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Abstract In this paper a relative quality measure is presented that is applicable to

rank alternatives characterized by multiple attributes or performance measures. The

quality measure proposed is based on the harmonic and arithmetic mean, and allows

for a simple and quick analysis of the alternatives with respect to their attributes. An

alternative ranked by this method and having the maximum relative quality of one

can be considered as an extreme efficient unit according to the method of data

envelopment analysis. The proposed method of the relative quality measure is

compared with different multiple attribute decision making approaches that apply

simple additive weighting, the MADM methods based on OWA operator, maxi-

mizing deviations, and information entropy, and the PROMETHEE II method.

Keywords Multiple attribute decision making � Multiple criteria decision analysis �
Quality of performances

& Arie Taal

a.taal@uva.nl

Marc X. Makkes

m.x.makkes@vu.nl

Marijke Kaat

m.kaat@surfnet.nl

Paola Grosso

p.grosso@uva.nl

1 System and Network Engineering Group, University of Amsterdam, Amsterdam, The

Netherlands

2 Computer Systems Group, Vrije Universiteit, Amsterdam, The Netherlands

3 Surfnet, Utrecht, The Netherlands

123

Oper Res Int J (2019) 19:117–134

DOI 10.1007/s12351-016-0282-5

http://crossmark.crossref.org/dialog/?doi=10.1007/s12351-016-0282-5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12351-016-0282-5&amp;domain=pdf


1 Introduction

In multiple attribute decision making (MADM) the ’best’ alternative is chosen from

a set of alternatives based on the values of their attributes. MADM is applied to very

diverse problems, it is used as a tool in the field of economics as well as in the

manufacturing environment Venkata Rao (2007) and Greco et al. (2016). Attributes

can be divided into cost and benefit attributes, where cost attributes are attributes

one wants to be as low as possible, and benefit attributes one wants to be as high as

possible. The choice of the ’best’ alternative is mainly based on ranking the

alternatives. A preference relation compares the alternatives according to their

attributes and assigns a well-defined degree to each alternative on an appropriate

scale. In an economical decision making process both cost and benefit attributes are

mostly expressed as the number of units of an underlying currency. In other fields of

application attributes represent performance measures or metrics, and the attributes

might have a dimension and can be expresses in different units.

In this paper we propose a multiple attribute relative quality measure as a

preference relation on a set of alternatives. The fact that cost attributes and benefit

attributes might be positively or negatively correlated raised the question whether

the ranking of alternatives by a relative quality measure will differ from those

performed by other MADM methods and if the difference might due to the effect of

correlated attributes. The relative method proposed can be related to the method

called data envelopment analysis (DEA), a non-parametric technique widely

employed in economics, aimed to determine the relative efficiency of decision

making units Cooper et al. (2011), defined as a ratio of weighted sum of outputs to a

weighted sum of inputs. Like DEA the proposed procedure compares the attributes

of each alternative with those of the other alternatives. This is done by means of the

arithmetic mean of the relative benefit attributes and the harmonic mean of the

relative cost attributes. Both harmonic and arithmetic mean are related, as the

harmonic mean is the reciprocal dual of the arithmetic mean. It is this property that

makes a relation with DEA possible. By the method proposed an alternative having

the maximum relative quality of one can be considered as an extreme efficient unit

according to DEA. In case all alternatives are distinct only a single alternative might

be ranked with the maximum relative quality of one (see Sect. 2.3 for the definition

of distinct). The comparison by means of the harmonic and arithmetic mean

performs a kind of implicit weighting, where an attribute is weighted by the

corresponding attribute of another alternative. This implicit weighting becomes

more explicit in how the method relates to DEA (Sect. 2.4). A simple use case of a

wide area network (WAN) will be used to illustrate the method.

Finally, the method of the presented relative quality measure is compared to three

other MADM methods that apply Simple Additive Weighting, namely, the MADM

methods based on OWA operator, maximizing deviations, and information entropy,

and compared to the PROMETHEE II method. A problem with a large decision

matrix is chosen to illustrate how the methods agree and how they disagree in

ranking the alternatives.
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2 Relative quality measure

In this section we present a relative quality measure based on the arithmetic and

harmonic mean. To illustrate the concept of this measure we will make use of a

small use case example of a wide area network (WAN). The use case of a WAN is

chosen as an example where the attributes represent different performance

measures, each expressed in its own units.

