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Parameter recovery, bias and standard errors in
the linear ballistic accumulator model

Ingmar Visser* and Rens Poess�e
Department of Psychology, University of Amsterdam, The Netherlands

The linear ballistic accumulator (LBA) model (Brown & Heathcote, 2008, Cogn. Psychol.,

57, 153) is increasingly popular inmodelling response times from experimental data. An R

package, glba, has been developed to fit the LBA model using maximum likelihood

estimationwhich is validated bymeans of a parameter recovery study. At sufficient sample

sizes parameter recovery is good, whereas at smaller sample sizes there can be large bias

in parameters. In a second simulation study, two methods for computing parameter

standard errors are compared. The Hessian-based method is found to be adequate and is

(much) faster than the alternative bootstrap method. The use of parameter standard

errors in model selection and inference is illustrated in an example using data from an

implicit learning experiment (Visser et al., 2007, Mem. Cogn., 35, 1502). It is shown that

typical implicit learning effects are captured by different parameters of the LBA model.

1. Introduction

In both experimental and non-experimental settings, response times are of crucial

importance in understanding cognitive processes, next to the character of the responses

provided by people responding to items or questions.Mathematicalmodels that take both

the response and the response time into account have been used in psychology at least
since the 1960s and 1970s (Laming, 1968; Ratcliff, 1978). Since that time the use of such

models has increased steadily.

In typical applications of response time models, the interest is in testing whether an

experimental manipulation has an effect on accuracy and response times, and, in

particular, which aspect of cognitive processing is affected by the manipulation. Such

aspects are the influence of the difficulty of the task, the cautionwhich participants use to

approach the task, a possible trade-off between speed and accuracy, and possible biases

they have towards one or another type of response. Most of the models that are used to
simultaneously model responses and response times are from the class of so-called

evidence accumulation models (Lee & Cummins, 2004), and they are meant to model

precisely such aspects of cognitive processes.

Evidence accumulation models assume that evidence for the different response

alternatives accumulates over time until a threshold is reached. Such models typically

comprise three essential types of parameters related to specific cognitive processes. First,

*Correspondence should be addressed to Ingmar Visser, Amsterdam Brain and Cognition Center, Yield Research
Program,Department of Psychology, University of Amsterdam,NieuweAchtergracht 129B, Amsterdam1018XA,
The Netherlands (email: i.visser@uva.nl).
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the drift or drift rate parameter(s) are related to the speed of evidence accumulation such

that higher drift rates lead to faster decisions. Hence, higher drift rates are associated with

relatively easier tasks and vice versa. Second, the boundary or threshold parameters are

related to the amount of evidence that is deemed sufficient to make a decision. A higher
boundary thus signals more caution about making decisions. Third, the starting-point

parameter is related to the amount of prior evidence or bias that is present. A higher

starting point for one of the response options than for other options means that less

evidence is required to decide for that particular response option.

Although the use of such response timemodels has increased significantly over recent

years, their use remains limited to specialists in this area. For these models to find a larger

audience, a number of conditions need to be met. First, naturally, it needs to be clear that

their application leads to better understanding of cognitive processes. Meeting this
condition requires multiple successful applications of these models, and this condition

thus cannot be met by any single paper. We do, however, present an application of an

evidence accumulation model to implicit learning. Second, software is required that, by

and large, automates the processes of parameter estimation and inference of the model,

and provides the necessary statistics to perform model selection. Here we present a

software package that facilitates easy model specification and estimation. Third, sound

statistical inference methods are required that can be applied and understood by non-

specialists. Estimation methods, inference methods, and (easy-to-use) software that
implements these, should enable non-specialists to apply these models and test

hypotheses based on them. In the current paper we present parameter inference based

on maximum likelihood estimation and standard errors and present simulation studies to

validate these methods as well as an illustration using real data.

Here we study the linear ballistic accumulator (LBA) model (Brown & Heathcote,

2008), details of which are provided in the next section. The LBA model has a number of

attractive properties above other response time models. First, it is relatively easy to

understand and interpret while still maintaining the most desirable properties of other
common response time models (Brown & Heathcote, 2008; Heathcote & Hayes, 2012),

such as the diffusion model (Ratcliff, 1978); see Donkin, Brown, Heathcote, and

Wagenmakers (2011) for a comparison of LBA and diffusionmodels. Those properties are

the ability to capture the shape of both correct and incorrect response time distributions

and the speed–accuracy trade-off (Brown&Heathcote, 2008). Second, the LBAmodel can

be naturally extended to multiple-choice items, whereas many other response time

models are limited to binary-choice tasks (but see van der Maas, Molenaar, Maris, Kievit, &

Borsboom, 2011; for alternatives). Third, there are closed-form solutions for the densities
that follow from the model, making it easy to apply.1 All of these properties of the LBA

model ensure that it has the potential to be used and applied by a wide audience of

researchers in psychology and cognitive science.

