
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

How well do network models predict observations? On the importance of
predictability in network models

Haslbeck, J.M.B.; Waldorp, L.J.
DOI
10.3758/s13428-017-0910-x
Publication date
2018
Document Version
Final published version
Published in
Behavior Research Methods
License
CC BY

Link to publication

Citation for published version (APA):
Haslbeck, J. M. B., & Waldorp, L. J. (2018). How well do network models predict
observations? On the importance of predictability in network models. Behavior Research
Methods, 50(2), 853-861. https://doi.org/10.3758/s13428-017-0910-x

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://doi.org/10.3758/s13428-017-0910-x
https://dare.uva.nl/personal/pure/en/publications/how-well-do-network-models-predict-observations-on-the-importance-of-predictability-in-network-models(19477790-1f99-4731-b951-15a120e5dc19).html
https://doi.org/10.3758/s13428-017-0910-x


Behav Res (2018) 50:853–861
DOI 10.3758/s13428-017-0910-x

How well do network models predict observations?
On the importance of predictability in network models

Jonas M. B. Haslbeck1 ·Lourens J. Waldorp1

Published online: 17 July 2017
© The Author(s) 2017. This article is an open access publication

Abstract Network models are an increasingly popular
way to abstract complex psychological phenomena. While
studying the structure of network models has led to many
important insights, little attention has been paid to how
well they predict observations. This is despite the fact that
predictability is crucial for judging the practical relevance
of edges: for instance in clinical practice, predictability
of a symptom indicates whether an intervention on that
symptom through the symptom network is promising. We
close this methodological gap by introducing nodewise pre-
dictability, which quantifies how well a given node can be
predicted by all other nodes it is connected to in the network.
In addition, we provide fully reproducible code examples of
how to compute and visualize nodewise predictability both
for cross-sectional and time series data.

Keywords Network models · Network analysis ·
Predictability · Clinical relevance

Introduction

Network models graphically describe interactions between
a potentially large number variables: each variable is repre-
sented as a dot (node) and interactions are represented by
lines (edges) connecting the nodes (for an illustration see
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Fig. 1a). These models have been a popular way to abstract
complex systems in a large variety of disciplines such as
statistical mechanics (Albert & Barabasi, 2002), biology
(Friedman, Linial, Nachman, & Pe’er, 2000), neuroscience
(Huang et al., 2010), and are recently also applied in psy-
chology (Costantini et al., 2015) and psychiatry (Borsboom
& Cramer, 2013).

Particularly in psychology, network models are attrac-
tive because many psychological phenomena are considered
to depend on a large number of variables and interactions
between them. In this situation, the graphical representa-
tion allows an intuitive interpretation even if the number of
variables is large. In addition, network models open up the
possibility to study the network structure: for instance, one
can use network summary measures like density or central-
ity to describe the global structure of the network (Newman,
2010). These could allow inferences about the behavior of
the whole network that would not be possible when looking
at all edge parameters separately. Another possibility is to
run generative models on the network, e.g., diffusion mod-
els of diseases to explain how symptoms of psychological
disorders activate each other (Shulgin, Stone &Agur, 1998).

Currently, most applications are in the field of clini-
cal psychology (e.g., Fried et al., 2015; Fried, Epskamp,
Nesse, Tuerlinckx, & Borsboom, 2016; Beard et al., 2016;
McNally et al., 2015; Boschloo et al., 2015) but network
models are also applied in health psychology (Kossakowski,
Epskamp, et al., 2016) and personality psychology (Cramer
et al., 2012; Costantini et al., 2015). While initially they
were used to model cross-sectional data, there is increas-
ing interest in analyzing data obtained using the experience
sampling method (ESM), which consists of repeated mea-
surements of the same person (e.g., Bringmann et al., 2013;
Pe et al., 2015). The focus in these papers is the global
network structure and the connectedness of specific nodes
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Fig. 1 a Example network with six nodes. An edge between two nodes indicates a pairwise interaction between those two nodes. b Illustration
of predicting node A by all its neighboring nodes (C and E)

in the network, which provide a new perspective on many
psychological phenomena. For instance, Cramer and col-
leagues (Cramer et al., 2010) suggested an alternative view
on the concept of comorbidity by analyzing how symptoms
of different psychological disorders are connected to each
other.