2.1 WAN use case example

To have some understanding of the different attributes and their values applied in

the WAN use case, we give a short explanation. Applying different energy efficient

strategies to reduce the power in a network will result in different alternatives of the

network. With an energy efficient strategy the network owner of the network wants

to reduce the total power dissipation P of the equipment in the network, a cost

attribute. However, applying an energy efficient strategy may have side effects and

it is good practice to consider the total power dissipation P in the network with

respect to other performance measures of the network. Another cost attribute is the

power usage effectiveness (PUE) (https://en.wikipedia.org/wiki/Power_usage_

effectiveness. Accessed June 2016), it measures how efficiently a site where net-

work equipment is housed uses energy, it is the quotient of the total power used for

the housing of the equipment divided by the power of the network equipment. The

more network equipment in a small housing, the more energy is needed for cooling,

resulting in a larger value for the PUE. The PUE is a dimensionless measures with

values in practice between 1 and 3. A third cost attribute applied in the use case is

the mean latency L of the network. It measures the mean time it takes for data to be

transported through the network. The network owner wants this value to be as low

as possible, because users of the network appreciate quick data transport with the

lowest delay as possible.

Beside these three cost attributes there are two benefit attributes in the use case.

A benefit attribute is a performance measure which values the network owner wants

to be as high as possible. The two benefit attributes are the mean utilization U of the

network equipment, and the reliability R of the network. If only a small part of the

capacity of a network device, switch or router, is used, the dissipated power by the

device is to a large extent wasted power. So a network owner wants to keep the

equipment busy by, e.g., data routing strategies. Powering down underutilized

equipment and rerouting data will increase the utilization U, and lower the total

power consumption P of the network, but this will also have a negative side effect

on another benefit attribute, the reliability R of the network, and the mean latency

L of the network might be affected. The smaller the number of possible routes

available in the network to send data from site A to B, the lesser the reliability R of

the network. Because, if equipment fails or becomes malfunctioning, the network

owner will need alternative routes through the network to bypass the network part

with the broken equipment.
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With this small background of the performance measures in the use case, and

their presented values listed in Table 1, the dilemma of the decision problem

becomes clear. Focusing only on the total power dissipation P of the network might

not lead to a desirable solution.

Suppose alternative 1 in Table 1 represents the current network and alternatives 2

and 3 what the network might be after applying a specific energy efficient strategy,

e.g., powering down nodes in the network. Looking at the better power dissipation

of alternative 3 one might draw the conclusion that the energy efficiency of the

network can be increased by 31%. But if traffic is relayed differently for alternative

2 and 3, because equipment is switched off, less different paths are available. In

such a situation the reliability may drop, as in a reliable network any origin-

destination pair should have a primary and a secondary path. It might also happen

that the average PUE becomes larger, as switched off equipment happens to be at

sites with a relatively lower PUE. Also the average latency in the network may

increase by powering down nodes. In this example the minimal value for a cost

attribute like power consumption, 750 W, will not occur simultaneously with the

maximal value of a benefit attribute like reliability, 98%.

2.2 Relative quality measure

To arrive at a relative quality we start with comparing each alternative out of

n alternatives with each other, in such a way that the units of the attributes are of no

influence on the comparison of these alternatives.

Consider a set of n network alternatives fNðjÞg; j ¼ 1; . . .; n, each alternative j

having (multiple) cost attributes xij; i ¼ 1; . . .;m and (multiple) benefit attributes

yrj; r ¼ 1; . . .; s. The comparison of network alternative j with respect to network

alternative o is defined as:

qj;o ¼
1

m

Xm

i¼1

xio

xij

 !
� 1

s

Xs

r¼1

yrj

yro

 !
ð1Þ

The first factor is the mean of ratios of different type of cost attributes, where each

ratio compares a cost attribute of alternative o with the corresponding cost attribute

of network alternative j. The second factor is the mean of ratios of different type of

benefit attributes, where each ratio compares a benefit attribute of network

Table 1 Performance measures of three alternatives of a hypothetical WAN

P (W) L (ms) PUE U R (%)

1 1100 0.42 1.8 0.5 98

2 840 0.49 1.9 0.76 95

3 750 0.64 2.2 0.85 92

The performances measures are the total power P, the mean latency L of the network, the mean PUE of

sites with equipment, the utilization U and the reliability R of the network
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alternative j with the corresponding benefit attribute of alternative o. Suppose

alternative o has cost and benefit attributes worse than any other alternative j, then

the first factor of qj;o will be larger than 1, and the second factor will also be larger

than 1, for j 6¼ o. So the larger the values for qj;o j ¼ 1; . . .n; j 6¼ o, the smaller the

relative quality of alternative o needs to be. It is clear that the comparison defined by

qj;o is invariant under a change of units the attributes are expressed in, e.g., Watt

instead of kWatt.

