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a b s t r a c t

As an individual moves through its life cycle, it passes through a series of states (age classes, size classes,
reproductive states, spatial locations, health statuses, etc.) before its eventual death. The occupancy time
in a state is the time spent in that state over the individual’s life. Depending on the life cycle description,
the occupancy times describe different demographic variables, for example, lifetime breeding success,
lifetime habitat utilisation, or healthy longevity.

Models based on absorbingMarkov chains provide a powerful framework for the analysis of occupancy
times. Current theory, however, can completely analyse only the occupancy of single states, although the
occupancy time in a set of states is often desired. For example, a range of sizes in a size-classified model,
an age class in an age×stage model, and a group of locations in a spatial stage model are all sets of states.

We present a newmathematical approach to absorbingMarkov chains that extends the analysis of life
histories by providing a comprehensive theory for the occupancy of arbitrary sets of states, and for other
demographic variables related to these sets (e.g., reaching time, return time). We apply this approach
to a matrix population model of the Southern Fulmar (Fulmarus glacialoides). The analysis of this model
provides interesting insight into the lifetime number of breeding attempts of this species.

Our new approach to absorbing Markov chains, and its implementation in matrix oriented software,
makes the analysis of occupancy times more accessible to population ecologists, and directly applicable
to any matrix population models.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The life of an individual is a sequence of events. Birth and death
are events common to every individual, but the sequence between
birth and death – unique to each individual – consists of a po-
tentially endless list of random events (e.g., surviving, developing,
mating, reproducing, growing, dispersing, moving among social
or occupational classes, or changing health status). Each event
corresponds to a change in the state of the individual, resulting
in a stochastic pathway that ends eventually in death. A central
role in the analysis of these pathways is played by the concepts
of occupancy time (the time spent in, or the number of visits to,
a state over the individual’s lifetime). Occupancy is a property
of the stochastic pathway of an individual, and occupancy times
define the time spent in each of the possible states during the
lifetime. In particular, the longevity of an individual is measured
by the sum of all these occupancy times. The interpretation of
occupancy times depends on the identity of the transient states
and the nature of the absorption. Thus, when the states are health
status, occupancy time represents years of life while healthy, not
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healthy, disabled, etc. When the states are spatial locations, oc-
cupancy time represents time spent in different places. When the
states are marital status, occupancy times measure the part of the
lifetime spent single, married, divorced, remarried, etc. When the
states are employment status, or breeding activities, or any other
interesting categorisation of individuals, the interpretation follows
the same lines. As for absorption, it may be death, in which case
occupancy time is a ‘‘lifetime’’ measure in the literal sense. But
absorption can be defined as the first entrance to some state or
set of states (e.g., occurrence of first breeding, or graduation, or
metamorphosis, or hospitalisation, etc.).

Because the pathways are stochastic, occupancy time is a ran-
domvariable. It is often described by itsmean (e.g., life expectancy,
expected lifetime reproduction). However, some individuals will
live longer and some shorter, than the mean; some will mature
later and some earlier than the mean. To characterise this varia-
tion, the probability distribution of occupancy time, or at least its
moments, must be considered.

Models based on absorbing Markov chains provide a power-
ful framework for the analysis of occupancy times. An absorbing
Markov chain describes the fate of an individual – under the
assumption that the future of the individual, given its present, is
independent of its past – evolving in a set of states and being
eventually absorbed by the death state. The states may refer to
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developmental states, physiological measures, behaviour types,
locations, and so on. The set of transition rates between these states
– described by a transition matrix – defined an absorbing Markov
chain. As a population projection matrix describes the fate of a
population, the transition matrix describes the fate of individuals
in a population, and often is one component of a population projec-
tion matrix. The mathematical theory of absorbing Markov chain
provides formulae for basic descriptive quantities of the absorbing
Markov chain, based on its fundamental matrix (see e.g. Iosifescu
(1980) and Kemeny and Snell (1961) for a mathematical per-
spective, and Caswell (2001) for a demographical perspective).
Applied to demographic models, this theory provides simple and
direct formulae for the probability distribution, themean, variance,
and all moments of longevity, the distribution of age or stage at
death, the survivorship and mortality functions, causes of death,
and a variety of measures of life disparity (e.g., Feichtinger, 1971;
Cochran and Ellner, 1992; Caswell, 2001, 2006, 2009; Tuljapurkar
and Horvitz, 2006; Horvitz and Tuljapurkar, 2008; Van Raalte and
Caswell, 2013). Powerful sensitivity analyses are available for all
these quantities (Caswell, 2006, 2009, 2011b, 2013).

Current theory, however, can completely analyse only the oc-
cupancy time of single states and the occupancy time of the whole
state space. Our goal is to extend the analysis of life histories by
providing a comprehensive theory for the occupancy of arbitrary
sets of states. One type of set is a collection of states deemed bio-
logically relevant for some purpose; we call these super-states. For
example, a model based on reproductive behaviour might include
states describing many details of the success, failure, timing, and
number of offspring produced by breeding, but one might want
to investigate the super-states created by aggregating these into
‘‘successful breeding’’ and ‘‘non-successful breeding’’ sets. A spatial
model might describe habitats along an altitudinal gradient, and
onemight want to aggregate in order to compare the occupancy of
low altitude and high altitude sites. A medical demography study
might distinguish a variety of health conditions and treatments,
but one might want to compare the occupancy of all states re-
quiring hospitalisation and those not requiring hospitalisation. The
utility of super-states will increase as more matrix models are
created from the growth and survival kernels of integral projection
models (e.g., Ellner et al., 2016). These matrices typically contain
hundreds of size classes, no one of which is of particular interest,
but sets of which (e.g., all trees large enough to reach the forest
canopy) are of great interest.

A second type of sets of states arises in the context of multi-
state (or megamatrix) or hyperstate models (e.g., Rogers, 1975;
Lebreton, 1996; Pascarella and Horvitz, 1998; Tuljapurkar et al.,
2003; Roth and Caswell, 2016) in which individuals are classified
by two or more criteria (age and stage, stage and location, etc.).
Onemaywant to analyse the occupancy of sets of states defined by
integrating over one of these criteria; we call these marginal sets.
For example, in a stage×size-classified model, the marginal set
associated with the juvenile stage is the set containing the juvenile
stage, integrated over all possible sizes.

The extension of occupancy time calculations to sets of states
may seem trivial because the occupancy time in a set is the sum of
the occupancy times in each state belonging to this set. Therefore,
the mean occupancy time in a set is the sum of the means of the
occupancy times in each state. However, this observation does
not hold for the variance, for any higher moments, or for the
probability distribution, because occupancy times in single states
are not independent from each other. There are few analyses of
the occupancy time in set of states, but they only focus on specific
aspects of it. For example, Steiner and Tuljapurkar (2012) provide
formulae for the mean and variance of the reproductive output
using the joint generating function of the single state occupancy
times. The reproductive output of an individual is closely related to

the occupancy time in the set of reproductive states (both are equal
when fertility rates are ones in each reproductive state). Caswell
(2011a) provides similar formulae using the theory of Markov
chain with reward. The same theory is used by Caswell and Kluge
(2015) to calculate the moments of lifetime accumulation of eco-
nomic variables, which are also closely related to occupancy times.
However, these studies do not provide the probability distribution
of occupancy time in a set of states. In the mathematical litera-
ture, Sericola (2000) provides an iterative formula for the prob-
ability distribution of the partial (i.e. up to a fixed time) occupancy
time in a set of states, but does not provide a closed formula for the
total occupancy time. Here, we present a comprehensive approach
to calculate the anymoment and the probability distribution of the
occupancy time in arbitrary sets of states. Our approach relies on
the construction of a subMarkov chain, which describes the original
Markov chain viewed through a filter that allows one to see only
the states in the set of interest. As a consequence, all the statistics
of the occupancy time in the set of interest may be calculated with
the existing theory of absorbing Markov chain (Iosifescu, 1980),
applied to the sub Markov chain.

The construction and the analysis of the sub chain extends the
classical theory of absorbing Markov chain by providing not only
several measures related to the occupancy of sets of states but also
forms a basis for further calculations of measures related to sets of
states, including

• The set occupancy time. Depending on the life cycle descrip-
tion, set occupancy times describe different demographic
variables (e.g., lifetime breeding attempts in a model of
reproductive behaviour, or lifetime habitat utilisation in a
spatial model). We provide for the probability distribution,
mean, and variance of the occupancy times.

• The correlation between the occupancy times in two dif-
ferent sets. This is an indicator of how the two sets are
connected in the life cycle. As a particular case, we provide,
for the first time, a formula for the correlation between the
occupancy time in a state and the longevity of an individ-
ual. Depending on the life cycle description, this formula
gives the correlation between different demographic vari-
ables and longevity (e.g., lifetime breeding attempts and
longevity, lifetime reproduction and longevity, time to mat-
uration and longevity).

• Properties of winners and losers. Relative to a particular
target set, a winner is an individual that enters the set at
least once in its life, and a loser is an individual that never
enters the set. In a model classifying individuals by their
developmental state, the winners might represent those in-
dividuals that successfully mature, and the losers those that
do not. We provide the probability of becoming a winner,
the distribution, mean, and variance of the time required
for a winner to reach the set, and the longevity of a loser.
After its first success, a winner may leave the set and never
return, or it may return at some future time. We obtain
the probability that a winner returns, and for those that do
return, the probability distribution, mean, and variance of
the return time.

Table 1 lists the demographic results to be presented and the
equations in which they are derived. All the results are obtained
directly from a single matrix, describing the transition proba-
bilities among transient states. This matrix is obtainable from
most population projection matrices (Caswell, 2001). Despite the
large number of matrices and sometimes complicated expressions
that appear in our derivations, our results are easily computed
in matrix-oriented software. In the Supplementary Material, we
provide the Matlab code for calculating all of the demographic
results listed in Table 1.
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Table 1
Results of the set analysis in a Markov chain demographic model.

