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Abstract An important tool in the advancement of cogni-
tive science are quantitative models that represent different
cognitive variables in terms of model parameters. To eval-
uate such models, their parameters are typically tested for
relationships with behavioral and physiological variables
that are thought to reflect specific cognitive processes. How-
ever, many models do not come equipped with the statistical
framework needed to relate model parameters to covariates.
Instead, researchers often revert to classifying participants
into groups depending on their values on the covariates, and
subsequently comparing the estimated model parameters
between these groups. Here we develop a comprehensive
solution to the covariate problem in the form of a Bayesian
regression framework. Our framework can be easily added
to existing cognitive models and allows researchers to
quantify the evidential support for relationships between
covariates and model parameters using Bayes factors. More-
over, we present a simulation study that demonstrates the
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superiority of the Bayesian regression framework to the
conventional classification-based approach.
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Introduction

One major motivation for the development of cognitive
models is to formalize theories of how latent cognitive vari-
ables underlie human behavior. Specifically, model param-
eters are often used to describe cognitive variables that are
related to observed behavior through the model equations.
Reinforcement-learning models, for example, have been
developed to explain how the outcomes of previous choices
influence human decision makers’ future choice behavior
(Ahn et al., 2008; Busemeyer & Stout, 2002; Sutton & Barton
1998). Many of these models include a risk-aversion param-
eter that describes the impact of negative relative to positive
outcomes on decision makers’ future choices. If the risk
aversion parameter is set to a higher value, these models
predict that choice options that yield negative outcomes
become much less likely to be chosen in the future whereas
choice options that yield positive outcomes only become
slightly more likely to be chosen in the future (Steingroever
et al., 2013; Ahn et al., 2008).

In recent years there has been increasing interest in
explaining individual differences in such model parame-
ters by differences in covariates (e.g., Ahn et al., 2014;
Badre et al., 2014; Beitz et al., 2014; Chevalier et al.,
2014; Cooper et al., 2015; Kwak et al., 2014; Vassileva
et al., 2013). Researchers might, for example, want to test
whether a continuous covariate such as a test score or age
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is related to participants’ estimated risk aversion. How-
ever, many models do not come equipped with a principled
way of relating covariates to model parameters. The goal
of the present work is to develop a hierarchical Bayesian
regression framework that allows researchers to estimate
and test for relationships between model parameters and
covariates.

One strategy researchers have traditionally used to test
for relationships between model parameters and covariates
is to first group participants according to their values on
the covariates, then fit a cognitive model to participants’
behavioral data, and subsequently test the groups of par-
ticipants for differences in the estimated model parameters
(e.g., Vandekerckhove et al., 2011). For instance, Cooper
et al. (2015) asked participants to fill out the Regulatory
Focus Questionnaire (Higgins et al., 2001) which consists
of two scales that measure participants’ tendency to either
avoid new tasks for fear of failure (prevention focus) or
approach new tasks with an anticipation of success (pro-
motion focus). Cooper et al. categorized participants into
two groups based on whether they scored higher on the
prevention focus scale or on the promotion focus scale. Sub-
sequently, participants performed 250 trials of one of two
versions of the Mars Farming task (Worthy et al., 2011). In
the gain-maximization version of the task, participants have
to make choices that maximize their total rewards whereas
in the loss-minimization version of the task, participants
have to make choices that minimize their total losses. In
both versions of the task participants have to repeatedly
choose between two options. Unbeknownst to participants,
the rewards for each choice option depend on their previous
choices, with the returns for one option slowly increasing as
the option is chosen more often and the returns for the other
option decreasing as the option is chosen more often.

Cooper et al. analyzed their data by first fitting a
reinforcement-learning model to each individual partici-
pant’s choice data and subsequently using ANOVAs to
compare the estimated model parameters across groups of
participants and task versions. Their main finding was a
significant interaction between regulatory-focus group and
task version for the model parameter that reflects the degree
to which participants use goal-directed behavior. Cooper
et al. concluded that a regulatory focus that matches the
task structure promotes the use of goal-directed behav-
ior. Although the analysis procedure used by Cooper et al.
might seem a reasonable way of testing which covariates are
related to which model parameters, it is statistically suboptimal.

Dividing participants into groups based on their scores on
a covariate constitutes an artificial dichotomization of a con-
tinuous variable, which can lead to biased statistical tests.
This problem has been discussed repeatedly in the context
of frequentist statistics (Altman & Royston, 2006; Austin

& Brunner, 2004; Cohen, 1983; MacCallum et al., 2002;
Maxwell & Delaney, 1993; Royston et al., 2006). Despite
these repeated warnings, several authors have recently
applied dichotomization of continuous covariates to test
for relationships with model parameters (e.g., Cooper et
al., 2015; Kwak et al., 2014; Steingroever et al., in press).
The type of bias introduced by such dichotomization-based
tests depends on the correlation between covariates; uncor-
related covariates lead to reduced power (i.e., tests missing
true relationships between covariates and model parame-
ters) whereas correlated covariates lead to an inflation of
the Type I error rate (i.e., tests detecting spurious relation-
ships between covariates and model parameters). Maxwell
and Delaney (1993) provide an accessible explanation of
the mechanisms underlying these biases, which we briefly
summarize here. As the focus of our work is on the case
of continuous, jointly normally distributed model parame-
ters and covariates, a suitable analysis approach is linear
regression, which we will use as our comparison standard.

First, consider a scenario where a researcher measures
two uncorrelated continuous covariates, one of which is
correlated with a specific model parameter while the other
is not. For example, the researcher might administer a
questionnaire with two uncorrelated subscales that mea-
sure participants’ preference for deliberate and intuitive
decision-making, and ask participants to complete 100 tri-
als of a risky decision-making task. The researcher then
fits a reinforcement-learning model with a loss-aversion
parameter to participants’ choice data. Unbeknownst to
the researcher, the loss-aversion parameter is related to
participants’ preference for deliberate decision-making but
unrelated to their preference for intuitive decision-making.
To test for relationships between the model parameter and
the covariates, the researcher splits participants’ question-
naire scores on each subscale into two halves based on, say,
the median score of each subscale, and, for each subscale,
uses a t-test to compare the loss-aversion parameter values
of participants scoring below-median (group 1) to the val-
ues of participants scoring above-median (group 2). Panel A
of Fig. 1 illustrates this scenario for the deliberation scale,
which is positively correlated with the loss-aversion param-
eter. The two horizontal lines show the mean parameter
values of each group, the black diagonal line is the result of
the correct regression analysis. As can be seen, within each
group the deviation of most individual data points from the
regression line, that is, the error variance, is much smaller
than the deviation from the corresponding group mean. Con-
sequently, a t-test for a difference in group means, which is
just the ratio of the mean differences to the error variance,
will be biased towards the null hypothesis. A t-test of the
regression slope, on the other hand, uses the correct estimate
for the error variance and will therefore not show such a bias.
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Fig. 1 Two biases in analyzing dichotomized variables. a Error vari-
ance in t-test based on dichotomization compared to regression anal-
ysis. The scatterplot shows the relationship between a covariate and
a model parameter (gray dots), the dashed line indicates the median
of the covariate, horizontal black lines show the mean parameter val-
ues for each group obtained by dichotomization along the median,
the gray arrow indicates the resulting error for one data point. The

diagonal black line shows the least-squares regression line, the black
arrow indicates the associated error. b Scatterplot showing the rela-
tionship between two correlated covariates (gray dots). The dashed
line indicates the median of covariate 2, and the dark gray squares
show the mean value on both covariates of each group obtained by
dichotomizing covariate 2 along the median

Second, consider a scenario where a researcher measures
two correlated continuous covariates, one of which is corre-
lated with a specific model parameter while the other is not.
In our previous example, the deliberate decision-making
subscale and the intuitive decision-making subscale might
be correlated with each other, and the loss-aversion model
parameter might be correlated with the deliberate decision-
making subscale but not with the intuitive decision-making
subscale. To test for relationships between the model param-
eter and the covariates, the researcher again splits each
subscale into two halves and, for each subscale, uses a t-
test to compare the parameter values of participants scoring
below-median (group 1) to the values of participants scoring
above-median (group 2). In this case the covariate of inter-
est is the intuition subscale, which is not correlated with the
loss-aversion parameter. Panel B of Fig. 1 shows a scatter-
plot of participants’ scores on the two subscales with the
deliberation scale on the x-axis and the intuition scale on
the y-axis; the dark gray squares indicate the means of both
subscales for each group created by splitting the delibera-
tion scale into two halves. As can be seen, the mean value
on the intuition scale, which is not correlated with the loss-
aversion parameter, is higher for one group than for the
other. However, because the two subscales are correlated,
the two groups also differ in their mean on the deliberation
scale, which is correlated with the loss-aversion parame-
ter. Therefore, a t-test for a mean difference in the model
parameter between the two groups might suggest a relation-
ship between the intuition scale and the model parameter
due to the difference in means on the deliberation scale.
A regression analysis, on the other hand, avoids this problem

because it partials out the correlation between the two
covariates before relating the intuition scale to the model
parameter. It should be clear from the above examples that
dichotomization of continuous covariates is a problematic
practice and the associated biases can be easily avoided by
using an appropriate regression analysis.

