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The demographic consequences of stochasticity in processes such as survival and repro-
duction are modulated by the heterogeneity within the population. Therefore, to study 
effects of stochasticity on population growth and extinction risk, it is critical to use 
structured population models in which the most important sources of heterogeneity 
(e.g. age, size, developmental stage) are incorporated as i-state variables.

Demographic stochasticity in heterogeneous populations has often been studied using 
one of two approaches: multitype branching processes and diffusion approximations. 
Here, we link these approaches, through the demographic stochasticity in age- or stage-
structured matrix population models. We derive the demographic variance, sd

2 , which 
measures the per capita contribution to the variance in population growth increment, 
and we show how it can be decomposed into contributions from transition probabili-
ties and fertility across ages or stages. Furthermore, using matrix calculus we derive the 
sensitivity of sd

2  to age- or stage-specific mortality and fertility. We apply the methods 
to an extensive set of data from age-classified human populations (long-term time-series 
for Sweden, Japan and the Netherlands; two hunter–gatherer populations, and the high-
fertility Hutterites), and to a size-classified population of the herbaceous plant Calathea 
ovandensis. For the human populations our analysis reveals substantial temporal changes 
in the demographic variance as well as its main components across age.

These new methods provide a powerful approach for calculating the demographic 
variance for any structured model, and for analyzing its main components and 
sensitivities. This will make possible new analyses of demographic variance across 
different kinds of heterogeneity in different life cycles, which will in turn improve 
our understanding of mechanisms underpinning extinction risk and other important 
biological outcomes.

Introduction

The sources of inter-individual variance in population outcomes can be divided into 
two categories. One is heterogeneity: genuine differences in the properties of indi-
viduals. Heterogeneity is defined as any difference among individuals that results in 
differences among them in any of the vital rates (mortality, fertility, development) that 
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they experience. The differences could be genetic, physiologi-
cal, behavioral, the result of environmental conditions (e.g. 
resource availability in early life), etc.

But heterogeneity is not the only source; inter-individual 
variance may also be due to stochasticity: variance due to ran-
dom processes in the life cycle or the environment. (We are 
concerned with stochasticity in ecological dynamics; we do 
not address sampling errors in the estimation of parameters, 
which is a different issue.) Our understanding of stochasticity 
has progressed dramatically in recent years. Stochasticity in 
ecological models can be divided into three types.

•	 Individual stochasticity. This is variation among individu-
als created by random events in the processes of survival, 
reproduction and development (Caswell 2009, 2011, 
Caswell and Kluge 2015, van Daalen and Caswell 2015, 
2017). Individual stochasticity has the same meaning 
as ‘dynamic heterogeneity’ in the independent usage of 
Tuljapurkar et al. (2009). Even in the complete absence 
of heterogeneity; i.e. when every individual is subject to 
exactly the same vital rates, individuals will differ in their 
demographic outcomes because of individual stochastic-
ity. It is thus a candidate explanation for variance among 
individuals in, e.g. longevity and lifetime reproductive 
output. It has now been documented that individual 
stochasticity can explain a surprisingly large fraction of 
inter-individual variance (Steiner et al. 2010, Steiner and 
Tuljapurkar 2012, Hartemink et al. 2017, Jenouvrier et al. 
2017, Hartemink and Caswell 2018).

•	 Demographic stochasticity. This is the result of embedding 
individual stochasticity in a population growth process, 
by including the (stochastic) creation of new individuals 
by reproduction. In models for demographic stochasticity, 
including the branching processes and diffusion models 
considered here, the random events at the individual level 
produce variance in population size over time. Demo-
graphic stochasticity is thus a candidate explanation for 
variance in population growth trajectories, growth rates, 
and population size, as well as a potential cause of popula-
tion extinction. Because demographic stochasticity creates 
variation in population growth due to random individual 
events, its effects scale inversely with population size. It is 
particularly important for the viability of small popula-
tions in conservation, for the fate of new mutations, for 
the success or failure of introduced populations, and for 
the fate of epidemics following exposure to an infected 
individual.

•	 Environmental stochasticity. This is variation in popula-
tion growth caused by stochastic changes over time in the 
environment, which affect all individuals in the popula-
tion (Tuljapurkar 1990). We will not consider environ-
mental stochasticity here.

The incorporation of individual heterogeneity has always 
been the main goal and the greatest accomplishment of 
demography. Age-classified models are so familiar that we 
forget that, in their absence, age differences were a source 

of heterogeneity that was unaccounted for in unstructured 
models. Size-classified models seem so ordinary now that 
we may forget that they were developed because size was a 
source of heterogeneity unaccounted for in age-classified 
models. Age-classified, stage-classified and multistate demo-
graphic models incorporate differences among individuals 
in the vital rates and yield the consequences for population 
behavior. (Regardless of the mathematical form of the mod-
els: renewal equations, matrix projections, integral equa-
tions, partial differential equations, etc.). Incorporating age, 
or size, or more elaborate differences among individuals into 
an analysis does not change their nature as heterogeneity in 
any signficant way.

The analysis of unobserved or latent heterogeneity, before 
it is incorporated into demographic models, is a long-standing 
challenge in demography (Yule 1910). Such heterogeneity is 
given a variety of names: frailty (Vaupel et al. 1979), individ-
ual quality (Wilson and Nussey 2010), fecundability (Sheps 
and Menken 1973), and the distinction between movers and 
stayers (Morrison et al. 1971). Recent advances in multistate 
matrix models and estimation of latent variables have made it 
possible to incorporate unobserved heterogeneity along with 
other forms of heterogeneity.

Once the extra source of heterogeneity is incorporated into 
a multistate model, then demographic analysis can quantify 
the effects of all types of heterogeneity operating together. 
The incorporation can be accomplished either by identify-
ing and measuring the source of heterogeneity (e.g. health 
status or education in human demography) or by estimat-
ing it as a latent unobserved variable (Erişoğlu et al. 2012, 
Hartemink et al. 2017, Jenouvrier et al. 2017).

The rest of the paper is organized as follows. The section 
‘Two models for demographic stochasticity’ recalls the 
definitions of the branching process and diffusion models 
for demographic stochasticity. The section ‘Demographic 
variance from matrix models’ presents a general result for 
calculating the demographic variance (to be defined below) 
from any matrix population model. The matrix formulation 
leads directly, in the section ‘Sensitivity analysis of the demo-
graphic variance’ to a sensitivity analysis that quantifies the 
effects of mortality, fertility, and transitions on the demo-
graphic variance and extinction probability. The next sec-
tion (Examples) presents examples from several age-classified 
human populations and a stage-classified plant species.

