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Abstract Bayesian parameter estimation and Bayesian
hypothesis testing present attractive alternatives to classi-
cal inference using confidence intervals and p values. In
part I of this series we outline ten prominent advantages
of the Bayesian approach. Many of these advantages trans-
late to concrete opportunities for pragmatic researchers. For
instance, Bayesian hypothesis testing allows researchers to
quantify evidence and monitor its progression as data come
in, without needing to know the intention with which the
data were collected. We end by countering several objec-
tions to Bayesian hypothesis testing. Part II of this series dis-
cusses JASP, a free and open source software program that
makes it easy to conduct Bayesian estimation and testing for
a range of popular statistical scenarios (Wagenmakers et al.,
this issue).

Keywords Hypothesis test · Statistical evidence · Bayes
factor · Posterior distribution

Theoretical satisfaction and practical implementation are
the twin ideals of coherent statistics. Dennis Lindley, 1980.
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The psychology literature is rife with p values. In almost
every published research article in psychology, substantive
claims are supported by p values, preferably ones smaller
than .05. For instance, the December 2014 issue of Psycho-
nomic Bulletin & Review featured 24 empirical brief reports,
all of which reported p values. The dominance of the p

value statistical framework is so complete that its presence
feels almost prescriptive (“every empirical article in psy-
chology shall feature at least one p value.”). In Part I of
this two-part series we aim to demonstrate that there exists
a valid and feasible alternative –Bayesian inference– whose
adoption brings considerable benefits, both in theory and in
practice.

Based on a superficial assessment, the continued popu-
larity of p values over Bayesian methods may be difficult
to understand. The concept of p value null hypothesis sta-
tistical testing (NHST) has been repeatedly critiqued on a
number of important points (e.g., Edwards, Lindman, &
Savage, 1963; Morrison & Henkel, 1970; Mulaik & Steiger,
1997; Wagenmakers, 2007), and few methodologists have
sought to defend the practice. One of the critiques is that
p values are often misinterpreted as Bayesian posterior
probabilities, such that it is all too easy to believe that
p < .05 warrants the rejection of the null hypothesis H0,
and consequently supports the acceptance of the alternative
hypothesis H1. This interpretation of p values is tempt-
ing but incorrect (Gigerenzer, Krauss, & Vitouch, 2004).
A p value is the probability of obtaining results at least
as extreme as those observed given that the null hypothe-
sis is true. The transition from this concept to the decision,
“I accept the alternative hypothesis”, is a leap that is log-
ically invalid. The p value does not take into account the
prior plausibility of H0, and neither does it recognize the
fact that data unusual under H0 can also be unusual under
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H1 (Wagenmakers et al., in press). Other pressing problems
with p values will be discussed shortly.

From a psychological perspective, however, a number
of arguments may help explain the continued popularity of
p values over Bayesian methods.1 First, researchers prac-
tice and preach the methodology that they were once taught
themselves; interrupting this self-perpetuating educational
cycle requires that researchers invest serious effort to learn
new methods. Second, by breaking away from the dominant
group of p value practitioners, researchers choose to move
away from the in-group and expose themselves to the asso-
ciated risks of academic exclusion. Third, just like fish form
schools to escape predation, researchers may believe that
there is security in repeating procedures that are popular;
“surely,” they may feel, “if the procedure I use is standard
in the field, then any detractors must be overstating their
case”. Fourth, many psychologists are primarily interested
in addressing substantive research questions, not in the finer
details of statistical methodology; such methodological dis-
interest feeds the desire for simple procedures that work
well enough to convince the reviewers. In this sense the cur-
rent p value fixation is similar to a statistical ritual (i.e., the
“null ritual”, Gigerenzer, 2004). Fifth, the p value frame-
work, when misinterpreted, offers a simple solution to deal
with the uncertainty inherent in noisy data: when p < .05,
reject H0 and accept H1; when p > .10, retain H0. When
misapplied in this way, p values appear to make it easy for
researcher to draw strong conclusions even when the empir-
ical results are noisy and uninformative. Sixth, researchers
may feel that by using non-standard methods (i.e., any-
thing other than the p value) they reduce their chances of
getting their work published or having it understood by
their colleagues. Seventh, researchers interested in method-
ology have often internalized their statistical education to
such an extent that they have difficulty accepting that the
method they have used all their life may have serious limi-
tations; when new information conflicts with old habits, the
resulting cognitive dissonance can be reduced by discount-
ing or ignoring the new information. Finally, it is possible
that researchers may agree with the p value critiques, yet
are unable to adopt alternative (Bayesian) inferential pro-
cedures. The reason for this inability is straightforward:
virtually all statistical software packages produce p values
easily, whereas Bayesian methods cannot count on the same
level of support. Many of these arguments hold for statistical
innovations in general, not just for p value NHST (Sharpe,
2013).

