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Abstract
Variance in longevity among individuals may arise as an effect of heterogeneity (differences in mortality rates experienced 
at the same age or stage) or as an effect of individual stochasticity (the outcome of random demographic events during the 
life cycle). Decomposing the variance into components due to heterogeneity and stochasticity is crucial for evolutionary 
analyses.In this study, we analyze longevity from ten studies of invertebrates in the laboratory, and use the results to parti-
tion the variance in longevity into its components. To do so, we fit finite mixtures of Weibull survival functions to each data 
set by maximum likelihood, using the EM algorithm. We used the Bayesian Information Criterion to select the most well 
supported model. The results of the mixture analysis were used to construct an age × stage-classified matrix model, with 
heterogeneity groups as stages, from which we calculated the variance in longevity and its components. Almost all data sets 
revealed evidence of some degree of heterogeneity. The median contribution of unobserved heterogeneity to the total vari-
ance was 35%, with the remaining 65% due to stochasticity. The differences among groups in mean longevity were typically 
on the order of 30% of the overall life expectancy. There was considerable variation among data sets in both the magnitude 
of heterogeneity and the proportion of variance due to heterogeneity, but no clear patterns were apparent in relation to sex, 
taxon, or environmental conditions.

Keywords Age-stage classified model · Heterogeneity · Individual stochasticity · Mixture models · Variance in longevity · 
Weibull distribution

Introduction

Individual variance in fitness components is central to evo-
lutionary demography and ecology, since variation between 
individuals in their traits and the resulting consequences 
for fitness are the basis for natural selection. Longevity, or 
age at death, is such a fitness component that varies among 
individuals within a cohort or population. This variance in 

longevity may arise as a result of two different underlying 
causes: stochastic processes and heterogeneity between indi-
viduals. That is, even in a population without heterogeneity, 
in which all individuals experience identical age-specific 
mortality rates, death would be a probabilistic event, lead-
ing to variance in longevity among individuals. This source 
of variance is called individual stochasticity (Caswell 2009). 
On top of that, genuine heterogeneity in age-specific mortal-
ity risk among individuals can be a cause of variance. Such 
differences between individuals with respect to their mortal-
ity risk, especially unobserved differences, are often referred 
to as heterogeneity in individual frailty (Vaupel et al. 1979), 
where frailty is defined as proneness to mortality.

The impact of heterogeneity on demographic outcomes, 
eco-evolutionary processes, and population dynamics has 
been the topic of several studies (e.g., Kendall and Fox 
2002; Robert et al. 2003; Kendall et al. 2011; Vindenes and 
Langangen 2015; Cam et al. 2016). However, the extent to 
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which variance in fitness components can be accounted for by 
individual stochasticity is still open (Cam et al. 2016). This 
question is fundamental to evolutionary demography because 
the two sources of variance have very different implications. 
Although it can arise from many other causes, variance due 
to heterogeneity may have a genetic basis, and hence play 
a role in selection. Because variance due to individual sto-
chasticity arises from individuals experiencing identical vital 
rates, by definition it cannot have a genetic basis. It may even 
slow down selection by obscuring genetic variance that does 
exist (Steiner and Tuljapurkar 2012). Automatically attribut-
ing observed variance in fitness components to heterogeneity 
overestimates the potential for selection.

The key to quantifying the relative contributions of het-
erogeneity and stochasticity is to construct a demographic 
model in which both factors operate, and partition the result-
ing variance into components due to each process. Such a 
method has been developed by using age×stage-classified 
matrix population models (Caswell 2014; Hartemink et al. 
2017). The primary state variable is age, and some aspect 
of heterogeneity (e.g., frailty) is included as a stage. When 
variance in, for example, longevity is calculated from such 
a matrix, it can be decomposed into a variance component 
between frailty classes, which is due to heterogeneity and 
a variance component within frailty classes, which is due 
to stochasticity. A first, crude attempt to explore this ques-
tion in laboratory animal cohort data was made in Caswell 
(2014), but that analysis relied on previously published 
estimates of uncertain methodology, based on a restrictive 
mortality model, and with only an approximate variance 
decomposition. Here we present a more rigorous analysis.

We quantify the relative contribution of heterogeneity 
and stochasticity to the variance in longevity in a range of 
invertebrate laboratory animal studies, comprising 25 data 
sets on 9 species of nematodes and insects, totaling about 3.2 
million individuals. Heterogeneity in mortality was captured 
by fitting finite mixtures of Weibull functions to data on 
individual ages at death, using the expectation–maximiza-
tion (EM) algorithm. We used model selection criteria to 
choose the mixture model most well supported by the data, 
and constructed the corresponding matrix model to estimate 
the components of variance.

In this paper we address several questions: (1) is there evi-
dence for unobserved heterogeneity in mortality of inverte-
brates under controlled conditions, (2) if so, how much, and 
how are individuals distributed among heterogeneity groups, 
and (3) how much of the variance in longevity is due to het-
erogeneity and how much to individual stochasticity. Because 
we are using data on a variety of species, on both sexes, and 
sometimes under different conditions, we will look for patterns 
related to these variables. But because our results are based on 
an arbitrary and non-random selection of data, constrained by 
sample size, rigorous comparative analyses are impossible.