As mentioned above, the problem of dichotomization-
based analyses has been discussed previously in the context
of frequentist statistical testing and a potential solution
is offered by maximum-likelihood based regression exten-
sions that are available for some cognitive models (e.g.,
Coolin et al., 2015). However, a discussion of the effects
of dichotomization on Bayesian hypothesis testing and cor-
responding solutions in the form of a Bayesian regression
framework for hypothesis testing in cognitive models are
missing. This is a particularly pertinent issue as hierarchi-
cal Bayesian models have been gaining popularity in recent
years (e.g., Lee, 2011; Rouder and Lu, 2005; Rouder et
al., 2003). Although hierarchical Bayesian regression exten-
sions have been developed for some cognitive models, the
focus of this work has mostly been on parameter esti-
mation rather than hypothesis testing. For example, Heck
et al. (in press) present an R package for fitting hierarchical
Bayesian multinomial processing tree models. Their pack-
age includes, among other features, a regression extension
that allows researchers to add covariates as predictors for
models parameters. However, Heck et al. do not discuss
the problem of Bayesian hypothesis testing for relation-
ships between model parameters and covariates. Moreover,
Heck et al.’s implementation is based on the assumption
that covariates are uncorrelated, which is not the case for
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many covariates of practical interest, such as clinical test
scores and personality inventories (e.g., Anderson et al.,
2015; King & Jackson, 2009).

The goal of the present work is to develop a regression
framework for hierarchical Bayesian cognitive models that
allows researchers to directly test for relationships between
model parameters and covariates. In the following sections
we will first introduce a reinforcement-learning model that
will serve as an example application. We will then give
a short overview of hypothesis testing in the context of
Bayesian regression models before we develop our hierar-
chical Bayesian regression extension for cognitive models.
Finally, we will present a simulation study in which we com-
pare the effects of regression-based and dichotomization-
based analyses on Bayesian hypothesis testing.

Regression framework for relating cognitive model
parameters to covariates

In this section we will develop a regression framework for
relating model parameters to covariates. As an illustrative
example, we will apply our regression framework to a pop-
ular reinforcement-learning model, the Prospect Valence
Learning model with the delta learning rule (PVL-Delta;
(Ahn et al., 2008; Fridberg et al., 2010; Steingroever et al.,
2013; 2014)). Nevertheless, our regression framework can
easily be applied to different reinforcement-learning mod-
els (Busemeyer & Stout, 2002; Sutton & Barton, 1998) as
well as other types of cognitive models such as multinomial
processing trees (Batchelder and Riefer, 1999; Coolin et al.,
2015; Matzke et al., 2015; Riefer & Batchelder, 1988) or
sequential sampling models (Brown & Heathcote, 2008; van
Ravenzwaaij et al., in press).

The PVL-Delta model was developed to disentangle the
psychological processes driving risky decision-making in
the Iowa-gambling task (IGT; Bechara et al., 1994). We
will first briefly outline the structure of the IGT and give a
short summary of the PVL-Delta model and its hierarchical
Bayesian implementation before we develop our regression
framework.

Iowa gambling task and hierarchical PVL-delta model

The IGT is an economic decision-making task that aims to
measure decision-making deficits in clinical populations. In
the computerized version of the IGT, participants are given
an initial credit of $2000 and are presented with four decks
of cards, each of which is associated with a characteristic
payoff structure. On each trial, participants pick a card and
receive feedback about the wins and losses for that card,
as well as the running tally. Participants are instructed to
choose cards from the decks in a way that maximizes their

long-term net outcomes (see Bechara et al., 1994 for more
details on the task).

The PVL-Delta model formalizes assumption about the
cognitive processes by which participants learn to optimize
their behavior in risky decision-making and, specifically,
how to maximize their long-term net outcomes on the IGT.
The model conceptualizes risky decision-making as a three-
step process. On each trial t = 1, . . . , T a participant
chooses a card from deck k ∈ {1, 2, 3, 4} and evalu-
ates the net outcome X(t) of the current decision using a
non-linear utility function. This so-called prospect utility
function (Tversky & Kahneman, 1992) is governed by two
parameters:

uk(t) =
{

X(t)A if X(t) ≥ 0
−w · |X(t)|A if X(t) < 0,

(1)

where A ∈ [0, 1] is the outcome sensitivity parameter,
and w ∈ [0, 5] is the loss aversion parameter. The out-
come sensitivity parameter determines the shape of the
utility function. As A approaches 1, the utility function
becomes more linear, meaning that the subjective utility
of the decks increases proportionally with increasing net
outcomes, whereas as A approaches 0, the utility function
approximates a step function, meaning that the subjective
utility is determined only by the sign of the net outcomes
but not their actual value. The loss aversion parameter deter-
mines the impact of negative net outcomes; a value of w

close to 0 means that negative net outcomes are neglected, a
value of 1 indicates an equal impact of negative and positive
net outcomes on the subjective utility, and a value closer to
5 indicates a large impact of negative net outcomes.

In a second step the model assumes that the participant
updates the expected utility of the chosen deck based on the
subjective utility of the current trial. This updating process
is governed by the so-called delta-learning rule (Rescorla &
Wagner, 1972):

Evk(t) = Evk(t − 1) + a · (uk(t) − Evk(t − 1)), (2)

where Evk(t) is the expected utility on trial t , and a ∈
[0, 1] is the updating parameter that determines how past
expectancies influence the evaluation of the current out-
come. A value of a close to 1 indicates quick forgetting and
strong recency effects while a value of a close to 0 indicates
slow forgetting and weak recency effects.

In a third step the participant makes a new decision based
on the expected utilities. The choice process is governed by
the softmax rule (Luce, 1959):

P [Sk(t + 1)] = eθ ·Evk(t)∑4
j=1 eθ ·Evj (t)

, (3)

where P [Sk(t + 1)] is the probability of choosing deck k on
the (t + 1)th trial, and θ is a sensitivity parameter that con-
trols how closely choice probabilities match the expected
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deck utilities. A value of θ close to 0 indicates random
choice behavior while larger values indicate choice behav-
ior that matches the expected utilities more closely. The
sensitivity parameter, in turn, is determined by

θ = 3c − 1, (4)

where c ∈ [0, 5] is the consistency parameter that deter-
mines the relative amount of exploitation vs exploration;
values of c close to 0 cause random choice behavior whereas
larger values cause more deterministic behavior.

Steingroever et al. (in press) have presented a Bayesian
hierarchical implementation of the PVL-Delta model
(solid edges in Fig. 2; see also Steingroever et al., 2013,
2014; Wetzels et al., 2010), for a hierarchical implemen-
tation of the related “EV” model). In their implementation
of the model, trials t of the IGT (inner plate) are nested
within participants i (outer plate). For each trial t of par-
ticipant i the choice of a deck of cards on the subsequent
trial Chi,t+1, and the wins Wi,t and losses Li,t on the
current trial are observed nodes (gray rectangles); the util-
ity Uk,i,t , expected utility Evk,i,t , sensitivity parameter
θi , and probability of choosing deck k on the next trial
P [Sk,i(t +1)] are deterministic nodes (double-bordered cir-
cles; note that we dropped the subscript k in the graphical

model for improved readability) as they are fully deter-
mined by the model equations and parameters. Moreover,
the individual-level model parameters zi ∈ {Ai, wi, ai, ci}
are modeled based on their probit-transforms, which means
that the model parameters are treated as deterministic nodes.
The probit-transform z′

i of parameter zi is z′
i = �−1(zi),

where �−1 denotes the inverse of the cumulative distri-
bution function of the standard normal distribution. The
probit-transform is a stochastic node (single-bordered cir-
cle) sampled from a group-level normal distribution with
mean μz′ and standard deviation σz′ . The priors for the
group-level parameters are independent standard normal
distributions for the group-level means, μz′ ∼ N (0, 1),
where N (μ, σ 2) denotes the normal distribution with mean
μ and variance σ 2, and uniform distributions for the group-
level standard deviations, σz′ ∼ U (0, 1.5), where U (a, b)

is the uniform distribution ranging from a to b.

Regression in statistical models

Bayesian regression methods have been largely developed
in the context of statistical models (Jeffreys, 1961; Liang
et al., 2008; Rouder & Morey, 2012). In this section we will
review relevant results from the statistical literature before
we adapt them for our example model in the next section.

Fig. 2 Hierarchical PVL-Delta model with regression extension.
Solid edges indicate components of Steingroever et al.’s (in press)
hierarchical implementation of the PVL-Delta model; newly added

regression components for relating model parameters to covariates are
indicated by dashed edges. z′

i denotes the probit-transform of model
parameter zi ∈ {Ai, wi, ai , ci}
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Hypothesis testing in the context of regression is a model
selection process. Given a set of predictors, the goal is to
select a subset that best accounts for the observed data. Con-
sider, for example, the simple situation where a researcher
has a criterion variable y and a single predictor variable x

with mean 0 and variance 1 and wants to know whether x

has any predictive value for y. To answer this question, the
researcher constructs two models. The null model, M0, only
includes an intercept term μ and assumes that the values of
y are normally distributed around this intercept:

y ∼ N (μ, σ 2), (5)

where σ 2 is the residual variance of the criterion vari-
able. The alternative model, M1, additionally includes the
predictor variable x:

y ∼ N (μ + αxx, σ 2), (6)

where αx is a regression weight and σ 2 is again the resid-
ual variance. The researcher then compares the adequacy
of the two models for the data at hand and selects the
corresponding model.