In the following we first briefly describe the LBA model. Second, we present an R

package for fitting the LBA model and discuss the design choices made for the package.

Third, we present parameter recovery and bias estimates for a basic model. Fourth, we

present a simulation study that compares two methods of computing standard errors of

the same basicmodel and their use in parameter inference. Finally,we illustrate themodel

1Note thatmany evidence accumulationmodels, such as thediffusionmodel and its variations, require numerical
approximation of one or more integral expressions to compute the likelihood; see, for example, Molenaar,
Tuerlinckx, and van der Maas (2015) for some computational details of the Q-, D-, and normal drift diffusion
models.
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by applying it to a data set from an implicit learning experiment (Visser, Raijmakers, &

Molenaar, 2007).

2. The linear ballistic accumulator model

The LBA model is an evidence accumulation model, meaning that over time evidence

accumulates until a threshold is reached to make a decision. The LBA model has, as its

name implies, one essential property that sets it apart from other evidence accumulation
models: evidence accumulation in the LBA is linear and ballistic. Thismeans that evidence

accumulation has the same rate throughout a trial, rather than being driven by a random

process as is the case in other models (Ratcliff, 1978; Usher & McClelland, 2001).

The working of the LBA model is depicted in Figure 1 for a single accumulator. The

LBAmodel has evidence accumulators for each of the possible response alternatives. After

stimulus presentation, evidence accumulation begins at a certain starting point, denoted

by k. Evidence accumulation proceeds at rate d, and stops when the threshold is reached.

As illustrated in the figure, the time to reach threshold can be simply computed as
(b � k)/d. As in other accumulator models, whichever accumulator reaches the

threshold first generates the response.

More formally, response times in the LBA are modelled as follows:

t ¼ t0 þ b� k

d
; with k�Uð0;AÞ and d�Nðvi; svÞ; ð1Þ

with the following parameters. First, we have the drift rate parameters vi, for each

accumulator i, denoting the (average) rate of evidence accumulation. Second,wehave the

standard deviation sv of the drift rates v; in the LBA, the drift rates for the accumulators are

normally distributed with means vi and standard deviation sv; together with the vi, this

means that the ds are normally distributed according to N(vi, sv). Third, we have the

starting-point parameter A; the starting point of the evidence accumulation, k, is drawn

from a random uniform distribution of which A is the end point, that is, k ~ U(0, A). The
starting-point parameter is associatedwith bias for a particular response (or in a particular

condition). Fourth, we have the boundary parameter b, which is the threshold for

evidence accumulation. The boundary parameter is associated with response caution as a

Example

Time

Response threshold
b = 0.4

k: startpoint drawn from [0,A]

d~N(drift = 0.8, σ = 0.2) RT = (b−k)/d, 

Drift rate d: slope

A = 0.3

Figure 1. Linear ballistic accumulator model illustrating the parameters; see text for details.
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higher boundary sets a higher threshold for evidence to accumulate before a decision is

made. Finally, we have the non-decision time parameter t0; this parameter accommodates

processes unrelated to the choice task such as stimulus encoding and the generation of

motor responses. Note that d and k necessarily vary with trials, whereas b and t0 typically
do not vary with trials.

The simplest LBA model, for a binary choice task without further conditions, has six

parameters: v1 and v2 are the (average) drift rates for both choices, A is the starting-point

parameter, sv the variability of the drift rates, b the boundary parameter, and t0 the non-

decision time. Note that this model is not identified without setting a scaling constraint:

scaling is necessary because the drift rate, drift rate variability, starting point and boundary

parameters can be multiplied with a constant to yield the same response times, as can

easily be seen by considering the equation that generates the response time (b � k)/d.
The most commonly used constraint, which we use throughout this paper, is to set the

sumof the drift rates to 1. In the example here, thatmeans that v1 + v2 = 1, and hence the

model has five free parameters left. See Donkin, Brown, and Heathcote (2009) for

discussion of the scaling constraint in evidence accumulation models.