In general, then, powerful psychological and societal
forces are at play, making it nigh impossible to challenge the

1These arguments are speculative to the degree that they are based
entirely on our personal experience and common-sense; in other
words, our arguments have not been subjected to rigorous empirical
tests.

dominant methodology. Nonetheless, the edifice of NHST
appears to show subtle signs of decay. This is arguably due
to the recent trials and tribulations collectively known as
the “crisis of confidence” in psychological research, and
indeed, in empirical research more generally (e.g., Begley
& Ellis, 2012; Button et al., 2013; Ioannidis, 2005; John,
Loewenstein, & Prelec, 2012; Nosek & Bar-Anan, 2012;
Nosek, Spies, & Motyl, 2012; Pashler & Wagenmakers,
2012; Simmons, Nelson, & Simonsohn, 2011). This crisis
of confidence has stimulated a methodological reorientation
away from the current practice of p value NHST. A series of
recent articles have stressed the limitations of p values and
proposed alternative methods of analysis (e.g., Cumming,
2008, 2014; Halsey, Curran-Everett, Vowler, & Drummond,
2015; Johnson, 2013; Kruschke, 2010a, 2011; Nuzzo, 2014;
Simonsohn, 2015b). In response, flagship journals such
as Psychological Science have issued editorials warning
against the uncritical and exclusive use of p values (Lindsay,
2015); similar warnings have been presented in the Psycho-
nomic Bulletin & Review Statistical Guidelines for authors;
finally, the journal Basic And Applied Social Psychology has
banned p values altogether (Trafimow & Marks, 2015).

In order to reduce psychologists’ dependence on p val-
ues it is essential to present alternatives that are concrete
and practical. One such alternative is inference from confi-
dence intervals (i.e., the “new statistics”, Cumming, 2014;
Grant, 1962). We see twomain limitations for the new statis-
tics. The first limitation is that confidence intervals are not
Bayesian, which means that they forego the benefits that
come with the Bayesian approach (a list of such benefits is
provided below); moreover, confidence intervals share the
fate of p values in the sense that they are prone to fallacies
and misinterpretations (Greenland et al., in press; Morey,
Hoekstra, Rouder, Lee, &Wagenmakers, 2016). The second
limitation is that confidence intervals presume that the effect
under consideration exists; in other words, their use implies
that every problem of inference is a problem of parame-
ter estimation rather than hypothesis testing. Although we
believe that effect size estimation is important and should
receive attention, the question of size (“how big is the
effect?”) comes into play only after the question of presence
(“is there an effect?”) has been convincingly addressed
(Morey, Rouder, Verhagen, & Wagenmakers, 2014). In
his monograph “Theory of Probability”, Bayesian pioneer
Harold Jeffreys makes a sharp distinction between estima-
tion and testing, discussing each in separate chapters: “In the
problems of the last two chapters we were concerned with
the estimation of the parameters in a law, the form of the law
itself being given. We are now concerned with the more dif-
ficult question: in what circumstances do observations sup-
port a change of the form of the law itself? This question is
really logically prior to the estimation of the parameters,
since the estimation problem presupposes that the parameters
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are relevant.” (Jeffreys, 1961, p. 245; italics ours). The same
sentiment was recently expressed by Simonsohn (2015b,
p. 559): “Only once we are past asking whether a pheno-
menon exists at all and we come to accept it as qualitatively
correct may we become concerned with estimating its mag-
nitude more precisely. Before lines of inquiry arrive at the
privileged position of having identified a phenomenon that
is generally accepted as qualitatively correct, researchers
require tools to help them distinguish between those that are
and are not likely to get there.” We believe it is a mistake
to mandate either an estimation or a testing approach across
the board; instead, the most productive mode of inference
depends on the substantive questions that researchers wish
to have answered. As illustrated below, the problems with p