In a more general setting, a researcher might consider
a set of predictor variables x.j , j = 1 . . . P with observa-
tions xij , i = 1 . . . N for each predictor. We again assume
that each predictor has mean 0. The researcher now wants
to select the subset of predictors that are related to the crite-
rion variable yi . The full model relating all predictors to the
criterion variable then is:

yi ∼ N (μ + α1xi1 + α2xi2 . . . αP xiP , σ 2), (7)

where αj is a regression weight for predictor j and σ 2 is
the residual variance. This model can be more conveniently
expressed in vector notation:

yi ∼ N (μ + xixixi
T ααα, σ 2). (8)

Here ααα = [α1, . . . , αP ] denotes the P × 1 vector of regres-
sion weights, and superscript T indicates the transpose. We
furthermore assume that the predictor variables have mean
0. This can be achieved by centering the predictor, that is,
subtracting the mean of the predictor from each observation.
The resulting the P × 1 vector of predictors for each obser-
vation i is xxxi. = [xi1 − x̄.1, . . . , xiP − x̄.P ], where x̄.j is
the mean across observations of predictor j . The researcher
can now construct a model that only includes a subset of the
predictor variables and test the hypothesis that the reduced
model is more adequate for the data than the full model.

Within Bayesian statistics, the principled way of testing
such hypotheses is by computing Bayes factors, that is the
ratio of the marginal likelihood of the observed data under
two competing models, BF10 = p(y | M1)/p(y | M0)

(Berger 2006; Jeffreys 1961; Lewis & Raftery, 1997). Bayes
factors hold a number of advantages over conventional
tests of statistical significance, as practiced in psychology

(Gigerenzer et al., 2004). Firstly, significance tests can only
ever reject but never accept the null hypothesis. Bayes fac-
tors, on the other hand, can express support for the null
hypothesis as well as the alternative hypothesis (Rouder
et al., 2009). Secondly, while significance tests force a
binary choice upon researchers between rejecting the null
hypothesis or remaining in a state of suspended disbe-
lief, Bayes factors allow researchers a graded expression
of the evidence for the competing hypotheses provided by
their data.1 Thirdly, conventional significance tests require
researchers to commit to a sampling plan before data col-
lection begins and to continue collecting data even if a
hypothesis can be confidently rejected or accepted before
the full sample has been acquired. Bayes factors, on the
other hand, allow researchers to assess the support for com-
peting hypotheses repeatedly during the sampling process
and stop collecting data when a hypothesis is supported or
rejected to a satisfying degree (Edwards et al., 1963; Kass
& Raftery, 1995; Rouder, 2014).

Default Bayes factors need to fulfill a number of theoreti-
cal desiderata (Bayarri et al., 2012; Rouder & Morey, 2012).
Firstly, Bayes factors should be location and scale invari-
ant. In the case of regression models, this means that the
scale on which the criterion and predictor variables are mea-
sured (e.g., kilograms, grams, milligrams) and the location
of the zero-point of the scale (e.g., temperature in Celsius vs.
in Fahrenheit) should not influence the Bayes factor. Sec-
ondly, Bayes factors should be consistent, which means that
as sample size approaches infinity, the Bayes factor should
converge to the correct bound (i.e., BF10 → 0 if M0 is
correct and BF10 → ∞ if M1 is correct). Thirdly, Bayes
factors should be consistent in information, which means
that the Bayes factor should not approach a finite value as
the information provided by the data in favor of the alter-
native model approaches infinity. In the case of regression
models this means that, as the coefficient of determination,
R2, in M1 approaches 1, the Bayes factor should go to
infinity (Ly et al., 2016).

Whether or not Bayes factors satisfy the above desiderata
critically depends on the choice of the priors for the model
parameters. Assigning improper priors to model-specific
parameters, for instance, leads to indeterminate Bayes fac-
tors (Jeffreys, 1961). In our example with a single predictor
x, the corresponding regression weight αx is included in M1

but not in M0. If αx is assigned an improper prior that is

1However, these limitations do not apply to the Neymann-Pearson
approach to hypothesis testing. In this approach, the researcher tests a
specific alternative hypothesis against a null hypothesis. The choice of
the significance threshold is based on a tradeoff between Type I and
Type II errors, and sample size. If the p-value exceeds the significance
threshold, the researcher acts as if the alternative hypothesis were true.
If the p-value falls below the significance threshold, the researcher acts
as if the null hypothesis were true (e.g., Gigerenzer et al., 2004).
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only determined up to a multiplicative constant, this con-
stant will appear in the numerator of the Bayes factor but
not in the denominator, which means that it will not cancel
and the Bayes factor BF10 will depend on the multiplica-
tive constant. Consequently, researchers need to choose the
prior distribution for the model parameters in such a way
that model comparisons yield Bayes factors with the desired
theoretical properties.

An additional criterion in selecting priors for the model
parameters is the degree to which priors are noninformative.
In many situations, researchers have little information about
the range in which the model parameters, that is, the regres-
sion weights, should fall. Therefore, the weights should be
assigned a prior that puts little constraint on the possible
values. One prior that has regularly been used in regression
problems is Zellner’s g-prior (Zellner, 1986). In the case of
P predictor variables and N observations for each variable,
this prior takes the form:

ααα | g ∼ NNN (0, gσ 2(XXXT XXX)−1),

where ααα is the vector of regression weights, g is a scaling
factor, σ 2 is the residual variance of the criterion variable, 0
is a P ×1 vector of zeros, and XXX is the N×P centered design
matrix that is obtained by writing the P ×1 vector of predic-
tor values for all N observations as rows of a matrix: XXX =
[xxx1., . . . , xxxN.]T . NNN (μμμ, �) denotes the multivariate normal
distribution with mean vector μμμ and covariance matrix �.
The degree to which this prior is informative is controlled
by its variance-covariance matrix, which in turn depends on
g, σ 2, and XXX. In Zellner’s (1986) conceptualization of this
prior, the design matrix should be treated as a constant; the
prior can then be interpreted as the prior on the regression
weights arising from a repetition of the experiment with the
same design matrix. The intercept μ and the residual vari-
ance σ 2 should be assigned a scale-invariant Jeffreys prior
(Jeffreys, 1961) p(μ, σ 2) ∝ 1/σ 2. Finally, the scaling fac-
tor g controls the weight given to the prior relative to the
data. For example, g = 10 means that the data are given 10
times as much weight as the prior. The scaling factor thus
controls how peaked or how informative the prior is.

Another way to understand the effect of the scaling
parameter is to consider the shrinkage factor g/(1 + g)

(Liang et al., 2008; Wetzels et al., 2012). Using this shrink-
age factor, the posterior mean for ααα can be estimated as the
product of the shrinkage factor and the least-squares esti-
mate of the regression weights, αααOLS . Consequently, if g is
set to a small value, the posterior estimate of ααα will be pulled
towards 0 whereas a high value of g leads to a posterior
mean that is similar to the least-squares estimate.

The question that remains is how g should be set. One
popular choice is to set g = N , which yields a unit infor-
mation prior (Kass & Raftery, 1995). Specifically, the term
σ 2(XXXT XXX)−1 in the expression for the variance-covariance

matrix of the prior equals the variance-covariance matrix
of the maximum-likelihood estimators of the regression
weights, var(αααOLS). This estimate is based on the design
matrix with N rows, which conveys the information of N

observations. Therefore, by setting g to N , the influence of
the design matrix on the prior can be made equivalent to the
information contained in a single observation.2

However, as shown by Liang et al. (2008), the Zellner
prior in its general form suffers from two shortcomings.
Firstly, if g is set to a fixed value, the resulting Bayes factors
will suffer from the “information paradox”. This means that
when a model M1 is compared to the null model M0, and
the coefficient of determination R2 under M1 approaches 1
(i.e., there is infinite support for M1), the Bayes factor will
tend to a finite value, thus violating the theoretical desider-
atum of consistency in information. Secondly, if g is set to
a very large value to make the prior noninformative, Bayes
factors will suffer from the Jeffreys-Lindley-Bartlett para-
dox. This means that M0 will unduly be favored. In the
limiting case when g → ∞, the Bayes factor will go to
zero, irrespective of the information provided by the data,
thus violating the theoretical property of consistency.