The LBA model is typically estimated using the likelihood, although likelihood-free

methods have recently been developed as well (Holmes, 2015; Turner & Sederberg,

2014). Assuming response time data Yt, the likelihood for the data is expressed as

LðYt jhÞ ¼
Y
t

fiðYt � t0Þ
Y
j 6¼i

FjðYt � t0Þ
" #

; ð2Þ

where i represents the response category of the response time being modelled,

h represents the parameter vector of the model, h ¼ ðt0; b;A; sv; v1; . . . ; vnÞ, for data with

n possible categories. Here, fið�Þ and Fið�Þ are the probability and cumulative density
functions for the ith accumulator reaching threshold, defined in equations 1 and 2 in

Brown andHeathcote (2008, p. 159), respectively. Informally, the likelihood for any given

response time associated with an accumulator i is the product of the density of that

accumulator reaching threshold at timeYt, and the densities of the other accumulators not

yet having reaching their thresholds. We further follow the procedure for estimation of

model parameters in Donkin, Brown, and Heathcote (2011, p. 149). This procedure is

implemented in an R package, glba, which is outlined in the next section.

3. The glba package

To increase the accessibility of the LBAmodel for applied researchers, herewe present an

R package that allows easy specification of the model as well as robust starting-value

generation, meaning that the chances of finding the global maximumof the likelihood are

high.2 The package further offers parameter standard errors and commonmodel selection

statistics to aid in model and parameter inference. Ease of model specification is

implemented in glba by using the formula interface that is common in R for specifying
linear and general linear models. This allows the user to specify the factors or covariates

that determine each of the five parameter sets of the LBA model.

In particular, in glba all parameters of the LBA model can be made to depend on

predictors in the following way:

2Without appropriate starting-value generation, optimization may easily get stuck in local maxima of the
likelihood, resulting in nonsensical parameter estimates.
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h ¼ bX; ð3Þ

whereh is anyparameter of the LBAmodel,b is a vector of regressioncoefficients andX is a

designmatrix.Note that byhaving acolumnof1’s inX, thecorrespondingelementofbcan
be interpreted as the intercept. Next to typical tests about differences between (discrete)

conditions inanexperiment, this set-up isequally suitable totest theeffectsofcontinuously

varied experimental variables. In Section 6 this is illustrated using a real data example.

In glba, the logartithm of the likelihood in equation (2) is used to optimize parameter

values for given data. More specifically, glba uses full-information maximum likelihood

(FIML) or continuous maximum likelihood estimation of the unknown parameters

(Donkin, Brown, et al., 2011). This means that the likelihood contributions of individual

data points are used rather than the likelihoods for summary statistics of the observed
distributions such as the quantiles. The latter is done in, for example, Donkin, Averell,

Brown, and Heathcote (2009); see Donkin, Brown, et al. (2011) for a tutorial on this and

other issues in fitting the LBA model.

The reason why glba uses FIML instead of quantile maximum probability estimation

(QMPE; Heathcote, Brown, & Cousineau, 2004) is that the former allows easier inclusion

of predictors on the model parameters. That is, using summary statistics such as quantiles

in parameter estimation is relatively straightforward in a factorial design but less so in a

designs with continuous predictors.
Quantile maximum probability estimation has been shown to be less biased and more

robust against outliers when estimating response time parameters (Heathcote, Brown, &

Mewhort, 2002) comparedwith FIML.However,when themodeller is aware of this, using

FIML with robust starting values for the unknown parameters and possibly outlier

detection produces good results in estimating the LBA model (Donkin, Brown, et al.,

2011). FIML estimation is also usually faster than QMPE3 and provides the maximum

likelihood estimates that can be subsequently used in model selection measures such as

the Akaike (AIC) and Bayesian information criteria (BIC).
Other features of the glba package that are worth mentioning are the following. First,

there is the option to fix parameters to particular values, which is useful for testing

hypotheses about them. Second, optionally the Hessian can be estimated at the optimal

parameter values, which is then used to provide parameter standard errors; this will be

applied in Section 7. Third, glbauses the standardRpackageoptim to optimizeparameter

values, which allows for customization of the optimization process, for example, by

choosing the optimization method. Another possibility is to include box constraints on

parameters when this is deemed necessary or interesting. Fourth, and finally, glba
optionally employs a function to generate starting values for the parameters, which in our

experience is quite robust.