Notation

Matrices are denoted by upper-case boldface letters (e.g. U), 
and vectors by lower-case boldface letters (e.g. n). Vectors are 
column vectors by default. Where necessary, the dimensions 
of matrices and vectors are denoted by subscripts; thus Is is 
an identity matrix of order s and 1s is a s  1 vector of ones. 
The unit vector ei is a vector with a 1 in the ith entry and 
zeros elsewhere. The unit matrix Eij is a matrix with a 1 in 
the (i, j) entry and zeros elsewhere; the dimensions will be 
indicated if not clear from the context. When convenient, 
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Matlab notation will be used to refer to rows and columns 
of matrices; thus X(i, :) is the ith row and X(:, j) the jth col-
umn of X. The diagonal matrix with x on the diagonal and 
zeros elsewhere is denoted D(x). The symbol ◦ denotes the 
Hadamard, or element-by-element product; the symbol ⊗  
denotes the Kronecker product. The symbol ǁxǁ denotes the 
1-norm of the vector x. The transpose of the matrix X is XT. 
The number of age classes is ω and the number of stages  
is s. The expected value of x is E(x); the variance is Var(x).  
The covariance matrix of the entries of the vector x is Cov(x). 
The vec operator (vec X) stacks the columns of X into a 
column vector.

Two models for demographic stochasticity

Two modelling approaches – branching processes and dif-
fusion models – have been widely used to study effects of 
demographic stochasticity; our goal in this paper is to present 
a new synthesis of these approaches and develop new analy-
ses from them. There is a close link between matrix popula-
tion models and multitype branching process (MBP) models 
(Pollard 1966, Caswell 2001). Information on the higher 
moments of the population can be obtained from the matrix 
model with only a small amount of extra information (or, 
failing that, a few extra approximations; Caswell 2001). Our 
goal here is to provide an explicit link between the MBP for-
mulation of matrix population models and diffusion models 
for demographic stochasticity, and to use that link to develop 
a sensitivity analysis for demographic variance. Our results 
are generally applicable to age- or stage-classified models.

Moments of multitype branching processes

Demographic stochasticity was the subject of what may be 
the first stochastic population model: the branching process 
introduced by Galton and Watson (1874) to analyze the 
extinction of British surnames. The Galton–Watson branch-
ing process describes a population in which all individuals are 
identical, and independently produce a random number of 
‘offspring’ according to a specified probability distribution. 
The ‘offspring’ may, depending on the context, include the 
survival of the ‘parent’ individual as well as the production 
of genuinely new offspring. The analysis is carried out by a 
now classical application of probability generating functions.

Structured populations, in which individuals differ on the 
basis of age or stage, are analyzed using multitype branching 
processes (MPB). Demographic applications of these models 
were developed for age-classified models by Pollard (1966) 
and extended to stage-classified models by Caswell (2001, 
chapter 15). In these models, an individual of a given type 
is characterized by a multivariate probability distribution of 
the numbers of ‘offspring’ of all types produced over a time 
interval. Again, offspring include the possible survival and 
stage transition of the starting individual. Analysis based on 
the probability generating functions of these multivariate 
distributions gives the properties of future population size 

and the probabilities of extinction. The analysis also provides 
expressions for the moments of the population vector as a 
function of age or stage. The familiar population projection 
matrix is the expected value operator of a MBP; this makes it 
possible to develop a MBP from any stage- or age-classified 
matrix model.

Let n(t) denote the population vector, with expectation 
E(n(t)) and covariance matrix G = Cov(n(t)). The population 
projection matrix is A = U+F, where U contains transition 
probabilities and F contains fertilities.

Define the vectors giving the per-capita production of off-
spring of all stages (recall that there are s stages) by an indi-
vidual of stage j as

xU
( ) 1j s= offspring produced by transitions × 	 (1)

xF
( ) 1j s= offspring produced by reproduction × 	 (2)

Both xU and xF are random variables. The total offspring 
prodution is x x x( ) ( ) ( )j j j= U F+ .

The variability introduced by individual stochasticity 
depends on the covariance matrices of the x( j). At this point, 
approximations of various kinds must be made. These are 
well known, and are described at length in (Caswell 2001, 
chapter 15), so we discuss them only briefly here.

We will rely on a set of approximations tailored to the 
demographic information that is reported in the overwhelm-
ing majority of ecological studies. In idealized situations, 
some of the approximations can be avoided, and we return to 
this issue in the Discussion.

A matrix population model reports the expected value of 
the xF

( )j  in the fertility matrix F. A complete branching pro-
cess model for the population would require the complete 
joint probability distribution of the numbers of all types of 
offspring produced by an individual of each stage. Here, we 
are focused on the mean and variance of the populations, 
so the calculations require only the means and covariances 
of offspring production. Confronted with only the expected 
values, the appropriate approximation is to use a biologi-
cally reasonable distribution that can be parameterized by 
its mean. For species producing at most one offspring, the 
appropriate choice is the Bernoulli distribution. For spe-
cies producing many offspring, the Poisson distribution is 
an appropriate choice. More interesting distributions (e.g. 
mixture distributions such as the negative binomial) can be 
parameterized only if data on the variance of reproduction 
are available. For example, Kendall and Wittmann (2010) 
compared the fit of a variety of probability distributions to 
data on vertebrate annual reproductive success, and found 
that a generalized Poisson distribution gave the best fit. This 
distribution requires an extra parameter that adjusts the rela-
tionship between the variance and the mean, so it cannot be 
fit from data on the mean alone. We encourage researchers to 
present full distributions, not only means, of stage-specific 
reproductive output, to enable use of such distributions.
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In this paper we explore both Bernoulli and Poisson 
models for reproduction. Study of other distributions, and 
of distributions appropriate to taxonomic groups other than 
vertebrates, are interesting and significant unsolved research 
problems.

The second approximation concerns the covariance 
between xU

( )j  and xF
( )j ; that is, between reproduction and 

transitions. The usual demographic models provide no infor-
mation on this, simply adding together transitions and fer-
tility to obtain A. In the absence of this information, the 
appropriate approximation is to treat transitions and fertil-
ity as independent, in which case the covariance matrix of 
offspring production is the sum of the covariances due to 
fertility and those due to transition. This assumption about 
independence of the outcomes of random events does not 
imply that the rates of survival and of reproduction, across 
i-states, are independent.