Output Expression Equation

Occupancy time in B

Mean and variance E[τB],Var(τB) (20), (24), (25), (26)
Moments τk

B (23)–(25)
Distribution (28)–(29)

Reaching the set B

Probability to reach pa (39)
Time to reach: tB (41)
Mean and variance E[tB],Var(tB) (43)–(44)
Moments tkB (42)
Distribution (45)

Returning to the set B

Probability to return pr (47)
Time to return: µ (48)
Mean and variance E[µ],Var(µ) (53)–(54)
Moments µK (97), in the appendix
Distribution (51)–(52)

Correlation between the occupancy times in two sets

Correlation Corr
(
τB1 , τB2

)
(86)–(36)

Correlation between the occupancy time in B and the longevity

Correlation Corr (τB, η) (38)

Notation. Matrices are denoted by upper-case bold symbols, vec-
tors by lower-case bold symbols. Vectors are column vectors by
default.When amatrix has a subscript (e.g.,UK), we note its entries
with a superscript, uKij . The vector 1ξ is the ξ × 1 vector of ones,
and the vector 0ξ is the ξ × 1 vector of zeros. The matrix Iξ is the
identity matrix of size ξ × ξ . The transpose of A is AT. The diagonal
matrix with the vector z on its diagonal is diag (z). The Hadamard
product (component by component) ofA andB isA◦B. Any random
variable x is defined on a probability space with probability P,
its expectation is denoted by E[x] and its variance is denoted by
Var(x). The kth moment, E[yk], of a random vector y is denoted
by yk.

2. Absorbing Markov chains as demographic models

An absorbing Markov chain describes the fate of a particle –
under the assumption that the future of the particle, given its
present, is independent of its past – evolving in a set of states and
being eventually absorbed by an absorbing state. In a demographic
model, the absorbingMarkov chain describes the fate of an individ-
ual evolving through a set of states and being absorbed by the state
representing its death. The absorbing Markov chain is determined
by two key elements: the living states of the individuals, and the
transition probabilities between those states, which depend on the
entire set of vital rates.

Formally, we consider the finite set of living states T =

{1, . . . , ω}, and the inevitable state d, representing death. The
living states and the death state are called respectively the transient
states and absorbing state of the Markov chain. The state space of
the Markov chain is their union,

S = T ∪ {d}. (1)

An absorbing Markov chain is uniquely defined by the one-step
transition probabilities and an initial probability distribution. The
transition probabilities are described by the matrix P of size (ω +

1) × (ω + 1). For each i, j ∈ S , the i − j entry of P is the
probability that an individual in state jmoves to state i. Therefore,
the columns of P sum to one (i.e. P is a stochastic matrix). Note
that in the mathematical literature, the transition matrix is given
by the transpose of P; however, our notation is widely used in the

demographical literature. The matrix P can be decomposed in four
blocks:

P =

(
U 0ω

mT 1

)
of size

(
ω × ω ω × 1
1 × ω 1 × 1

)
, (2)

where the matrix U of size ω × ω is the transient transition matrix,
which describes the transition probabilities between the transient
states, and the column vectorm of size ω contains the probabilities
of death from each transient state.

Since the column sums of P are equal to one, the column sums
of matrix U are less than one (strictly less than one if the death
probabilities are assumed to be non zero). Moreover, since there
is a single absorbing state, the vector m is in fact a function of the
matrix U,

mT
= 1T

ω − 1T
ωU. (3)

As a consequence, the matrix P is function of the transient transi-
tion matrix U, which is the only variable of the model.

An absorbing Markov chain from a population projection matrix. A
population projection matrix can often be decomposed in two
parts: one is the matrix U that describes the transitions of living
individuals and the other is a matrix F that describes the rates of
production of new individuals (see e.g. Caswell (2001)). Therefore,
the population projection matrices contain an absorbing Markov
chain, which is defined by the transient transition matrix U.

Target states. The focus of this paper is the occupancy time in a
set of living states, which we call the target set. To fix the idea, we
define a target set B composed of β transient states, and we re-
number the states so that the target states are the last β elements
of T , i.e.

B = {α + 1, α + 2, . . . , ω}

Bc
= {1, 2, . . . , α},

where α = ω − β . According to this renumbering of the states,
we re-arrange the entries of the matrix P. This results in a new
matrix U and a new vector m. To avoid overloaded notation, we
shall retain the symbols U and m. It will be clear from the context
which arrangement is being used.

Iosifescu (1980) derives formulae for the moments of the oc-
cupancy time of the Markov chain in a single target state (see
also Caswell (2009)). The key element for those calculations is the
fundamental matrix

N = (Iω − U)−1. (4)

The i-jth entry of the matrix N is the mean occupancy time in the
state i for an individual starting in state j. Any higher moment of
the occupancy time is derived from the fundamental matrix. In
particular, the variances are given by the matrix,

V = (2Iω ◦ N − Iω)N − N ◦ N. (5)

The mean occupancy time in the target set is the sum of the
mean occupancy times in each target state. Hence, the mean is
directly deduced from the fundamental matrix by summing the
corresponding entries. However, this technique breaks downwhen
calculating the variance of the occupancy time. Indeed, the vari-
ance of a sum of random variables is not the sum of the variance of
each variable (unless the variables are independent). This compli-
cation motivates the need of the new technique presented in the
next Section. This technique provides not only a straightforward
formula for the variance, but also an entire set of new formulae for
diverse measures of life history traits, as listed in Table 1.
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Fig. 1. Life cycle graph of Southern Fulmar. State 1 is the pre-breeder state. State 2
is the non-breeder state. State 3 is the successful breeder state. State 4 is the failed
breeder state. State d is the death state. To lighten the graphwe omit the transitions
to the death state.

Example. Themodel and the results are illustrated throughout the
paperwith amodel for the Southern Fulmar (Fulmarus glacialoides)
derives by Jenouvrier et al. (2015). The life cycle graph shown in
Fig. 1 is broken into four stages, which are defined at the end of the
breeding season: (1) pre-breeders, who have yet to breed for the
first time; this include fledged chicks from the previous season;
(2) non-breeders, who have bred at least once before, but not in
the current season; (3) successful breeders, who have successfully
raised a chick during the current season, and (4) failed breeders,
who have not successfully raised a chick during the current season
because they failed to either hatch an egg or raise a chick. Hence,
the set of transient states is T = {1, 2, 3, 4} and the individual
state space is S = {1, 2, 3, 4} ∪ {d}. We define two target sets:
Ba = {2, 3, 4} (β = 3 and α = 1) and Bb = {3, 4} (β = 2
and α = 2). The former represents the super-state adult, that is
an individual in Ba is characterised by having bred at least once.
The latter represents the super-state breeding; an individual in Bb
is currently attempting to breed regardless of its success.

Outcome of a Markov chain model. An outcome of a demographic
Markov chain model is function of the initial state of an individual,
and its pathway through the life cycle. For example, the number
of breeding attempt of a newborn Southern Fulmar is the result
of its entire pathway — from birth to death. Here, the initial state
is pre-breeder because any newborn is in this state. The number
of breeding attempt of an adult is a result of its pathway, but
only from its first passage in the super-state adult to death. Here,
the initial state is successful breeder (or failed breeder) because
an individual matures when it reaches one of these two states.
For this reason, any result listed in Table 1 is a vector and each
entry corresponds to a specific initial condition. For example, the
occupancy time in B is given by the vector

τB = (τ1, . . . , τω) (6)

where τi is the occupancy time in the set B for an individual that is
initially in state i.

3. Constructing the induced Markov chains

To derive our results, we construct three new Markov chains
associated with the set of target states B. These chains are created
from the original Markov chain P and the target set B.

• The killed Markov chain, with transition matrix PK. This
Markov chain is a copy of the original Markov chain that is
stopped as soon as it enters in the target set. If the individual
never enters the target set, then the pathway of the killed
Markov chain is equivalent to the pathway of the initial
Markov chain. See Section 3.1 for a formal definition.

• The conditionalMarkov chain, with transitionmatrix PC. This
Markov chain concerns only individuals that successfully
reach the target set. It describes their pathway from their
initial state to their first entrance to the target set. In other
words, it describes these pathways of the killed Markov
chain that do reach a target state. See Section 3.2 for a formal
definition.

• The sub-Markov chain, with transition matrix PS. This
Markov chain is a copy of the original Markov chain viewed
through a filter that allows one to see only the target set.
The pathways of the sub-Markov chain corresponds to the
pathways of the original Markov chain observed through
this filter. See Section 3.3 for a formal definition.

To each pathway of the original Markov chain there corre-
sponds a pathway in each induced Markov chain. Fig. 2 shows
three pathways through the life cycle of the Southern Fulmar, and,
below each of them, the corresponding pathways of the induced
Markov chains, associated with the target set Bb, consisting of the
breeding states.

We now explain in detail how to construct the matrices PK, PC,
and PS from the matrix P; we illustrate this construction with the
Southern Fulmar example. After the rearrangement of the matrix
P according to the numbering of the states (see Section 2), the
transition matrix U can be split in four block matrices, which
contain the transition probabilities from Bc to Bc , from Bc to B,
from B to Bc , and from B to B, respectively. These block matrices
are denoted byUK, L,K, andQ, and appear withinU as Eq. (7) given
in (Box I).

These four matrices are essential to the construction of the
killed, the conditional, and the sub Markov chains. All the other
matrices used for this construction and for the derivation of the
results are tabulated for easy reference in Table 2.