Another way to write qj;o is by considering two vectors

xj;o ¼
x1j

x1o
; :::;

xmj

xmo

� �
; yj;o ¼

y1j

y1o
; :::;

ysj

yso

� �
ð2Þ

where xj;o is a vector of cost attributes of alternative j, each weighted by the

corresponding cost attribute of alternative o, and vector yj;o is a vector of benefit

attributes of alternative j, each weighted by the corresponding benefit attribute of

alternative o. Now qj;o can be written as

qj;o ¼
Aðyj;oÞ
Hðxj;oÞ

ð3Þ

the quotient of the arithmetic mean A of weighted benefit attributes of alternative j

with respect to alternative o, and H the harmonic mean of weighted cost attributes of

alternative j with respect to alternative o. The harmonic mean is defined by:

HðxÞ ¼ m

1=ðx1;oÞ þ � � � þ 1=ðxm;oÞ ð4Þ

The harmonic mean has the property that it is small if any of its values is also small,

whereas the arithmetic mean shows the inverse behavior. By defining qj;o according

to Eq. (3) both the behavior of the arithmetic and harmonic mean are in agreement

with each other, i.e., qj;o is large if any of the cost attributes of alternative j is small

compared to the corresponding cost attribute of alternative o, because H becomes

small, and qj;o is large if any of the benefit attributes of alternative j is large

compared to the corresponding benefit attribute of alternative o. In other words, if

alternative j outperforms alternative o in some of its attributes the larger qj;o will be.

So the relative quality of alternative o should be inversely related to the maximal

value of the values qj;o j ¼ 1; . . .n.
We resort to the use case example in Table 1 to illustrate how to arrive at a

relative quality measure for each alternative. According to this example a network

alternative j has 3 cost attributes x1j, x2j, x3j and 2 benefit attributes y1j, y2j, or

NðjÞ ¼ ðx1j; x2j; x3j; y1j; y2jÞ ¼ ðPj; Lj;PUEj;Uj;RjÞ. The comparison of alternative j

with respect to alternative o becomes:

qj;o ¼
1

3

Po

Pj

þ Lo

Lj
þ PUEo

PUEj

� �� �
� 1

2

Uj

Uo

þ Rj

Ro

� �� �
ð5Þ

We proceed to construct a matrix Q with entries Qðo; jÞ ¼ qj;o:
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Qðo; jÞ ¼ 1

m

Xm

i¼1

xio

xij

 !
� 1

s

Xs

r¼1

yrj

yro

 !
ð6Þ

so a row Q(o) contains all the comparisons of alternatives j with alternative o. In

Table 2 the entries of this matrix Q are listed for the use case example above.

Let’s look at the largest value of each row Q(o), i.e., maxðqj;oÞ j ¼ 1; . . .n. If
maxðqj;oÞ[ 1 then alternative o is outperformed by alternative j. The simplest way

to arrive at a relative quality for alternative o is to take the inverse of

maxðqj;oÞ; j ¼ 1; . . .; n. So for the use case example the network alternatives 1, 2

and 3 have a relative quality q1 ¼ 1=1:2935 ¼ 0:7730, q2 ¼ 1 and

q3 ¼ 1=1:0780 ¼ 0:9276, respectively. This yields the following ranking of the

alternatives: 2 � 3 � 1.

In this example we can notice that all entries in row Qð2; jÞ; j 6¼ 2, are smaller

than one. This illustrates a special case with alternative 2 the only alternative having

a relative quality equals 1, and necessarily all other alternatives having a lower

relative quality. This we will be illustrated in the next section.

2.3 On the ordering defined by the relative quality

Combining Eqs. (2), (3) and (6), a relation between an entry Q(o, j) and its

transpose entry Q(j, o) of matrix Q becomes clear. According to definition (2) it

holds ðxj;oÞi ¼ 1=ðxo;jÞi and ðyj;oÞi ¼ 1=ðyo;jÞi. Because the harmonic mean H is the

reciprocal dual of the arithmetic mean A, i.e., 1=Hð1=x1; . . .; 1=xmÞ ¼ Aðx1; . . .; xmÞ,
and A�H, we can write