We write the covariance matrix among the stages as

C( ) ( ) ( )j j j= Cov Covx xU F( ) + ( ) 	 (3)

   = C CU F
( ) ( )j j+ 	 (4)

We collect all this covariance information in a matrix D 
given by

D C C= vec vec(1) ( )� s( ) 	 (5)

This information suffices to project the mean population 
vector E(n) and its covariance matrix G:

E E( )
( 1)

( )
( )

n
G

A
D A A

n
Gvec vec







+
⊗













t t=
0

	 (6)

(Pollard 1966, Caswell 2001). This is the extension of the 
matrix population model to incorporate demographic 
stochasticity. The key to the analysis is covariance matrices 
that appear in D, which we now derive.

Covariance due to transitions
The transition part of Eq. 4 is easy; if U is the transition 
probability matrix among the stages, then the distribution of 
offspring is multinomial, with a covariance matrix

C U U UU
( ) (:, ) (:, ) (:, )j j j j= D( ) − T 	 (7)

Covariance due to fertility
The covariance matrix CF in Eq. 4 depends on the types of 
offspring produced and the probability distribution of the 
numbers produced. Here we consider two common cases: 
one in which a single offspring is produced, and one in which 
multiple offspring, of multiple types, are produced. Other 
reproductive modes can be constructed similarly.

Bernoulli reproduction
Many long-lived organisms, including whales, albatrosses, 
elephants and humans, typically produce a single offspring 
at a time. Suppose stages are numbered so that new offspring 
are stage 1. Then F contains expected fertilities fj in the first 
row and zeros elsewhere, and the number of offspring is a 
Bernoulli random variable. The covariance matrix is

CF
( )

(1 )
0

0

j

j jf f

=

−

















� 	 (8)

Poisson reproduction
A simple model for reproduction in organisms that produce 
potentially many offspring, of many different types, is 
obtained by assuming that the number of offspring of type 
i produced by a parent of type j is a Poisson random variable 
with mean fij. The variance of the Poisson distribution is equal 
to the mean; thus, if the types of offspring are independent, 
then the covariance matrix satisfies

CF
( )

1

2j

j

j

sj

f
f

f

=
�



















	 (9)

Diffusion models

At the opposite extreme from the discrete-state, discrete-time 
and vector-valued multitype branching process models are 
diffusion processes, which are continuous-state, continu-
ous-time, scalar-valued stochastic processes. There is a rich 
but mathematically difficult literature on diffusion models 
(Cox and Miller 1965, Karlin and Taylor 1981), which has 
been applied to a variety of models in population ecology 
(Lande et al. 2003) and population genetics (Kimura 1964, 
Nagylaki 1989).

Diffusion models can be derived in several ways. Start, 
quite generally, with a continuous-time Markov process for 
a continuous variable x(t). If it can be solved, this original 
model produces a probability density function f(x, t) of pop-
ulation size at time t. Such a solution may not be possible 
or known, and Bailey (1964) shows it can be approximated 
by a diffusion model. Considering the probability of a small 
change in x over a short time interval, and expanding the 
resulting change in f(x, t) in a Taylor series, yields a diffusion 
equation for f:

∂
∂

−
∂[ ]

∂
+

∂ [ ]
∂

φ =
µ φ ν φ( , ) ( ) ( , ) 1

2
( ) ( , )2

2

x t
t

x x t
x

x x t
x

	 (10)

Here the function µ(x) defines the growth of the mean, 
and ν(x) the growth of the variance, of x. In applications to 
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population growth, x is some measure of population size, 
and µ(x) and ν(x) are taken to be proportional to x (Bailey 
1964). That is, population size influences the growth rate of 
both mean population and the variance. We will denote the 
proportionality constant relating x and ν(x) as sd

2 .
The diffusion coefficients are obtained from the original 

model (which is being approximated as a diffusion) as

µ( ) [ | ]x t x x∆ ∆≈ E 	 (11)

n( ) [ | ]

[ ]2

x t x x

xd

∆ ∆≈ Var

E= s
	 (12)

where E[∆x|x] and Var[∆x|x] are obtained from the model 
being approximated.

Because we are focusing here on variance in the growth incre-
ment that is due to demographic stochasticity, we have followed 
standard practice (Lande  et  al. 2003) and written the coeffi-
cients in terms of sd

2 , referred to as the demographic variance.
There are two main strengths of the diffusion approxima-

tion. First, the diffusion approximation is usually described 
by fewer parameters than is the full process. This simplifies 
the model, and the calculation of µ and ν from Eq. 11 and 
Eq. 12 provides valuable information about which aspects 
of the process are important to consider for describing the 
dynamics. Second, it is also possible to simulate realizations 
of the diffusion process, using µ(x) and ν(x) to add a random 
perturbation to the growth of the population (Vindenes et al. 
2010, 2011).

Extinction probability
Analytical solutions, which are known for many diffusion 
processes (Karlin and Taylor 1981), provide information on 
the time required to reach a given state (first passage time). 
Extinction, in a population described by a diffusion model, 
is analyzed as just such a passage time problem. If N is the 
population size, then a natural extinction boundary exists at 
Ne = 1. The probability of extinction depends on the initial 
population size N0, the growth rate r = log λ of the mean pop-
ulation size, and the demographic variance sd

2 , according to

P
r N N

r

r
e

e

d=
exp

− −









≤









2 ( )
> 0

1 0

0
2

s 	 (13)

(Engen  et  al. 2005). For a specified value of r  0 and a 
given initial population, extinction probability increases with 
increasing demographic variance.

Demographic variance from matrix models

We now connect the structure of multitype branching pro-
cesses with the framework of diffusion models, by calculating 
the demographic variance sd

2  from the matrix model. To do 
so, the dimensionality of the MBP must be reduced to a scalar 

population size, in spite of the fact that population structure 
may be fluctuating. The key is to measure population size 
not by total numbers, but by the total reproductive value 
(Engen et al. (2005) for age-classified models, Vindenes et al. 
(2008) for stage-classified models). It is known that the total 
reproductive value grows exponentially regardless of the age 
or stage distribution of the population (Fisher 1930).