We begin by describing the statistical estimation procedures 
and then develop the age × stage-classified matrix population 
model. Subsequent sections calculate and decompose the vari-
ance in longevity. We show the results in a series of tables and 
figures; detailed results for each data set are found in Elec-
tronic Supplementary Materials [ESM-1 and 2].

Materials and methods

Finite mixture models for survival

We described heterogeneity by a finite mixture model, in 
which a discrete number g of groups are defined, each group 
having its own mortality parameters, and with group i com-
prising a proportion �i of the cohort at the initial age. The 
mortality parameters of each group and the mixing distribu-
tion � are estimated by maximum likelihood from data on the 
observed distribution of age at death.

Such finite mixture models are widely used in statis-
tics (e.g., McLachlan and Peel 2004; Frühwirth-Schnatter 
2006). They have long been applied in survival analysis as 
an alternative to continuous frailty models (Farewell 1982; 
Heckman and Singer 1982; McLachlan and McGiffin 1994; 
Erişoğlu et al. 2012) such as the Gamma–Gompertz model 
(Vaupel and Carey 1993). Bijwaard (2014) and Putter and 
van Houwelingen (2015) have explored finite mixtures in 
multistate models.

We used the Weibull distribution to model survival. This 
distribution is more flexible than the Gompertz model, because 
it permits increasing, decreasing, or constant hazard rates, thus 
incorporating the type I, II, and III survivorship curves familiar 
in ecology (Pinder et al. 1978). The Weibull distribution has 
appealing biological interpretations as the time to failure of a 
system that relies on the continued operation of a large num-
ber of processes and fails when any one of them does so (e.g., 
Horvath 1968), or as the result of accumulation of damage 
beyond a certain threshold (Rinne 2008). The Weibull hazard 
function is:

where x is age, �(x) is the mortality hazard, � is a scale 
parameter, and k is a shape parameter. In medical statis-
tics, alternative parameterizations are sometimes used (e.g., 
Mills 2011), in which the shape parameter is the same as 
above, but the scale parameter is �(−k) in our parametriza-
tion. In Matlab, the model is specified using a for the scale 
parameter and b for the shape parameter. If k ≤ 1 , the hazard 
increases with time. If k > 1 , the hazard decreases over time. 
If k = 1 , the hazard is constant and the model reduces to an 
exponential model. The probability density function of age 
at death for the Weibull distribution is:

(1)�(x|�, k) = k

�

(
x

�

)k−1
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Maximum likelihood estimation

The mixture models were fit to the data using maximum 
likelihood. The estimation of mixture models is, in general, 
difficult, but the expectation–maximization (EM) algorithm 
(Dempster et al. 1977) has made it widely possible. The EM 
algorithm is an iterative procedure that alternates between an 
expectation (E) step and a maximization (M) step, until the 
estimates converge (for details, see McLachlan and Krishnan 
(2007)). Conceptually, it treats group membership as missing 
data. In the E step, the expected value of the unknown group 
membership is calculated for each individual, given the sur-
vival parameters in each group. The M step then finds param-
eters that maximize the likelihood, given the expected group 
memberships of each individual. Then the expectation step 
is repeated with the new parameters, and so on. See McLa-
chlan and McGiffin (1994) for a general discussion of the EM 
algorithm in relation to survival analysis. We programmed 
our analysis following the application of the EM algorithm 
to survival data by Mohammed et al. (2013). The approach 
has been shown by simulation studies to be capable of distin-
guishing mixtures of Weibull (and other) distributions (e.g., 
Erişoğlu et al. 2011, 2012; Mohammed et al. 2015).

To help ensure convergence to global rather than local 
maxima of the likelihood function, we sampled at least ten 
initial values for the parameters. We selected the best esti-
mate of the number of groups; following the suggestion of 
Frühwirth-Schnatter (2006) we used the minimum Bayesian 
Information Criterion (BIC) as our criterion. This lessens the 
risk of overfitting the number of heterogeneity groups. Runs 
that resulted in values of k greater than 10 were excluded, 
because values of k > 10 produce extremely narrow distribu-
tions of age at death, indicating that the model is trying to fit 
a few data points instead of a general distribution.

A matrix model including heterogeneity

Notation Matrices are denoted by upper-case boldface letters 
(e.g., U), and vectors by lower-case boldface letters (e.g., 
n). Block-diagonal matrices are denoted by blackboard font 
(e.g., � ). A tilde is used to distinguish matrices and vectors 
associated with the full age×stage-classified model, e.g., by 
�̃ , �̃ ; these matrices are block-structured and contain entries 
for all combinations of age classes and heterogeneity groups. 
The identity matrix of order s is denoted Is , and 1s is a s × 1 
vector of ones. The unit vector ei  is a vector with a 1 in the 
ith entry and zeros elsewhere. The symbol ◦ denotes the 
Hadamard, or element-by-element product; the symbol ⊗ 
denotes the Kronecker product. The transpose of the matrix 

(2)f (x|�, k) = k

�

(
x

�

)k−1

exp

(
−

(
x

�

)k
)
.

X is X� . The matrix K is the vec-permutation matrix (Hen-
derson and Searle 1981).