The key idea of this paper is to analyze the predictability
of nodes in the network in addition to the network structure.
By predictability of node A we mean how well node A can
be predicted by all its neighboring nodes in the network (see
Fig. 1b). The predictability of nodes is important for several
reasons:

1. The edges connected to node A should be interpreted
taking into account how much of the variance of A is
explained by the edges connected to A. For instance,
edges will be interpreted differently, depending on
whether 0.5% or 50% of the variance of A is explained.
This issue is particularly important for networks esti-
mated on a large number of observations, where small
edge weights can be detected that might be practically
meaningless.

2. In many areas of psychology, the goal is to design effec-
tive interventions. Using the predictability measure of
node A, one can estimate to which extent we can influ-
ence A by intervening on nodes that are connected to it.

3. Predictability across nodes tells us whether a (part of a)
network is largely determined by itself through strong
mutual interactions between nodes (high predictability)
or whether it is mostly determined by other factors that
are not included in the network (low predictability).

The problem addressed here is similar to the problem of
modeling only the covariance matrix in structural equation
modeling (SEM) (Byrne, 2013): one might find a model
that perfectly fits the covariance matrix, but if the variance

of variables is much larger than their covariance, the model
might be meaningless in practice.

Predictability in general cannot be inferred by the net-
work structure but has to be computed from the network
model and the data. Unfortunately, currently there is no
easy-to-use tool available to researchers to compute and
present predictability in network models. In the present
paper, we close this methodological gap by making the
following contributions:

1. We present a method to compute easy-to-interpret node-
wise predictability measures for state-of-the-art net-
work models (“Methods”).

2. We provide a step-by-step description of how to use
the R-packages mgm and qgraph to compute and visu-
alize nodewise predictability, both for cross-sectional
(“Predictability in cross-sectional networks”) and time-
series networks (“Predictability in temporal networks”).
The provided code is fully reproducible, which means
that the reader can run the code and reproduce all fig-
ures while reading. The data in our applications are
from two published studies and will be downloaded
automatically with the provided code.

Methods

In order to determine the predictability of a given node A,
we need to know which nodes are connected to A in the
network model. Therefore the first step is to estimate a net-
work model, which we describe in “Network models”. In a
second step, we use the network model to predict the given
node A by the nodes that are connected to it (its neighbors).
In “Making predictions”, we describe in detail how to com-
pute these predictions. Finally, we quantify how close these
predictions are to the actual values of A. The closer the pre-
dictions are to the actual values, the higher the predictability
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of A. A description of predictability measures for both con-
tinuous and categorical variables is given in “Quantifying
predictability”. In “Predictability and model parameters” we
discuss the relationship between the predictability and the
parameters of the network model. Finally we describe the
data “Application to datasets” that is used in the application
examples in “Predictability in cross-sectional networks” and
“Predictability in temporal networks”.

Network models

Wemodel cross-sectional data using pairwise Mixed Graphical
Models (MGMs) (Yang, Baker, Ravikumar, Allen, & Liu,
2014; Haslbeck & Waldorp, 2015b), which generalize well-
known exponential family distributions such as the multi-
variate Gaussian distribution or the Ising model (Wainwright
& Jordan, 2008). This is the model used in all papers
mentioned in the introduction. MGMs are estimated via
�1-regularized (LASSO) neighborhood regression as imple-
mented in the R-package mgm by the authors (Haslbeck
& Waldorp, 2015a). In this approach, one estimates the
neighborhood of each node and combines all neighborhoods
to obtain the complete graph (network) (Meinshausen &
Bühlmann, 2006). The neighborhood of a node is the set
of nodes that is connected to that node. For example, in
Fig. 1a, the neighborhood of node A consists of the nodes
E and C. The �1 regularization ensures that spurious edge-
parameters are put to exactly zero, which makes the network
model easier to interpret. The parameter that controls the
strength of the regularization is selected via 10-fold cross
validation.