Begin with the matrix A, with dominant eigenvalue λ and 
corresponding right and left eigenvalues w and v, where w 
gives the stable stage distribution and v the reproductive value 
distribution. We scale the eigenvectors so that w sums to  
1 and wTv = 1. The total reproductive value is V (t) = vTn(t).

Define a vector q whose ith entry is

qi
i= v C vT ( ) 	 (14)

Then it can be shown that

Var EV t V t t( 1)| ( ) ( )+ =[ ] [ ]q nT 	 (15)

(see section ‘Derivations’ for the derivation). The entries of 
q are the contributions to the variance from each stage, so 
the conditional variance in V (t + 1) depends on the stage dis-
tribution of the population. Following Engen et al. (2007) 
and Vindenes  et  al. (2008), we will use the stable stage 
distribution, so that n(t) ≈ w N. Under this assumption, 
E[ni] = wiE[V], so that Eq. 15 can be written

Var  E [ ( ) | ( )] [ ( )]V t V t V t+ =1 q wT 	  (16)

Comparing this to Eq. 12, which defines a conditional 
variance in terms of sd

2  and an expected population, we 
obtain the demographic variance in terms of w and q,

sd
2 = q wT 	  (17)

This result provides the demographic variance for any age-
or stage-classified model from the eigenvectors of A and the 
variances and covariances of the stage-specific transition 
probabilities and reproductive outputs.

Partitioning the components of demographic variance

Because Eq. 4 expresses the covariances in terms of the 
matrices U and F, the demographic variance can be parti-
tioned into contributions from these life cycle components. 
The demographic variance (Eq. 17) is a weighted mean, over 
the stable stage distribution, of the variances of the offspring 
production of each stage, vTC(i)v. Each of those variances 
contains a term due to transitions and a term due to repro-
duction. Thus

sd
i

s

i
i

i

s

i
iw w2

=1

( )

=1

( )= ∑ ∑+v C v v C vT T
U F

transitions repro
� ��� ���

dduction
� ��� ���

	 (18)



653

Sensitivity analysis of the demographic 
variance

We turn now to the problem of the sensitivity of sd
2  to 

changes in parameters affecting the means and covariances 
of the vital rates. This calculation is a systematic application 
of the matrix calculus approach to sensitivity analysis; see 
(Caswell 2007, 2008, 2009, 2012). Derivations of all results 
are given in the section ‘Derivations’.

Differentiating Eq. 17 and applying the vec operator gives

d d dds
2 = q w w qT T+ 	 (19)

The analysis proceeds by determining the differentials d w 
and dq; the latter will require differentials of both v and of 
covariances.

Derivatives of w

From Caswell (2008) we have d w subject to the constraint 
1 ws

T = 1,

d

d

s

s

w I A w A

w I w w A

= λ − +( )
× ⊗( ) − ⊗( ) 

−
1

1

T

T T

1

vec 	 (20)

Derivatives of q

To differentiate q, start by rewriting Eq. 45 as

q e v C v=
i

i
i∑ T ( )

	 (21)

Differentiating and applying the vec operator gives

d d d

d
i

i
i

i
i

i

i
i

i

q v C e v v e v C

e v C v

= ∑ ∑
∑

⊗( ) + ⊗( )
+

T T T T

T

( ) ( )

( )

vec

	 (22)

For this, we need two pieces: the differential of the left 
eigenvector v and the differential of the covariance matrices 
Ci. We address these in turn.

Derivatives of v

An extension of the methods in Caswell (2008) yields the 
differential of the v scaled so that vTw = 1:

d dv I A vw I v vw v A

I A vw v

= λ λ

λ λ λ

− +( ) ⊗( ) − ⊗( ) 

− − +( )

−

−

T T T T T

T T

1

1

vec

⊗⊗( )v wT d   (23)

where d w is given by Eq. 20.

Derivatives of the covariance matrices C(i)

The derivatives of the covariance matrices C C C( ) ( ) ( )i i i= U F+  
include a number of possibilities, because the covariance 
matrix will change due to changes in U and F, as well as due 
to changes that may be incorporated in parametric form.

Covariances due to transitions
We start with the covariances due to transitions, which are 
given by Eq. 7. For each parental stage i, we have

d i i

d

i
s

i

vec

vec

C Z I U I I U

e I U
U
( ) (:, ) (:, )= 1 ⊗( ) − ⊗( ) − ⊗( ){ }

× ⊗( )T 	 (24)

where Z = D (vec I).

Covariances due to reproduction
In both Bernoulli and Poisson reproduction, the covariance 
matrix C(j) is obtained from the fertility matrix F. For the 
moment, supress the indication of the parent stage i, and let 
f denote column j of F.

Writing CF
( )i  as a function of F, and thus of f , it can be 

shown that

d
d

d
j j
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
	(25)

where Z = D (vec I).
The Bernoulli and Poisson models for reproduction are 

convenient because they permit the calculation of vari-
ances from the mean fertility matrix F routinely reported in 
demographic studies. But if data were available on the mean 
and the variance of reproduction by each stage, one could 
use these empirical measures, and calculate the sensitivities 
using the derivatives of the matrices CF

( )i with respect to the 
variance of fertility.

Sensitivity of extinction probability

The extinction probability in Eq. 13 depends on the initial 
population size and the extinction threshold. Since popu-
lation size is a continuous variable in the diffusion approxi 
mation, extinction must be interpreted as quasi-extinction 
relative to this threshold.

Consider a population of initial size (total reproduc-
tive value) V0, and quasi-extinction threshold of Ve, and 
write �V V Ve= −0 . Assume that r =  log λ is greater than 0  
(otherwise extinction is certain); the probability of extinction is

P
rV

e
d

= exp
−





2
2

�

s
	 (26)

(cf. Eq. 13). A parameter vector θ will, in general, affect both 
r and sd

2 . Differentiating Pe and simplifying yields

1 2 2
2 2 2

2
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dP
d

V dr
d

rV d
de

e

d d

d

q q qT T T= – � �

s s

s

( )
	 (27)

The first of these terms shows how increases in r reduce 
extinction probability; the sensitivity of r depends only on 
the mean matrix A and can be calculated by well known 
formulae (Caswell 2001). The second term shows how 
increases in sd

2  increase the extinction probability; the 
results in previous sections for the sensitivity of sd

2  make it 
straightforward to compute this term.
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Implementation: a protocol for sensitivity analysis

We now have all the information necessary to calculate the 
sensitivity of the demographic variance to any set of param-
eters that affect U and/or F. Let θ be such a vector of param-
eters. The following protocol integrates the results from the 
previous sections. Starting with the matrices U and F, and 
the dominant eigenvalue of A and its eigenvectors w and v,

1.	 calculate d w from Eq. 20,
2.	 calculate d v from Eq. 23,
3.	 calculate d ivec UC( ) , for i = 1, … , s, from Eq. 24,
4.	 calculate d ivec FC( ) , for i = 1, … , s, from Eq. 25,
5.	 calculate dq from Eq. 22, using d v and the dvec C(i), and 

finally
6.	 calculate d ds

2  from Eq. 19 using dq and d w.