3.1. The killed Markov chain PK

The transitionmatrixPK describes a copy of the originalMarkov
chain that is stopped as soon as it enters B. In this chain, the states
inB and the death state d are now absorbing, and the new transient
set is Bc . The state space of the killed Markov chain is S , and its
transition probability matrix is

PK =

(
UK 0α×(β+1)

MK Iβ+1

)
of size(

α × α α × (β + 1)
(β + 1) × α (β + 1) × β

)
. (8)

The entry uKij is the transition probability from non-target state j to
non-target state i. The entry mK

ij is the transition probability from
state j to target state α + i, for i = 1, . . . , β , and to the death state,
for i = β+1. ThematrixUK is extracted from the original transition
matrix U, as in Eq. (7). The matrixMK is composed of two blocks:

MK =

(
K

mT
α

)
. (9)

ThematrixK describes the transitions from the non target states to
the target states; it is directly extracted from the original transition
matrixU, as in Eq. (7). The vectormα describes the transitions from
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U =

Bc   B  
Bc

⎧⎨⎩
B

⎧⎨⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎝

u11 · · · u1α u1,α+1 . . . u1ω
...

. . .
...

...
. . .

...

uα1 · · · uαα uα,α+1 . . . uαω

uα+1,1 · · · uα+1,α uα+1,α+1 . . . uα+1,ω
...

. . .
...

...
. . .

...

uω,1 · · · uω,α uω,α+1 . . . uω,ω

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=:

(
UK L
K Q

) (7)

Box I.

Table 2
Matrices used the construction and in the analysis of the Markov chain demographic model. ω and β denote the number
of living states in the life cycle and the number of states in the set B, respectively, and α = ω − β .

Notation Expression Size Description

Matrices describing demographic model

P (ω + 1) × (ω + 1) Transition probabilities
U ω × ω Living states transition probabilities
m ω × 1 Mortality probabilities
N (Iω − U)−1 ω × ω Fundamental matrix

Decomposition of U
UK Eq. (7) α × α Bc -to-Bc transitions
K Eq. (7) α × β Bc -to-B transitions
L Eq. (7) α × β B-to-Bc transitions
Q Eq. (7) β × β B-to-B transitions

Matrices describing the killed MC

PK (ω + 1) × (ω + 1) Transition probabilities
UK α × α Transient state transition probabilities
MK Eq. (9) (β + 1) × α Absorbing transition probabilities
NK (Iα − UK)−1 α × α Fundamental matrix

Matrices describing the conditional MC

PC (α + 1) × (α + 1) Transition probabilities
UC DaUKD−1

a α × α Transient state transition probabilities
mC (1T

αKD−1
a )T α × 1 Absorbing transition probabilities

NC (Iα − NC)−1 α × α Fundamental matrix

Matrices describing the sub MC

PS (α + 1) × (α + 1) Transition probabilities
US AL + Q α × α Transient state transition probabilities
mS 1T

β − 1T
βUS 1 × α Mortality probabilities

NS (Iβ − US)−1 β × β Fundamental matrix

Other

A KNK β × α Reaching a state in B probabilities
Ã

(
A|Iβ

)
β × ω

pa AT1β α × 1 Reaching B probabilities
Da diag (pa) α × α

pr UT
S1β β × 1

Dr diag (pr ) β × β

Transition probabilities given individual returns in B

Win QD−1
r β × β B to B transitions

Wout DaLD−1
r α × β B to Bc transitions

the non target states to the death states; it is extracted from the
original vectorm describing the probabilities of death (Eq. (2)),

mα = (m1, . . . ,mα). (10)

Example. Fig. 3 shows the graphs of the killed Markov chains
associated with the target states Bb = {3, 4} and Ba = {2, 3, 4},
respectively.

3.1.1. Absorption probabilities
In order to define the conditional Markov chain, we need to cal-

culate, for each target state i and non-target state j, the probability
that an individual starting in j passes through i before eventual

death. For j = 1, . . . , α, and i = 1, . . . , β , let aij denote the
probability that the killed chain initially in state j (non target
state) is absorbed into the target state α + i. Following Theorem
3.3 in Iosifescu (1980), those probabilities are described by the
matrix

A = KNK of size β × α, (11)

whereNK = (Iα−UK)−1 is the fundamentalmatrix associatedwith
the killed Markov chain. Note that the matrix A is a sub-matrix of
the matrix A∗

= MKNK, which describes the entire distribution of
fates for any starting non-target state, i.e. the probabilities that the
killed Markov chain is stopped in any of the target states or in the
death state. Therefore the columns of A∗ sum to one.
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Fig. 2. The first row of each block is a realisation of the original Markov chain
describing the Southern Fulmar life cycle. Under them are the corresponding
realisations of the induced Markov chains associated with the target states {3, 4}:
the killed Markov chain in brown, the conditional Markov chain in green, and the
sub-Markov chain in blue. The realisations of the sub chain may have longer jumps
because it describes the pathways of the original chain only in the target set. In the
second block, the conditional chain has no realisation because the original chain
does not enter any target state. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

The probabilities of absorption in the set B – regardless of the
specific state in which the chain is absorbed – are given by the
vector pa which satisfies the equation

pT
a = 1T

βA. (12)

The ith entry of pa is the probability that the killed Markov chain,
initially in state i, is absorbed in a target state.

By definition of the killed Markov chain, aij is the probability
that the first target state, visited by an individual initially in state
j, is α + i. Similarly, paj is the probability that an individual initially
in state j reaches a target state. In the Southern Fulmar example
with target set Bb = {3, 4}, the entry a11 is the probability that
the first breeding attempt of a newborn is successful, and pa1 is the
probability that a newborn attempts breeding.

3.2. The conditional Markov chain PC

The transition matrix PC describes the transition probabilities
of the killed Markov chain, conditional on absorption in the target
set. Therefore, the absorbing states are B and the new transient set
is Bc . The state space of the conditional Markov chain is T , and its
transition probability matrix is

PC =

(
UC 0
MC Iβ

)
of size

(
α × α α × β

β × α β × β

)
. (13)

Note that the death state does not belong to the state space of the
conditional Markov chain because all its trajectories are absorbed
by the target set before death is reached. The entry uCij is the
conditional probability of the transition form state j to state i given
that the individualwill eventually enter in the setB. The entrymC

ij is
the conditional transition probability from the state j to the target
state α+ i, given that the individual will eventually enter in the set
B. The columns of PC sum to 1. The block matrices UC and MC are
given by

UC = DaUKD−1
a and MC = KD−1

a , (14)

where

Da = diag (pa) (15)

is a diagonal matrix with, on the diagonal, the probabilities of
absorption in the target states, pa (defined in Eq. (11)).

In Appendix A.2, we provide a formal proof that the matrix PC,
defined by Eqs. (13) and (14), describes the Markov chain whose
trajectories are precisely those of the killed Markov chain that do
not encounter death before entering the target set. This proof is
deeply inspired by the proof, written by Iosifescu (1980) (Section
3.2.9), in the special case where the target set is a single state.

Example. Fig. 4 shows the graphs of the conditionalMarkov chains
associated with the target states Ba = {3, 4} and Ba = {2, 3, 4},
respectively.

3.3. The sub-Markov chain PS

The transition matrix PS contains, for each pair of target states i
and j, the probabilities that an individual currently in state i returns
to the target set in state j or dies before returning to the target
set. Note that the return may take more than one time step. The
transient state space is B, and d is the only absorbing state. The
state space of the sub-Markov chain is B ∪ {d}. The transition
probability matrix is

PS =

(
US 0
mT

S 1

)
of size

(
β × β β × 1
1 × β 1 × 1

)
. (16)

The entry uSij is the probability that an individual starting in state
α+j reaches the stateα+iwithout passing through any other state
in B. The entry mS

i is the probability that an individual starting in
state α + i dies before it reaches a state in B. Since the columns of
the matrix PS sum to one,

mT
S = 1T

β − 1T
βUS, (17)

and the only variable is the matrix US. In Appendix A.1, we derive
the matrix US from the matrix P,

US = AL + Q of size β × β. (18)

The matrix Q (defined in Eq. (7)) contains the probabilities that an
individual starting in a target state makes a one-step transition to
a target state. The product AL describes the probabilities that the
individual first leaves, and then re-enters, the target set. Thematrix
L is defined in Eq. (7), and the matrix A is defined in Eq. (11).
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Fig. 3. Graphs of the killed Markov chain associated with the sets {3, 4} (a), and {2, 3, 4} (b), respectively. The grey circles are the target states, which are absorbing states
for the killed Markov chain. The dashed arrows are the transitions into the absorbing states. To lighten the graph we omit the transitions to the death state.

Fig. 4. Graphs of the conditional chain associated with the sets {3, 4} (a), and {2, 3, 4} (b), respectively. The grey circles are the target states. The dashed arrows are the
transitions into the absorbing states.

Note that one time-step for the sub-Markov chain corresponds
to a random number of time-steps for the initial Markov chain.
However, the number of passages in a specific state in B starting
in B is equivalent for both chains (see Section 4 for more details).

Example. Fig. 5 shows the graphs of the conditionalMarkov chains
associated with the target states Ba = {3, 4} and Bb = {2, 3, 4},
respectively.

4. Occupancy time in the target states

The occupancy time in the target states is the time spent in the
target states over the individual’s life. Because the pathways taken
by individuals through their life is stochastic, the occupancy time
is a random variable; each of its realisation is associated with the
realised pathway of an individual. In this section, we calculate the
distribution of the occupancy time in B and we provide formulae
for its mean and variance, and for any of its higher moments.

Let τi denote the occupancy time in the set B for an individual
initially in state i. The occupancy times are grouped into two

vectors, τ in and τout, depending on the initial state being in or out
of the set B, and both of the vectors are concatenated in the vector
τB ,

τB = (τ1, . . . , τα  
=:τout

, τα+1, . . . , τω  
=:τin

)T. (19)

Let τk
B , τk

out, and τk
in denote the kth moment of the random

vectors τB , τout, and τ in, respectively.