The approach to LBA estimation taken here is different from other recent approaches

in that we use maximum likelihood estimation and classical inference methods rather

than Bayesian analysis and inference methods. Bayesian analysis has become a popular

method in response time modelling in general, and in applying the LBA model in

particular. The Bayesian approach has the advantage of being very flexible in the

possibilities for model specification. For example, random effects for individual
participants and regressor functions on the parameters as in the current paper can

3Heathcote et al. (2002) mention that the difference is ‘an order of magnitude’; the relevance of this, given that
computational speeds have increased significantly since 2002, is unknown in the absence of tests to this effect.
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also be naturally incorporated in a Bayesian estimation and inference framework

(Wiecki, Sofer, & Frank, 2013). An important advantage of the hierarchical Bayesian

approach that is frequently mentioned is that parameter uncertainty is automatically part

of the analysis, and that the full posterior distributions of the parameters are available
and can be inspected for inferential purposes (Wiecki et al., 2013). These advantages,

however, may be not as important as they seem, and there are potential downsides as

well. First, in many practical applications, rather than using the full posterior distribution

of parameters, oftentimes summary statistics of this distribution such as the median or

maximum a posteriori estimates are used in inference (e.g., Turner, Forstmann,

Wagenmakers, Brown, Sederberg, & Steyvers, 2013). Second, Bayesian approaches can

lead to large variability in parameter estimates when individual analyses are performed

(e.g., Dutilh, Vandekerckhove, Tuerlinckx, & Wagenmakers, 2009), which are then hard
to interpret (see, for example, Heathcote & Hayes, 2012; for discussion of the Dutilh

et al., 2009, results). Third, the approach adopted here with FIML and linear predictors

on the variables provides the flexibility that is common in the hierarchical Bayesian

approach, without adding the complexity of Bayesian analyses. Moreover, classical

parameter estimation and inference using standard errors provides a measure of

parameter uncertainty.

In the current paper, parameter uncertainty is quantified by computing standard errors

for parameters that can also be used for parameter inference. To the best of our
knowledge, this approach has not been taken in the existing literature on the LBAmodel.

To validate the functionality of the glba package, we next study parameter recovery and

bias with simulated data.

4. Simulation I: Parameter recovery and bias

To establish the statistical properties of the LBA model, a first requirement is that the

parameters are recovered and can be estimated properly and without bias. We present a

paradigmatic and simple case in which only the drift rate differs between conditions in an

experiment. Parameter recovery and bias were tested by repeatedly simulating data from

themodel and fitting models to the simulated data. The code for this simulation as well as

for the second simulation study and the analysis code for the illustration in Section 6 of this

paper is all provided in the online supporting information section.

4.1. Design

The model that is tested here is a simple model which generates data in an ‘easy’ versus a

‘difficult’ condition. The two conditions only differ in the drift rate parameters v, which

were set at vdifficult = .6 and veasy = .8 for the correct responses, respectively. Note that

this means that the average drift rates for the incorrect responses were .4 and .2,

respectively. Parameter values are otherwise similar to those reported in Donkin, Averell,

et al. (2009) for ease of comparison. However, they used QMPE fitting of the LBA model
rather than FIML. The top row of Table 1 provides the true parameter values used in the

simulation. The sample sizes were 80, 150, and 300, respectively, meaning that in each

condition 40, 75, and 150 data points were generated. These numbers are both realistic

and in the range where potentially bias and/or recovery issues could occur. For each

sample size, 1,000 data sets were generated and fitted. No data selectionwas done prior to
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model fitting, that is, no outlier detectionwas applied and all the data are used in fitting the

models.

4.2. Results

No outlier removal was done prior to model fitting, and hence the convergence results

provide information on the robustness of the model. Initially, 302 (out of 3,000) models

did not converge or resulted in inadmissible parameter estimates (e.g., negative values
for t0 or b). These models were reinitialized with the starting-value generation function

in glba.4 After this second round of optimization, there were 104 models left that did

not converge or had inadmissible parameters estimates. These models were reinitial-

ized again and optimized using a different (and slower) optimization algorithm. After

this round of optimization, models for 40 data sets, or 1.3% of all data sets, still did not

converge or led to inadmissible estimates. The numbers for each sample size are

reported in Table 1.

Table 1 shows the recovered parameter averages for the different sample sizes. The
average parameter estimates are close to their true values, and, as expected, this ismore so

for larger sample sizes.

As the table indicates, parameter recovery is good and biases are acceptable at sample

sizes 150 and 300. At sample size 80, at least some parameters have large biases that could

potentially hinder reliable inference, although it should be noted that the variances are

considerably larger as well. Also, at sample size 80, issues with convergence and

inadmissible parameter estimates occur more frequently than at larger sample sizes.

Hence, for this model, 150 data points seems to be the minimal sample size resulting in
unbiased parameter estimates. In the next section we compute the standard errors of this

model using this same sample size to study parameter uncertainty.