For time-series data, we use the Vector Autoregressive
(VAR) model, which is a popular model for multivariate
time series in many disciplines (see e.g., Hamilton, 1994;
Pfaff, 2008). The VAR model is different from the MGM
in that associations are now defined between time-lagged
variables. Specifically, in its simplest form with a time-lag
of order one, in this model all variables Xt−1

i at time t − 1
are regressed on each of the variables Xt

i at time t , where i

indexes different variables. Note that this also includes the
variableXs itself at an earlier time point: that is, one predicts
Xt

s at time t by itself and all other variables at time t − 1.
For the analyses in this paper, we use the implementation
of mixed VAR models in the R-package mgm (Haslbeck &
Waldorp, 2015a).

Making predictions

We are interested in how well a node can be predicted by all
adjacent nodes in the network. This means that we would
like to compute the mean of the conditional distribution of
the node at hand given all its neighbors. We illustrate this
by showing how to compute predictability for the node A in

Fig. 1b, for (i) the case of A being a continuous-Gaussian
variable and (ii) the case of A being binary.

We begin with (i): the conditional mean of A given its
neighbors C and E, which is given by

P(A = x|C, E) = 1√
2πσ

exp

{
− (x − μ)2

2σ 2

}
, (1)

where the mean μ = β0 + βCC + βEE is a linear com-
bination of the two neighbors C and E. This conditional
distribution is obtained from the multivariate exponential
family distribution of the MGM. For details see Yang et al.
(2014) and Haslbeck and Waldorp (2015b). This predic-
tion problem corresponds to the familiar linear regression
problem with Gaussian noise. Now, how can one make pre-
dictions? Let’s say the intercept is β0 = 0.25 and βC =
0.1, βE = −0.5. Then, if the ith case in the sample is
Ci = 2, Ei = 1, then for the ith sample of A we predict
Ai = 0.25 + 0.1 × 2 − 0.5 × 1 = −0.05. A measure of
predictability should evaluate how close this is the actual
observation for node Ai .

In example (ii), where A is categorical, we compute a
predicted probability for each category using a multinomial
distribution

P(A = k|C, E) = exp{μk}∑K
l=1 exp{μk}

, (2)

where k indicates the category, K is the number of cate-
gories, andμk = β0k+βCkC+βEkE. Now let’s assumeA is
binary (K = 2) and we have β01 = 0, βC1 = 0.5, βE1 = 1
and β02 = 0, βC2 = −0.5, βE2 = −1 and if for the ith

cases we have Ci = 1 and Ei = 1. When filling in the
numbers in Eq. (2) we get P(A = 1|C, E) ≈ 0.95 and
P(A = 2|C, E) ≈ 0.05, and predict category k = 1 for the
ith sample of A, because 0.95 > 1

2 . Of course, all probabil-
ities have to add up to 1, so we have 1 − P(A = 1|C, E) =
P(F = 2|C, E). This direct approach of modeling the
probabilities of categories is possible due to the regular-
ization used in estimation (see e.g., Hastie, Tibshirani,
& Wainwright, 2015), otherwise this model would not be
identified. Note that predicting A by all its neighbors is the
same as predicting A by all nodes in the network. This is
because all nodes that are not in the neighborhood of A have
a zero weight associated to them in the regression equation
on A in (1) or (2) and can hence be dropped.

In the case of other exponential family distributions, such
as Poisson or exponential, one similarly uses the univari-
ate conditional distribution to make predictions (Yang et al.,
2014). Importantly, the joint distribution of the MGM can
be represented as a factorization of p conditional distribu-
tions and hence our method to compute predictions is based
on a proper representation of the joint distribution. Indeed,
this factorization is used when estimating the MGM in the
neighborhood regression approach (see “Network models”).
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Quantifying predictability

After computing predictions, we would like to know how
close these are to the observed values in the data. Because it
is of interest how well a given node can be predicted by all
other nodes in the network, we need to remove any effects of
the intercept (continuous variables) and the marginal (cate-
gorical variables). The marginal indicates the probabilities
of categories, when ignoring all other variables. For exam-
ple, the marginal of a binary variable is described by relative
frequency of observing category 1, e.g., P(X = 1) = 0.7.