Moments of the occupancy time. First, we consider an individual
initially in a statewithin the target setB. To calculate its occupancy
time in B, we follow its pathway, and count the number of visits
to target states. The parts of the pathway between two target-
state visits are irrelevant for this count. Hence, it is sufficient to
follow the pathway of the sub-Markov chain, and count its number
of visits to B. That is the number of steps in which the sub-
Markov chain is in one of its transient states. Iosifescu (1980)
(Theorem3.2) provides a recursion formula for themoments of this
number, which translates here into a formula for the moments of
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Fig. 5. Graphs of the sub-Markov chain associated with the sets {3, 4} (a), and {2, 3, 4} (b), respectively. The dashed arrows are the transitions into the absorbing states. The
dashed circles are the target states. To lighten the graph we omit the transitions to the death state.

the occupancy time in the target set B for an individual initially in
a target state:

τ1
in = NT

S1β (20)

τ2
in = (NT

S − Iβ )2τ1
in + τ1

in (21)

= (2NT
S − Iβ )τ1

in (22)

τk
in = (NT

S − Iβ )
k−1∑
r=1

(
k
r

)
τr
in + τ1

in, for k ≥ 2, (23)

whereNS = (Iβ −US)−1 is the fundamental matrix associatedwith
the subMarkov chain.

From Eqs. (20) and (21), we obtain a formula for the variance of
the occupancy time in B for an individual initially in a state within
the target set B,

Var(τT
in) = 1T

βNS(2NS − Iβ ) −
(
1T

βNS
)
◦
(
1T

βNS
)
. (24)

Second, we consider an individual initially in a non-target state.
Since the sub-Markov chain is not defined outside the target states,
we cannot directly apply the technique used above. However, we
know that, either the individual never enters B, in which case its
occupancy time is zero, or it reaches some target state j. In the
latter case, the probabilistic fate of the individual after it reaches j is
equivalent to the fate of an individual that starts in the target state
j; this is the strong Markov property (see e.g., Meyn and Tweedie
(2009)). Thus, the conditional mean occupancy time, given the
first-reached target state j, is the mean occupancy time of an
individual initially in j. The unconditional mean occupancy time is
the average, over the target states, of the means of the occupancy
time of an individual initially in a target state, weighted by the
probabilities to reach first these target states. This holds for all
moments, and is translated in matrix notation into

τk
out = ATτk

in (25)

where thematrixA contains the probabilities of reaching the target
states (defined in Eq. (11)), and the vector τk

in is given by Eq. (23).
In Appendix A.3, we provide a formal proof of Eq. (25).

From Eq. (25), we obtain a formula for the variance of the
occupancy time in B for an individual initially in a non-target

state,

Var(τT
out) = 1T

βNS(2NS − Iβ )A −
(
1T

βNSA
)
◦
(
1T

βNSA
)
, (26)

and

Var(τT
B) =

[
Var(τT

out) : Var(τT
in)
]
. (27)

Distribution of the occupancy time. First, we calculate the distri-
bution of the occupancy time in B for an individual initially in a
state within the target set. Similarly to the moment calculations,
this distribution is equivalent to the distribution of the number of
steps inwhich the sub-Markov chain is in one of its transient states.
Following Iosifescu (1980) (p. 104), we obtain(
P
(
τ in
1 = n

)
, . . . ,P

(
τ in
β = n

))
=

{
0T

β for n = 0
1T

β (Iβ − US)Un−1
S for n ≥ 1.

(28)

Second, we calculate the distribution of the occupancy time in
B for an individual initially in a non-target state. Similarly to
the moment calculations, we use the strong Markov property to
deduce this distribution from the distribution of the occupancy
time in B for an individual initially in a state within the target set,
given in Eq. (28). The probability that the occupancy time is zero,
however, requires a special attention. This probability is equal to
the probability that the individual dies before it enters any target
state; that is one minus the absorbing probability (see Eq. (12)).
Hence, the distribution of the occupancy time inB for an individual
initially in a non-target state is(
P
(
τ out
1 = n

)
, . . . ,P

(
τ out
α = n

))
=

{
1T

α − pT
a for n = 0

1T
β (Iβ − US)Un−1

S A for n ≥ 1.
(29)

5. Correlation between the occupancy times in two sets

Consider two subsets B1 and B2, of the transient set T . In this
section we calculate the correlation between the occupancy time
in B1 and the occupancy time in B2. A positive (resp. negative)
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correlation means that both of the occupancy times tend to have
the same (resp. opposite) ‘‘behaviour’’, i.e. when one is greater than
itsmean, the other tends to be greater (resp. smaller) than itsmean
and vice versa when it is smaller. The correlation between τB1 and
τB2 is defined as follows

Corr
(
τB1 , τB2

)
=

Cov
(
τB1 , τB2

)√
Var(τB1 )Var(τB2 )

, (30)

where the covariance between τB1 and τB2 is

Cov
(
τB1 , τB2

)
= E

[(
τB1 − τ1

B1

) (
τB2 − τ1

B2

)]
. (31)

The denominator in the right hand side of Eq. (30) is directly
calculated with the formulae (24) and (26) applied successively to
B1 and B2. To calculate the numerator let us split the set B1 ∪ B2
into three pairwise disjoint sets (possibly empty): the states in B1
that are not in B2:

C1 = B1 ∩ Bc
2, (32)

the states in B2 that are not in B1:

C2 = B2 ∩ Bc
1, (33)

and the states that are in B1 and in B2

C3 = B1 ∩ B2. (34)

Then we have

Cov
(
τB1 , τB2

)
= Cov

(
τC1 + τC3 , τC2 + τC3

)
(35)

= Cov
(
τC1 , τC2

)
+ Cov

(
τC1 , τC3

)
+ Cov

(
τC2 , τC3

)
+ Var

(
τC3

)
. (36)

The covariances in the right hand side of Eq. (36) are calculated
with formula (86) applied to the appropriate sets. The variance
Var

(
τC3

)
is calculated with formulae (24) and (26) applied to the

set C3.
If the sets B1 and B2 are disjoint, Eq. (36) boils down to

Cov
(
τB1 , τB2

)
=

1
2

[
Var

(
τB1∪B2

)
− Var

(
τB1

)
− Var

(
τB2

)]
(37)

(see Appendix A.4 for details). The variances Var
(
τB1∪B2

)
,

Var
(
τB1

)
, and Var

(
τB2

)
are calculated with the formulae (24) and

(26) applied to the sets B1 ∪ B2, B1, and B2, respectively.

5.1. Correlation between occupancy time and longevity

In the particular case when the set B2 is the entire transient set,
and B1 = B is another target set, the calculations above provide a
formula for the correlation between occupancy time in B and the
longevity.

Let ηi denote the longevity for an individual initially in state i.
The longevity is the sum of the time spent in all the transient states
before death, that is the occupancy time in the entire transient
set T (see Caswell (2001)). Therefore the correlation between
the occupancy time in the target states and the longevity of an
individual can be calculated with the formula (30) applied to B1 =

B and B2 = T . In this particular case, the calculations above boil
down to

Corr (τB, η) =
Cov (τB, τBc ) + Var (τB)

√
Var(τB)Var(η)

. (38)

6. Behaviour of winners and losers

For want a better term, we call the individuals that eventually
reach the target stateswinners. Individuals that never reach the tar-
get states are called losers (the terminology implies nothing about
the desirability of the states). In the Southern Fulmar examplewith
target set Bb, the winners are individuals that eventually breed,
successfully or not, and the losers are individuals that never breed.
Two demographic variables are related to the behaviour of the
winners: the time required to reach the target set, and the time to
return to the target set. In the Southern Fulmar examplewith target
set Bb, these variables translate into the time to maturation, and
the time interval between two breeding attempts. In this Section,
we calculate the probability that an individual eventually becomes
a winner, and the conditional probability distribution of the time
to reach the target set, given that the individual eventually does
so. We also provide formulae for the variance and any moments of
this distribution. Then, we calculate the probability that a winner
returns to the target set, after its first visit. Finally, we calculate
the conditional probability distribution of the time to return to
the target set, given that the individual eventually returns. We
also provide formulae for the variance and any moments of this
distribution.

6.1. Probability of reaching the target states

The probability that an individual eventually reaches the target
set is the probability that the killedMarkov chain is absorbed into a
target state (see Section 3.1.1). Therefore the probabilities of being
a winner, given the current state, are given by the entries of the
vector pa = 1TA,

Pr (individual in i becoming a winner ) = pai , (39)

Pr (individual in i becoming a loser ) = 1 − pai . (40)

6.2. Time to reach the target states

Let tBi denote the random time required to reach the target set
B by a winner initially in the non target state i, and

tB = (tB1 , . . . , tBα )T. (41)

The time required by a winner to reach the target set is the occu-
pancy time of the conditional Markov chain in its entire transient
set. Indeed, by definition, the conditional Markov chain describes
the transitions ofwinners before they enter the target set. Theorem
3.2 in Iosifescu (1980), applied to the conditional Markov chain,
provides a recursion formula for the moments of the occupancy
time, which translates here into a formula for the moments of the
time required to reach the target states,

tkB =
(
NT

C − Iα
) k−1∑

r=1

(
k
r

)
trB + t1B, (42)

where NC = (Iα − UC)−1 is the fundamental matrix associated
with the conditionalMarkov chain. In particular, Eq. (42) yields the
mean and variance of tB ,

E[tTB] = 1T
αNC (43)

Var
(
tTB
)

= 1T
αNC(2NC − Iα) −

(
1T

αNC
)
◦
(
1T

αNC
)
. (44)

Following Iosifescu (1980) (see p. 104),we also obtain a formula
for the distribution of tB(
P
(
tB1 = n

)
, . . . ,P

(
tBα = n

))
= 1T

α(Iα − UC)Un−1
C . (45)
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6.3. Return to the target states

A winner will eventually enter the target set but its life may
not end there. It may leave B one time-step after its first entrance
and never return, it may leave but return eventually, it may stay
and leave later, or it may stay forever. An individual returns to the
target set if it is in one of the target states at some time, and it visits
a target state at a later time, butwithout passing through any target
state in-between.