The steps apply to any parameter vector θ. To obtain the 
derivative of sd

2  to θ, replace the differentials dvec U and 

d vec F with the derivatives 
d

d
d

d
vec vecU U
q qT T and , respec-

tively. These derivatives will, of course, be unique to the 
choice of parameters, the structure of U and F, and their 
dependence on θ.

The expressions for each of these steps may appear 
complicated, but the matrices involved in each are either 
simple constants, composed of identity matrices and vectors 
of ones, or are obtained directly from the population projec-
tion matrix A or its components U and F.

Examples

The results presented here apply to a wide range of life cycles 
(age-classified, stage-classified, multistate) and reproductive 
tactics (single offspring, multiple offspring, single or multiple 
types of offspring). In this section we explore a few exam-
ples to reveal some intruiging patterns. We will calculate the 
values of the demographic variance and the contributions to 
demographic variance from the (co)variances of transitions 
and of fertility. We will also present the sensitivity of sd

2  to 
fertility and to mortality, and do so for both age-classified 
and stage-classified examples, including both Bernoulli- and 
Poisson-distributed numbers of offspring.

Our intention is not a rigorous comparative study, but 
some of the patterns that begin to appear suggest that such a 
study would be worthwhile.

Age-classified human populations

The large collections of age-specific mortality and fertil-
ity data for human populations, sometimes over long time 
periods, make them an attractive option for studying demo-
graphic stochasticity in age-classified populations. While the 
details would vary in other species, the human life cycle is 
typical of a long-lived, slowly maturing, monovular (ignoring 
uncommon multiple births) species.

We will present results for nine populations studied, in 
a different but related context, by van Daalen and Caswell 
(2017). These include time series for the Netherlands (1950–
2009), Sweden (1891–2010), and Japan (1947–2009), as well 
as two hunter–gatherer populations (the Ache of subtropical 
Paraguay, Gurven and Kaplan 2007, Hill and Hurtado 1996, 
and the Hadza of the Tanzanian savanna, Blurton Jones 
2011), and the Hutterites of North America. The Nether-
lands, Sweden and Japan show patterns over time that are 
typical of developed countries (the demographic transition), 
in which reductions in mortality lead to increases in life 
expectancy, followed some time later by reductions in fertil-
ity. The hunter–gatherer populations have higher mortality, 
lower life expectancy and higher fertility than the developed 
countries. The Hutterites, an Anabaptist religious commu-
nity in the United States and Canada, make an interesting 
comparison. They had the highest total fertility recorded for 
any human population (Eaton and Mayer 1953), but had (or 
were assumed to have) experienced mortality rates similar to 
those of the US around 1950.

Female life table data for the Netherlands, Sweden and 
Japan were obtained from the Human Mortality Database 
(Human Mortality Database 2013) and the Human 
Fertility Database (Human Fertility Database 2013). Data 
for the Ache were obtained from Gurven and Kaplan 
(2007) and Hill and Hurtado (1996), and for the Hadza 
from Blurton Jones (2011). The fertility and mortality 
schedules for the Hutterites were taken from Eaton and 
Mayer (1953). Fertility was divided by 2 to count female 
offspring per female.

Analysis
Matrices U and F were created for each population in each 
year. Fertility was treated as a Bernoulli process. Demographic 
variance was calculated from Eq. 17, including the contribu-
tions from survival and fertility using Eq. 7 and Eq. 8 for 
the covariance matrices and Eq. 18 for the decomposition. 
The sensitivity of sd

2 to age-specific mortality and fertility was 
calculated from Eq. 19.

In addition to sd
2 , its components, and its sensitivity to 

the life history, other demographic properties were computed. 
Population growth rate λ was calculated as the dominant 
eigenvalue of A. The net reproductive rate R0 was calculated 
as the dominant eigenvalue of the next generation matrix 
F (I − U)−1. The mean longevity (life expectancy) and the 
variance in longevity were computed from the fundamental 
matrix (e.g. Eq. 38 and 41 of Caswell (2009)). The variance 
in lifetime reproductive output was taken from van Daalen 
and Caswell (2017).

Life expectancy, R0, and λ are statistics describing the 
mean consequences of the life cycle, in terms of mortality, 
fertility, and their interaction. The variance in longevity and 
the variance in lifetime reproductive output describe the 
results of individual stochasticity. One of our goals is to see 
how these quantities are related to sd

2 , which describes the 
result of demographic stochasticity.
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Results: sd
2

, contributions and sensitivity
Figure 1 shows time series results for Sweden from 1891 to 
2010. Over this time period, life expectancy increased by 
58%, from 53 to 84 years, while lifetime reproductive out-
put decreased by 34%, from 1.5 to 0.99 female offspring 
per female. The demographic variance sd

2  increased, with 
fluctuations (Fig. 1a) almost doubled, from 0.05 to 0.09. 
The contribution of fertility to sd

2  increased from 70% to 
99% (Fig. 1b). In 1891, the contribution of infant and child 
mortality to sd

2  was visible, but it had disappeared by 2010 
(Fig. 1c–d).

Corresponding time series for the Netherlands and Japan 
are shown in the Supplementary material Appendix 1, and 
the values at the beginning and end of the time series are 
shown in Table 1. In both countries, an increase in life expec-
tancy and a reduction in fertility was accompanied by an 
increase in sd

2  and a shift to almost complete domination of 
sd

2  by contributions from fertility.
The sensitivity of sd

2  to mortality (for Sweden in 1891 
and 2010; Fig. 2) is positive for ages up to about 40, then 
becomes negative, and goes to zero at old ages. The sensitivity 

to fertility is negative over most of the life span. Sensitivi-
ties of sd

2  to both mortality and fertility increased in absolute 
value from 1891 to 2010. Very similar patterns appear for the 
Netherlands (Supplementary material Appendix 1 Fig. A2) 
and Japan (Supplementary material Appendix 1 Fig. A4).