Predictability of continuous variables

For continuous data, we choose the proportion of explained
variance as predictability measure since it is well known in
the literature and easy to interpret:

R2
A = 1 − var(Â − A)

var(A)
,

where var is the variance, Â is a vector of predictions for
A as described in “Making predictions”, and A is the vector
of observed values in the data. In order to remove any influ-
ences of the intercepts, all variables are centered to mean
zero. Hence, all intercepts will be zero and cannot affect
the predictability measure. Thus, we can interpret R2 as fol-
lows: a value of 0 means that a node cannot be predicted
at all by its neighboring nodes in the network, whereas a
value of 1 means that a node can be perfectly predicted by
its neighboring nodes.

Predictability of categorical variables

For categorical variables, it is slightly more difficult to get
a measure with the same interpretation as the R2 for contin-
uous variables because there is no way to center categorical
variables. The following example shows that it is, however,
important to somehow take the marginal into account: let’s
say we have 100 observations of a binary variable A and
observe 10 0s and 90 1s. This means that the marginal prob-
abilities of A are p0 = 0.1 and p1 = 0.9. Now, if all other
nodes contribute nothing to predicting whether there is a
0 or 1 present in case Ai , one can just predict a 1 for all
cases and get a proportion of correct classification (or accu-
racy, see below) of 90%. For our purpose of determining
how well a node can be predicted by all other nodes, this is
clearly misleading, because actually nothing is predicted by
all other nodes. We therefore compute a normalized accu-
racy that removes the accuracy that is achieved by the trivial
prediction using marginal of the variable (p1 = 0.9) alone.

Let A = 1
n

∑n
i=1 I(yi = ŷi ) be the proportion of cor-

rect predictions (or accuracy) and let p0, p1, . . . pm be the

marginal probabilities of the categories, where I is the indi-
cator function for the event Fi = F̂i . In the binary case, the
latter are p0 and p1 = 1 − p0. We then define normalized
accuracy as

Anorm = A − max{p0, p1, . . . , pm}
1 − max{p0, p1, . . . , pm} .

Hence, Anorm indicates how much the node at hand can
be predicted by all other nodes in the network, beyond what
is trivially predicted by the marginal distribution. Anorm =
0 means that none of the other nodes adds anything to the
marginal in predicting the node at hand, while Anorm = 1
means that all other nodes perfectly predict the node at hand
(together with the marginal).

Let’s return to the above example: in contrast to the high
accuracy of A = 0.9, the normalized accuracy Anorm is
zero, indicating that the node at hand cannot be predicted
by other nodes in the network. However, notice that both A
and Anorm are important for interpretation. For instance, if
we have a marginal of p1 = .9 in a binary variable, then it is
less impressive if all other predictors account for 80% of the
remaining accuracy that can be achieved (.98 instead of .9)
than in a situation where p1 = .5, where accounting 80% of
the remaining accuracy would mean an improvement from
.5 to .9. We therefore visualize both A and Anorm for the
binary variable in Fig. 2.

Predictability and model parameters

Given the above definition of measures of predictability, it is
evident that there is a close relationship between the param-
eters of the network model and predictability: if a node is not
connected to any other node, then the explained variance/
normalized accuracy of this node has to be 0. Also, the more
edges are connected to a node, the higher predictability
tends to be. There is a strong linear relationship between
predictability and edge parameters for Gaussian graphical
models (GGM), where the edge parameters (partial corre-
lation) are restricted to [−1, 1]. This linear relationship is
much weaker for models including categorical variables, where
the model parameters are only constrained to be finite.