The estimated number of groups (which we will denote by 
g), the proportion of individuals in each group (described by 
the mixing distribution vector � ) and the Weibull parameters 
� and k for each group serve as input for our age×stage-clas-
sified matrix model. The stages are groups, each with its own 
mortality function, where the age-specific hazard is specified 
by the estimated Weibull parameters for that particular group.

The state of an individual is given by its age and its het-
erogeneity group. To include both these variables, we use 
an age×stage-classified matrix model, in which individu-
als are jointly classified by age and stage (Caswell 2012). 
In this case, stages are heterogeneity groups. Each group 
has an age-dependent mortality schedule specified by its 
Weibull parameters. In general, an age × stage-classified 
model describes both progression through age classes and 
transitions among stages (Caswell 2012). However, the het-
erogeneity groups here are fixed, so we need not include 
transitions among them (but see Hartemink et al. (2017), 
Caswell (2014) and Caswell et al. (2018) for more details 
on how to include such transitions).

Let � be the number of age classes and g be the number 
of heterogeneity groups. The population vector �̃ is

where the jth block of entries in �̃ is a sub-vector describing 
the abundance of the g stage classes within age class j.

For each group i, define a survival matrix �i of dimension 
� × � that contains age-specific survival probabilities on the 
first subdiagonal and zeros elsewhere,

where �i(x) is the mortality rate at age x, given by Eq. 1, 
for group i. Create a block-diagonal matrix � (of dimension 
�g × �g ) by placing the Ui on the diagonal,

(3)�̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

n11
⋮

n1g
⋮

n𝜔1
⋮

n𝜔g

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)�i =

⎛⎜⎜⎜⎝

0 0 ⋯ 0

e−�i(0) 0 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ e−�i(�−1) 0

⎞⎟⎟⎟⎠

(5)� =

⎛⎜⎜⎝

�1 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ �g

⎞⎟⎟⎠
.
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The joint age × stage composition of the cohort at time x is 
projected as

where the projection matrix is

with K = Kg,� the vec-permutation matrix (Henderson and 
Searle 1981; Hunter and Caswell 2005; Caswell 2012), 
which rearranges the population vector to permit multipli-
cation by the block diagonal matrix.

Calculating longevity

The matrix �̃ is the transient matrix of an absorbing Markov 
chain, with death as an absorbing state (e.g., Caswell 2001, 
2009, 2014). The fundamental matrix of this chain (of dimen-
sion �g × �g ) is

where ��g is an identity matrix. The (x, y) entry of �̃ is the 
expected number of visits to state y by an individual in state 
x, where state refers to the specific combination of age and 
stage.

The statistics of longevity are calculated from �̃ (e.g., Cas-
well 2009). The vectors of first and second moments of lon-
gevity, are given by

These vectors contain the moments of the longevity of all g� 
age×stage combinations. The vector of mean life expectan-
cies (mean longevities) of each age×stage combination is �̃1 . 
The vector of variances in longevity is

We are interested in the remaining longevity from the start of 
the cohort (age class 1), so we extract the mean and variance 
of longevity at age 1 from the full vectors. Define a vector 
�groups , of dimension g × 1 , that contains the longevity, at age 
1, of individuals in each of the heterogeneity groups. The 
mean and variance of �groups are

where e1 is a vector of length � with a 1 in the first entry and 
zeros elsewhere and Ig is an identity matrix of size g.

(6)�̃(x + 1) = �̃�̃(x)

(7)�̃ = �
�
��

(8)�̃ =
(
�𝜔g − �̃

)−1

(9)�̃1 =
(
1
�

𝜔
�̃
)�

g𝜔 × 1

(10)�̃2 =
[
�̃
�

1

(
2�̃ − �𝜔g

)]�
g𝜔 × 1

(11)V(�̃) =�̃2 − �̃1◦�̃1 g𝜔 × 1

(12)E(�groups) =
(
�
�

1
⊗ �g

)
�̃1 g × 1

(13)V(�groups) =
(
�
�

1
⊗ �g

)
V(�̃) g × 1

Variance decomposition: heterogeneity 
and stochasticity

The first age class is a mixture of individuals with a mix-
ing distribution � (which is a vector giving the fractions 
of the population in each group); � is estimated by the 
EM algorithm. The variance in longevity of age class 1, 
considered as a mixture of groups, is

The first term is the within-group variance; it is the weighted 
mean of the group variances in the vector V(�groups ), as given 
by Eq. 13,

The second term is the between-group variance; it is 
the weighted variance of the group means in the vector 
E(�groups ), as given by Eq. 12,

The within-group variance component measures the vari-
ance due to individual stochasticity among individuals expe-
riencing the same group-specific mortality schedule. The 
between-group component measures the variance due to the 
differences in the mortality schedules among the groups. 
In the absence of heterogeneity, the variance among group 
means would be zero and all variance would be due to sto-
chasticity. In the absence of stochasticity, all the group vari-
ances would be zero and all variance would be due to het-
erogeneity. Thus the between-group variance, as a fraction 
of the total, is a measure of the contribution of heterogeneity 
to variance in longevity.