The problems of the Zellner prior are resolved by the
Jeffreys-Zellner-Siow prior (JZS prior; Nuijten et al., 2015;
Rouder & Morey, 2012). In the approach suggested by
Zellner and Siow (1980), the regression coefficients are
assigned a multivariate Cauchy prior, which satisfies the
consistency requirements on the Bayes factors (Liang et al.,
2008; Wetzels et al., 2012):

ααα ∼ CCC (0, σ 2(XXXT XXX/N)−1s2), (9)

where CCC (μμμ, �) denotes the multivariate Cauchy distribu-
tion with mean vector μμμ = 0 and scale matrix � =
σ 2(XXXT XXX/N)−1, and s is a scale parameter that scales the
prior to the researcher’s a priori expectations for the vector
of regression weights ααα. However, one slight drawback of
the multivariate Cauchy prior is that the marginal likelihood
of the data under a model cannot be computed in closed
form and numerical approximations require the computa-
tion of a P -dimensional integral, which becomes unstable
for models with large numbers of predictors. As pointed out
by Liang et al. (2008), a remedy to this problem is to express
the multivariate Cauchy distribution as a mixture of g-priors.
In this approach, the scaling factor g in the Zellner prior is
treated as a random variable:

ααα | g ∼ NNN (0, gσ 2(XXXT XXX/N)−1), (10)

and g is assigned an inverse-gamma prior:

g ∼ I G (1/2, s2/2) (11)

2Note that because the design matrix appears in the expression for the
prior in the inverse of the matrix (XXXT XXX)−1, multiplying (XXXT XXX)−1 by
N is equivalent to diving (XXXT XXX) by N .
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with shape parameter 1/2 and scale parameter s2/2. Note
that the scale parameter s of the inverse gamma distribution
is equal to the scale parameter of the multivariate Cauchy
distribution. Using this mixture representation of the JZS
prior reduces the computation of a Bayes factor to a one-
dimensional integral that can be computed numerically with
great precision (Rouder & Morey, 2012).

The above discussion shows that using the JZS prior
yields Bayes factors that are consistent and consistent in
information. The resulting Bayes factors are also location
and scale-invariant, which can be shown by considering
three equivalent methods for obtaining location and scale-
invariance. Firstly, in the case of a single predictor x,
location-invariance of the Bayes factor can be achieved by
centering the predictor, and scale-invariance is achieved by
standardizing the predictor with respect to the residual stan-
dard deviation of the criterion variable, σ , and the standard
deviation of the predictor, sx :

x̃i = xi − x̄

sx
σ.

Using this standardized predictor in the regression model
yields location and scale-invariant Bayes factors. Secondly,
an equivalent way to achieve location and scale-invariant
Bayes factors is to standardize the regression weight for the
centered predictor with respect to the residual standard devi-
ation of the criterion variable and the standard deviation of
the predictor. This yields a standardized effect size βx :

βx = αx

sx

σ
, (12)

which can be assigned a univariate Cauchy prior with scale
parameter s:

βx ∼ C (s). (13)

Here s describes the interquartile range of plausible values
for the standardized effect size βx . Finally, scale-invariance
can equivalently be obtained by including the standardiza-
tion with respect to σ and sx in the prior distribution of the
regression weights:

αx ∼ C

(
s
σ 2

s2
x

)
. (14)

In the case of multiple predictors, a location and scale-
invariant prior can be placed on the vector of regression
weights, ααα. In this case standardization is achieved by the
term σ 2(XXXT XXX/N)−1 in expression for the prior distribution
(Eqs. 9 and 10).

Regression in cognitive models

Our regression framework for cognitive models is based
on the Bayesian regression framework presented above.
To incorporate the regression framework into Steingroever

et al.’s model (in press), we replaced the group-level nor-
mal priors for the probit-transformed model parameters by a
regression equation that relates the covariates j = 1 . . . P to
the individual-level model parameters z′

i . Specifically, each
probit-transformed model parameter for each participant is
sampled from a normal distribution whose mean depends on
the vector of centered covariates xxxi :

z′
i ∼ N (μz′ + xxxT

i αααz′, σ 2
z′). (15)

Here μz′ is the intercept term, xxxT
i is a transposed P × 1

vector of P centered covariate values for participant i, αααz′ is
the P × 1 vector of regression weights for model parameter
z′, and σ 2

z′ is the residual variance of the model parameter
z′. The standardized effect size for covariate j is again a
transformation of the conventional regression weight:

βz′j = αz′j
sj

σz′
, (16)

where βz′j is the standardized effect size for the regres-
sion of parameter z′ on covariate j , and sj is the standard
deviation of the covariate.

We again retain the three desiderata for Bayes factors
by placing a multivariate Cauchy prior on the vector of
regression weights αααz′ for each model parameter, which we
express as a mixture of g (Zellner & Siow, 1980):

αααz′ | g ∼ NNN (0, gσ 2
z′(XXXT XXX/N)−1), (17)

g ∼ I G (1/2, s2/2), (18)

where the scale parameter s describes the interquartile range
of plausible values for β.

Figure 2 shows the graphical implementation of the
PVL-Delta model with our regression extension. The model
components we added to the hierarchical PVL-Delta model
are indicated by dashed edges. As in the hierarchical PVL-
Delta model, the probit-transformed model parameters are
stochastic nodes that are nested within participants. The
model parameters depend on the group-level stochastic
nodes μz′ , σz′ and the vector αααz′ , as well as the observed
vector of covariate values xxxi that is nested within partici-
pants; the relationship between these quantities is given by
the regression Eq. 15. Moreover, the vector αααz′ depends
on the vector of covariate values xxxi via Eq. 17. Similar
to Steingroever et al.’s (2013, in press) implementation of
the hierarchical PVL-Delta model, who assigned the group-
level mean parameters a standard normal prior, we assigned
the intercept μz′ a standard normal prior μz′ ∼ N (0, 1).
However, instead of the uniform prior used in the hierar-
chical PVL-Delta model, we assigned the residual variance
σ 2

z′ an inverse-gamma prior σ 2
z′ ∼ I G (2, 1/2) with shape

parameter 2 and scale parameter 1/2. Our choice of a rela-
tively informative prior was mainly made to speed up model
convergence (see below) and a uniform prior did not yield
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qualitatively different results. Finally, we assigned the vec-
tor of regression weights αααz′ the mixture of g prior described
in Eqs. 17–18 and set the scale parameter s = 1. The
Stan-code for the model can be found at osf.io/6tfz3.

Computing Bayes factors

Within the regression framework presented above,
researchers can test for a relationship between a normally
distributed model parameter, in our case the probit-
transformed parameter z′, and a covariate xj by computing
the Bayes factor for the standardized effect size βz′j . Bayes
factors express the relative likelihood of the observed data
y under two competing hypotheses, H0 and H1 (e.g.,
Jeffreys, 1961; Rouder et al., 2009):

BF10 = p(y | H1)

p(y | H0)
. (19)

A sensible null hypothesis might be that the standardized
effect size for a specific model parameter z′ on the covari-
ate xj is 0, H0 : βz′j = 0, and the alternative hypothesis
might state that the effect size is not 0. The exact expres-
sion for the alternative hypothesis depends on the marginal
prior for standardized effect size under consideration, which
in our case is a univariate Cauchy distribution with scale
parameter s = 1, thus H1 : βz′j ∼ C (1). In the case of
a point-null hypothesis that is nested under the alternative
hypothesis, the Bayes factor for the parameter in question
can conveniently be obtained as the ratio of the alterna-
tive hypothesis’ prior density over its posterior density at
the point-null BF10 = p(βz′j = 0 | H1)/p(βz′j = 0 |
y,H1), which is known as the Savage-Dickey density ratio
(Dickey & Lientz, 1970; Wagenmakers et al., 2010). Note
that the Savage-Dickey density ratio can also be used to test
more complex null hypotheses involving several effect sizes
simultaneously. However, such hypothesis tests will require
estimating the multivariate posterior density for the effect
sizes involved, which can be challenging in practical appli-
cations. In these cases alternative methods for computing
Bayes factors, such as bridge sampling (e.g., Gronau et al.,
2017), might offer a simpler solution.

Simulation study

The goal of our simulation study is to demonstrate how
dichotomizing continuous covariates biases Bayes factors
and how these biases can be avoided using the regression
framework developed above. To generate realistic data for
our simulations, we first fitted the PVL-Delta model with the
regression extension to a published data set (Steingroever
et al., in press). We subsequently used the resulting param-
eter estimates to generate synthetic data for two scenarios,

one in which covariates are not correlated with each other,
and one in which covariates are correlated. To emulate a
typical dichotomization-based analysis strategy, we applied
the hierarchical Bayesian PVL-Delta model in combination
with a median-split of the covariates to the simulated data.
In a median-split analysis, participants are divided into two
groups based on whether their value on the covariate lies
above or below the median. Finally, we compared the result-
ing Bayes factors from the dichotomization-based analysis
to the Bayes factors obtained from the PVL-Delta model
with our regression extension.

Generating synthetic data

Data set

We based the setup for our simulated data on the data
published in Steingroever et al. (in press) because of the
simple experimental design and the clear structure of the
covariates measured. In Steingroever et al.’s study 70 partic-
ipants performed 100 trials of the IGT using the traditional
payoff scheme suggested by Bechara et al. (1994). In addi-
tion, they completed Betsch and Ianello’s (2010) decision
style questionnaire, which consists of 70 items that assess
participants’ tendency to use an intuitive or deliberate deci-
sion style on a seven-point Likert scale. Steingroever et al.
submitted participants’ responses to a principal component
analysis and computed participants’ scores on two factors,
deliberation and intuition. In addition, they fitted the PVL-
Delta model to participants’ performance data on the IGT
and related each participant’s factor scores to the estimated
PVL-Delta parameters. A full description of the sample,
IGT, and questionnaire data can be found in Steingroever
et al. (in press).