It should be noted that the parameter bias becomes considerably smaller when only

considering the models that converged initially. This is especially so for the parameter

with the largest bias, the drift rate parameter in the easy condition. The reason for the large

bias in this parameter is that in small data sets as we consider here, combined with a high

drift rate, as is the case in the easy condition, it may be that there are few or no error

responses in the data. Few error responses can lead to degenerate models where the drift
rate estimates are pushed to unity or beyond.

Table 1. Simulation results for the ‘difficulty’ model, based on 1,000 simulations for each sample

size. Results are averages of the parameter estimates, with the root mean squared errors for these

estimates in parentheses. ‘Fail’ indicates the number of models that did not converge or led to

inadmissible parameter estimates; see the text for details

Fail sv A b t0 vdifficult veasy

True 0.200 0.300 0.100 0.200 .600 .800

80 28 0.202 (0.10) 0.313 (0.09) 0.094 (0.07) 0.211 (0.08) .615 (0.08) .850 (0.16)

150 8 0.199 (0.06) 0.304 (0.05) 0.098 (0.04) 0.202 (0.05) .603 (0.04) .815 (0.10)

300 4 0.198 (0.03) 0.303 (0.03) 0.097 (0.02) 0.203 (0.03) .601 (0.02) .807 (0.05)

4Note that in initial optimization the true parameter values were used as starting values.
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5. Simulation II: Parameter covariance and standard errors

Deriving the covariance matrix of parameter estimates is important for several reasons.
First, the parameter covariance or correlation matrix can provide information on the

identifiability of the model. Correlations between parameters that approach unity are an

indicatorof a lackof identifiability. Such lackof identifiabilityhindersparameterestimation

and may lead to bias. Second, the parameter covariance matrix can be used to derive

standard errors for the parameters. Standard errors, in turn, can be used in inference about

parameterestimatesandhypothesis testing.Forexample, testingwhetheranexperimental

conditionhasasignificanteffectononeof theparametersof themodelcanbedonebyusing

the confidence interval of the estimated parameter or theWald test.
The latter application can be seen as an alternative to the customary practice in

response time modelling of using model selection criteria such as the AIC or BIC. In

response time modelling it is customary to specify a large number of models and then use

model selection criteria to choose the optimal model. For example, Forstmann et al.

(2010) used eightmodels, Ho, Brown, and Serences (2009) selected theirmodel from a set

of 28 models, and Ho, Brown, van Maanen, Forstmann, Wagenmakers, and Serences

(2012) similarly used the BIC to select among a set of candidate models. Here we use an

alternative approach using parameter standard errors in which inference proceeds by
selecting models in which effects are significantly different from zero and/or interpreting

estimated parameters when that is the case. We present an example of such inference

below.

5.1. Method and design

Two methods of computing the parameter covariance matrix (and the resulting standard

errors) are compared. The first method to obtain the parameter covariance is a bootstrap
procedure. Repeated data samples are constructed by resampling from the data a large

number of times, sayB. Subsequently, themodel is re-fitted to theseB samples, resulting in

B estimates of the parameters. The parameter covariance matrix can then be approxi-

mated by the covariance matrix of the B bootstrap estimates. See Efron and Tibshirani

(1986, 1993) for a general introduction to bootstrap-based inference.

As the LBA model is here estimated by maximum likelihood, the likelihood function

can also be used to derive the parameter covariance matrix. Assuming multivariate

normality of the parameter estimates at their optimal values, the inverse of the Hessian
matrix is the parameter covariance matrix. Hence, the second method to obtain the

parameter covariance matrix is through the Hessian matrix of the log-likelihood function,

in particular by computing a finite-difference approximation to the Hessian. The glba

package provides an optional argument to return the Hessian, which is evaluated at the

optimal parameter estimates.

Assuming parameter estimates ĥi and standard errors êi, 95% approximate confidence

intervals are given by (Efron & Tibshirani, 1993)

ĥi � 1:96� êi;

where êi is a standard error estimate obtained from one of the two methods mentioned

above. The quality of standard errors is evaluated by studying the coverage probabilities of

the confidence intervals constructed by them. The theoretical coverage probability of this

interval is 95%.
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The model used in this simulation is the same as in the parameter recovery study. The

simulation involves generating data from the model, fitting a model to the generated data

set, and computing standard errors by the two methods above. The simulation was run

1,000 times, with a sample size of 150. The latter was chosen as the (minimal) sample size
from the parameter recovery study that results in adequate parameter estimates. For

computing the bootstrap covariance, the number of samples was set to 100.