Figure 3 and 4 show the contributions to sd
2  and the 

sensitivity of sd
2  to mortality and fertility for the Ache and 

Hadza hunter–gatherer populations. The values of sd
2  (0.04 

and 0.06) are in the same range of the values for the early 
developed countries. However, the contributions from fertility 
and from survival are almost exactly evenly matched (Table 1).

The Hutterite population, with its extremely high fertility, 
but more contemporary mortality, has a low value of sd

2  
(0.023), almost all of which is contributed by fertility.

A stage-classified example

Calathea ovandensis is an herbaceous understory plant native 
to Central America. Horvitz and Schemske (1995) developed 
a size-classified model with eight stages (seeds, seedlings, 
juveniles and pre-reproductives, and small, medium, large 
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Figure 1. Demographic variance for Sweden 1891–2010. (a) Contributions to sd
2  from survival (U) and from fertility (F). (b) The fraction 

of the overall demographic variance due to fertility. (c) The age pattern of contributions from fertility and survival, for 1891 and 2010. (d) 
The age pattern of contributions to demographic variance, combining both fertility and survival.
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and extra-large reproductives). Based on combined data over 
a range of sites and several years, they estimated a population 
projection matrix

A =

0.498 0 0.593 7.139 14.271 24.695 34.903 40.544
0.097 0.011 0.019 0 00 0 0 0
0.004 0.044 0.338 0.070 0.025 0.007 0.009 0

0 0.001 0.136 0.429 0..174 0.097 0.043 0.043
0 0 0.036 0.384 0.603 0.426 0.299 0.217
0 0 0.0022 0.025 0.113 0.239 0.171 0.283
0 0 0 0.009 0.027 0.155 0.325 0.196
0 0 0 00.003 0.006 0.045 0.128 0.239































  (28)

(Horvitz and Schemske 1995).
Using this matrix, and assuming a Poisson distribution for 

fertility, we computed sd
2  using Eq. 17, and the contribu-

tions from the fertility matrix F and from the matrix U that 
includes transitions and survival. The resulting demographic 
variance for Calathea is

sd
2 3.07= 	 (29)

99.8% of which was contributed by transitions and survival; 
only 0.2% was due to stochasticity in fertility.

We computed the sensitivity of sd
2  to changes in stage-

specific fertility and mortality using (19). For the latter 
calculation, the derivatives of U to mortality were obtained 
by factoring U,

U G= Σ 	 (30)

where Σ has survival probabilities on the diagonal and G 
contains transition probabilities conditional on survival.

d
d s s s s

vec
vec

U
I G I I

µ
=T − ⊗( ) ⊗( )D( ) 1 Σ 	 (31)

The stage-specific contribution and sensitivity results are 
shown in Fig. 6. The largest contributions come from transi-
tions and survival of stages 3–5. The fertility contributions 
are tiny, but of them the largest is from stage 5. The sensi-
tivity patterns are quite different from those of the human 
populations. The sensitivity of sd

2  to mortality is negative in 
the smallest stage, and becomes positive later. The sensitivity 
to fertility is largest in stage 1 (which cannot reproduce), and 
declines across the larger stages.

Discussion

This methodological study has had several specific goals. The 
first and most general is to link matrix population models, 
multitype branching processes, and diffusion models as an 
approach to the study of demographic stochasticity. The sec-
ond is to use the linkage to develop a sensitivity analysis of 
the demographic variance to parameters affecting any part[s] 
of the life cycle. The third is to develop methods to quantify 
the contributions to the demographic variance of fertility 
and transitions, throughout the life cycle. And finally, we set 
out to apply the methods to a variety of animal and plant 
population models as a first exploration of the patterns that 
emerge.

The diffusion approximation omits all the details; it is con-
structed from nothing more than a mean and a variance. That 
simplicity makes it a powerful technique because it is able 

Table 1. Summary results for human populations: the demographic variance sd
2  and its components sd F2  and sdU

2  due to fertility and sur-
vival, the population growth rate λ, the net reprodutive rate R0, the mean E(η1) and variance V(η1) of longevity at birth, and the variance V(ρ) 
in lifetime reproductive output due to individual stochasticity (van Daalen and Caswell 2017).

Population sd
2 sd F2  (%) sdU

2  (%) λ R0 E(η1) V(η1) V(ρ)

SWE 1891 0.048 0.034 (70.4) 0.014 (29.6) 1.013 1.50 53.0 944 5.60
SWE 2010 0.089 0.089 (99.3) 0.001 (0.7) 0.999 0.986 84.0 160 1.79
JPN 1947 0.045 0.033 (73.7) 0.012 (26.3) 1.019 1.75 54.2 830 6.10
JPN 2009 0.171 0.170 (99.4) 0.001 (0.6) 0.987 0.67 86.9 178 1.26
NLD 1950 0.051 0.049 (95.4) 0.002 (4.6) 1.013 1.482 73.1 331 2.91
NLD 2009 0.102 0.101 (99.3) 0.001 (0.7) 0.996 0.888 83.1 179 1.61
Ache 0.042 0.021 (49.5) 0.021 (50.5) 1.027 2.238 38.0 812 17.23
Hadza 0.057 0.027 (47.4) 0.031 (54.4) 1.016 1.566 34.6 989 11.3
Hutterites 0.023 0.021 (91.3) 0.002 (8.7) 1.044 3.763 70.0 433 8.58
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Figure 2. Sensitivity of the demographic variance sd
2  to age-specific 

mortality and fertility, for Sweden in 1891 and 2010.
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to derive a great deal of stochastic information (e.g. extinc-
tion probability) from such a minimal specification. But that 
power is also its weakness, because the diffusion approxi-
mation obscures all the demographic and life history infor-
mation that underlies population dynamics. It contains no 
stages, no transitions, no growth, no mortality schedules, no 
maturation, no metamorphosis, no size-dependent fertility, 
and thus no heterogeneity of any kind. As a result, interpre-
tation of the results in terms of the life history traits that we 
know and love is impossible. For that reason, results that con-
nect the diffusion approximation to age- and stage-structured 
models that do contain explicit life history information are 
so valuable.

Our results make it possible to compute the demo-
graphic variance from any age- or stage-classified popula-
tion projection matrix and demonstrate the link between 
matrix population models, multitype branching processes, 
and diffusion models. Applications based on the diffusion 
approximation, including conservation biology (Lande et al. 