The magnitude of heterogeneity

We measured the amount or magnitude of heterogeneity 
in two ways. First, we consider the concentration of indi-
viduals within groups. Heterogeneity is less if individuals 
are concentrated in one or a few groups than if they are 
spread out among groups in relatively equal proportions. 

(14)V(�) = E�

[
V
(
�groups

)]
+ V�

[
E
(
�groups

)]

(15)= Vwithin + Vbetween 1 × 1.

(16)Vwithin =�
�V(�groups)

(17)=
(
�
�

1
⊗ �

�
)
V(�̃) 1 × 1.

(18)
Vbetween = �

�
[
E(�groups)◦E(�groups)

]

−
[
�
�E(�groups)

]2

(19)
=�

�
[(
�
�

1
⊗ �g

)
�̃1◦

(
�
�

1
⊗ �g

)
�̃1

]

−
[(
�
�

1
⊗ �

�
)
�̃1

]2
1 × 1.
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We measure this concentration by the entropy of the mix-
ing distribution

which has its maximum value H = log g when all the �i 
are equal. Because the entropy is affected by the number 
of groups as well as the distribution of individuals among 
the groups, we scale it relative to its maximum to obtain the 
evenness,

which ranges from 0 (in the limit as all individuals are con-
centrated in one group) to 1 (individuals equally distributed 
among groups).

Second, we consider the magnitude of differences among 
the groups. Heterogeneity is less when the differences 
among groups are small than when they are large. We meas-
ured the magnitude of the differences among groups by the 
between-group standard deviation; i.e., the square root of the 
between-group variance (Eq. 18). In order to compare spe-
cies with different life expectancies, we scaled the standard 
deviation by the overall life expectancy.

Data

We obtained individual survival data from the literature 
or from the DATLife database (DATLife 2017), choosing 
studies with large sample sizes to permit rigorous statisti-
cal analysis. All data were obtained from laboratory studies 
under constant (to the best efforts of the original investiga-
tors) conditions. In the end, we analyzed 25 data sets on 
nine species of invertebrates (one nematode and 8 insects). 
Some of the data were additionally broken down by sex or 
genetic strains. The sample sizes and characteristics of the 
data are shown in Table 1. More detailed information on spe-
cies, sources of data, and experimental conditions is given 
in Appendix 1.

Results

From each data set, we obtained the estimated number g of 
groups (selected by minimizing BIC), the Weibull param-
eters for each group, and the proportions of each group in 
the initial cohort. From these, we constructed the age×stage-
classified matrix model and partitioned the variance in lon-
gevity into components due to heterogeneity and individual 
stochasticity, and obtained the proportion of the variance due 
to heterogeneity. The resulting values are shown in Table 2. 

(20)H = −

g∑
i=1

�i log�i

(21)J =
H

log g

In Electronic Supplementary Material [ESM-1], we provide 
the complete set of all estimates, not just those for the model 
selected by minimizing BIC.

Table 1  Characteristics of the data sets analyzed in the paper, show-
ing sample size (N), life expectancy (LE) in days, the observed vari-
ance in age at death, and the maximum observed life span in days

Species strain/sex Raw mortality data

N LE Variance Max. life span

C. elegans
 N2 1000 14.32 26.20 33
 CLK-1 800 18.24 106.48 55
 DAF-2 800 30.19 224.64 62
 All 2600 20.40 156.93 62

Human louse
 Females 400 17.08 84.31 46
 Males 400 17.17 63.59 44
 Both sexes 800 17.12 73.36 46

Housefly
 Females 3875 28.74 146.14 65
 Males 4627 16.93 45.60 58
 Both sexes 8502 22.22 123.01 65

Anastrepha ludens
 Females 363,971 28.54 198.86 163
 Males 487,128 30.31 196.53 155
 Both sexes 851,099 29.56 198.29 163

A. obliqua
 Females 134,807 17.91 147.07 84
 Males 162,280 15.43 100.67 67
 Both sexes 297,087 16.55 123.24 84

A. serpentina
 Females 169,031 17.96 96.72 90
 Males 172,283 18.57 113.74 77
 Both sexes 341,314 18.27 105.40 90

D. longicaudata
 Females 14,184 8.60 38.25 70
 Males 13,358 7.97 30.79 64
 Both sexes 27,542 8.29 34.73 70

Drosophila
 Long-winged females 5426 38.00 406.93 97
 Long-winged males 4568 40.40 433.58 95
 Short-winged females 906 15.26 112.16 46
 Short-winged males 854 13.67 79.91 51
 All 11,754 35.42 449.17 97

Medfly diet study
 Females sugar only 101,362 12.89 58.40 97
 Males sugar only 106,662 14.23 56.18 79
 Females sugar+protein 99,312 14.35 64.51 133
 Males sugar+protein 108,953 14.18 51.98 64
 All 416,289 13.92 57.95 133

Million medfly study
 Females 605,528 19.58 87.56 171
 Males 598,118 22.13 80.45 164
 Both sexes 1,203,646 20.84 85.65 171
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Detailed results for C. elegans

To clarify the analyses and as an example of the procedure, 
we present here the detailed results for a cohort of 800 indi-
viduals of the CLK-1 strain of the nematode C. elegans from 
an experiment described in Chen et al. (2007). Fitting a sin-
gle Weibull function to the age-at-death data of this strain 
yields an estimate of � = 20.7 and k = 1.9. From Fig. 1, it is 
clear that a single Weibull function does not provide a good 
fit to the data.