5.2. Results

Figure 2 shows the average standard errors that were obtained with each method. The

bottompanel of Figure 2 shows the coverage rates for each of the parameters and for each

of the methods.
As can be seen in Figure 2, the standard errors resulting from both methods are quite

similar, although the standard errors from the finite-difference Hessian are the smallest for

each parameter. The coverage rates of the parameters are close to their theoretical values,

with the Hessian-basedmethod leaning towards conservative estimates and the bootstrap

method being slightly too lenient. Note that the bootstrapmethod is also computationally

sv A b t0 vdifficult veasy

SE

0.00

0.02

0.04

0.06

0.08

sv A b t0 vdifficult veasy

%

0

20

40

60

80

100

Figure 2. Top: standard errors based on theHessian (left-hand bars), and the bootstrapmethods for

each parameter using sample size 150 and 100 bootstrap samples. Results are averages from 977

replications, 23 simulations having failed due to convergence issues or inadmissible parameter

estimates. Bottom: coverage probabilities of each parameter of the model; left-hand bars for the

Hessian-based method. The horizontal line indicates the theoretical coverage rate of 95%.
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much more costly than the finite-difference method; for the latter method, the

computation cost in addition to fitting a model is almost negligible, whereas in the

bootstrap method fitting as many models as bootstrap samples is required.

By way of example, in Table 2 we provide the parameter estimates for an example of

the difficulty model along with the standard errors, and the corresponding p-values based

on the z-ratio; that is, assuming that h=SEðhÞ follows a standard normal distribution.

Similarly, based on the same model, the table also provides the parameter correlation

matrix. Note that these parameter estimates as well as the correlation matrix are from a
single replication from the simulation study.

This correlation matrix is useful in studying the identifiability of models and data

at hand. In the ‘difficulty’ model, it can be seen that the correlation between t0 an b

is quite high. Even so, at the sample size of 150 data points used in this example,

parameter estimation is feasible. In the next section we illustrate the LBA model and

parameter inference using the glba package with data from an implicit learning

experiment.

6. Illustration: Implicit learning

Seger (1994) defines implicit learning as ‘non-episodic learning of complex information

in an incidental manner, without awareness of what has been learned’. Whether indeed

such learning also results in knowledge without awareness and is supported by dual

systems is a highly contested issue (for opposing views, see Destrebecqz & Cleeremans,
2001; Shanks & Perruchet, 2002). Regardless of this issue, in implicit learning

experiments, participants learn to respond to stimulus material faster or more efficiently

without instructions to do so.

A popular task in implicit learning that shows such faster processing is the serial

response time task (SRTT; Nissen & Bullemer, 1987). In the SRTT, participants respond

to a stimulus that moves from one location to the next between trials. Participants’ task

is to respond to each different stimulus location with a corresponding, congruently

mapped, response key. Unbeknownst to participants, the sequence of locations follows
a regular or repeating pattern. After some training with one particular sequence, the

sequence of locations switches to a different or a random pattern (see, for example,

Pronk & Visser, 2010; Reed & Johnson, 1994, for discussion about these different

options).

Table 2. Example of the ‘difficulty’ model with parameter estimates and standard errors. All

p-values are <.01. The columns after the z-values provide the parameter correlations based on the

finite-difference approximation of the Hessian. Parameter estimates and correlations are from a

single replication of the model

Value SE z A b t0 vdifficult veasy

sv 0.200 0.035 5.7 �0.031 �0.065 0.268 .346 .455

A 0.320 0.034 9.5 – �0.701 0.611 .187 .623

b 0.067 0.023 2.9 – – �0.947 �.151 �.559

t0 0.263 0.027 9.7 – – – .232 .643

vdifficult 0.601 0.033 18.2 – – – – .304

veasy 0.834 0.062 13.4 – – – – –
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6.1. Data

Here we model response times and accuracies from an SRTT reported in Visser et al.

(2007); the data set is included in the glba package. The data consist of 12 blocks of trials

from a single participant in Experiment 2. Each block consists of 395 forced-choice trials
responding to a location sequence with four different positions. The sequence of

locations follows a pattern that is generated by a finite-state automaton (also called a

regular grammar; see Visser et al., 2007; for details). In blocks 6 and 12 the sequence of

locations is (pseudo-)random, with the only restriction that direct repetitions do not

occur. The average response times for each block are shown in Figure 3. The effect of

changing to the random sequence in blocks 6 and 12 is clearly visible.