2003), population dynamics (Lande et al. 2003, Engen et al. 
2007, 2009, Vindenes et al. 2008), extinction (Lande 1993, 
Engen et al. 2005), and fixation probability (Vindenes et al. 
2010, Cvijović et al. 2015) are now directly applicable to the 
huge accumulation of published matrix population models 
(over 7200 projection matrices, for over 950 species of plants 
and animals; see Salguero-Gómez et al. (2015, 2016)). It also 
makes it possible to use powerful matrix calculus methods to 
carry out sensitivity analyses.

Future research using comparative analyses will reveal pat-
terns across different kinds of heterogeneity and life histories. 
For comparative analyses to be revealing, sufficient variation 
must exist in the variables to be analyzed. For these analy-
ses, we note that among the small set of age-classified human 
populations, sd

2  varies by almost four-fold. The size-classified 
plant population extends that range to 68-fold. Among the 
human populations, fertility contributions range from about 
50% to almost 100% of sd

2 . Again, the plant population is 
extremely different: fertility contributes only 0.02% of sd

2 .
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Figure 3. Demographic variance for Ache hunter–gatherers. (a) Contributions to sd
2  from age-specific survival (U) and from age-specific 

fertility (F). (b) Age-specific contributions to sd
2  combining fertility and survival. (c) The sensitivity of demographic variance to age-specific 

mortality and fertility.
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The empirical examples we included here are only a begin-
ning, but we already see some interesting patterns.

•	 In human populations where extensive demographic 
data are available over a long time period, demographic 
variance has changed markedly over time, with a general 
increase in Sweden and Japan, while in the Netherlands 
a large increase in the 70s has been followed by a decline 
since the peak in the 80s.

•	 Among these human populations there has been a dra-
matic shift in contributions to sd

2  from survival and fertil-
ity. In populations with lower survival, the contributions 
from survival and fertility are roughly equal (especially in 
hunter–gatherer populations with life expectancy on the 
order of 35 years). As survival, and hence life expectancy, 
increases, the contributions shift to almost complete dom-
inance by fertility in contemporary developed countries.

•	 The sensitivity of demographic variance to changes in 
mortality is consistently positive for early ages, and nega-
tive at older ages. The sensitivity to changes in fertility 
may be slightly positive at youngest ages (where fertility is 

zero anyway), but becomes negative during the reproduc-
tive years. These patterns are sufficiently consistent that 
one could conjecture that they are a common feature of 
age-classified populations.

•	 These comparisons of demographic variance across human 
populations cover a range of conditions that would be 
regarded as significant environmental variation in any 
mammal species (life expectancy varying by a factor of 
2.5, lifetime reproductive output by a factor of 5). The 
resulting patterns differ from the interspecific compari-
sons among mammals by Vindenes and Engen (2017), 
who found a negative relationship between demographic 
variance and life expectancy. The explanation, as usual for 
comparative studies, will undoubtedly reflect the details 
of life history variation among, on the one hand, popula-
tions of one species, and populations of various related 
species.

The stage-classified model for Calathea ovandensis reveals 
quite different patterns. The demographic variance itself is 
1–2 orders of magnitude larger than the values for the human 
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Figure 4. Demographic variance for Hadza hunter–gatherers. (a) Contributions to sd
2  from age-specific survival (U) and from age-specific 

fertility (F). (b) Age-specific contributions to sd
2  combining fertility and survival. (c) The sensitivity of demographic variance to age-specific 

mortality and fertility.
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Figure 5. Demographic variance for Hutterites. (a) Contributions to sd
2  from age-specific survival (U) and from age-specific fertility (F). 

(b) Age-specific contributions to sd
2  combining fertility and survival. (c) The sensitivity of demographic variance to age-specific mortality 
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populations and is almost completely due to variance in 
survival and transitions, perhaps because the size-classified 
model offers so many more pathways through the life cycle 
and because the life history combines high fertility and low 
seedling survival.

The contributions from each stage or age class to the 
demographic variance depend on the expected contribution 
from each individual as well as the proportion of that stage in 
the stable distribution. Thus, stages where the variance con-
tribution from each individual is small, for instance because 
the survival probability is high, may still have a large impact 
on the demographic variance if they constitute a high pro-
portion of the stable distribution. If the survival probability 
approaches zero or one, the contribution to demographic 
stochasticity will approach zero even for stages constituting a 
high proportion of the population.

Future research directions

The methods we have introduced suggest a number of future 
research directions. We describe a few of those here.

Our examples have focused on age and size, two of the 
most important and most frequently studied sources of 
demographic heterogeneity. Other sources of heteroge-
neity will also affect the demographic variance (e.g. spa-
tial structure, morphological or behavioral trait variation, 
genetic variation). These dimensions of heterogeneity can be 
incorporated into multistate or hyper-state matrix models 
(Caswell 2014, Roth and Caswell 2016, Caswell et al. 2017) 
and our analyses applied to them, to explore the effects of 
these sources. The analyses we present here can be applied 
when integral projection models are treated as a source of 
matrices by discretizing the state variable (Ellner et al. 2016). 
This will open new analyses of more fine-scaled variation in 
the contributions to demographic variance across continuous 
traits.

It is inviting to use model life tables (Coale and Demeny 
1983, Barlow and Boveng 1991) or parametric survival and 
fertility schedules (Brass 1960, Siler 1979) to explore age-
classified life cycles. Relating the demographic variance to 
the pace and shape of life histories (Baudisch 2011) might 
reveal new patterns in age-classified populations operating 
on different time scales. In the same vein, a systematic 
study of the consequences of mixture models for fertility 
(e.g. the negative binomial as a gamma-distributed mixture 
of Poisson distributions) would be a valuable application.

The diffusion approximation and the demographic vari-
ance sd

2  reveal the population consequences of stochastic 
individual events. The relation between sd

2 and measures 
of individual stochasticity warrants further investigation.  
Our results in Table 1 show that it is possible for sd

2 to 
increase while individual variance in longevity and lifetime 
reproductive output are declining. Identifying the conditions 
under which this happens will require extensive new analyses.