The results of fitting mixtures of two, three, four, or five 
Weibull functions are shown in Table 3 (models with mix-
tures of six, seven, or eight Weibull functions either did not 
converge or produced results with k > 10).

Based on the BIC values, we conclude that a mixture 
of two Weibull functions is the model most well sup-
ported by these data. The first group, comprising 45% of 
the individuals, is characterized by Weibull parameters 
� = 11.9 and k = 4.5 . The other group, comprising the 
remaining 55% of the individuals, has Weibull parameters 
� = 27.3 and k = 2.5 . These two functions, scaled by their 
mixing proportions, and their mixture are shown in Fig. 2. 
The first group is characterized by a shorter and less vari-
able longevity (modal age at death 11 days), the second 
group by a longer and more variable life span (modal age 
at death 22 days). When comparing the raw data, a single 
Weibull, and a mixture of two Weibull functions (Fig. 3), 
it is clear that the mixture model provides the better fit.

These estimated parameters are used as input for our 
age×stage-classified matrix model. The number of groups 
is g = 2 in this case. We used 200 age classes ( � = 200 ). 
The mixing distribution � =

(
0.45 0.55

)� ; this nearly 
equal division into two groups yields an evenness of 0.99. 
The age-specific mortality hazards for the two groups are

These hazard functions determine the age-specific sur-
vival probabilities in the �i matrices in Eq. 4. From this, 
the block-diagonal matrix � and the projection matrix �̃ are 
derived using Eqs. 5 and 7. The mean longevity in the het-
erogeneous cohort is 19.2 d. The variance is 106 d 2 ; of this 
variance, 41.4% is due to heterogeneity between the groups, 
and the remaining 58.6% is due to individual stochasticity. 
The among-group standard deviation is 35% of the mean 
longevity.

The Matlab scripts for estimating the parameters and 
BIC values for each model using the EM algorithm and 
for calculating longevity statistics and decomposing the 
variance, can be found in the Electronic Supplementary 
Material [ESM-3].

Results: species comparison

Table 2 shows the results for the number of heterogeneity 
groups identified, the evenness of the distribution of individ-
uals among groups, the magnitude of the differences among 
groups, and the fraction of variance due to heterogeneity. In 
only four cases (both sexes of the human louse, the N2 strain 
of C. elegans, and males of the short-winged strain of Dros-
ophila) did we fail to find evidence of heterogeneity. In the 
other cases, populations were quite evenly distributed among 
groups, with a median evenness (J) of 0.75 (interquartile 
range 0.41–0.89).

(22)�1(x) =
4.5

11.9

(
x

11.9

)4.5−1

(23)�2(x) =
2.5

27.3

(
x

27.3

)2.5−1

Fig. 1  Age-at-death of C. elegans strain CLK-1: raw data (red) and 
modelled by a single Weibull function (black)

Fig. 2  C. elegans CLK-1: fitted Weibull functions for age-at-death for 
the weighted mixture and for the two groups
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The magnitude of the heterogeneity (the among-group 
standard deviation) had a median value of 28% of life expec-
tancy (interquartile range 24–34%). Heterogeneity accounts 
for a substantial but not overwhelming fraction of the vari-
ance in longevity. The median contribution of heterogeneity 
is 35% (interquartile range 23–44%). The highest contribu-
tions are 75% in Anastrepha obliqua females and 65% in the 
DAF-2 strain of C. elegans.

Discussion

We set out to address three questions: is there evidence for 
heterogeneity, if so how much, and what fraction of the vari-
ance in longevity is due to heterogeneity, and what fraction 
to stochasticity. We found statistical support for heterogene-
ity in 31 out of 35 cases. In only four data sets (the N2 strain 
of C. elegans, both sexes of the human louse, and males of 
the short-winged strain of Drosophila) was a homogeneous 
model, with only a single group, the best supported. These 
were among the smallest data sets in our studies (1,000 indi-
viduals for C. elegans, 400 of each sex for the louse, and 854 
for the short-winged Drosophila). It would not be surprising 
if heterogeneity is more difficult to detect in small samples. 
Had these experiments been performed with more individu-
als, multiple groups might have been identified.

For all other data sets, our analysis identified from 2 to 
6 heterogeneity groups. Generalizing from these results, 
we can say that individuals are relatively evenly spread out 
among the groups, with an evenness of about 75% of its 
maximum. The differences among groups in life expectancy 
are about 28% of overall life expectancy.

Partially because of its evolutionary implications, much 
of the interest in unobserved heterogeneity in fitness com-
ponents focuses on accounting for variance (e.g., Caswell 
2011, 2014; Steiner and Tuljapurkar 2012; Vindenes and 
Langangen 2015; Cam et al. 2016; Hartemink et al. 2017; 
van Daalen and Caswell 2017; Jenouvrier et al. 2018). In this 
case, we found that heterogeneity could typically account 
for less than half of the variance in longevity (35%, with 
interquartile range 23–44%).