There are two important characteristics of the data that we want to capture. First, the

response times in sequential blocks decrease rapidly throughout the first few blocks and
then stabilize. Second, the switch to the random sequences results in a large increase in

response times. The latter effect is the classical effect that is interpreted as evidence for

implicit learning. The explanation for the decrease in response times is that, due to the

repetitive nature of the sequence, participants develop expectations about which

stimulus will appear next. As a result, they can prepare for the upcoming response and

hence respond faster. In the random blocks, however, these expectations no longer hold

true and hence result in an increase in response times.

6.2. Models

To characterize the implicit learning process in these data, we fitted a number of LBA

models with various predictors for the LBA parameters. Before fitting the models,

extremely low response times were removed. Although in this task it is common to find

2 4 6 8 10 12
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30
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40

Mean RTs per block of trials.
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Figure 3. Implicit learningdata froma singleparticipant responding toa sequenceof locations; data

from experiment 2 in Visser et al. (2007). Error bars around the means denote standard errors.
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very low response times due to the (implicit) learning effects, response times below

150 ms were removed as such a short time hardly provides the opportunity to perceive

the stimulus. Using the 150 ms threshold resulted in removing 60 response times from a

total of 4,720, amounting to 1.3% of the data.

Expectation in the LBA model is captured by the bias parameter, A. Higher values of A

result in faster response times. The difference between sequence and random blocks is

hence likely to result in different bias parameters. Although we only hypothesize that the

sequence factor affects bias in the model, we also include this factor in the boundary and
drift rate parameters as these three parameters together determine the decision speed.

Hence, the first model we fitted contains effects of the sequence factor in the experiment

on parameters A, b, and v, and the resulting parameter estimates of this model are listed in

Table 3. The table also reports the standard errors of the parameters and the associated z-

and p-values.

The sequence factor has significant effects on the bias parameter of the model as well

as on the boundary parameter, as evidenced by significant p-values. The effect on the drift

rate falls short of significance with p = .09. The effect on the A parameter is in the
expected direction, with a higher bias for sequential trials than for random-order trials.

The effect on the b parameter can also be readily explained. When the order of trials

changes from sequential to random in blocks 6 and 12 of the experiment, it is likely that

participants need to adapt their response caution in order to keep performing at the same

level of accuracy. Indeed, the accuracy level is high and constant throughout the

experiment.

In the second model we fitted, the (non-significant) effect of the sequence factor on

drift rate was dropped from the model. The resulting model has parameter estimates that
are very similar to those reported in Table 3, and all the parameters now have significant

p-values.

The sequence factor in these first twomodels captures differences between the blocks

with sequential trials and those with random-order trials, and thereby captures the

essence of the implicit learning effect. As is obvious fromFigure 3, there ismore variability

in these data than only this difference: the response times in the sequence blocks decrease

rapidly with training, especially in the first few blocks. To capture this effect in the LBA

model, the third model we fitted adds an increasing quadratic trend for the sequential
blocks on the drift rate parameter. The parameter estimates for this model are listed in

Table 4.

Table 3. Parameter estimates of linear ballistic accumulator model of implicit learning, with effect

of the sequence factor on A, b and v. SE denotes the standard error of the parameter based on the

Hessian, z denotes the z-ratio of a parameter and its standard error, and p denotes the corresponding

p-value

Value SE z p

sv 0.27 0.01 25.15 .00

A 0.17 0.02 9.68 .00

Asequence 0.04 0.02 2.41 .01

b 0.18 0.01 18.38 .00

bsequence �0.05 0.01 9.12 .00

t0 0.07 0.01 8.60 .00

v 0.89 0.03 33.67 .00

vsequence 0.03 0.02 1.37 .09
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As can be seen in Table 4, all the relevant parameter estimates remain significant. The

effect of the covariate labelled vquad in the table, is large and highly significant, whereby

the drift increases from .77 to .95 over the course of learning. In other words, the task

becomes significantly easier in the sequence blocks of the experiment, and not in the

random blocks of the experiment. Note that the non-decision parameter t0 is no longer

significant in this model.