Qðo; jÞ ¼
Aðyj;oÞ
Hðxj;oÞ

¼ Aðxo;jÞ
Hðyo;jÞ

� Hðxo;jÞ
Aðyo;jÞ

¼ 1

Qðj; oÞ

So for any two entries Q(o, j) and Q(j, o) with o 6¼ j it holds:

Qðo; jÞ\1 ! Qðj; oÞ[ 1; o 6¼ j

It can also be that Qðj; oÞ ¼ Qðo; jÞ ¼ 1, then by the reciprocal dual property we get

1 ¼
Aðyj;oÞ
Hðxj;oÞ

¼ Aðxo;jÞ
Hðyo;jÞ

� Hðxo;jÞ
Aðyo;jÞ

¼ 1

So the equal sign must hold, and we arrive at

1 ¼ Aðxo;jÞ
Hðyo;jÞ

¼ Hðxo;jÞ
Aðyo;jÞ

If Aðxo;jÞ[Hðxo;jÞ then also Hðyo;jÞ[Aðyo;jÞ, which cannot be the case. So

Aðxo;jÞ ¼ Hðxo;jÞ and Hðyo;jÞ ¼ Aðyo;jÞ, and consequently all ðxo;jÞi are the same and

all ðyo;jÞi are the same, as AðxÞ ¼ HðxÞ if and only if all xi are the same. An example

of two alternatives, each having two cost and two benefit attributes, for which holds

Qðj; oÞ ¼ Qðo; jÞ ¼ 1, is o : f6; 6; 9; 9g and j : f2; 2; 3; 3g. In that case row Q(o) and
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row Q(j) have both two entries equals 1, Q(o, j), Q(o, o), and Q(j, j), Q(j, o).

Futhermore, all other entries are the same Qðo; kÞ ¼ Qðj; kÞ, i.e., alternative o and

j are ranked the same, they are not distinct.

So if there exists a row in matrix Q with entries Qðo; jÞ\1 for j 6¼ o, then it is the

only row with this property and the relative quality qo ¼ 1, as the maximum of its

row is given by Qðo; oÞ ¼ 1.

It can also happen that every row of Q has at least one entry Qðo; jÞ[ 1 for j 6¼ o.

Consider the set of alternatives in Table 3, each alternative having three cost

attributes and three benefit attributes:

In this example alternative A5 has cost attributes twice as high as those of

alternative A6, but its benefit attributes are also twice as high, so both alternatives

will have the same row in Q and consequently will be ranked the same. The

corresponding matrix Q(o, j) can be seen in Table 4. We see that every row of Q has

at least one entry larger than 1. The ordering is defined by the relative qualities

q1 ¼ 1=1:577 ¼ 0:6341, q2 ¼ 1=1:197 ¼ 0:8354, q3 ¼ 1=1:393 ¼ 0:7178,
q4 ¼ 1=2:658 ¼ 0:3763, q5 ¼ q6 ¼ 1=1:279 ¼ 0:7818, resulting in:

A2 � A5;A6 � A3 � A1 � A4.

2.4 Relation to data envelopment analysis

A widely used method to determine a relative efficiency, originating from the field

of economics, is data envelopment analysis (DEA), introduced by Charnes, Cooper

and Rhodes, an approach to judge the performance of so called decision making

units (DMU). A review of the history and the application of this method can be

found in Cooper et al. (2011). According to this method for a set of DMUs,

fDMUðjÞg; j ¼ 1; . . .; n, each DMU(j) having (multiple) inputs xij, i ¼ 1; . . .;m and

Table 3 Set of 6 alternatives,

each alternative having 3 cost

attributes C1(-), C2(-) and

C3(-) and three benefit

attributes C4(?), C5(?) and

C6(?)

C1(-) C2(-) C3(-) C4(?) C5(?) C6(?)

A1 28 24 8 16 15 11

A2 20 22 7 17 16 13

A3 27 16 4 16 17 7

A4 11 8 24 11 15 8

A5 22 9 11 15 18 9

A6 11 4.5 5.5 7.5 9 4.5

Table 4 The matirx Q for the 6

alternatives in Table 3
Q(o, j) j ¼ 1 j ¼ 2 j ¼ 3 j ¼ 4 j ¼ 5 j ¼ 6

o ¼ 1 1.0 1.337 1.396 1.577 1.533 1.533

o ¼ 2 0.759 1.0 1.092 1.188 1.197 1.197

o ¼ 3 0.818 1.136 1.0 1.393 1.228 1.228

o ¼ 4 1.586 2.044 2.658 1.0 1.463 1.463

o ¼ 5 0.880 1.187 1.279 0.978 1.0 1.0

o ¼ 6 0.880 1.187 1.279 0.978 1.0 1.0
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(multiple) outputs yrj, r ¼ 1; . . .s, the technical efficiency zo of a DMU(o) is defined