6.3.1. Return probabilities
The entries of the sub-Markov chain describe the probabilities

for an individual to go – in possiblymore than one time-step – from
one target state to another, without passing through other target
states in-between. Hence, the entry uSij (Eq. (18)) is the probability
that an individual in target state α + i returns to B in target state
α + j,

Pr (individual currently in i returns to B through j) = uSji.
(46)

The probabilities of returning to B regardless in which state are
given by the vector

pr = UT
S1β . (47)

6.3.2. Return time
The return time to the target set is the time between two visits

to this set. For a demographic Markov chain, it is the time interval
between two instances of the demographic events described by
the target set, e.g., the number of years between two breeding
attempts. This time interval can be as small as 1 if the individual
breeds the next year, but it can be infinite if the individual dies
before breeding again. To avoid the later scenario, we calculate
the conditional probability distribution of the return time, given
that the individual does eventually return to B. Caswell (2006)
provides formulae for the distribution and the moments of the
interval between demographic events that are described by a single
target state. By using a different method, we generalise this result
to events described by several target states.

Letµi denote the return time for an individual initially in target
state α + i, and

µ = (µ1, . . . , µβ )T. (48)

To calculate the probability distribution of µ, we need to calculate
the one-time-step transition probabilities from target states to tar-
get states, and from target states to non-target states, conditional
on eventual return to the target set.

Let Win, of size β × β , denote the matrix which contains the
conditional probabilities that an individual initially in a target state
moves to a target state in one step, given that it eventually returns
to the target set. By definition of conditional probabilities, we have

Win = QD−1
r of size β × β, (49)

where diagonal of Dr = diag (pr ) contains the return probabilities,
as defined in Eq. (47), and Q contains the unconditional prob-
abilities that an individual initially in a target state moves to a
target state, as defined in Eq. (7). Eq. (49) is derived in detail in
Appendix A.5.

Let Wout of size α × β denote the matrix which contains the
conditional probabilities that an individual initially in a target state
moves to a non-target state, given that it eventually returns to the
target set. Similar to the calculation of the transition probabilities
of the conditional Markov chain (Section 3.2), the calculation of

Wout follows from the definition of conditional probabilities and
the Markov properties of the original chain,

Wout = DaLD−1
r of size α × β, (50)

where Dr = diag (pr ) and Da = diag (pa), respectively, contain on
their diagonal the probabilities of return to, and the probabilities of
absorption in, the target states, as defined in Eqs. (11) and (47). The
matrix L contains the unconditional probabilities that an individual
initially in a target state moves to a non-target state, as defined
in Eq. (7). Eq. (50) is derived in detail in Appendix A.5.

The probability distribution of µ is derived from the matrices
Win, Wout, and the transition matrix UC of the conditional Markov
chain. The return time of an individual initially in the target set
is equal to one if its first transition is into the target set. The
probabilities of those transitions are obtained by summing the
columns of matrixWin, i.e.(
P (µ1 = 1) , . . . ,P

(
µβ = 1

))
= 1T

βWin. (51)

To calculate the probabilities that the return time is n, with n ≥ 2,
weuse theMarkovproperty. An individualwith a return time equal
to n has first moved to a non-target state, and from there it has
reached the target set in n−1 steps. Hence, the probability that the
return time is equal to n is the sum, over all non-target states, of the
product of the probability that an individual moves to a non-target
state and the probability that an individual reaches the target set
from this non-target state, in n − 1 steps. Hence,(
P (µ1 = n) , . . . ,P

(
µβ = n

))
=
[
1T

α(Iα − UC)Un−2
C

]
Wout, for n ≥ 2. (52)

The probabilities that an individual initially in a target state moves
to a non-target set are given by the column-sums of the matrix
Wout. The bracketed term is the probability of reaching the target
set in n − 1 steps, as given in Eq. (45).

In Appendix A.5, we also derive a formula for the moments of
µ. In particular, this formula yields the mean and variance of µ,

E[µ] = 1β + WT
outt

1
B (53)

Var (µ) = WT
outt

2
B − WT

outt
1
B ◦ WT

outt
1
B. (54)

7. Example: the Southern Fulmar

The Southern Fulmar is an ice-dependent seabird. This species
breeds along the coast of Antarctica and outlying islands, and
its individuals forage near the ice edge. Because of its breeding
and foraging habitat, the vital rates of the Southern Fulmar are,
to some extent, dependent on the sea ice condition. Using the
life cycle illustrated in Fig. 1, Jenouvrier et al. (2015) estimated
matrix population models for three ice conditions: favourable,
ordinary, and unfavourable. From these models, we derive three
transient state transitionmatrices,Ufav,Uord, andUunfav, describing
transitions and survival in a favourable, ordinary, and unfavourable
ice conditions, respectively. These matrices are provided in the
Supplementary Material.

We choose to focus on the super-state ‘‘breeding attempt’’;
that is, the target states Bb = {3, 4}. This set plays an important
role in the developmental description of an individual. The pre-
breeder state describes juvenile individuals, the non-breeder state
describes adult individuals that are skipping reproduction, and Bb
captures the actively reproducing individuals. In this section, we
first show the construction of the killed Markov chain, the condi-
tional Markov chain, and the sub Markov chain for Bb. Then, we
illustrate the calculations listed in Table 1, describe their biological
meaning for the target set Bb, and compare them between the
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Fig. 6. Mean (a) and coefficient of variation (b) of the occupancy time in the set Bb for an individual initially in the states pre-breeder (PB), successful breeder (SB), failed
breeder (FB), and non breeder (NB).

three ice conditions. In the Supplementary Material, we provide
the matlab code for calculating all the measures presented here.
Due to space constraints, we only show matrices associated with
the ordinary ice conditions.

Original Markov chain. The transition probabilities between the
transient states of the originalMarkov chain are extracted from Je-
nouvrier et al. (2015),

Uord =

⎛⎜⎜⎝
0.9 0 0 0
0 0.63 0.07 0.18

0.01 0.18 0.67 0.49
0.01 0.09 0.19 0.24

⎞⎟⎟⎠ . (55)

The death probability vectorm is deduced from Uord,

m = 14 − UT14 =

⎛⎜⎜⎝
0.08
0.1
0.07
0.09

⎞⎟⎟⎠ . (56)

Constructing the killedMarkov chain. The killed chain is the original
chain that is stopped as soon as it enters Bb. The transient states of
the killed chain are {1, 2}, and the absorbing states are {3, 4, d}.
Fig. 3(a) shows the graph of the killed Markov chain. The variables
required to describe the transition matrix PK (Eq. (8)) are the
matrices UK and K (both extracted from Uord as shown in Eq. (7)),
and the vectorm2 containing the death probabilities from the non-
target states (as defined in Eq. (9)):

UK =

(
0.9 0
0 0.63

)
, K =

(
0.01 0.18
0.01 0.09

)
, and

m2 =

(
0.08
0.1

)
. (57)

Constructing the conditionalMarkov chain. The conditionalMarkov
chain is the killed chain, conditional on eventual absorption in the
target states. The transient states of the conditional chain are {1, 2},
and the absorbing state are {3, 4}. Fig. 4(a) shows the graph of
the conditional Markov chain. The variables required to construct
the transition matrix PC Eq. (8) are the matrices UC and mC, both
defined in Eq. (14),

UC =

(
0.9 0
0 0.63

)
, MC =

(
0.061 0.25
0.037 0.12

)
. (58)

Constructing the sub Markov chain. The sub Markov chain is the
original chain observed through a filter that makes visible only the
target states and the death state. The transient states of the sub
chain are the target states {3, 4}, and the absorbing state is {d}.
Fig. 5(a) shows the graph of the sub-Markov chain. The variables
required to construct the transition matrix PS (Eq. (16)) are the
matrix US (defined in Eq. (18)), and the vector mS (defined in
Eq. (17),

US =

(
0.7 0.58
0.21 0.29

)
, mS =

(
0.09
0.13

)
. (59)

Now, we illustrate the calculations listed in Table 1 for each ice
condition.

Occupancy time in Bb.

The occupancy time in the set Bb is the lifetime number of breed-
ing attempts. Fig. 6 illustrates the mean and coefficient of variation
of the lifetime number of breeding attempts (i.e. occupancy time
in Bb), calculated with formulae (20), (24), (25), and (26), applied
to B = Bb.

The mean number of breeding attempt is extremely low under
unfavourable ice conditions (Fig. 6). This is a consequence of the
long time tomaturation under unfavourable ice conditions. In fact,
the probability of maturation in unfavourable conditions is only
0.0544. Thus, less than 1/20th of the newborns mature; 19/20
never attempt breeding. However, those that do mature have a
relatively large number of breeding attempts (see Fig. 6(a), initial
states successful breeder and failed breeder). This large difference
between the mean number of breeding attempt of newborns and
adults explains partially the large standarddeviation of thenumber
of breeding attempts of newborns, which is almost six times the
mean, as shown in Fig. 6(b). In contrast, under favourable con-
ditions, half of the newborns will reach maturity, which brings
the mean number of breeding attempt for newborns closer to the
mean number of breeding attempt for adults. As a consequence,
the standard deviation of the number of breeding attempts is less
than twice its mean.

Fig. 7 illustrates the probability distribution of the lifetime
number of breeding attempt for adults under each ice condition,
calculated by applying Eq. (28) to the set Bb. These distributions
are approximately geometric, with parameter 1 − p, where p =
1
2 (p

r
1 + pr2) is the average probability of returning to Bb (see
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Fig. 7. Distributions of the occupancy time in the setBb for an individual starting in the state successful breeder under favourable condition (left), ordinary condition (centre),
and unfavourable condition (right).

Eq. (47)), which ranges from 0.9272 (favourable conditions) to
0.6951 (unfavourable conditions). The mean and coefficient of
variation of this distribution are 1

1−p and
√
p, respectively. This

explainswhy the relative decrease of themeannumber of breeding
events after maturation between favourable ice conditions and
unfavourable conditions is approximately 0.7, but the relative de-
crease of the coefficient of variation is only 0.1, as shown in Fig. 7.

Correlation between occupancy time and longevity.