6.3. Conclusion

The LBA models fitted here nicely capture the two most important aspects of implicit

learning data. The difference between sequential and random trial blocks is modelled by a

difference in the starting-point parameter A. This is consistent with the idea that in the

SRTT, participants come to expect the locations of the stimuli based on the stimuli they

have processed prior to the current stimulus (Cleeremans & McClelland, 1991). Second,

learning in the task is also captured by an increase in the drift rate in the model for

sequence blocks, but not so for random blocks. That is, processing of the sequential
stimuli becomes easier with practice. This effect is independent of and additional to the

effect of the bias that participants have for sequential stimuli. This increase in drift rate

may be interpreted as an increase in the fluency of decision-making and perceptual

processingof the stimulus that has been theorized to underly implicit learning and implicit

memory effects (Buchner, Steffens, & Rothkegel, 1997; Kinder, Shanks, Cock, & Tunney,

2003).

7. General discussion

The LBA model is arguably the simplest evidence accumulator model that can be used to

simultaneously model response times and accuracy while still being flexible enough to

capture typical phenomena (seeDonkin, Heathcote,&Brown, 2009; for discussion on the

‘simplicity’ of the model). As such, the model stands a good chance of being adopted by a

larger audience of applied researchers. In order to facilitate such adoption by a larger
audience, easy-to-access methods for model fitting, parameter inference and model

selection are a necessary condition. The R package glba provides such easy access,

intuitive model specification, and, robust starting-value generation.

Table 4. Parameter estimates of linear ballistic accumulator model of implicit learning, with effect

of the sequence factor onA andb. The drift rate has a quadratic covariate in the sequence blocks, not

in the random blocks. SE denotes the standard error of the parameter based on the Hessian, z

denotes the z-ratio of a parameter and its standard error, and p denotes the corresponding p-value

Value SE z p

sv 0.24 0.01 22.24 .00

A 0.08 0.03 3.11 .00

Asequence 0.07 0.02 3.86 .00

b 0.23 0.02 13.45 .00

bsequence �0.04 0.01 5.19 .00

t0 0.02 0.01 1.52 .06

v 0.77 0.02 44.70 .00

vquad 0.20 0.01 13.20 .00
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In the current paper, the glba package is validated by successful parameter

recovery and by showing that parameter estimates are unbiased given sufficient data.

In addition, and more importantly, we proposed and validated two methods for

computing standard errors of the LBA model parameters. To the best of our
knowledge, standard errors have not been reported before in the extant literature on

the LBA model. Standard errors can in turn be used in model selection procedures,

alongside the typical model selection measures such as AIC and BIC, and we have

shown examples of this.

The quality of standard errors by both methods is good, with the Hessian-based

method being slightly more conservative. The computational cost of the bootstrap

methods is much higher than that of the finite-difference approximation and hence

the latter method is preferred. Parameter standard errors are a valuable tool in
assessing the strengths of experimental factors. Their availability is thus important in

opening up new areas of application for the LBA model. Next to standard errors, the

Hessian was also used to compute the parameter correlation matrix. When

encountering very high correlations between parameters it may make sense to

either gather more data for individual participants or pool data for different

participants together.

In applications of the LBA model it is common to estimate model parameters

based on data from single individuals. Subsequently, these parameter estimates are
aggregated to draw conclusions about the effects of experimental conditions. A

second approach is to allow the parameters of the model to vary randomly over

individuals, that is, including multilevel structure in the parameters. Wiecki et al.

(2013) have taken such an approach with Bayesian estimation, and Molenaar et al.

(2015) implement a variant of the diffusion model with random effects; both papers

also present software that can be used to carry out the analyses. A third possible

approach is to have some parameters identical across individuals while leaving others

free to vary. The glba set-up allows for such parameter designs to be specified
without needing additional programming.

The LBA model and the use of glba were illustrated using real data from an

implicit learning experiment. The response time models for implicit learning indicate

that in such a learning environment a number of different cognitive processes are at

work. Learning results in changing expectations of stimuli as well as faster

processing of these same stimuli. Moreover, switching between blocks of sequence

and random trials results in a change in the setting of the speed–accuracy trade-off.

Work in related areas also shows that experimental manipulations seldom affect only
a single cognitive process. Rae, Heathcote, Donkin, Averell, and Brown (2014)

discuss a manipulation of the speed–accuracy trade-off that is shown to affect not

only response caution, as expected, but also the drift rate. Similarly, Dutilh et al.

(2009) show that as a result of practice with a task, almost all parameters of the

drift diffusion model are affected. Response models such as the LBA are essential in

capturing such, sometimes subtle, effects in the data. The conclusion for implicit

learning at the very least is that both strategic and more implicit processes are at

work, as evidenced by changes in three parameters of the LBA model. The ability of
the LBA model to capture such experimental phenomena makes it a promising

model in many areas of research, and the glba package can make such applications

more feasible for non-specialist researchers.
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