as a linear program problem:

zo ¼ maxðzÞ; z ¼
Xs

r¼1

lroyro ð7Þ

subject to

Xs

r¼1

lroyrj �
Xm

i¼0

mioxij � 0 for j ¼ 1; . . .; n ð8Þ

Xm

i¼1

mioxio ¼ 1 ð9Þ

lro; mio � 0 ð10Þ

This formulation of the problem is called input-oriented, it determines how much

the inputs of a DMU could be reduced by maintaining the same level of outputs.

Some DMUs determine a Pareto frontier, or envelopment surface, in input-output

space and are called efficient, for inefficient DMUs an efficient projection path to

the envelopment surface is determined.

Despić Ozren (2013) showed that CCR can be reformulated using the same ratios

of benefit attributes and of cost attributes as defined in Eq. 2, but in his

reformulation the ratios of benefit attributes are put in a different relation to the

ratios of the cost attributes as expressed in Eq. 3.

By introducing the following values for the weights lro and mio

lro ¼
1

s
� qo

yro
; mio ¼

1

m
� 1

xio
ð11Þ

where qo equals the relative quality of DMU(o) according to the procedure in

Sect. 2.2, Eqs. 7, and 10 become

zo ¼
Xs

r¼1

lroyro ¼ qo ð12Þ

Xm

i¼1

mioxio ¼
Xm

i¼1

xio

xio
¼ 1 ð13Þ

From the definition of qj;o and qo we have

qj;o � qo ¼
1

m

Xm

i¼1

xio

xij

 !
� 1

s

Xs

r¼1

yrj

yro

 !
� qo � 1 8j ð14Þ

as qj;o:qo equals qj;o=ðmaxjðqj;oÞ; j ¼ 1; . . .; nÞ. So
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1

s

Xs

r¼1

yrj � qo

yro

 !
� 1

1
m

Pm
i¼1

xio
xij

ð15Þ

¼ mPm
i¼1

xio
xij

� 1

m

Xm

i¼1

xij

xio
ð16Þ

the last step because the harmonic mean H is the reciprocal dual of the arithmetic

mean A, i.e., 1=Hð1=x1; . . .; 1=xmÞ ¼ Aðx1; . . .; xmÞ. Then it holds

Xs

r¼1

lroyrj �
Xm

i¼0

mioxij � 0 8j

with

qo � 1� 0 j ¼ o ð17Þ

For qo\1 the parameters defined by Eq. 11 correspond with a feasible solution of

DEA. In case qo ¼ 1, then zo ¼ 1, the maximum possible value for the relative

efficiency, like for N(2) in the network use case above, and an optimal solution to

problem 7 is found for alternative o with strictly positive weights lro and mio.
The choice for the weights chosen in Eq. 11 and the implicit weighting

performed in Eqs. 3 and 2 are tightly related.

3 Comparison with different MADM methods

In this section we look at four other MADM methods and compare these with the

method of the relative quality measure. The decision matrix for this comparison is

shown in the Appendix in Table 7. In Table 8 values for Pearson’s correlation

coefficients between the benefit and cost attributes are listed. Some values for the

correlation coefficient are negative, i.e., high benefits correlate with low costs and

vice versa, and some values are positive, i.e., high benefits correlates with high costs

and vice versa.

Four methods are chosen, the MADM methods based on OWA operator,

maximizing deviations, and information entropy, and the PROMETHEE II

complete ranking method. The first three methods start with the construction of a

matrix R from the decision matrix of a set of n alternatives, each alternative having

m attributes. The entries rij of matrix R depend on the type of attribute j. For a

benefit attribute j the column entries are defined by

rij ¼
aij

maxifaijg
i ¼ 1; 2; . . .; n ð18Þ

and for a cost attribute j the column entries are

rij ¼
minifaijg

aij
i ¼ 1; 2; . . .; n ð19Þ
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So each attribute is normalized with respect to the best value for this attribute

among the alternatives, such that for any entry of matrix R holds rij � 1.

The PROMETHEE II method needs additional information related to the

preferences and the priorities of the decision-maker. It requires a preference

function associated to each criterion as well as weights describing their relative

importance.

In the next four subsections we describe how each of these methods proceed and

where we follow the notation from Xu (2015) for the first three methods and the

notation from Greco et al. (2016) for the PROMETHEE II method.