The correlation between the longevity of an individual and
its number of breeding attempts provides information on how
longevity affects the total number of breeding attempts. Using
formula (38), we find a positive correlation (Fig. 8) for each ice
condition. Indeed, we expect that on average a particularly large
longevity results in a particularly large number of breeding at-
tempt and vice versa. Because newborn individual cannot breed
before maturity, the correlation between longevity and breeding
attempts for newborn is smaller than the correlation for adults.
Under favourable ice conditions, individuals spend most of their
lives in Bb, and the correlation approaches 1.

Time required to reach Bb.

The target states in Bb describe active reproduction, and the
time to reach Bb is the time to maturation. Fig. 9 illustrates the
mean and coefficient of variation of this time, calculated with
formulae (43) and (44) applied to B = Bb. The average maturation
time under unfavourable ice conditions among individuals that do
successfully mature is twice as large as that under favourable ice
conditions.

Time required to return to Bb.

This time corresponds to the time between two breeding at-
tempts, which is a measure of inter-birth interval and an indicator
of the individual’s reproduction consistency. This time is 1 for indi-
viduals that never skip reproduction, and is infinite for individuals
that reproduce only once. In terms of the Markov chain, this time
is the return time to the set Bb. The mean return time increases
as the ice condition becomes less favourable (Fig. 10). Unlike for
the maturation time, the coefficient of variation of the time be-
tween breeding increases significantly as well. One reason is that
non-breeding individuals have a smaller probability of attempting
breeding the following year under unfavourable ice conditions
(pa2 = 0.19) than under favourable ice conditions (pa2 = 0.66). This
results in more variation in the distribution of the time required to

Fig. 8. Correlation between occupancy time in Bb and the expected longevity for
an individual initially in the states pre-breeder (PB), successful breeder (SB), failed
breeder (FB), and non breeder (NB).

attempt breeding after a non breeding season under unfavourable
ice conditions than under favourable ice conditions, as shown in
Figures S1 and S2 provided in the Supplementary Material.

8. Discussion

From birth to death, an individual goes through a sequence of
random events (e.g., surviving, developing, mating, reproducing,
growing, dispersing, moving among social or occupational classes,
or changing health status). This results in a stochastic pathway
through the individual state space. Many important life history
traits are direct functions of these pathways (e.g., longevity, re-
productive output, age at maturity) and are often related to the
concept of occupancy time in a state. Absorbing Markov chains are
a powerfulmodel framework to analyse these stochastic pathways,
but current theory can only calculate the occupancy times in a
single state. However, often the occupancy time in a set of states is
desired. For example, a size range in a size-classified model, an age
class in a age×stage model, or a set of locations in a spatial model
are all sets of states. We have presented a new mathematical ap-
proach to absorbingMarkov chains that generalises the occupancy
calculations to sets of states and enlarges the list of demographic
measures that can be calculated from a demographic model.
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Fig. 9. Mean (a) and coefficient of variation (b) of the time to reach the set Bb for individual initially in the states pre-breeder (PB), and non breeder (NB).

Fig. 10. Mean (a) and coefficient of variation (b) of the time to return to the set Bb for an individual initially in the states successful breeder (SB), and failed breeder (FB).

For any number of target states, we provide formulae to cal-
culate any moments (e.g., mean and variance) and the probability
distribution of

• the occupancy time in a target set
• the time required to reach a target set
• the time required to return to a target set.

Last but not least, we provide a formula to calculate the correla-
tion between the occupancy times in two different sets. These for-
mulae are straightforward to calculate inmatrix oriented software.

In demographic models based on absorbingMarkov chains, any
life history trait that is a function of the individual’s pathway is
stochastic. The calculation of the resulting distribution of this trait
among individuals is complicated, and is often approximated by
its mean and, sometime, its variance. While the current theory can
calculate any moment of the occupancy time in a single state, our
generalisation to the set occupancy time provides also a formula
for its probability distribution.

As the questions in population ecology become more sophis-
ticated and data become more detailed, the use of multistate
and hyperstate matrix models will become increasingly impor-
tant (Roth and Caswell, 2016). For these models, it is often useful

to consider marginal sets. For example, in a age×stage-structured
model, the marginal set age x describes individuals in age class x
independently of their stage. Similarly, an increasingly number of
studies use integral projection models (Ellner et al., 2016) which
are approximated – and then analysed – by matrix projection
modelswith highly detailed i-state space (e.g., large number of size
classes). For thesemodels, the occupancy in a single state is often of
no interest, while the occupancy in a set of state can be biological
important (e.g., range of ages or sizes corresponding to a specific
developmental stages). Our work generalises the occupancy calcu-
lations for these two highly powerful family of models.

In human demography, multistate models often combine age
classes with health or social categories. Studies may focus on
the expected occupancy times (e.g., Siegel (2012) and Clark et al.
(2016)), but very little use is made of the Markov chain framework
presented here. Applying our results to such human demographic
models would significantly improve the calculations of the occu-
pancy by providing the variance and its probability distribution.

The only data required for our calculations are the transition
probabilities between the states that describe the individuals.
These probabilities can be obtained from most population projec-
tion matrices. The availability of projection matrix data has been
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improved by the databases COMPADRE for plant and COMADRE for
animals (Salguero-Gómez et al., 2016, 2015). Hence, our approach
to absorbing Markov chain makes the analysis of occupancy times
accessible for a wide range of existing projection matrix models.

The power of our results is to provide easy-to-use formulae to
calculate demographic measures that seem, a priori, to be com-
plicated. All the indices listed in Table 1 can be calculated with
matrix expressions, which are very easy to implement in matrix
oriented softwares. In the SupplementaryMaterial, we provide the
matlab code that calculates the results listed in Table 1 from a
given transition matrix U and a set of transient states B. We also
provide thematlab code for calculating the results of the Southern
Fulmar example presented in Section 7.

In ecology and in human demography, discrete timemodels are
widely used for their simplicity in their formulation and for their fit
with data observed at specific times. However, the underlying pro-
cesses of these dynamics are certainly continuous in time. Hence,
extending the occupancy calculations to continuous time Markov
chains would significantly enlarge the range of applications.
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Appendix A

To derive our formulae, we need to define formally the stochas-
tic process described by the transition matrices P, PK, PC, and PS.
TheMarkov chain associatedwith the transitionmatrixP describes
a stochastic process {Xt}t≥0 taking values in the i-state space S and
satisfying the Markov property

P (Xt+1 = i|Xt = j, Xt−1 = jt−1, . . . ,X0 = j0) = pji (60)

for any i, j, j0, . . . , jt−1 ∈ S . Likewise, the killed Markov chain,
the conditional Markov chain, and the sub-Markov chain describe
the stochastic processes {XK

t }t≥0 {XC
t }t≥0 {XB

t }t≥0, which satisfy the
Markov property, respectively.
A.1. Derivation of the matrix US and the vectormS

Let i, j be two target states. The entry uSj−α,i−α is the probability
that an individual initially in target state j to reach the state i
without passing by any other states in B. Define the stopping time
T = min{t ≥ 1|Xt ∈ B}. The time T is the random time – possibly
infinite – at which the individual will enter the set B. In particular,
XT is the state throughwhich the individual enters for its first time
in B. Then we can rewrite uSj−α,i−α as

uSj−α,i−α = Pi (XT = j) . (61)

By definition of the absorbing probabilities (Eq. (11)), for a non
target state k ∈ Bc , we have

aj−α,k = Pk (XT = j) . (62)

Using the Chapman–Kolmogorov equation (see e.g., Meyn and
Tweedie (2009)), we obtain

Pi (XT = j) = Pi (X1 = j)

+

∑
k∈Bc

Pi (XT = j|X1 = k)Pi (X1 = k)

= Pi (X1 = j) +

∑
k∈Bc

Pk (XT = j)Pi (X1 = k)

= Pi (X1 = j) +

∑
k∈Bc

aα−j,kPi (X1 = k)

= uji +
∑
k∈Bc

aα−j,kuki. (63)

In matrix notation, equation (63) is equivalent to Eq. (18), i.e.

US = AL + Q (64)

where the matrices L and Q are extracted from the matrix U, as
in Eq. (7).

A.2. Proof that XC is a Markov chain

Iosifescu (1980) (section 3.2.9) proves that an absorbingMarkov
chain,with respect to the conditional probability that it is absorbed
by a specific state, is still an absorbingMarkov chain. Here, we gen-
eralise this statement to the condition that the chain is absorbed in
a specific set of states.

Let us define the event A = {XK is absorbed in the target set B},
i.e. the killed chain is absorbed in the target set. We consider the
stochastic process XC, living on the space T , defined by

P
(
XC

t ∈ B
)

= P
(
XK

t ∈ B|A
)

(65)

for any measurable set B ⊂ S. To ease the notation, we write
P
(
XK

t ∈ B|A
)

= PA
(
XK

t ∈ B
)
.

By definition, the process XC corresponds to the killed Markov
chain, where trajectories encountering death before target states
are set aside. We first prove that XC is a Markov chain and then
we show that its transition probabilities are describe by thematrix
PC defined in Section 3.2. As a consequence, this proves that the
conditional Markov chain is indeed a Markov chain and that it
corresponds to the killedMarkov chain,where trajectories encoun-
tering death before target states are set aside.

To prove that XC is a Markov chain, we only need to show that
it satisfies the Markov property, i.e.

P
(
XC

t+1 = it+1|XC
t = it , . . . ,XC

0 = i0
)

= P
(
XC

t+1 = it+1|XC
t = it

)
, (66)

for (i0, . . . , it+1) ∈ T t+2.
Fix (i0, . . . , it+1) ∈ T t+2, and define the event Bs = {XK

s =

is, . . . ,XK
t = i0}, for 0 ≤ s ≤ t .