We fitted the PVL-Delta model with the regression exten-
sion to Steingroever et al.’s IGT data and used participants’
scores on the Deliberation and Intuition scales as covariates
x1 and x2, respectively. In contrast to Steingroever et al.,
whose analysis only included the data of participants who
scored high on one scale and low on the other, we included
the data of all participants in our analysis. As Steingroever
et al. reported relatively small effects of the covariates on
the model parameters, we expected to also find relatively
small standardized effect sizes αz′j and therefore set the
scale parameter of the Cauchy prior to s = 1/3 (Eq. 18).3

To fit the PVL-Delta model to the data, we implemented
the model with the regression extension in Stan (Carpenter

3However, performing the same analyses with the scale parameter set
to s = 1, the default value, resulted in negligible changes in the pos-
terior estimates of all parameters except αA1 and αA2. As we adjusted
these parameters in the data generation step of our simulations (see
section “Data generation”), our choice of the scale parameter did not
influence the results of our simulations.
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et al., in press; Stan Development Team, 2016a, b) and
obtained samples from the posterior distributions of the
model parameters. For each model parameter we ran three
MCMC chains and collected 50,000 posterior samples
per chain. We discarded the first 5,000 samples of each
chain as burn-in samples and furthermore thinned each
chain, retaining every fifth sample. Starting values for the
population means μz′ were randomly drawn from stan-
dard normal distributions, starting values for the popula-
tion standard deviations σz′ were randomly drawn from
exponential distributions with scale parameter 1, and start-
ing values for the regression weights αz′ were randomly
drawn from normal distributions with mean 0 and standard
deviation 2. All chains showed good convergence (Gelman-
Rubin diagnostic R̂ ≤ 1.005, Gelman & Rubin, 1992).

Model fit and generating parameter values

The columns labeled “Estimated” in Table 1 show the esti-
mated posterior means for our fit of Steingroever et al.’s
data. As can be seen, the regression weights αz′j for the
regression of participants’ model parameters on their covari-
ate values are relatively small; the strongest relationships are
between the outcome sensitivity parameter A and the Delib-
eration scale, and between the loss aversion parameter w

and the Intuition scale (i.e., αA′1 = 0.61 and αw′2 = −0.51,
respectively). The corresponding Bayes factors are shown in
the columns labeled “BF10RG”. As can be seen, the Bayes
factors for the relationship between outcome sensitivity A

and the Deliberation scale x1, and between loss aversion w

and the Intuition scale x2, are relatively modest, with val-
ues of 7 and 6.65, respectively. Moreover, the Bayes factors
for the remaining relationships between model parameters
and covariates are close to one, indicating that the data are
nondiagnostic. In light of the sample size in Steingroever
et al.’s study and our a priori expectation of relatively
small effects sizes, these small Bayes factors suggest that
applications of our regression framework require a more

sizable data set to obtain substantial evidence for relation-
ships between model parameters and covariates.

The columns labeled “BF10MS” in Table 1 show Bayes
factors we obtained in a dichotomization-based analysis
similar to that used by Steingroever et al. (in press; see
section “Analysis Using Dichotomization” for details on this
analysis). All Bayes factors from this analysis were close to
1. These results suggest that a dichotomization-based anal-
ysis requires an large data set and substantial effect sizes
to be able to detect relationships between model parameters
and covariates.

To be able to demonstrate the adverse effects of
dichotomizing covariates, we needed to generate data with
clearly identifiable relationships between model parame-
ters and covariates (recall that, in the case of uncorrelated
covariates, dichotomizing covariates should result in statis-
tical tests missing existent effects). We therefore used twice
the sample size of Steingroever et al.’s study for our simu-
lations. Moreover, we set αA′1 = 1 and αA′2 = 0, which
means that outcome sensitivity should be associated with
deliberation but not intuition, and αw′1 = 0 and αw′2 =
−0.9, which means that loss aversion should be negatively
associated with intuition but not deliberation. Because the
regression weights αA′. and αw′. were now larger than the
values estimated in our model fit, we needed to reduce
the residual variance for the corresponding model parame-
ters to maintain reasonable variance in the covariate scores
between participants (compare Eq. 16). We therefore set the
residual variances σ 2

A and σ 2
w to 3/8 the values estimated in

our model fit. The resulting parameter values used to gener-
ate data in our simulations are shown in the columns labeled
“Adjusted” in Table 1.

Data generation

For our simulations we generated 50 synthetic data sets
under two different scenarios, one in which covariates were
correlated and one in which covariates were uncorrelated.

Table 1 Posterior estimates of parameter values for Steingroever et al.’s (in press) data, adjusted parameter values used to generate synthetic data,
and Bayes factors for Steingroever et al.’s (in press) data

Estimated Adjusted BF10RG BF10MS

z′ αz′1 αz′2 μz′ σz′ αz′1 αz′2 μz′ σz′ x1 x2 x1 x2

A′ 0.61 0.31 0.24 2.82 1 0 0.24 1.06 7.00 2.55 0.28 0.28

w′ −0.04 −0.51 0.38 2.42 0 −0.9 0.38 0.91 1.44 6.65 0.27 0.27

a′ −0.08 0.24 0.30 1.58 −0.08 0.24 0.30 1.58 0.98 2.07 0.27 0.26

c′ −0.02 −0.05 1.34 0.46 −0.02 −0.05 1.34 0.46 0.27 0.39 0.26 0.26

Subscript 1 indicates effect sizes for the Deliberation scale, subscript 2 indicates effect sizes for the Intuition scale. x1 denotes the Deliberation
scale, x2 denotes the Intuition scale. Bold parameter values were adjusted before generating synthetic data. BF10RG is the Bayes factor for the
regression analysis, and BF10MS is the Bayes factor for the median-split analysis
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Each simulated data set consisted of 150 synthetic partici-
pants, which should allow our regression analysis to reliably
detect relationships between model parameters and covari-
ates. For each participant we generated two covariate values,
x1i and x2i , as well as one value for each of the four PVL-
Delta model parameters. To obtain covariate values that
were related to a specific model parameter but not to oth-
ers, we started by generating a 2 × 1 vector of covariate
values for each participant from a multivariate normal dis-
tribution, xxxi ∼ NNN (μμμ, �), with 2 × 1 mean vector μμμ = 000,
and 2 × 2 covariance matrix �. In the scenario with uncor-
related covariates, the covariance matrix was the identity
matrix. In the scenario with correlated covariates the covari-
ance matrix had diagonal entries 1 and off-diagonal entries
0.7. In a second step, we generated probit-transformed PVL-
Delta parameters for each participant using Eq. 15, z′

i ∼
N (μz′ + xxx′T

i αααz′ , σz′). We set the data-generating group-
level parameter values for the regression weights αz′., mean
group-level parameters μz′ , and residual variances σ 2

z′ to the
values given in Table 1.

Finally, based on the four PVL-Delta parameters, we
simulated 200 trials of the IGT for each participant. We dou-
bled the number of trials per participant compared to the
data in Steingroever et al. (in press) to reduce the impact
of imprecise estimates of the PVL-Delta parameters on the
estimation of the regression weights. To generate simulated
IGT trials for each participant, we first spawned a set of pay-
offs for each deck of cards based on the payoff scheme used
in Steingroever et al.’s (in press) study. We then applied the
cumulative distribution function of the standard normal dis-
tribution to the probit-scaled model parameters z′ generated
previously to obtain the corresponding PVL-Delta param-
eter z. We furthermore initialized the expected utilities for
all four decks of cards to 0, meaning that the choice of the
first card was entirely random for all simulated participants.
After generating a random choice on the first trial for each
participant, we evaluated the outcome, updated the expected
utilities, and generated the participant’s choice on the next
trial using Eqs. 1–3 and the parameter values for that simu-
lated participant. We continued this process iteratively until
we had accumulated 200 simulated choices. Further details
and the R code used to generate the simulated data can be
found at osf.io/6tfz3.

Analysis using dichotomized covariates

Dichotomization-based analysis strategies take several
forms. One that is frequently seen in practice is the median-
split. To emulate this analysis strategy in the context of
our simulation study, we developed a version of the hier-
archical Bayesian PVL-Delta model that estimates sepa-
rate group-level means μz′ for participants scoring above
versus below the median on a covariate. Note that including

these separate group-level means in the model constitutes a
relatively sophisticated version of a dichotomization-based
analysis; in practice, researchers are more likely to engage
in a two-step analysis approach, first fitting the cognitive
model separately to the groups of participants scoring above
versus below the median, and subsequently testing the esti-
mated model parameters for differences between groups.
However, such a two-step procedure introduces additional
biases beyond those introduced by dichotomization which
is beyond the scope of the present work (see Boehm et al.,
2016, for a discussion).

Our median-split model assumes the same hierarchical
structure as the PVL-Delta model, with trials nested within
participants whose probit-transformed parameter values are
sampled from a group-level normal distribution. The mean
of the group-level distribution from which a participant’s
probit-transformed parameter values are drawn depends on
the person’s values on the covariates. We implemented this
constraint using effect coding (Rouder et al., 2012), that
is, we assigned each participant i a P × 1 vector dddi =
[di1, . . . , diP ] where the j th entry of the vector is 0.5 if the
person’s score on covariate j is greater than the median, and
-0.5 otherwise:

z′
i ∼ N (μz′ + δδδT

z′dddiσ
′
z, σ

′
z

2). (20)

Here μz′ is the mean of model parameter z′. Furthermore,
δδδz′ is the P ×1 vector of standardized effect sizes (i.e., δδδz′ =
[δz′1, . . . , δz′P ]′) and δz′j is the standardized effect size
indicating the difference, in standard deviations, between
participants with below-median values on covariate j and
participants with an above-median value on covariate j .
Finally, σ 2

z′ is the variance of the model parameter z′ across
participants.