We found substantial differences among species in the 
number of groups distinguished and in the proportion of 
the variance attributable to heterogeneity. However, we 
found no clear patterns involving differences between sexes, 
treatments, or strains. Application of this approach to other 
experimental studies, in which large numbers of individuals 
are exposed to different treatments, would be valuable.

The very large datasets (the Anastrepha species and the 
Million Medfly experiment) seem to reveal higher numbers 
of groups; this may reflect an increased ability to detect het-
erogeneity with large sample sizes. There is no correlation 
between the number of groups and the fraction of variance 
due to heterogeneity; both high and low numbers of groups 
can result in high fraction of variance due to heterogeneity. 
For example, the fraction of variance due to heterogene-
ity was high with only two groups (e.g., 65% in the DAF-2 
strain of C. elegans) and with six groups (e.g., 75% in female 
A. obliqua).

Note that the value of the estimated longevity is in all 
cases approximately one unit higher than the longevity in 
the raw data, this is caused by the matrix model assumption 
of one remaining unit of life expectancy, even at the time of 
death. If we subtract this unit here, the estimated longevities 
match the raw data very well. The estimated variance also 
closely matches the variance as calculated from the raw data.

There exist a few studies to which this one can be com-
pared. Heterogeneity makes a larger contribution to vari-
ance in longevity in this study than was previously found for 
humans in an analysis of cohort and period mortality pat-
terns, over many years, for populations of Sweden, France, 
and Italy (Hartemink et al. 2017). In that analysis, heteroge-
neity accounted for less than 10%, and usually less than 5%, 
of the variance in longevity. It was based on a continuous 
heterogeneity model, in which a Gamma-distributed frailty 
term, acting as a proportional hazard on mortality, was 
applied to a Gompertz–Makeham mortality model (Missov 
2013; Missov and Lenart 2013). The Gompertz–Makeham 
model is applicable to human populations only after the age 
of 30–40 years, so the human data corresponded to a later 
“adult” age than is the case for the invertebrate species stud-
ied here.

Caswell (2014) made a brief exploration of laboratory 
data on six species of invertebrates using Gamma–Gompertz 
parameters reported by Horiuchi (2003). A crude, 

Fig. 3  Age-at-death of C. elegans strain CLK-1: raw data (red), mod-
elled as single Weibull function (black) and modelled as a mixture of 
two Weibull functions (blue)
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Table 2  Results of mixture model analysis

The number of groups (g) that results in the lowest BIC, the life expectancy (LE), the total variance in longevity, the within- and between-class 
variance, the entropy (H) and evenness (J) indices, the ratio between the square root of the between variance and the life expectancy, and the 
percentage of variance due to heterogeneity

Species strain/sex Best fitting mixture of Weibull functions

g LE Variance Within Between Entropy Evenness Ratio % of variance

C. elegans
 N2 1 15.33 26.82 26.82 0.00 0.00 – 0.0 0.0
 CLK-1 2 19.22 106.45 62.38 44.07 0.69 0.99 0.35 41.4
 DAF-2 2 31.21 223.75 78.90 144.85 0.61 0.88 0.39 64.7
 All 4 21.42 156.78 46.83 109.95 1.11 0.80 0.39 70.1

Human louse
 Females 1 18.06 85.28 85.28 0.00 0.00 – 0.0 0.0
 Males 1 18.14 62.76 62.76 0.00 0.00 – 0.0 0.0
 Both sexes 1 18.10 74.27 74.27 0.00 0.00 – 0.0 0.0

Housefly
 Females 2 29.73 146.83 91.01 55.83 0.44 0.64 0.25 38.0
 Males 4 17.94 45.84 32.95 12.89 1.10 0.79 0.20 28.1
 Both sexes 4 23.30 125.81 70.11 55.70 0.97 0.70 0.32 44.3

Anastrepha ludens
 Females 6 29.55 198.62 126.76 71.86 1.44 0.80 0.29 36.2
 Males 5 31.32 196.35 158.19 38.16 0.81 0.50 0.20 19.4
 Both sexes 5 30.56 198.08 160.74 37.34 1.04 0.65 0.20 18.9

A. obliqua
 Females 6 18.93 146.65 37.29 109.35 1.72 0.96 0.55 74.6
 Males 6 16.45 100.38 32.12 68.26 1.67 0.93 0.50 68.0
 Both sexes 6 17.59 122.77 69.77 53.01 1.28 0.71 0.41 43.2

A. serpentina
 Females 5 18.97 96.47 78.43 18.04 0.80 0.50 0.22 18.7
 Males 5 19.59 113.40 82.87 30.53 1.04 0.65 0.28 26.9
 Both sexes 5 19.29 105.07 82.09 22.98 1.14 0.71 0.25 21.9

D. longicaudata
 Females 4 9.64 38.07 27.70 10.37 1.31 0.95 0.33 27.2
 Males 4 9.05 30.45 25.77 4.69 0.71 0.51 0.24 15.4
 Both sexes 4 9.36 34.36 28.95 5.41 0.85 0.61 0.25 15.7