From the definitions of conditional probabilities and the process
XC, we have

P
(
XC

t+1 = it+1|XC
t = it , . . . ,XC

0 = i0
)

=
P
(
{XK

t+1 = it+1} ∩ B0 ∩ A
)

P (A ∩ B0)
(67)

If (i0, . . . , it ) ̸∈ Bt+1, then

P (A ∩ Bs) = P (A|Bs)P (Bs)

= P
(
A|XK

t = it
)
P (Bs)

paitP (Bs) ,

for any 0 ≤ s ≤ t . The second equality is a consequence of the
Markov property of the killed Markov chain, and the third equality
follows from the definition of the absorbing probability vector pa
(see Eq. (12)).

Similarly,

P
(
{XK

t+1 = it+1} ∩ Bs ∩ A
)

= P
(
{XK

t+1 = it+1} ∩ A|Bs
)
P (Bs) (68)

= P
(
{XK

t+1 = it+1} ∩ A|XK
t = it

)
P (Bs) (69)

= P (Bs) IB(it+1)Pit

(
XK

t+1 = it+1
)

(70)
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+ P (Bs) (1 − IB(it+1))P
(
A|XK

t+1 = it+1
)

×Pit

(
XK

t+1 = it+1
)

(71)

= P (Bs)
[
IB(it+1)Pit

(
XK

t+1 = it+1
)

+ (1 − IB(it+1))pait+1
Pit

(
XK

t+1 = it+1
)]

(72)

where IB(k) equals 1 if k ∈ B and 0 otherwise.
If it ∈ B, then Bs ⊂ A, for 0 ≤ s ≤ t , and

P
(
{XK

t+1 = it+1} ∩ Bs ∩ A
)

P (A ∩ Bs)

=
P
(
{XK

t+1 = it+1} ∩ Bs
)

P (Bs)
(73)

= P
(
XK

t+1 = it+1|Bs
)

(74)

= P
(
XK

t+1 = it+1|XK
t = it

)
. (75)

Eqs. (72) and (75) imply that the ratio on the right hand side
of Eq. (67) does not depend on s, for 0 ≤ s ≤ t . In particular,

P
(
XC

t+1 = it+1|XC
t = it , . . . ,XC

0 = i0
)

=
P
(
{XK

t+1 = it+1} ∩ Bt ∩ A
)

P (A ∩ Bt)
(76)

= P
(
XC

t+1 = it+1|XC
t = it

)
. (77)

This prove that XC satisfies the Markov property.
The transition probabilities of the Markov chain XC follow from

the equations above. For j ∈ T and i ̸∈ B,

P
(
XC

t+1 = j|XC
t = i

)
=

paj p
K
ji

pai
, (78)

with the convention that pak = 1 for k ∈ B. Andwe have for i, j ∈ B,

P
(
XC

t+1 = j|XC
t = i

)
= 1. (79)

It follows form Eqs. (78) and (79) that the transition probabilities
of the Markov chain XC are given by the matrix PC defined in
Section 3.2, i.e.

PC =

(
UC 0
MC Iβ

)
(80)

where

UC = DaUKD−1
a and MC = KD−1

a , (81)

where Da = diag (pa) is a diagonal matrix with, on the diagonal,
the probabilities of absorption in the target states.

A.3. Moments of occupancy times

To calculate themoments of the occupancy time for individuals
initially outside the target set B, we use the strong Markov prop-
erty. If the individual never enters in B, then its occupancy time is
zero. If it does enter in B, say through the state j, then the law of
its occupancy time is equal to the law of the occupancy time for an
individual starting in the state j. To fix the idea, consider the state
i ∈ Bc . Then

E(τm
i ) =

∞∑
ℓ=1

ℓmP(τi = ℓ)

=

∞∑
ℓ=1

ℓm

⎛⎝∑
j∈B

P(τi = ℓ|enter in B in j)

× P(enter in B in j)

⎞⎠
=

∞∑
ℓ=1

ℓm

⎛⎝∑
j∈B

P(τj = ℓ)aji

⎞⎠
=

∑
j∈B

aji
∞∑

ℓ=1

ℓmP(τj = ℓ)

=

∑
j∈B

ajiE(τm
j ), (82)

where aji is the probability that the killed Markov chain, starting
in state i, is absorbed by the state j, as in Section 3.1.1. In matrix
notation, Eq. (82) is equivalent to

τk
out = ATτk

in. (83)

A.4. Covariance between the occupancy times in two disjoint sets

Here, we calculate the covariance between the occupancy time
in two disjoint subsets B1 and B2, of the transient set T . As stated
in the main text, the covariance between τB1 and τB2 is

Cov
(
τB1 , τB2

)
= E

[(
τB1 − τ1

B1

) (
τB2 − τ1

B2

)]
. (84)

We rewrite the covariance between τB1 and τB2 in terms of their
variances and the variance of their sum,

Cov
(
τB1 , τB2

)
=

1
2

[
Var

(
τB1 + τB2

)
− Var

(
τB1

)
− Var

(
τB2

)]
. (85)

Since the sets B1 and B2 are disjoint, the occupancy time in the
union B1 ∪ B2 is the sum of the occupancy times in each of the
subsets. Thus,

Cov
(
τB1 , τB2

)
=

1
2

[
Var

(
τB1∪B2

)
− Var

(
τB1

)
− Var

(
τB2

)]
. (86)

The variances Var
(
τB1∪B2

)
, Var

(
τB1

)
, and Var

(
τB2

)
are calculated

with the formulae (24) and (26) applied to the sets B1 ∪B2, B1, and
B2, respectively.

A.5. One-step transition probabilities from B given return

Letwin
ij be the conditional probability that an individual in target

state α + j moves to the target state α + i, in one time-step, given
that it eventually returns to the target set. Then,

win
ji := Pα+i (X1 = α + j|T < ∞)

=
Pα+i (X1 = α + j, T < ∞)

Pα+i (T < ∞)

=
Pα+i (X1 = α + j)
Pα+i (T < ∞)

=
uα+j,α+i∑

ℓ∈B uB
ℓi

=
uα+j,α+i

pri
, (87)

where pr describes the return probabilities, as defined in Eq. (47).
Thus,

Win = QD−1
r of size β × β, (88)
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whereDr = diag (pr ) and thematrixQ is extracted from thematrix
U, as in Eq. (7). Let wout

ij be the conditional probability that an
individual in target stateα+jmoves to the non-target state i, in one
time-step, given that it eventually returns to the target set. Then

wout
ji := Pα+i (X1 = j|T < ∞)

=
Pα+i (T < ∞|X1 = j)Pα+i(X1 = j)

Pα+i (T < ∞)

=
Pα+i(X1 = j)Pα+j (T < ∞)

Pα+i (T < ∞)

=
uj,α+i

∑
ℓ∈B aℓj∑

ℓ∈B uB
ℓi

=
uj,α+ipaj

pri
, (89)

where the vector pa describes the probabilities of absorption in the
target states, as defined in Eq. (11). Thus,

Wout = DaLD−1
r of size α × β, (90)

where Dr = diag (pr ), Da = diag (pa), and the matrix L is extracted
form the matrix U, as in Eq. (7).

Now,we derive themoments ofµ, conditional on the individual
returning to the target set. Let α + i be a target state. Then

E[µk
i |T < ∞] =

∞∑
n=1

nkP(µi = n|T < ∞) (91)

= P(µi = 1|T < ∞)

+

∞∑
n=2

nk
∑
j∈Bc

P(tBj = n − 1)Pi(X1 = j|T < ∞) (92)

= P(µi = 1|T < ∞)

+

∑
j∈Bc

Pi(X1 = j|T < ∞)

×

∞∑
n=1

(n + 1)kP(tBj = n) (93)

= P(µi = 1|T < ∞)

+

∑
j∈Bc

Pi(X1 = j|T < ∞)

×

∞∑
n=1

k∑
r=0

(
k
r

)
nrP(tBj = n) (94)

= P(µi = 1|T < ∞)

+

∑
j∈Bc

Pi(X1 = j|T < ∞)
k∑

r=0

(
k
r

)
t rBj

(95)

= 1 +

∑
j∈Bc

wout
ji

k∑
r=1

(
k
r

)
t rBj

. (96)

Hence, in matrix notation,

E[µk
|T < ∞] = 1β +

k∑
r=1

(
k
r

)
WT

outt
r
B. (97)

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.tpb.2017.12.007.

References

Caswell, H., 2001. Matrix Population Models: Construction, Analysis, and Interpre-
tation, second ed. Sinauer Associates, Sunderland, MA, ISBN: 9780878930968.

Caswell, H., 2006. Applications of markov chains in demography. In: MAM2006:
Markov Anniversary Meeting. Boson Books, Raleigh, North Carolina,
pp. 319–334.

Caswell, H., 2009. Stage, age and individual stochasticity in demography. Oikos
118 (12), 1763–1782.

Caswell, H., 2011a. Beyond R0: Demographic models for variability of lifetime
reproductive output. PloS ONE 6 (6), e20809.

Caswell, H., 2011b. Perturbation analysis of continuous-time absorbing Markov
chains. Numer. Linear Algebra Appl. 18 (6), 901–917.

Caswell, H., 2013. Sensitivity analysis of discrete Markov chains via matrix calculus.
Linear Algebra Appl. 438 (4), 1727–1745. http://dx.doi.org/10.1016/j.laa.2011.
07.046.

Caswell, H., Kluge, F.A., 2015. Demography and the statistics of lifetime economic
transfers under individual stochasticity. Demographic Res. 32, 563–588. http:
//dx.doi.org/10.4054/DemRes.2015.32.19.

Clark, D.E., Ostrander, K.R., Cushing, B.M., 2016. A multistate model predicting
mortality, length of stay, and readmission for surgical patients. Health Serv. Res.
51 (3), 1074–1094.

Cochran, M.E., Ellner, S.P., 1992. Simple methods for calculating age-based life
history parameters for stage-structured populations. Ecol. Monograph (ISSN:
00129615) 62 (3), 345–364.

Ellner, S.P., Childs, D.Z., Rees, M., 2016. Data-Driven Modelling of Structured
Populations: A Practical Guide to the Integral Projection Model. Springer,
ISBN: 9783319288918.