This implies that centrality measures (like degree cen-
trality), which are a function of edge parameters, are also
strongly correlated with predictability for GGMs, but much
less for MGMs (e.g., Haslbeck & Fried, 2017). However,
note that even if a given centrality measure would correlate
perfectly with predictability, it would not be a substitute,
because it would only allow us to order nodes by predictabil-
ity but would not tell us the predictability of any node.
Hence, while centrality measures are related to predictabil-
ity, they are not a good proxy for predictability.
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Application to datasets

We illustrate how to compute and visualize nodewise pre-
dictability for network models for both cross-sectional and
time-series data. We use a cross-sectional dataset from Fried
et al. (2015) (N = 515) with 11 variables on the relation-
ship on bereavement and depressive symptoms. In order to
illustrate how to compute predictability for VAR models we
use a dataset consisting of up to ten daily measurements of
nine variables related to mood over a long period of time
(N = 1478) of a single individual (Wichers, Groot, Psy-
chosystems, & Group, 2016). A detailed description of
the time-series data can be found in Kossakowski, Groot,
Haslbeck, Borsboom, and Wichers (2016).

Predictability in cross-sectional networks

Here we show how to obtain the proposed predictability
measures using the mgm package. We will give the code
below so all steps can be reproduced exactly by the reader.

First, we download the preprocessed data. The raw data
and the preprocessing file can be found in the Github
repository https://github.com/jmbh/NetworkPrediction.

library(httr)
url="https://tinyurl.com/y8cqhb9c"
GET(url, write_disk("Fried2015.RDS"))
dlist <- readRDS("Fried2015.RDS")

Next, we fit a MGM using the mgm-package:

library(mgm)
set.seed(1)
fit_obj <- mgm(data = dlist$data,

type = c(rep("g", 11), "c"),
level = c(rep(1, 11), 2),
ruleReg = "OR",
k = 2,
binarySign = TRUE)

In addition to the data, one has to specify the type and
the number of categories for each variable. The remaining
arguments are tuning parameters and are selected such that
the original results in Fried et al. (2015) are reproduced.
For the general usage of the mgm package, see Haslbeck
and Waldorp (2015a). After estimating the model, which
is saved in fit_obj, we use the predict() function to
compute the predictability for each node in the network.
For categorical variables, we specify the predictability mea-
sures accuracy/correct classification ("CC") and normalized
accuracy ("nCC"). In addition, we request the accuracy of
the intercept (marginal) model ("CCmarg"), which we will
use to visualize the decomposition of the total accuracy in

intercept model and the contribution of other variables. For
continuous variables, we specify explained variance ("R2")
as predictability measure.

p_obj <- predict(fit_obj, dlist$data,
errorCat = c("CC","nCC","CCmarg"),
errorCon = c("R2"))

To display both the accuracy of the intercept model and
the normalized accuracy (contribution by other variables),
we require a list for the ring-segments and a list for the
corresponding colors:

error_list <- list() # List for ring-segments
for(i in 1:11) error_list[[i]] <- p_obj$errors[i,2]
beyondmarg <- p_obj$errors[12,3]-p_obj$errors[12,5]
error_list[[12]] <- c(p_obj$errors[12,5],beyondmarg)

color_list <- list() # List for Colors
for(i in 1:11) color_list[[i]] <- "#90B4D4"
color_list[[12]] <- c("#ffa500", "#ff4300")

We now provide the weighted adjacency matrix and
the list containing the nodewise predictability measures to
qgraph, resulting in Fig. 2:

library(qgraph)
set.seed(1)
qgraph(fit_obj$pairwise$wadj, pie = error_list,

layout="spring", labels = dlist$names,
pieColor = color_list, label.cex = .9,
edge.color = fit_obj$pairwise$edgecolor,
curveAll = TRUE, curveDefault = .6,
cut = 0, labels = dlist$names)

The color of the ring around the node can be con-
trolled using the pieColor argument. The remaining argu-
ments are not necessary but improve the visualization.
layout="spring" specifies that the placement of the
nodes in the visualization is determined by the force-
directed Fruchterman–Reingold algorithm (Fruchterman &
Reingold, 1991). Note that there is no analytic relation
between the distance of nodes in the plotted layout and
model parameters, however, the algorithm tends to group
strongly connected nodes together in order to avoid edge
crossings. Green and red edges indicate positive and nega-
tive relationships, respectively, and the width of the edges
is proportional to the absolute value of the edge-weight. For
a detailed description of the qgraph package, see Epskamp
et al. (2012).