Drosophila
 Long-winged females 2 39.06 403.70 240.11 163.59 0.57 0.82 0.33 40.5
 Long-winged males 2 41.43 431.64 239.23 192.41 0.52 0.76 0.33 44.6
 Short-winged females 2 16.28 111.82 50.83 60.99 0.65 0.93 0.48 54.5
 Short-winged males 1 14.76 77.23 77.23 0.00 0.00 – 0.00 0.0
 All 2 36.46 446.91 213.69 233.22 0.64 0.92 0.42 52.2

Medfly diet study
 Females sugar only 4 13.94 58.10 44.85 13.25 1.24 0.89 0.26 22.8
 Males sugar only 4 15.27 55.88 50.47 5.41 1.05 0.75 0.15 9.7
 Females sugar + protein 4 15.40 64.04 44.80 19.23 1.31 0.94 0.28 30.0
 Males sugar + protein 4 15.23 51.60 38.72 12.88 1.30 0.94 0.24 25.0
 All 4 14.97 57.55 44.06 13.49 1.38 1.00 0.25 23.4

Million medfly study
 Females 6 20.58 87.58 53.13 34.44 1.37 0.76 0.29 39.3
 Males 8 23.14 80.47 53.00 27.47 1.71 0.82 0.23 34.1
 Both sexes 8 21.85 85.66 50.10 35.56 1.56 0.75 0.27 41.5
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approximate, variance decomposition found about 60% of 
the variance in longevity to be due to heterogeneity. How-
ever, because it is now known that neglecting the Makeham 
mortality term can bias estimates of the Gompertz param-
eters (Missov and Németh 2016), and because of the ad hoc 
variance decomposition used in Caswell (2014), we view 
these results as suggestive but not reliable.

In a recent field study of the Southern fulmar (Fulmarus 
glacialoides), Jenouvrier et al. (2018) used multievent cap-
ture-recapture analysis to identify three unobserved hetero-
geneity groups, where the groups were allowed to differ in 
any of the transition probabilities in a stage-classified matrix 
population model. They decomposed variance in longevity, 
age at first breeding, and lifetime reproductive output into 
contributions from heterogeneity and stochasticity. Hetero-
geneity accounted for only 5.9% of the variance in longevity, 
3.7% of the variance in age at first breeding, and 22% of the 
variance in lifetime reproductive output.

Insects undergo metamorphosis before reaching the adult 
stage, and in some laboratory conditions (e.g., Drosophila 
culture bottles), crowded larval conditions may create het-
erogeneity through competition, with some individuals com-
pleting the larval stage, but less well equipped for the adult 
stage, leading to ‘early failure’1. Such early deaths would 
probably form a group with very low mean longevity, and 
this would contribute substantially to the variance, and also 
increase the contribution of heterogeneity to the variance 
in longevity.

The finite mixture approach to estimating heterogeneity 
has advantages over other frailty analyses. It does not require 
an assumption of a parametric mixing distribution (e.g., the 
Gamma distribution), nor does it require an assumption of 
how the heterogeneity acts. In the Gamma–Gompertz–Make-
ham model, for instance, heterogeneity acts as a proportional 
factor multiplying a baseline hazard (Vaupel and Missov 

2014). In our approach, the number of groups, the distri-
bution of individuals among the groups, and the scale and 
shape parameters of each of the Weibull functions are esti-
mated without restriction.

An important direction for future research is the incorpo-
ration of dynamic heterogeneity, in which group member-
ship is not fixed over the life of the individual. It will not be 
easy to estimate unobserved heterogeneity in these models 
(e.g., Putter and van Houwelingen 2015). However, when 
the heterogeneity can be observed or measured, dynamic 
transitions may be incorporated following the methods of 
multistate event history analysis (Willekens 2014).

Demographic components of fitness (longevity, lifetime 
reproductive output, age at first breeding, etc.) are important 
components of evolutionary demography. The variance in 
these components, if due to genetic heterogeneity, would 
provide material for natural selection. The results presented 
here, and those for recent human populations (Hartemink 
et al. 2017) and one long-lived seabird (Jenouvrier et al. 
2018), suggest that for longevity, most of the variance is 
due to individual stochasticity. An understanding of the fac-
tors that influence this proportion, and the patterns shown 
by other taxa, are important research questions.
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Table 3  Best fits for models 
using mixtures of up to five 
Weibull functions for the CLK-1 
strain of C. elegans 

For each model the number of groups (g), the estimated Weibull parameters � and k, the percentage of the 
population made up by each group are shown. Also shown is ΔBIC, the difference from the minimum value 
of BIC, which corresponds to the best model

g Group 1 Group 2 Group 3 Group 4 Group 5 ΔBIC

� k % � k % � k % � k % � k %

1 20.7 1.9 100 167.23
2 11.9 4.5 45.0 27.3 2.5 55.0 0
3 12.0 4.3 49.2 0.8 1.9 0.3 28.6 2.8 50.5 8.51
4 19.6 4.6 15.7 1.2 1.5 0.4 32.8 3.7 34.0 11.8 4.4 0.50 20.80
5 37.1 4.5 14.8 20.7 4.1 25.2 11.8 4.4 49.5 33.5 7.3 10.0 1.2 1.5 0.4 40.12

1 Early failure is a concept coined in reliability engineering (Barlow 
and Proschan1996) for machines or parts that break down very soon 
after the onset of the use, due to some mechanical failure.
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Appendix: Species and data

This appendix gives details of the species and experimen-
tal sources for the data analyzed. Detailed comparisons of 
the raw data and the estimated Weibull functions are given 
for all data sets in ESM-2.