Feichtinger, G., 1971. Stochastische modelle demographischer prozesse. Lecture
Notes in Economics and Mathematical Systems. Springer-Verlag, Berlin, ISBN:
9783540054238.

Horvitz, C.C., Tuljapurkar, S., 2008. Stage dynamics, period survival, and mortality
plateaus. Amer. Naturalist 172 (2), 203–215.

Iosifescu, M., 1980. Finite Markov Processes and Their Applications. Wiley, New
York, New York.

Jenouvrier, S., Pron, C., Weimerskirch, H., 2015. Extreme climate events and indi-
vidual heterogeneity shape life-history traits and population dynamics. Ecol.
Monograph 85 (4), 605–624. http://dx.doi.org/10.1890/14-1834.1.

Kemeny, J.G., Snell, J.L., 1961. Finite continuous timeMarkov chains. Theory Probab.
Appl. 6 (1), 101–105.

Lebreton, J.-D., 1996. Demographicmodels for subdivided populations: the renewal
equation approach. Theoret. Popul. Biol. 49 (3), 291–313.

Meyn, S.P., Tweedie, R.L., 2009. Markov Chains and Stochastic Stability. Cambridge
Univ. Press.

Pascarella, J.B., Horvitz, C.C., 1998. Hurricane disturbance and the population dy-
namics of a tropical understory shrub: Megamatrix elasticity analysis. Ecology
79 (2), 547–563.

Rogers, A., 1975. Introduction to Multiregional Mathematical Demography. Wiley,
New York, New York.

Roth, G., Caswell, H., 2016. Hyperstatematrixmodels: extending demographic state
spaces to higher dimensions. Methods Ecol. Evol. (ISSN: 2041-210X) 7 (12),
1438–1450.

Salguero-Gómez, R., Jones, O.R., Archer, C.R., Bein, C., Buhr, H., Farack, C., Gottschalk,
F.and Hartmann, A., Henning, A., Hoppe, G.and Romer, G., Ruoff, T., Sommer,
V., Wille, J., Voigt, J., Zeh, S., Vieregg, D., Buckley, Yvonne M, Che-Castaldo, J.,
Hodgson, D., Scheuerlein, A., Caswell, H.and Vaupel, J.W., 2016. COMADRE: a
global data base of animal demography. J. Anim. Ecol. 85 (2), 371–384.

Salguero-Gómez, R., Jones, O.R., Archer, C.R., Buckley, Y.M., Che-Castaldo, J., Caswell,
H., Hodgson, D., Scheuerlein, A., Conde, D.A., Brinks, E., et al., 2015. The com-
padre plant matrix database: an open online repository for plant demography.
J. Ecol. 103 (1), 202–218.

Sericola, B., 2000. Occupation times in Markov processes. Comm. Statist. Stochas-
tic Models (ISSN: 0882-0287) 16 (5), 479–510. http://dx.doi.org/10.1080/
15326340008807601.

Siegel, J.S., 2012. The life table. In: The Demography and Epidemiology of Human
Health and Aging. Springer, New York, pp. 135–216.

Steiner, U.K., Tuljapurkar, S., 2012. Neutral theory for life histories and individual
variability in fitness components. Proc. Natl. Acad. Sci. 109 (12), 4684–4689.

Tuljapurkar, S., Horvitz, C.C., 2006. From stage to age in variable environments: life
expectancy and survivorship. Ecology 87 (6), 1497–1509.

Tuljapurkar, S., Horvitz, C.C., Pascarella, J.B., 2003. The many growth rates and
elasticities of populations in random environments. Amer. Naturalist 162 (4),
489–502.

Van Raalte, A.A., Caswell, H., 2013. Perturbation analysis of indices of lifespan
variability. Demography 50 (5), 1615–1640.

https://doi.org/10.1016/j.tpb.2017.12.007
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb1
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb1
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb1
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb1
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb1
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb1
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb1
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb1
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb1
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb1
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb1
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb2
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb2
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb2
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb2
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb2
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb2
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb2
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb2
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb2
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb2
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb2
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb2
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb2
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb2
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb2
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb2
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb2
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb2
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb3
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb3
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb3
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb3
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb3
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb3
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb3
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb3
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb3
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb3
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb3
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb3
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb3
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb3
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb3
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb3
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb4
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb4
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb4
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb4
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb4
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb4
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb4
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb4
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb4
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb4
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb4
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb4
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb4
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb4
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb4
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb4
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb5
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb5
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb5
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb5
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb5
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb5
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb5
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb5
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb5
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb5
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb5
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb5
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb5
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb5
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb5
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb5
http://dx.doi.org/10.1016/j.laa.2011.07.046
http://dx.doi.org/10.1016/j.laa.2011.07.046
http://dx.doi.org/10.1016/j.laa.2011.07.046
http://dx.doi.org/10.4054/DemRes.2015.32.19
http://dx.doi.org/10.4054/DemRes.2015.32.19
http://dx.doi.org/10.4054/DemRes.2015.32.19
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb8
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb8
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb8
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb8
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb8
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb8
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb8
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb8
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb8
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb8
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb8
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb8
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb8
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb8
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb8
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb8
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb8
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb8
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb8
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb8
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb8
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb9
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb9
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb9
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb9
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb9
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb9
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb9
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb9
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb9
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb9
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb9
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb9
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb9
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb9
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb9
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb9
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb9
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb9
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb9
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb9
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb9
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb9
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb10
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb10
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb10
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb10
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb10
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb10
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb10
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb10
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb10
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb10
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb10
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb10
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb10
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb10
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb10
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb10
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb10
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb10
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb10
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb10
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb10
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb10
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb11
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb11
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb11
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb11
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb11
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb11
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb11
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb11
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb11
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb11
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb11
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb11
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb11
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb11
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb11
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb11
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb11
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb11
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb11
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb11
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb11
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb11
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb11
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb12
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb12
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb12
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb12
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb12
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb12
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb12
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb12
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb12
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb12
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb12
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb12
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb12
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb12
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb12
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb12
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb12
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb12
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb12
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb13
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb13
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb13
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb13
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb13
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb13
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb13
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb13
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb13
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb13
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb13
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb13
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb13
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb13
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb13
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb13
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb13
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb13
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb13
http://dx.doi.org/10.1890/14-1834.1
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb15
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb15
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb15
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb15
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb15
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb15
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb15
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb15
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb15
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb15
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb15
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb15
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb15
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb15
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb15
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb15
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb15
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb15
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb15
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb16
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb16
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb16
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb16
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb16
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb16
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb16
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb16
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb16
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb16
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb16
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb16
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb16
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb16
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb16
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb16
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb16
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb16
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb16
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb17
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb17
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb17
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb17
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb17
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb17
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb17
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb17
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb17
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb17
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb17
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb17
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb17
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb17
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb17
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb17
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb17
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb17
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb17
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb18
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb18
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb18
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb18
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb18
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb18
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb18
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb18
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb18
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb18
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb18
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb18
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb18
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb18
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb18
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb18
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb18
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb18
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb18
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb18
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb18
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb18
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb18
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb19
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb19
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb19
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb19
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb19
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb19
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb19
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb19
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb19
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb19
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb19
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb19
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb19
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb19
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb19
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb19
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb19
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb19
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb19
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb20
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb20
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb20
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb20
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb20
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb20
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb20
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb20
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb20
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb20
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb20
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb20
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb20
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb20
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb20
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb20
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb20
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb20
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb20
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb20
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb20
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb20
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb20
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb21
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb21
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb21
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb21
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb21
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb21
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb21
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb21
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb21
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb21
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb21
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb21
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb21
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb21
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb21
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb21
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb21
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb21
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb21
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb21
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb21
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb21
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb21
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb21
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb21
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb22
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb22
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb22
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb22
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb22
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb22
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb22
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb22
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb22
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb22
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb22
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb22
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb22
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb22
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb22
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb22
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb22
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb22
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb22
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb22
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb22
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb22
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb22
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb22
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb22
http://dx.doi.org/10.1080/15326340008807601
http://dx.doi.org/10.1080/15326340008807601
http://dx.doi.org/10.1080/15326340008807601
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb24
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb24
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb24
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb24
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb24
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb24
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb24
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb24
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb24
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb24
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb24
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb24
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb24
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb24
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb24
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb24
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb24
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb24
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb24
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb25
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb25
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb25
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb25
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb25
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb25
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb25
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb25
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb25
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb25
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb25
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb25
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb25
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb25
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb25
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb25
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb25
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb25
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb25
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb26
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb26
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb26
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb26
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb26
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb26
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb26
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb26
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb26
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb26
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb26
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb26
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb26
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb26
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb26
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb26
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb26
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb26
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb26
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb27
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb27
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb27
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb27
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb27
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb27
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb27
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb27
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb27
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb27
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb27
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb27
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb27
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb27
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb27
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb27
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb27
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb27
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb27
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb27
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb27
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb27
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb27
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb28
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb28
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb28
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb28
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb28
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb28
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb28
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb28
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb28
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb28
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb28
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb28
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb28
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb28
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb28
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb28
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb28
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb28
http://refhub.elsevier.com/S0040-5809(17)30057-6/sb28

	Occupancy time in sets of states for demographic models
	Introduction
	Absorbing Markov chains as demographic models
	Constructing the induced Markov chains
	The killed Markov chain PK
	Absorption probabilities

	The conditional Markov chain PC 
	The sub-Markov chain PS

	Occupancy time in the target states
	Correlation between the occupancy times in two sets
	Correlation between occupancy time and longevity

	Behaviour of winners and losers
	Probability of reaching the target states
	Time to reach the target states
	Return to the target states
	Return probabilities
	Return time


	Example: the Southern Fulmar
	Discussion
	Acknowledgements
	Appendix A
	Derivation of the matrix US and the vector mS
	Proof that XC  is a Markov chain
	Moments of occupancy times
	Covariance between the occupancy times in two disjoint sets
	One-step transition probabilities from B given return

	Supplementary data
	References