This code returns a network that is very similar to the
one in the original paper (Fried et al., 2015). Note that the
network is not identical as we did not dichotomize ordinal
variables but treat them as continuous instead. For the 11
continuous variables, the percentage of explained variance
is indicated by the blue part of the ring. For the single bi-
nary variable, the colors in the ring indicate the accuracy of
the intercept model (orange) and the full accuracy (orange

https://github.com/jmbh/NetworkPrediction
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+ red). The normalized accuracy is the ratio red / (red +
white).

As expected, nodes with more/stronger edges can be pre-
dicted better (e.g., lonely) than nodes with fewer/weaker
edges (e.g., unfriendly unfr). While this trivially follows
from the construction of the predictability measure (see
“Predictability and model parameters”), this does not mean
that one can use the network structure to infer the pre-
dictability of a node: by looking at the network visualization
in Fig. 2, we are quite certain that predictability of lonely
is higher than of unfr. However, we do not know how high
predictability is in either of the two nodes (0.55 and 0.13,
respectively), which is highly relevant for interpretation and
practical applications.

Because we used the same data for estimating the net-
work and calculating the predictability (or error) measures,
we estimated the within sample prediction error. In order to
see how well the model generalizes, one has to calculate the
out of sample prediction error. This can be done by splitting
the data into two parts (or using a cross-validation scheme)
and providing one part to the estimation function, and the
other part to the prediction function.

Predictability in temporal networks

In this section we show how to compute nodewise predicta-
bility measures for VAR models. Note that the interpreta-
tion of predictability is slightly different for VAR networks
because we predict each node by all nodes at the previous
time point, which also includes the predicted node itself.

We begin again by downloading the example dataset:

url="https://tinyurl.com/yau3xms2"
GET(url, write_disk("Wicherts2016_Mood.RDS"))
dlist_ts <- readRDS("Wicherts2016_Mood.RDS")

Next, we provide the data and the type and number of
categories of variables as input. In addition, we specify that
we would like to estimate a VAR model with lag 1

set.seed(1)
var_obj <- mvar(data = dlist_ts$data_mood,

type = rep("g", 9),
lev = rep(1, 9),
lags = 1,
consec=dlist_ts$data_time$beepno)

and compute the predictability of each node similarly to
above:

p_obj2 <- predict(var_obj, dlist_ts$data_mood,
errorCon = c("R2"))

Finally, we visualize the network structure together
with the nodewise predictability measures, which results in

Fig. 3. Because we have only one predictability measure for
each node, we can provide them in a vector via the pie

argument:

set.seed(1)
qgraph(var_obj$wadj[,,1],

edge.color = var_obj$edgecolor[,,1],
labels = dlist_ts$labels,
pie = p_obj2$errors[, 2],
pieColor = rep("#90B4D4", 9),
curveAll = TRUE,
curveDefault = .6, cut = 0)

We see two groups of self-engaging mood variables in
Fig. 3: (a) the positive mood variables Cheerful, Enthu-
siastic and Satisfied and (b) the negative mood variables
Irritated, Agitated, Restless and Suspicious.Worrying seems
to be influenced by both groups and Relaxed is rather dis-
connected and has a weak negative influence on group (b).
These insights can be used to judge the effectiveness of pos-
sible interventions on these mood variables: for instance,
if the goal is to change variables in group (a), one can do
this by intervening on other variables in (a). In addition, we
would expect an effect on Worrying when intervening on
groups (a) and (b), however, the reverse is not true. Relaxed

depr

effort

sleep

happy

lonely

unfr

enjoy

appet

saddislike

getgo

loss

Fig. 2 Mixed graphical model estimated on the data from Fried
et al. (2015). Green edges indicate positive relationships and red edges
indicate negative relationships. The blue ring shows the proportion
of explained variance (for continuous nodes). For the binary variable
”loss”, the orange part of the ring indicates the accuracy of the inter-
cept model. The red part of the ring is the additional accuracy achieved
by all remaining variables. The sum of both is the accuracy of the full
model A. The normalized accuracy Anorm is the ratio between the
additional accuracy due to the remaining variables (red) and one minus
the accuracy of the intercept model (white + red)
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has a small influence on group (b), however, is itself not
influenced by any of the variables in the network. Hence, in
order to intervene on Relaxed, one has to search for addi-
tional variables influencing Relaxed that were not yet taken
into account in the present network.