As in the PVL-Delta model with the regression exten-
sion, we assigned the group-level means μz′ a standard
normal prior μz′ ∼ N (0, 1), and the group-level variance
σ 2

z′ an inverse-gamma prior σ 2
z′ ∼ I G (2, 1/2) with shape

parameter 2 and scale parameter 1/2. Finally, we assigned
the standardized effect sizes δz′j independent Cauchy priors
δz′j ∼ C (1) with scale parameter 1.

Data analysis

We analyzed the simulated data using the PVL-Delta model
with regression extension and the PVL-Delta model with the
median-split. For both models we computed Bayes factors
contrasting the null hypothesis that there is no relationship
between model parameters and covariates with the alter-
native hypothesis that there is such a relationship. More
specifically, in the case of the regression model, the null
hypothesis stated that the standardized effect size for a
specific model parameter z′ on a specific covariate xj is 0,
H0 : βz′j = 0, and the alternative hypothesis stated that
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the standardized effect size is not 0, H1 : βz′j ∼ C (1). As
we expected sizable effects in the simulated data, we set the
scale parameter for the regression model’s Cauchy prior to
s = 1 (as in Rouder et al., 2009; Jeffreys, 1961). In the case
of the median-split model, the null hypothesis stated that the
standardized difference in group means is 0, H0 : δz′j = 0,
and the alternative hypothesis stated that the difference in
group means is not 0, H1 : δz′j ∼ C (1).

We based our computation of the Bayes factors for
both models on the Savage-Dickey density ratio (Dickey
& Lients 1970; Wagenmakers et al., 2010). To obtain esti-
mates of the posterior density for each model’s effect size
parameters, we first implemented both models in Stan
(Carpenter et al., in press; Stan Development Team, 2016a,
b). We subsequently ran two MCMC chains for each model
parameter and collected 45,000 posterior samples per chain.
We discarded the first 5,000 samples of each chain as burn-
in and furthermore thinned each chain, retaining every fifth
sample, which left us with a total of 8,000 samples per
chain. All chains showed good convergence (Gelman-Rubin
diagnostic R̂ ≤ 1.001; Gelman & Rubin, 1992). We esti-
mated the density of the posteriors for the βz′j and δz′j using
log-spline functions, and computed the Bayes factors by
taking the ratio of posterior densities to the prior densities at 0.

Results

Figure 3 shows the log-Bayes factors for the alternative
hypothesis obtained in our simulations. We chose to plot the
log of the Bayes factors here, rather than the Bayes factors,
because the Bayes factors spanned up to five orders of mag-
nitude, which means that, on the linear scale, large Bayes
factors would obscure differences in Bayes factors at the low
end of the scale. Moreover, because we generated our data
in such a way that only the PVL-Delta parameters A and w

had sizable relationships with the covariates, we will only
present the results for these parameters here. The full results
for all model parameters as well as details on the estimated
effect sizes can be found in the Appendix. The left panel
of Fig. 3 shows the log-Bayes factors for our simulations
with uncorrelated covariates. As can be seen, the Bayes fac-
tors obtained from the regression analysis showed strong
evidence for an effect of the first covariate on the A param-
eter (dark gray dots, left column in the top row), whereas
the median-split analysis provided much weaker evidence
for such an effect (light gray dots, left column in the top
row). This is also reflected in the median difference in log-
Bayes factors, log(BF10RG) − log(BF10MS), of 2.82. On
the linear scale this corresponds to regression Bayes factors
being about 17 times the size of median-split Bayes factors,
which indicates a strong underestimation of the evidence in
the median-split analysis. Similarly, the regression analysis
strongly supported an effect of the second covariate on the w

parameter (dark gray dots, right column in the bottom row),
whereas the median-split analysis provided much weaker
evidence for such an effect (light gray dots, right column
in the bottom row). The mean difference in log-Bayes fac-
tors was 13.70, which corresponds to regression Bayes
factors being 890,537 times the size of median-split Bayes
factors, indicating a tremendous underestimation of the evi-
dence in the median-split analysis. For the null-effects of
the first covariate on the w parameter (right column, top
row) and of the second covariate on the A parameter (left
column, bottom panel), both analyses performed similarly,
with median differences in log-Bayes factors of 0.06 and
0.09, respectively. This corresponds to ratios of regression
to median-split Bayes factors on the linear scale of 1.07 and
1.09, respectively, indicating only negligible differences.

The right panel for Fig. 3 shows the log-Bayes factors
for our simulations with correlated covariates. The Bayes
factors obtained from the regression analysis again showed
stronger evidence for an effect of the first covariate on the A

parameter (dark gray dots, left column in the top row) than
the median-split analysis (light gray dots, left column in the
top row). However, the median difference in log-Bayes fac-
tors of 1.55, which corresponds to regression Bayes factors
being about 5 times the size of median-split Bayes factors
on the linear scale, was much smaller than in the case of
uncorrelated covariates. Similarly, the regression analysis
provided stronger support for an effect of the second covari-
ate on the w parameter (dark gray dots, right column in the
bottom row), than the median-split analysis (light gray dots,
right column in the bottom row). This is also reflected in the
median difference in log-Bayes factors of 3.68, or a ratio
of regression Bayes factors to median-split Bayes factors of
40 on the linear scale, which is still sizable but smaller than
in the case of uncorrelated covariates. Unlike in the case of
uncorrelated covariates, in the case of correlated covariates
the median-split analysis now suggested a spurious effect
of the first covariate on the w parameter (right column,
top row), with a median difference in log-Bayes factors of
−1.28, which corresponds to a ratio of median-split Bayes
factors to regression Bayes factors of about 4 on the lin-
ear scale. Here, the negative sign of the median difference
in log-Bayes factors indicates that the regression analysis
tended to favor the null hypothesis whereas the median-split
analysis favored the alternative hypothesis. Moreover, the
median-split analysis also suggested a spurious effect of the
second covariate on the A parameter, with a median differ-
ence of −0.68, which corresponds to a ratio of median-split
Bayes factors to regression Bayes factors of about 2 on the
linear scale.

The biases inherent in the median-split analysis are also
clearly visible in the posterior distributions for the effect
sizes. Figure 4 shows the posterior distributions of the stan-
dardized differences in group means, δ, and the standardized
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Fig. 3 Bayes factors from 50 simulated data sets for the regression and median-split analysis. Data points show the log-Bayes factors for the
alternative hypothesis (log(BF10)) obtained in the regression (RG, dark gray dots) and median-split (MS, light gray dots) analysis for the PVL-
Delta model’s A and w parameters (columns) and two covariates (rows). The left subplot shows the results for the case of uncorrelated covariates,
the right subplot shows the results for the case of correlated covariates. Lines indicate the mean log-BF. Data points are jittered along the x-axis
for improved visibility

effect sizes, β, quantile-averaged across simulations, for
the case of uncorrelated covariates. The left column of
the top left subplot shows the prior (thin gray line) and
the posterior (thick black line) for the regression of the
A parameter on the first covariate. Compared to the prior,
which has considerable mass at the point null hypothesis
βA,1 = 0, the posterior has nearly no mass at the point null,
resulting in Bayes factors that strongly favor the alterna-
tive hypothesis. The right column in the same subplot shows
the prior (thin gray line) and posterior (thick gray line)
for the standardized difference in the A parameter between
participants who score above-median on the first covariate
and participants who score below-median. As can be seen,
the posterior has little mass at the point null hypothesis
δA,1 = 0, resulting in Bayes factors favoring the alterna-
tive hypothesis. However, compared to the posterior under
the regression model, the posterior under the median-split
model is considerably wider and has more mass at the point
null, which results in the underestimation of the evidence
against the null observed above. A comparable pattern can
be seen in the bottom right subplot; the posterior under the
median-split model has more mass at the point null than the
posterior under the regression model, resulting in a strong
underestimation of the evidence against the null. Finally, the
top right and bottom left subplots show the comparison for
the true null-effects of the first covariate on the A parameter

and of the second covariate on the w parameter, respectively.
Although the posterior under the median-split model again
has less mass at the point null than the posterior under the
regression model, the differences are less pronounced and
both models favor the null hypothesis.