values are not a reason to abandon hypothesis testing – they
are a reason to abandon p values.

As a concrete and practical alternative to hypothesis
testing using p values, we propose to conduct hypothesis
testing using Bayes factors (e.g., Berger, 2006; Jeffreys,
1935, 1961; Kass & Raftery, 1995). The Bayes factor
hypothesis test compares the predictive adequacy of two
competing statistical models, thereby grading the evidence
provided by the data on a continuous scale, and quantify-
ing the change in belief that the data bring about for the
two models under consideration. Bayes factors have many
practical advantages; for instance, they allow researchers to
quantify evidence, and they allow this evidence to be mon-
itored continually, as data accumulate, and without needing
to know the intention with which the data were collected
(Rouder, 2014; Wagenmakers, 2007).

In order to profit from the practical advantages that
Bayesian parameter estimation and Bayes factor hypothesis
tests have to offer it is vital that the procedures of interest
can be executed in accessible, user-friendly software pack-
age. In part II of this series (Wagenmakers et al., this issue)
we introduce JASP (jasp-stats.org; JASP Team, 2016), a
free and open-source program with a graphical user inter-
face familiar to users of SPSS. With JASP, users are able
to conduct classical analyses as well as Bayesian analy-
ses, without having to engage in computer programming or
mathematical derivation.

The overarching goal of Part I this series is to present
Bayesian inference as an attractive alternative to p value
NHST. To this end, a concrete example is used to highlight
ten practical advantages of Bayesian parameter estimation
and Bayesian hypothesis testing over their classical coun-
terparts. Next we briefly address a series of ten objections
against the Bayes factor hypothesis test. Our hope is that by
raising awareness about Bayesian benefits (and by simul-
taneously providing a user-friendly software program, see
Wagenmakers et al., this issue) we can help accelerate the
adoption of Bayesian statistics in psychology and other
disciplines.

Bayesian inference and its benefits

To facilitate the exposition below we focus on a concrete
example: the height advantage of candidates for the US
presidency (Stulp, Buunk, Verhulst, & Pollet, 2013). The
data from the first 46 US presidential elections can be ana-
lyzed in multiple ways, but here we are concerned with the
Pearson correlation ρ between the proportion of the pop-
ular vote and the height ratio (i.e., height of the president
divided by the height of his closest competitor). Figure 1
shows that taller candidates tend to attract more votes;
the sample correlation r equals .39 and is significantly
different from zero (p = .007, two-sided test). A classi-
cal confidence interval for ρ ranges from .12 to .61. We
now turn to a Bayesian analysis of these data, first dis-
cussing estimation, then discussing hypothesis testing of the
correlation ρ. Our exposition is necessarily brief and selec-
tive; a complete treatment of Bayesian inference requires a
monograph (e.g., Bernardo & Smith, 1994; Jeffreys, 1961;
Jaynes, 2003; Lunn, Jackson, Best, Thomas, & Spiegelhal-
ter, 2012; O’Hagan & Forster, 2004). In addition, we have
made an effort to communicate the concepts and ideas with-
out recourse to equations and derivations. Readers interested
in the mathematical underpinnings of Bayesian inference
are advised to turn to other sources (e.g., Ly, Verhagen, &
Wagenmakers, 2016b; Marin & Robert, 2007; O’Hagan &
Forster, 2004; Pratt et al., 1995; Rouder et al., 2012; an
overview and a reading list are provided in this issue, Etz,
Gronau, Dablander, Edelsbrunner, & Baribault, this issue).