Discussion

In this paper, we introduced a method and easy-to-use soft-
ware to compute nodewise predictability in network models
and to visualize it in a typical network visualization. Pre-
dictability is an important concept that complements the net-
work structure when interpreting network models: it gives
a measure of how well a node can be predicted by all its
neighboring nodes and is hence crucial information when-
ever one needs to judge the practical significance of a set of
edges. An example is clinical practice, where it is important
to make predictions of the outcome of interventions on an
interpretable scale to optimally select treatments.

The analyses shown in the present paper can be extended
to networks that are changing over time, which allows to
investigate how edge-parameters and nodewise predictabil-
ity change over time. The time-varying parameters can then
be modeled by a second model, which could include vari-
ables from inside and outside the time-varying network.
With this modeling approach, it would be possible to gather

Relaxed

Irritated

Satisfied

Enthusiastic

Suspicious

Cheerful

Restless

Agitated

Worry

Fig. 3 Visualization of VAR network of the mood variables in
Wichers et al. (2016). Green edges indicate positive relationships, red
edges indicate negative relationships. The self-loops refer to the effect
of the variable on itself over one time lag. The blue rings around the
nodes indicate the proportion of explained variance in that node by all
other nodes

evidence for the event of one (or several) variables causing
the system to transition into another state, which is possibly
reflected by a different network structure and nodewise
predictability. For details about how to fit time-varying net-
work models and time-varying predictability measures, see
(Haslbeck & Waldorp, 2015a).

It is important to be clear about the limitations of interpre-
ting nodewise predictability. First, we can only interpret the
predictability of a node as the influence of its neighboring
nodes if the network model is an appropriate model. A net-
work model can be inappropriate for a number of reasons:

1. Two or more variables in the network models are caused
by a variable that is not included in the network. This
results in estimated edges between these variables in
the network, even though they are only related via an
unobserved common cause. In this situation, we can-
not interpret predictability as influence by neighboring
nodes because we know that the nodes are not influenc-
ing each other but are caused by a third variable outside
the network.

2. In some situations, variables are logically dependent,
for instance age and age of diagnosis are always related,
because one cannot be diagnosed before being born.
Clearly, in this situation the relation between the vari-
ables must be interpreted differently.

3. If two or more variables measure the same underlying
construct (e.g., five questions about sad mood). In this
situation, the edge-parameters indicate how similar the
variables are and do not reflect mutual causal influence.
Consequently, we would not interpret the predictabil-
ity of these variables as the degree of determination by
neighboring nodes. See Fried and Cramer (2016) for a
discussion of this problem. Solutions could be to deter-
mine the topological overlap (Zhang et al., 2005) and
choose only one variable in case of large overlap or
to incorporate measurement models into the network
model (Epskamp, Rhemtulla, & Borsboom, 2016).

Second, if we interpret the predictability of node A as
a measure of how much it is determined by its neigh-
bors, we assumed that all edges are directed towards node
A. However, the direction of edges is generally unknown
when the model is estimated from cross-sectional data. Esti-
mates about the direction of edges can be made using causal
search algorithms like the PC algorithm (Spirtes, Glymour,
& Scheines 2000) or by using substantive theory. This
means that the predictability of a node is an upper bound
and in practice often lower because some edges might be
bi-directional or point away from the node at hand. While
this is a major limitation, note that the direction of edges is
unknown for any model estimated on cross-sectional data.
In models with lagged predictors, like the VAR model, this
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problem does not exist because we use the direction of time
to determine the direction of edges.