3.1 MADM based on OWA operator

The method based on OWA operator Yager (1988) is used to aggregate all the

attribute values rij of the normalized decision matrix R for each alternative i, and to

arrive at a value for the degree of alternative i:

ziðxÞ ¼ ðri1; ri2; . . .; rimÞ ¼
Xm

j¼0

xjbj ð20Þ

where bj is the jth largest of the arguments rij, i.e., the arguments are arranged in

descending order, and x ¼ ðxjÞ is a weight vector. A possible choice for the

weights xj follows from

x1 ¼
1� a
m

þ a; xi ¼
1� a
m

; a 2 ½0; 1� ð21Þ

where m the number of attributes (Xu (2015) theorem 1.10). All the values zi result

in a complete ranking of the alternatives.

3.2 MADM based on maximizing deviations

This method assigns to attribute j of alternative i a value Dij , denoting a weighted

deviation between alternative i and all other alternatives with respect to this

attribute:

Dij ¼
Xn

k¼1

jrij � rkjjwj ð22Þ

Summing over all alternatives and attributes an objective function DðwÞ is obtained
from which the weights wj are derived:

maxDðwÞ ¼
Xm

j¼1

Xn

i¼1

Xn

k¼1

jrij � rkjjwj ð23Þ

The resulting weight vector, following a method from Wang (1998), is giving by:
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wj ¼
Pn

i¼1

Pn
k¼1 jrij � rkjjPm

j¼1

Pn
i¼1

Pn
k¼1 jrij � rkjj

ð24Þ

To each alternative i a value zi is assigned according to

ziðwÞ ¼
Xm

j¼1

rijwj ð25Þ

Ranking is based on the values zi.

3.3 MADM based on information entropy

This method based on information entropy constructs from the normalized matrix R

a matrix _R having entries:

_rij ¼
rijPn
i¼1 rij

ð26Þ

For each attribute j an entropy value is derived according to:

Ej ¼ � 1

ln n

Xn

i¼1

_rij ln _rij j ¼ 1; . . .;m ð27Þ

The derived weight vector w becomes:

wj ¼ � 1� EjPm
k¼1ð1� EkÞ

ð28Þ

Applying Eq. 25 for each alternative results in a ranking of all the alternatives.

3.4 PROMETHEE II

The PROMETHEE II method Brans and Vincke (1985), a outranking method,

provides a complete ranking of a set of n alternatives A ¼ fA1; . . .;Ang. Each

alternative is characterized by a set of k evaluation criteria fg1ð:Þ; . . .; gkð:Þg. The
amplitude of the deviation between criterion j for two altenatives Ah and Ai is

defined as

djðAh;AiÞ ¼ gjðAhÞ � gjðAiÞ: ð29Þ

The decision maker is aksed for a preference function Pj for each criterion

PjðAh;AiÞ ¼ Fj½djðAh;AiÞ� 8Ah;Ai 2 A; ð30Þ

and

0�PjðAh;AiÞ� 1: ð31Þ

For criterion j to be maximized, related to a benefit attribute, Pj has the following

property
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PjðAh;AiÞ[ 0 ) PjðAi;AhÞ ¼ 0; ð32Þ

whereas for a criterion j to be minimized, related to a cost attribute, the preference

function takes the form

PjðAh;AiÞ ¼ Fj½�djðAh;AiÞ� 8Ah;Ai 2 A: ð33Þ

Different types of preference function P(d) are used, where we will opt for a Type 2:

PðdÞ ¼
0 d� q

1 d[ q

�
ð34Þ

for all criteria. This choice allows for a fair comparison with the previous MADM

methods, as it expresses the fact that the decion maker has no preference, except for

a threshold value q for the deviation d.

Next, a preference index for alternative Ah with regard to alternative Ai over all

criteria is defined

pðAh;AiÞ ¼
Xk

j¼1

PjðAh;AiÞ wj; ð35Þ

which expresses with which degree alternative Ah is preferred to alternative Ai. For

reasons of comparison we take all weights wj equal, wj ¼ 1
k
. Finally, two outranking

flows are used, a positive outranking flow

/þðAhÞ ¼
1

n� 1

X

x2A
pðAh; xÞ; ð36Þ

and a negative outranking flow

/�ðAhÞ ¼
1

n� 1

X

x2A
pðx;AhÞ: ð37Þ

The better an alternative Ah the higher /þðAhÞ, and the more alternative Ah is

outranked by others, the higher /�ðAhÞ. By considering the net outranking flow

/ðAhÞ ¼ /þðAhÞ � /�ðAhÞ 8Ah;Ai 2 A ð38Þ

a complete ranking results for the alternatives in A.