 1. Caenorhabditis elegans This is a free-living nematode 
species and an often-used model organism. Mortal-
ity data on C. elegans was obtained from a experi-
ment by Chen et al. (2007). In this experiment, the 
longevity of a standard wild-type strain (N2) and two 
long-lived mutant strains (CLK-1 and DAF-2) were 
reported. Daily survival data on 1000 individuals of 
the N2 strain and 800 individuals of each of the mutant 
strains were available.

 2. Pediculus humanus (Human louse) The human louse 
(Pediculus humanus L.) is a small, wingless insect. 
Human lice are obligate parasites of humans, that is, 
they normally feed exclusively on human blood, but they 
can be reared successfully in the lab on rabbits. The life 
cycle consists of the egg, three larval instars and the 
adult stage. Data on adult survival of head lice were 
obtained from a study by Evans and Smith (1952), in 
which 800 freshly emerged adults (400 males and 400 
females) were kept in mixed colonies. The mean dura-
tion of life was 17.6 for both males and females; there 
was no significant difference between the two sexes.

 3. Musca domestica (Common House fly) The common 
house fly (Musca domestica L.) is a well-known fly 
species (Insecta:Diptera:Muscidae). We use data on 
adult life span from life tables for 4,627 males and 
3,875 females published in Rockstein and Lieberman 
(1959). The data originally came from 2 separate stud-
ies, but no difference in mean length of life was found 
between these two datasets, so we treated it as one 
dataset. The house flies belonged to the strain NAIDM 
and the flies were inbred for about 200 generations.

 4. Anastrepha ludens Also known as the Mexican fruit fly 
(Insecta:Diptera:Tephritoidea) this is a major pest of 
agriculture across the Americas. We used daily mor-
tality data from a longevity experiment conducted on 
487,128 male flies and 363,971 female flies (Vaupel 
et al. 1998). The study conditions were identical to the 
Million medfly study described below. The data were 
obtained from the DATLife database (DATLife 2017).

 5. Anastrepha obliqua The West Indian or Antillian fruit 
fruit fly (Insecta:Diptera:Tephritoidea) is a major 
pest of mangoes. We used daily mortality data from 
a longevity experiment on 162,280 male and 134,807 
female flies (Vaupel et al. 1998). The study conditions 
were identical to the Million medfly study described 

below. The data were obtained from the DATLife data-
base (DATLife 2017).

 6. Anastrepha serpentina The sapote or serpentine fruit 
fly (Insecta:Diptera:Tephritoidea) is a major pest in 
Mexico. We used daily mortality data from a longevity 
experiment on 172,283 male and 169,031 female flies. 
The study conditions were identical to Million medfly 
study described below. The data were obtained from 
the DATLife database (DATLife 2017).

 7. Diachasmimorpha longicaudata This is a solitary parasi-
toid wasp (Insecta:Hymenoptera:Braconidae). It is a para-
sitoid of Caribbean fruit fly larvae. Daily mortality data 
were obtained from a longevity experiment on 13,358 
male and 14,184 female wasps. The study conditions 
were essentially identical to the Million medfly study 
conducted by J. Carey and described below. Data were 
obtained from the DATLife database (DATLife 2017).

 8. Drosophila melanogaster The common fruit fly 
(Insecta:Diptera:Drosophilidae) is probably the most 
widely studied laboratory organism. Life tables for 
this species were obtained from an early publication 
by Pearl and Parker (1921) on longevity experiments 
on long-winged and short-winged (Quintuple stock) 
strains. Longevity was measured for 4586 long-winged 
males, 5426 long-winged females, 854 short-winged 
males and 906 short-winged females.

 9. Medfly caloric restriction experiment, Cerati-
tis capitata. The Mediterranean fruit fly (often 
called Medfly for short), is a species of fruit fly 
(Insecta:Diptera:Tephritidae) and an important fruit 
pest. It is native to the Mediterranean area, but has 
spread invasively to many parts of the world. We used 
data from an experiment on the effect of caloric restric-
tion (Müller et al. 1997). Daily mortality of 200,674 
males and 215,615 females, maintained in grouped 
cages, was observed for two caloric restriction groups: 
sugar and sugar plus protein. The data were obtained 
from the DATLife database (DATLife 2017).

 10. The Million medfly experiment, Ceratitis capitata. The 
Million Medfly dataset consists of longevity data for 
very large cohorts of Ceratitis capitata. The experiment 
was performed in 1991 at the Moscamed medflies mass-
rearing facility. The purpose of this study was to exam-
ine mortality at the extreme ages. Approximately 7200 
medflies (both sexes) were maintained in each of the 
167 cages. Adults were given a diet of sugar and water, 
ad libitum. Parts of these data were originally published 
in Carey et al. (1992) and Carey (1993). The dataset 
used here contains information on the daily numbers of 
age-cage-and-sex-specific deaths of the total 1,203,646 
medflies (598,118 males and 605,528 females). The data 
were obtained from the DATLife database (DATLife 
2017).
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