
to which they knew of each others’ work on essentially
the same problem is unclear. Haldane and Jeffreys had
closely converging ideas, as is seen by the similarity of
their work in the 1930s, and both were statistical pio-
neers whose influence is still felt today. We hope this
historical investigation will bring Haldane some well-
deserved credit for his impact on the development of
the Bayes factor.
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