Bayesian Parameter Estimation

A Bayesian analysis may proceed as follows. The model
under consideration assumes that the data are bivariate

Fig. 1 The proportion of the popular vote versus the height ratio
between a US president and his closest competitor for the first 46
elections. Data obtained from Stulp et al. (2013). Figure based on
JASP

https://jasp-stats.org/
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Fig. 2 Prior and posterior distribution for the correlation between the
proportion of the popular vote and the height ratio between a US pres-
ident and his closest competitor. The default two-sided Bayes factor
is visualized by the ratio between the prior and posterior ordinate at
ρ = 0 and equals 6.33 in favor of the alternative hypothesis over the
null hypothesis. Figure from JASP

Normal, and interest centers on the unknown correlation
coefficient ρ. In Bayesian statistics, the uncertainty about
ρ before seeing the data is quantified by a probability dis-
tribution known as the prior. Here we specify a default
prior distribution, one that stipulates that every value of ρ

is equally plausible a priori (Jeffreys, 1961); this yields a
uniform distribution ranging from −1 to 1, shown in Fig. 2
by the dotted line.2 It is possible to specify different mod-
els by changing the prior distribution. For instance, later we
will incorporate the knowledge that ρ is expected to be pos-
itive, which can be accomplished by using a uniform prior
distribution that ranges only from 0 to 1. For the moment,
we refrain from doing so here because the classical NHST
analysis is also two-sided.

Next the prior distribution is combined with the infor-
mation from the data (i.e., the likelihood; Edwards, 1992;
Myung, 2003; Royall, 1997) and the result is a posterior
distribution. This posterior distribution quantifies the uncer-
tainty about ρ after having seen the data. Figure 2 shows
that compared to the prior distribution, the posterior distri-
bution assigns relatively little mass to values lower than 0
and higher than .70. A 95% credible interval ranges from
.11 to .60, which means that one can be 95% confident that
the true value of ρ lies between .11 and .60. When the pos-
terior distribution is relatively peaked compared to the prior,
this means that the data were informative and much has been

2The prior distributions for the other parameters from the bivariate
Normal are inconsequential for inference about ρ and can be assigned
vague prior distributions (Ly et al., 2016b). A slightly different and
less transparent Bayesian model for the Pearson correlation coefficient
is presented in Wetzels and Wagenmakers (2012).

learned. Note that the area under the prior and the posterior
distribution has to equal 1; consequently, if some values of
ρ are less likely under the posterior then they were under
the prior, the reverse pattern needs to hold for at least some
other values of ρ.

Benefits of Bayesian parameter estimation

In psychology, Bayesian parameter estimation techniques
have recently been promoted by Jeff Rouder and colleagues
(e.g., Rouder, Lu, Speckman, Sun, & Jiang, 2005; Rouder,
Lu, et al., 2007; Rouder, Lu, Morey, Sun, & Speckman,
2008), by Michael Lee and colleagues (e.g., Lee, 2008,
2011; Lee, Fuss, & Navarro, 2006), and by John Kruschke
(e.g., Kruschke, 2010a, b, 2011). Because the results of clas-
sical parameter estimation techniques (i.e., confidence inter-
vals) are sometimes numerically similar to those obtained
using Bayesian methods (i.e., credible intervals), it is tempt-
ing to conclude that the difference is not of practical interest.
This is, however, a misconception. Below we indicate sev-
eral arguments in favor of Bayesian parameter estimation
using posterior distributions over classical parameter esti-
mation using confidence intervals. For more details and
examples see Morey et al. (2016). Before proceeding, it is
important to recall the definition of a classical confidence
interval: An X% confidence interval for a parameter θ is an
interval generated by a procedure that in repeated sampling
has an X% probability of containing the true value of θ