3.5 MADM comparison results

The complete ranking of all five methods will be compared for the decision matrix

in Table 7.

For the OWA method a ¼ 0:2 is chosen and the weights according to Eq. 21

become: x1 ¼ 0:28, and xi ¼ 0:08 i ¼ 2; . . .; 10.
The weight vector following from the decision matrix in Table 7 for the method

based on maximizing deviations becomes according to Eq. 25: w ¼ (0.0630,
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0.0605, 0.1072, 0.0655, 0.1136, 0.1145, 0.1294, 0.1233, 0.1363, 0.08641), which

components add up to one.

For the method based on Information Entropy the weight vector defined in Eq. 28

takes for the decision matrix in Table 7 the values: w ¼ (0.1179, 0.1818, 0.0624,

0.1358, 0.1025, 0.0797, 0.0873, 0.0766, 0.1194, 0.0362).

Concerning the PROMETHEE II method, the same type 2 preference funtion,

Eq. 34, is applied to all criteria with q = 20% for the criteria C1(-) until C9(?) and q

= 10% for criterium C10(?) for the decision matrix in Table 7. The positive and

negative outranking flowwhich allow for a complete ranking, Eq. 38, take the values:

/þðAÞ ¼ (0.2736, 0.2631, 0.2947, 0.3631, 0.2421, 0.1947, 0.4421, 0.2, 0.1842,

0.1684, 0.2210, 0.2526, 0.1947, 0.1105, 0.2052, 0.0947, 0.2526, 0.2, 0.1842,

0.0578) and /�ðAÞ ¼ (0.1263, 0.1894, 0.3157, 0.0684, 0.2473, 0.1842, 0.0947,

0.2157, 0.2315, 0.2, 0.1736, 0.1684, 0.2263, 0.2526, 0.3210, 0.3368, 0.1631,

0.2052, 0.2684, 0.4105).

In Table 5 the ranking by the different MADM methods for the alternatives in

decision matrix of Table 7 is shown. What can be noticed is that all agree well in

assigning the highest rank to alternative A7 and the lowest rank to alternative A20.

All methods also agree well in assigning the next lowest alternative, A16. Here must

be noticed that alternative A4 gets the highest rank by the PROMETHEE II method

instead of A7, and alternative A7 becomes the second highest in rank if the

preference threshold is taken to be q = 10% for all criteria.

Table 5 The ordinal ranking of

the alternatives O(WA),

M(axDev), E(ntropy), and Q,

and the P(ROMETHEE)II

method

O M E Q PII

A1 4 4 6 4 3

A2 6 8 5 6 6

A3 13 14 13 17 14

A4 2 3 2 3 2

A5 8 6 9 18 9

A6 11 13 15 16 8

A7 1 1 1 1 1

A8 10 7 7 14 10

A9 16 12 12 10 15

A10 18 17 16 7 13

A11 9 11 11 13 7

A12 5 5 3 2 5

A13 14 15 14 5 14

A14 15 16 17 12 18

A15 17 18 18 15 17

A16 19 19 19 19 19

A17 3 2 4 8 4

A18 7 10 8 11 10

A19 12 9 10 9 16

A20 20 20 20 20 20
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A large discrepancy in ranking occurs for alternatives A5 and A10. This is due to

the way the relative quality compares the attributes for each pair of alternatives.

Alternative A7 has all entries Qð7; jÞ\1; j 6¼ 7, and outperforms all other

alternatives, thus having the maximum relative quality 1. Alternative A5 has a

row maximum for entry Qð5; 7Þ ¼ 8:6104, resulting in a relative quality q5 ¼ 0:116,
the third lowest value, see Table 5. This value results from Eq. 6:

Qð5; 7Þ ¼ ð1
4
ð5
3
þ 7

1
þ 9

3
þ 7

2
ÞÞ. ð1

6
ð9
1
þ 5

3
þ 9

9
þ 5

9
þ 5

9
þ 0:683

0:806ÞÞ ¼ 8:6104. What can be

noticed are the large contributions of the terms
x2;5
x2;7

¼ C2ðA5Þ
C2ðA7Þ ¼ 7

1
and

y1;7
y1;5

¼ C5ðA7Þ
C5ðA2Þ ¼ 9

1
.