Figure 5 shows the quantile-averaged posterior distribu-
tions of the standardized differences in group means, δ,
and the standardized effect sizes, β, for the case of cor-
related covariates. The top left and bottom right subplots
show comparable patterns to the case of uncorrelated covari-
ates; the posterior under the regression and the median-split
model both have much less mass at the point null than the
respective prior, resulting in Bayes factors favoring the null
hypothesis. However, compared to the prior, the posterior
under the regression model is much narrower than the pos-
terior under the median-split model, which leads to smaller
Bayes factors under the median-split model. Finally, the top
right and bottom left subplots show the comparison for the
true null-effects of the first covariate on the w parameter and
of the second covariate on the A parameter, respectively. As
can be seen, the posterior for the regression weights is cen-
tered at 0 and has considerably more mass at the point null
than the prior. Therefore, Bayes factors under the regres-
sion model correctly favor the null hypothesis. However, the
posterior under the median-split model lies to the right of
the point null for the A parameter and to the left of the point
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Fig. 4 Posterior distributions of effect sizes for the case of uncorrelated covariates. Shown are the posterior distributions quantile-averaged across
50 simulated data sets. The left subplot shows the results for the A parameter, the right subplot shows the results for the w parameter. Thick black
lines are the posteriors of the standardized effect sizes β (left column in each subplot), thick gray lines are the posteriors of the standardized mean
differences δ (right column in each subplot), thin gray lines show the priors. The top row shows the results for the first covariate (X1), the bottom
row shows the results for the second covariate (X2)

null for the w parameter, and thus has considerably less
mass at the point null than the posterior under the regression
model. Consequently, Bayes factors under the median-split
model understate the evidence for the null and in many
instances even support the alternative hypothesis, suggest-
ing spurious associations between the first covariate and the
w parameter and between the second covariate and the A

parameter.

Discussion

The goal of the present work was to develop a methodolog-
ical framework that allows researchers to test hypotheses
about associations between the parameters of a cognitive
model and covariates in a principled way. To this end
we showed how Bayesian linear regression can be used
to obtain Bayes factors for specific associations between
model parameters and covariates. As an example applica-
tion, we chose the PVL-Delta model which aims to explain
risky decision-making as the result of a reinforcement-
learning process. Adding a regression extension to the
PVL-Delta model allowed us to simultaneously account

for participants’ model parameters and measurements of
participants’ preferred decision styles.

One analysis strategy that has been used regularly to test
for associations between model parameters and covariates
is to divide participants into groups based on their covari-
ate scores and subsequently test for differences in model
parameters between groups of participants. Despite repeated
warnings against the use of dichotomization-based analyses
(Austin and Brunner, 2004; Cohen, 1983; MacCallum et al.,
2002; Maxwell & Delaney, 1993; Royston et al., 2006), a
number of recent studies have relied on median-splits (e.g.,
Beitz et al., 2014; Cooper et al., 2015; Kwak et al., 2014;
Steingroever et al., in press) to test for associations between
the parameters of different cognitive models and covariates.
We conducted a simulation study to illustrate the degree of
bias introduced by such suboptimal analysis strategies. To
this end, we generated simulated data under two scenarios.
In one scenario covariates were not correlated with each
other, and some of the covariates were correlated with some
of the model parameters but not others. In the other sce-
nario covariates were correlated with each other, and some
of the covariates were correlated with some of the model
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Fig. 5 Posteriors of effect sizes for the case of correlated covariates. Shown are the posterior distributions quantile-averaged across 50 simulated
data sets. The left subplot shows the results for the A parameter, the right subplot shows the results for the w parameter. Thick black lines are the
posteriors of the standardized effect size β (left column in each subplot), thick gray lines are the posteriors of the standardized mean differences δ

(right column in each subplot), thin gray lines show the priors. The top row shows the results for the first covariate (X1), the bottom row shows
the results for the second covariate (X2)

parameters but not others. Our simulations showed that, in
the first scenario, a median-split analysis leads to Bayes fac-
tors that understate the evidence for true effects compared to
the Bayes factors obtained from a regression model. In the
second scenario, Bayes factors from a median-split analysis
again understated the evidence for true effects but, in addi-
tion, a median-split analysis also suggested spurious effects
of covariates on model parameters that were, in fact, unrelated.

Interestingly, for the median-split analysis as well as the
regression analysis, Bayes factors favoring the null hypothe-
sis were very modest across simulations compared to Bayes
factors favoring the alternative hypothesis. This is a well-
known theoretical result that is due to different rates of
convergence for Bayes factors under the two hypotheses. In
particular, if data are generated under the alternative hypoth-
esis, the rate of convergence of Bayes factors will be in
the order of

√
n whereas if data are generated under the

null hypothesis, the rate of convergence will be in the order
of log n, and thus much lower (Bahadur & Bickel, 2009;
Johnson, 2010).

The reason for this different rate of convergence is that
the alternative hypothesis is centered at the value of the

point null hypothesis, and thus gives high plausibility also to
data generated under the null hypothesis. Therefore, if data
are generated under the null hypothesis, the null hypothesis
gains evidential support over the alternative hypothesis only
because it offers a more parsimonious account of the data.
If the data are generated under the alternative hypothesis,
on the other hand, the alternative quickly gains support over
the null hypothesis because the data are highly implausible
under the null hypothesis. Consequently, finding strong evi-
dence for the null hypothesis will require considerably more
data than finding evidence for the alternative hypothesis.

Another interesting results of our simulations was that the
Bayes factors for spurious effects suggested by the median-
split analysis were relatively small compared to the Bayes
factors for true effects. This result is due to the fact that
the median-split analysis generally leads to wider posteriors
than the regression analysis, resulting in overall smaller
Bayes factors.

Finally, the results of our present work imply that prac-
tical applications of our regression framework require a
sufficiently large sample size. The application of our regres-
sion framework to Steingroever et al.’s (in press) data
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yielded relatively modest Bayes factors. To be able to obtain
sizable Bayes factors in our simulations, we generated rel-
atively large data sets. This suggests that researchers who
wish to apply our regression framework will need to acquire
sufficiently large data sets to be able to find substantial
support for relationships between model parameters and
covariates.

Our focus in the present work has been on the devel-
opment of a regression framework for relating covariates
to model parameters. An alternative approach to establish-
ing relationships between model parameters and covariates
is to estimate their joint covariance matrix. For exam-
ple, Turner et al. (2013) have presented a hierarchical
Bayesian joint modeling approach where covariates and
parameters of a cognitive model are related via a joint
covariance matrix. However, this approach comes with a
number of practical challenges. Firstly, estimating models
with highly correlated parameters often requires special-
ized sampling algorithms (e.g., Turner et al., 2013) that
are not available in standard Bayesian software packages
such as Stan (Carpenter et al., in press; Stan Development
Team, 2016a, b) or JAGS (Plummer, 2003). The regres-
sion framework presented here, on the other hand, can
easily be implemented using standard sampling algorithms
for many types of cognitive models (see below). Sec-
ondly, many joint modeling implementations have been
developed for the purpose of estimation rather than hypo-
thesis testing (e.g., Turner et al., 2013; Michalkiewicz &
Erdfelder, 2016; Vandekerckhove et al., 2011). As such,
this work has not addressed the problem of how to select
an appropriate prior distribution for the covariance matrix,
which critically determines the properties of Bayesian sta-
tistical tests. The effect of different prior distributions for
regression coefficients on Bayes factors, on the other hand,
has been thoroughly investigated and prior distributions
have been developed that satisfy a number of theoreti-
cal desiderata (e.g., Liang et al., 2008; Rouder & Morey,
2012; Zellner, 1986). Thirdly, a related problem concerns
how associations between individual covariates and model
parameters can be tested. While some work has addressed
the problem of testing correlations between a single covari-
ate and a specific model parameter (Matzke et al., 2017;
Jeffreys, 1961), it is not clear how to test individual entries
from a covariance matrix if several covariates are included
in a model simultaneously. The regression framework pre-
sented here, on the other hand, allows for straightforward
tests of individual regression weights. Due to these practi-
cal limitations of the joint modeling approach we consider
the regression approach presented here as the currently
most practical solution to the problem of relating model
parameters to covariates.

We have limited the application of our hierarchical
Bayesian regression framework in the present work to the

PVL-Delta model. However, the framework can also be
adapted to other cognitive models that fulfill a few mod-
est requirements. Firstly, the cognitive model needs to be
implemented in a hierarchical way to allow researchers to
relate individual participants’ model parameters to mea-
sured covariates. For many popular models such hier-
archical implementations are readily available (Matzke
et al., 2015; Steingroever et al., 2014; Wiecki et al.,
2013; Ahn et al.’s, 2016, R-package contains hierarchical
implementations of several popular models of decision-
making) or can be easily developed using MCMC soft-
ware packages such as JAGS (Plummer, 2003) or Stan
(Carpenter et al., in press; Stan Development Team,
2016a.

Secondly, the model parameters of interest need to be
normally distributed. Although this assumption is often rea-
sonable and can be readily adopted, in other cases the
cognitive interpretation of the parameters or mathematical
constraints necessitate specific bounds on the parameter val-
ues. However, such constraints can often be overcome by
using an appropriate transformation of the model parame-
ters, rather than the model parameters themselves, in the
regression analysis. In the case of the PVL-Delta model, for
instance, all model parameters are assumed to be restricted
to closed intervals, yet probit transforming the parameters
allowed us to add the Bayesian regression extension to the
PVL-Delta model. One slight drawback of such non-linear
transformations of model parameters is that the regression
weights themselves can no longer be interpreted. However,
in most practical applications researchers are only interested
in the direction of the relationship between model param-
eters and covariates, which is not affected by monotonic
transformations.