(Hoekstra, Morey, Rouder, & Wagenmakers, 2014; Neyman,
1937). Thus, the confidence in the classical confidence
interval resides in its performance in repeated use, across
hypothetical replications. In contrast, the confidence in the
Bayesian credible interval refers directly to the situation at
hand (see benefit 3 below and see Wagenmakers, Morey, &
Lee, 2016). Table 1 lists five benefits of Bayesian estimation
over classical estimation. We will discuss each in turn.

Benefit 1. Bayesian estimation can incorporate prior
knowledge

The posterior distribution is a compromise between the prior
(i.e., what was known before the data arrived), and the like-
lihood (i.e., the extent to which the data update the prior).
By selecting an appropriate prior distribution, researchers
are able to insert substantive knowledge and add useful con-
straint (Vanpaemel, 2010; Vanpaemel and Lee, 2012). This
is not a frivolous exercise that can be misused to obtain
arbitrary results (Lindley, 2004). For instance, consider the
estimation of IQ. Based on existing knowledge, it is advis-
able to use a Gaussian prior distribution with mean 100
and standard deviation 15. Another example concerns the
estimation of a participant’s latent ability to discriminate
signal from noise in a psychophysical present-absent task.
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Table 1 Select overview of advantages of Bayesian inference over classical inference

Bayesian Classical

Inference Inference References

Desiderata for Parameter Estimation

1. To incorporate prior knowledge 1,2

2. To quantify confidence that θ lies in a specific interval 3

3. To condition on what is known (i.e., the data) 4,5

4. To be coherent (i.e., not internally inconsistent) 6,7

5. To extend naturally to complicated models 8,9

Desiderata for Hypothesis Testing

1. To quantify evidence that the data provide forH0 vs.H1 10,11

2. To quantify evidence in favor ofH0 12,13

3. To allow evidence to be monitored as data accumulate 14,15

4. To not depend on unknown or absent sampling plans 16,17

5. To not be “violently biased” againstH0 18,19,20

See text for details. References: 1 = Dienes (2011); 2 = Vanpaemel (2010); 3 = (Pratt et al., 1995, p. 258); 4 = Berger and Wolpert (1988);
5 = Jaynes (2003); 6 = Lindley (1985); 7 = Lindley (2000); 8 = Pratte and Rouder (2012); 9 = Lunn et al. (2012); 10 = Jeffreys (1935); 11 =
Jeffreys (1961); 12 = Rouder et al. (2009); 13 = Wagenmakers (2007); 14 = Edwards et al. (1963); 15 = Rouder (2014); 16 = Berger and Berry
(1988); 17 = Lindley (1993); 18 = W. Edwards (1965); 19 = Berger and Delampady (1987); 20 = Sellke et al. (2001)

In the absence of ability, the participant still has a 50%
probability of guessing the correct answer. Hence, the latent
rate θ of correct judgements is bounded from below by
0.5 (Morey, Rouder, & Speckman, 2008; Rouder, Morey,
Speckman, & Pratte, 2007). Any statistical paradigm that
cannot incorporate such knowledge seems overly restrictive
and incomplete. The founding fathers of classical infer-
ence –including “Student” and Fisher– mentioned explicitly
that their methods apply only in the absence of any prior
knowledge (Jeffreys, 1961, pp. 380–382).