Cost attribute C2ð�Þ and benefit attribute C5ðþÞ are negatively correlated, see

Table 8, and alternative A5 exihibits the opposite behaviour compared to the best

alternative A7, i.e., A5 has a high value for C2ð�Þ and a low value for C5ðþÞ,
whereas A7 has a low value for C2ð�Þ and a high value for C5ðþÞ. So it is

reasonable to assign a low rank to alternative A5.

Alternative A10 also has a row maximum for the entry related to alternative A7,

Qð10; 7Þ ¼ 3:8286, resulting in a relative quality q10 ¼ 0:261, the seventh highest

value, see Table 5. This value results from Eq. 6: Qð10; 7Þ ¼ ð1
4
ð3
3
þ 5

1
þ 7

3
þ 3

2
ÞÞ.

ð1
6
ð9
3
þ 5

5
þ 9

5
þ 5

3
þ 5

7
þ 0:683

0:587ÞÞ ¼ 3:8286. Here the contributions of the terms
x2;10
x2;7

and
y1;7
y1;10

are smaller then in the case of alternative A5. This results in a much higher

ranking for alternative A10 then for alternative A5.

In Table 6 Spearman’s rank correlation coefficient for the rankings by the

different methods in Table 6 is listed, showing that the rank correlation between the

relative quality measure Q and the method of Information Entropy has the highest

values compared to the rank correlation between the relative quality measure Q and

the other methods.

4 Conclusions

The observation that minimizing a cost attribute might have the side effect that

certain benefit attributes may also decrease, which was illustrated by an example of

energy saving strategies for a Wide Area Network (Sect. 2.1), was the motivation

for constructing a relative quality measure. Instead of normalizing each attribute

individually with the best value found among the alternatives (Sect. 3), the method

presented starts with comparing the attributes of each alternative out of a set of n

Table 6 Spearman’s rank

correlation coefficient for the

rankings in Table 5

rsðO;MÞ 0.9503

rsðO;EÞ 0.9473

rsðO;QÞ 0.6360

rsðO;PIIÞ 0.9421

rsðM;EÞ 0.9669

rsðM;QÞ 0.6285

rsðM;PIIÞ 0.8879

rsðE;QÞ 0.7112

rsðQ;PIIÞ 0.6503
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alternatives with those of all the other alternatives, resulting in a matrix Q of n� n

comparisons (Sect. 2.2). For this matrix Q a relative quality measure was defined

leading to a ranking of the alternatives. The relative quality measure for an

alternative o is defined as the reciprocal of the maximum of its row Q(o). As the

comparison makes use of the arithmetic mean of benefit attribute ratios and the

harmonic mean of cost attribute ratios, some special properties of matrix Q can be

derived. For a set of distinct alternatives there can only be one alternative having the

maximum relative quality of 1. The definition of the relative quality measure and

the choice for the arithmetic and harmonic mean makes a relation with the method

of data envelopment analysis (DEA) possible (Sect. 2.4). If an alternative has the

maximum relative quality of 1 it is an extremely efficient unit in terms of DEA.

The method of the relative quality compares well with other MADM methods in

ranking the best and the worse alternatives. Other alternatives besides the best and

the worst can be ranked differently. Comparison was made with MADM methods

based on OWA operator, maximizing deviations, and information entropy, and the

PROMETHEE II method (Sect. 3).

The final objective of MADM is to help a decision maker to make ‘‘better’’

decisions. What ‘‘better’’ means depends, in part, on the process by which the

decision is made and implemented, according to Bernard Roy (2016). Decision

makers originating from different fields of expertise must be able to understand

what is happening, and the method must be easy to implement. It are these

requirements the method of the relative quality Q adheres to.

To strengthen the confidence that the method provides ‘good’ preference

information, a relation with other methods will help. When do other methods agree

and when do they differ and why? Different problems having decision matrices with

special features, like how cost and benefit attributes are correlated, might help to

answer this question. The choice for suitable MADM methods by a decision maker

might then be based upon the essential features of the decision matrix at hand.
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Appendix: MADM use case

For comparison of the presented method with other MADM methods we take the use

case example from Karimi (2011). Some entries are changed to make O7 an

alternative having the maximum relative quality of 1. Table 7 shows the

unnormalized decision matrix for 20 alternatives, each alternative characterized by

cost attributes C1, C2, C3, C4, and benefit attributes C5, C6, C7, C8, C9 and C10.

In Table 8 the Pearson’s correlation coefficient between the benefit and the cost

attributes are given.
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