The data required to construct these models consists of 
the means and covariances of the production of all types 
of individuals, by all types of individuals. The means are 
precisely the entries of the standard population projection 

matrix. The only extra information required is the set of 
covariances. Because the transitions of existing individuals 
follow multinomial distributions, their covariances can be 
calculated directly from the means. The covariances for fer-
tility are not part of the usual presentation of a matrix popu-
lation model, and for that reason we have shown how to 
proceed from assuming a distribution (Bernoulli or Poisson) 
for fertility. But a sufficiently detailed individual data set 
would include information from which these could be esti-
mated empirically. We encourage researchers to present data 
on variances in reproductive output as well as means, when 
available.

Derivations

In this section, we collect the derivations of the major results 
of analysis of the matrix model in terms of the demographic 
variance sd

2 .

Derivation: demographic variance

We define λ as the dominant eigenvalue of A, and w and v as 
the right and left eigenvectors corresponding to λ, scaled so 
that eigenvectors so that w sums to 1 and wTv = 1. We note 
that, from the properties of the Kronecker product,

( ) ( ) ( )v v A A A AT T⊗ ⊗ = ⊗λ2 	 (32)

The total reproductive value is

V t t( ) ( )= v nT 	 (33)

with expectation and variance

    E  EV t t( )  ( ) = v nT 	 (34)

  Var  V t t( )  ( )= v G vT 	 (35)

             = ⊗ ( )  vec ( )v v GT T t 	 (36)

The expectation of V (t) grows exponentially at the rate λ:

E   EV t t+ =( )  ( ) 1 v A nT 	 (37)

               = ( ) λE V t 	 (38)

The variance of V (t) grows asymptotically at the rate λ2,

Var   vec V t t+ ⊗ +( )  ( )1 1= ( )v v GT T 	 (39)

          

= ⊗

+ ⊗

( ) {
( )}

( )

( )

v v D n

A A G

T T E t

t vec 	 (40)

            = ⊗ +( )  ( ) ( )v v D nT T E t V tλ2Var 	 (41)
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Rewrite D as

D =
i

i
i∑( )vecC e( ) T 	 (42)

where ei is the ith unit vector of length s. Substituting Eq. 42 
into Eq. 41 gives

Var vec E

Var

V t t

V t
i

i
i( 1) ( )

[ ( )]

( )

2

+[ ] ⊗( )( ) [ ]

+

∑=

λ

v v C e nT T T

	 (43)

        

=

λ
i

i
i t

V t

∑ ( ) [ ]

+ [ ]

vec E

Var

v C v e nT T( )

2

( )

( ) 	 (44)

Define a vector q whose ith entry is

qi
i= v C vT ( ) 	 (45)

Then

Var E VarV t t V t( 1) ( ) ( )2+[ ] [ ] + [ ]= λq nT 	 (46)

Conditioning on V (t) sets the last term to 0, leading to  
Eq. 15, from which Eq. 16 and 17 follow.

Derivation: sensitivity of sd
2

The sensitivity analysis of sd
2 requires a systematic application 

of matrix calculus; the approach has been described in 
some detail in Caswell (2007, 2008, 2009, 2012). A good 
mathematical introduction is in Abadir and Magnus (2005) 
and a detailed description in Magnus and Neudecker (1988).

Differentiating Eq. 17 and applying the vec operator gives

d d dds
2 = q w w qT T+ 	 (47)

The analysis proceeds by determining the differentials d w 
(which is given in Eq. 20) and d q (given in Eq. 22); the 
latter requires differentials of both v and of covariances. We 
consider each of these in turn.

Derivatives of v
The reproductive value vector v is the left eigenvector of A, 
scaled so that vTw = 1. The scaling requires a slight modifica-
tion of the result in Caswell (2008). We note that the scaled 
vector v satisfies

v v A
v Aw

T
T

T= 	 (48)

Differentiating Eq. 48, using the rule for ratios, gives

d d d

d d d

v
v Aw

v Aw v A v A

v Aw v A w v A w

T
T

T T T

T T T

= 1
2( ) ( ) ( ) + ( ) {

− ( ) + ( ) + (( ) ( )}v AT 	 (49)

Substituting Aw = λw and vTA = λvT gives

λ = λ λ λ

λ λ

2 2

2

d d d d

d d

v v A v A v wv

v A wv v w v

T T T T T

T T T T

( ) + ( ) − ( )
− ( ) − ( ) 	 (50)

Applying the vec operator to both sides and solving for d v 
gives Eq. 23 where d w is given by Eq. 20.

Derivatives of the covariance matrices C(i)

To differentiate C(i) requires the differentials of CU
( )i and CF

( )i . 
We consider each in turn.

Covariances due to transitions
The covariance due to transitions is given by Eq. 7. For 
notational convenience, we supress the dependence on the 
parental stage i, and define u = U(:, i), in terms of which

C I u uuU = � 1s
T T( ) − 	 (51)

Differentiating Eq. 51 yields

d d d dsC I u u u u uU = � ( )  − ( ) − ( )1T T T 	 (52)

Applying the vec operator gives the result in terms of du,

d dsvecC Z I u I I u uU = 1 ⊗( ) − ⊗( ) − ⊗( ){ } 	 (53)

where Z = D (vec I). Return now to noting that u = U(:, i); 
i.e.

u Ue= i 	 (54)

Then

d diu e I U= ⊗( )T vec 	 (55)

Substituting this into Eq. 53 we obtain Eq. 24.

Covariances due to reproduction
In both Bernoulli and Poisson reproduction, the co-variance 
matrix CF

( )j  is obtained from the fertility matrix F. For the 
moment, supress the indication of the parent stage i, and let 
f denote column j of F.

The covariance matrix is

CF = D ( ( ))Var x 	 (56)

     = ( )I � 1Var T( )x 	 (57)

Differentiating and applying the vec operator yields

d dvec VarFC Z I 1= ⊗ ( )( ) x 	 (58)
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In the case of Bernoulli reproduction, Var(ξ) = f ◦ (1 − f), 
and

d dVar ( ) =x D ( )1 f f– 2 	 (59)

In the case of independent Poisson distributed numbers of 
offspring, Var(ξ) = f and

d dVar x( ) = f 	 (60)

Recalling that f = F(:, j) gives

d djf e I F=  vec( )⊗ 	 (61)

Substituting Eq. 59 and Eq. 61 into Eq. 58 gives dvec CF 
for Bernoulli reproduction. Substituting Eq. 60 and Eq. 61 
into Eq. 58 gives dvec CF for Poisson reproduction. Together, 
these results give Eq. 25.
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