Thirdly, model parameters must be assumed to be depen-
dent on the covariates. Linear regression is based on the
assumption that the predictor variables cause the criterion
variable. As we treat the model parameters as the criterion
variable in our regression framework, applications of the
framework are limited to situations where it is reasonable
to assume that the model parameters depend on the covari-
ates. These three conditions are all that is required for our
regression extension to be added to a cognitive model and
are easily met by most existing models.

Although reinforcement learning models, and the PVL-
Delta model in particular, served merely as an example
for our Bayesian regression framework, we believe that
our regression extension can greatly facilitate research
involving risky decision-making. One potential application
beyond identifying relationships between model parameters
and physiological measurements is the statistical control of
nuisance variables. A number of authors have suggested that
performance on the IGT might be subject to practice effects
(Ernst et al., 2003; Lejuez et al., 2003; Verdejo- Garcı́a
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& Pı́rez-Garcı́a, Verdejo-Garcia2007), although no study to
date has comprehensively addressed this problem (Buelow
and Suhr, 2009). Including time-on-task as a covariate in
model-based analyses might allow researchers not only to
control for practice effects but also to pinpoint which cogni-
tive processes are affected by practice and which processes
remain stable over time. Similar model-based analyses in
perceptual decision-making, for example, have suggested
that while participants’ processing of stimuli remains unaf-
fected by practice, their response mode can change over
time although considerable practice might be needed for
participants to reach optimal performance (Hawkins et al.,
2015; Simen et al., 2009).

To conclude, in the present work we presented a hierar-
chical Bayesian regression extension for cognitive models
that allows researchers to test for relationships between
model parameters and covariates using Bayes factors. In our
simulation study we showed how our regression framework
overcomes the biases associated with the often-practiced
median-split analysis. The latter can lead researchers to
either miss existing relationships between model parameters
and covariates, or suggest spurious associations between
model parameters and covariates, depending on whether the
covariates are correlated with each other or not. Moreover,
compared to other methods for relating model parameters
to covariates, such as joint modeling, our regression frame-
work has relatively modest technical requirements and can
be easily applied to many existing cognitive models. Con-
sequently, our regression framework provides a practical
and easy-to-use method for testing for relationships between
model parameters and covariates.
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Appendix: Complete results of the simulation study

In this appendix we provide the results of our simula-
tion study for all four parameters of the PVL-Delta model.

Figure 6 gives the log-Bayes factors for all PVL-Delta
parameters from our simulations with uncorrelated covari-
ates. Dark gray dots show the Bayes factors obtained in
the regression analysis, light gray dots show the Bayes fac-
tors obtained in the median-split analysis. Recall that our
simulated data were generated so that the first covariate
would be positively correlated with the A parameter and
the second covariate would be negatively correlated with
the w parameter. The correlations between A and the sec-
ond covariate, and between w and the first covariate were
set to 0 and the relationships between the remaining model
parameters and the covariates were set to the values esti-
mated from Steingroever et al.’s (in press) data, and were
negligible. As described in the main text, the Bayes fac-
tors from the regression analysis showed strong evidence
for an effect of the first covariate on the A parameter (dark
gray dots, left column in the top row) whereas the median-
split analysis provided much weaker evidence for such an
effect (light gray dots, left column in the top row). Simi-
larly, the regression analysis strongly supported an effect of
the second covariate on the w parameter (dark gray dots,
second column in the bottom row), whereas the median-
split analysis provided weaker evidence for such an effect
(light gray dots, second column in the bottom row). For
the null-effects of the first covariate on the w parameter
(second column, top row) and of the second covariate on
the A parameter (left column, bottom panel), both analy-
ses performed similarly without any appreciable differences
in Bayes factors. Finally, both analyses provided only weak
support if any for an effect the covariates on the a and c

parameters and there were no sizeable differences in Bayes
factors.

Figure 7 gives the log-Bayes factors for all PVL-Delta
parameters from our simulations with correlated covariates.
As described in the main text, the Bayes factors obtained
from the regression analysis again showed stronger evidence
for an effect of the first covariate on the A parameter (dark
gray dots, left column in the top row) than the median-
split analysis (light gray dots, left column in the top row).
Similarly, the regression analysis provided stronger support
for an effect of the second covariate on the w parameter
(dark gray dots, second column in the bottom row), than
the median-split analysis (light gray dots, second column
in the bottom row). However, unlike in the case of uncor-
related covariates, in the case of correlated covariates the
median-split analysis now suggested spurious effects of the
first covariate on the w parameter (second column, top row)
and of the second covariate on the A parameter (left column,
bottom row). Finally, the regression as well as the median-
split analysis did not provide strong evidence for any effects
of the covariates on the a and c parameters, and there were
no clear differences in Bayes factors visible between the two
analyses.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Fig. 6 Bayes factors from 50 simulated data sets for the regression and median-split analysis with uncorrelated covariates. Data points show the
log-Bayes factors for the alternative hypothesis (log(BF10)) obtained in the regression (RG, dark gray dots) and median-split (MS, light gray dots)
analysis for the PVL-Delta model’s A and w parameters (columns) and two covariates (rows). Lines indicate the mean log-BF. Arrows highlight
underestimation of Bayes factors in the median-split analysis. Data points are jittered along the x-axis for improved visibility

Taken together, these results illustrate that, in the case
of uncorrelated covariates, a median-split analysis tends
to understate the evidence for existent effects. In the
case of correlated covariates, a median-split analysis also
understates the evidence for existent effects but in addition
suggests spurious effects of covariates on model param-
eters that are in fact unrelated. Furthermore, our results
show that in cases where model parameters do not have
any appreciable relationships with any of the covariates, as
was the case for the a and c parameters, regression and
median-split analyses perform similarly and there are no
appreciable biases associated with a dichotomization-based
analysis.

Figure 8 shows the posterior means of the standard-
ized effect sizes estimated in the regression analysis (RG,
left panels in each subplot) and the posterior means of
the standardized effect sizes estimated in the median-split

analysis (MS, right panels in each subplot). The left sub-
plot shows results for the case of uncorrelated covariates,
the right subplot shows the results for the case of corre-
lated covariates. The top row shows the results for the first
covariate, the bottom row for the second covariate. The
results corroborate the results from the Bayes factors. In
the case of uncorrelated covariates (left subplot), the esti-
mated effects in both models are largest for effects that we
created to be non-zero (i.e., the effect of the first covariate
on A and the effect of the second covariate on w, leftmost
column of the panels in the top row and second-from-left
column of the panels in the bottom row, respectively). More-
over, both models correctly estimate the direction of the
effect of the first covariate on the A parameter to be pos-
itive (leftmost column of the panels in the top row), and
the direction of the effect of the second covariate on w

to be negative (second-from-left column of the panels in
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Fig. 7 Bayes factors from 50 simulated data sets for the regression and median-split analysis with correlated covariates. Data points show the
log-Bayes factors for the alternative hypothesis (log(BF10)) obtained in the regression (RG, dark gray dots) and median-split (MS, light gray dots)
analysis for the PVL-Delta model’s A and w parameters (columns) and two covariates (rows). Lines indicate the mean log-BF. Arrows highlight
overestimation of Bayes factors in the median-split analysis. Data points are jittered along the x-axis for improved visibility

the bottom row). Both models also correctly estimate the
effects of the first and second covariate on a and c to be
close to 0 (second-from-right and rightmost columns of each
panel).

In the case of correlated covariates (right subplot), both
analyses again correctly estimate the size and direction of
the strong effects of the first covariate on the A param-
eter (leftmost column of the panels in the top row) and
of the second covariate on the w parameter (second-from-
left column of the panels in the bottom row). However,
while the regression analysis correctly estimates the rela-
tionships between the first covariate and the w parameter
(left panel, second-from-left column in the top row) and
between second covariate and the A parameter (left panel,
leftmost column in the bottom row) to be approximately
0, the median-split analysis suggests a weakly negative
association between the first covariate and w (right panel,
second-from-left column in the top row) and between the

second covariate and A (right panel, leftmost column in the
bottom row). Finally, both models correctly estimate the
effects of the covariates on the a and c parameters to be
close to 0.

These results align well with the results for the Bayes
factors. In the case of uncorrelated covariates, the regres-
sion analysis as well as the median-split analysis cor-
rectly indicate the direction and size of the relationships
between covariates and model parameters. However, in
the case of correlated covariates, the median-split analysis
tends to suggest spurious relationships between covari-
ates and model parameters. The direction of these spuri-
ous effects is equal to the direction of the true effects.
This suggests a spill-over from one covariate to the other
that arises from the fact that the median-split analy-
sis ignores the correlation between covariates, whereas
the regression analysis partials out correlations between
covariates.
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Fig. 8 Mean posterior estimates from 50 simulated data sets of effects
for the regression and median-split analysis for uncorrelated (left sub-
plot) and correlated (right subplot) covariates. Data points show the
estimated standardized effect sizes (β̂) from the regression analysis
(RG; left panels in each subplot, dark gray dots) and the estimated
standardized effect size (δ̂) from the median-split analysis (MS; right

panels in each subplot, light gray dots) for the four PVL-Delta param-
eters. The top row shows the results for the first covariate, the bottom
row for the second covariate. Black lines indicate the mean across
simulations. Data points are jittered along the x-axis for improved
visibility.
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