Finally, it is important to stress that a topic we did not
cover here is to investigate how well node A can be pre-
dicted by node B. This is different from the problem studied
in this paper, where the interest was in how well node A
can be predicted by all other nodes. Unfortunately, there
are no straightforward solutions for the former problem in
the situation of correlated predictors, which is always the
case in practice. For linear regression, there is work on
decomposing explained variance (Grömping, 2012) and in
the machine-learning literature there are methods to deter-
mine variable importance by replacing predictor variables
by noise and investigate the drop in predictability (e.g.,
Breiman et al., 2001). It would certainly be interesting to try
to extend these ideas to the general class of network models.

To sum up, if the network model is an appropriate model
for the phenomena at hand, predictability is an easy-to-
interpret measure of how strongly a given node is influenced
by its neighbors in the network. This allows researchers to
judge the practical relevance of edges connected to a node
A on an absolute scale (0 = no influence on A at all, 1 = A
fully determined) and thereby may help to predict interven-
tion outcomes. In addition, the predictability of (parts of) the
network is interesting on a theoretical level, as it indicates
how self-determined the network is.
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Grömping, U. (2012). Estimators of relative importance in lin-
ear regression based on variance decomposition. The American
Statistician.

Hamilton, J. D. (1994). Time Series analysis, 1st edn. Princeton: NJ.
Haslbeck, J. M. B., & Fried, E. I. (2017). How predictable are

symptoms in psychopathological networks? A reanalysis of 18
published datasets. Psychological Medicine. doi:10.1017/S003329
1717001258.

Haslbeck, J. M. B., & Waldorp, L. J. (2015a). mgm: Structure estima-
tion for time-varying mixed graphical models in high-dimensional
data. arXiv:151006871.

Haslbeck, J. M. B., & Waldorp, L. J. (2015b). Structure estimation for
mixed graphical models in high-dimensional data. arXiv:151005677.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://journals.aps.org/rmp/abstract/10.1103/RevModPhys.74.47
http://journals.aps.org/rmp/abstract/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1146/annurev-clinpsy-050212-185608
http://dx.doi.org/10.1146/annurev-clinpsy-050212-185608
http://arxiv.org/abs/160509288
http://arxiv.org/abs/1403.3374
http://dx.doi.org/10.17605/OSF.IO/BNEKP
http://osf.io/bnekp
http://dx.doi.org/10.1089/106652700750050961
http://dx.doi.org/10.1017/S0033291717001258
http://dx.doi.org/10.1017/S0033291717001258
http://arxiv.org/abs/151006871
http://arxiv.org/abs/151005677


Behav Res (2018) 50:853–861 861

Hastie, T., Tibshirani, R., & Wainwright, M. (2015). Statistical
learning with sparsity: The lasso and generalizations. CRC Press.

Huang, S., Li, J., Sun, L., Ye, J., Fleisher, A., Wu, T., Chen, K., &
Reiman, E. (2010). Learning brain connectivity of Alzheimer’s
disease by sparse inverse covariance estimation. NeuroImage,
50(3), 935–949. doi:10.1016/j.neuroimage.2009.12.120, http://
www.sciencedirect.com/science/article/pii/S1053811909014281.

Kossakowski, J. J., Epskamp, S., Kieffer, J. M., van Borkulo, C. D.,
Rhemtulla, M., & Borsboom, D. (2016). The application of a
network approach to health-related quality of life (HRQoL): Intro-
ducing a new method for assessing HRQoL in healthy adults and
cancer patients. Quality of Life Research, 25(4), 781–792.

Kossakowski, J. J., Groot, P. C., Haslbeck, J. M. B., Borsboom, D., &
Wichers, M. (2016). Data from ’critical slowing down as a per-
sonalized early warning signal for depression’. Journal of Open
Psychology Data (submitted).

McNally, R. J., Robinaugh, D. J., Wu, G. W., Wang, L., Deserno,
M. K., & Borsboom, D. (2015). Mental disorders as causal sys-
tems a network approach to posttraumatic stress disorder. Clinical
Psychological Science, 3(6), 836–849.
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