To see how easy it is to add meaningful constraints to
the prior distribution, consider again the example on the US
presidents (see also Lee & Wagenmakers, 2013; Wagen-
makers, Verhagen, & Ly, 2016). Assume that, before the
data were examined, the correlation was believed to be pos-
itive; that is, it was thought that taller candidates attract
more votes, not less. This restriction can be incorporated by
assigning ρ a uniform distribution from 0 to 1 (Hoijtink,
Klugkist, & Boelen, 2008; Hoijtink, 2011; Klugkist, Laudy,
& Hoijtink, 2005). The results are shown in Fig. 3. Note that
the area under the one-sided prior distribution needs to equal
1, which explains why it is twice as high as the two-sided
prior distribution shown in Fig. 2.

A comparison between Figs. 2 and 3 also reveals that the
restriction did not meaningfully alter the posterior distribu-
tion. This occurs because most of the posterior mass was
already consistent with the restriction, and hence the one-
sided restriction necessitated only a minor adjustment to the
posterior obtained from the two-sided prior. In contrast, the

classical one-sided 95% confidence interval ranges from .16
to 1, containing all values that would not be rejected by a
one-sided α = .05 significance test. This one-sided inter-
val is very different from the two-sided interval that ranged
from .12 to .61. In light of the data, and in light of the poste-
rior distribution, the one-sided confidence interval does not
appear to provide an intuitive or desirable summary of the

Fig. 3 One-sided prior and posterior distribution for the correlation
between the proportion of the popular vote and the height ratio between
a US president and his closest competitor. The default one-sided Bayes
factor is visualized by the ratio between the prior and posterior ordinate
at ρ = 0 and equals 12.61 in favor of the alternative hypothesis over
the null hypothesis. Figure from JASP
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uncertainty in estimating ρ.3 To further stress the difference
between the Bayesian and classical one-sided intervals, note
that for the present data the one-sided classical interval that
presumes the opposite restriction (i.e., taller candidates are
assumed to attract fewer votes) yields an interval that ranges
from −1 to 0.58, that is, covering all of the negative range
and most of the positive range. In sharp contrast, the restric-
tion to negative correlations yields a Bayesian one-sided
credible interval with negative bounds that are very close to
zero, as one would expect.

In sum, Bayesian estimation methods allow researchers
to add substantive prior knowledge. The classical frame-
work is incapable of doing so except for the simplest case
of an order-restriction, where it yields intervals that do not
provide useful information about the precision with which
parameters were estimated.

Benefit 2. Bayesian estimation can quantify confidence that
θ lies in a specific interval

The posterior distribution for a parameter θ provides a com-
plete summary of what we know about this parameter. Using
this posterior distribution, we can answer questions such
as “how much more likely is the value θ = .6 versus the
value θ = .4?” – this equals the ratio of the heights of the
posterior distribution at those values. Also, we can use the
posterior distribution to quantify how likely it is that θ falls
in a specific interval, say, between .2 and .4 – this equals
the posterior mass in that interval (Wagenmakers, Morey, &
Lee, 2016).

In contrast, the classical confidence interval procedure
can do no more than provide X% confidence intervals. It is
not possible within the classical framework to specify the
interval bounds and then ask for the probability or confi-
dence that the true value is within these bounds. This is a
serious limitation. For instance, one criterion for the diag-
nosis of an intellectual disability is an IQ below 70. Hence it
may be important to know the probability that a person’s IQ
is in the interval from 0 to 70, given a series of test scores.
With classical statistics, this question cannot be addressed.
Pratt et al. (1995, p. 258) formulate this concern as follows:

A feature of confidence regions which is particularly
disturbing is the fact that the confidence level must
be selected in advance and the region we then look
at is imposed by chance and may not be at all one
we are interested in. Imagine the plight of a manager
who exclaims, ‘I understand [does he?] the meaning

3The rationale behind the one-sided classical confidence interval is
difficult to teach. One statistics teacher remarked “one-sided classical
confidence intervals really blow students’ minds, and not in a good
way.” Another statistics teacher said that she simply refuses to cover
the concept at all, in order to prevent student riots.

that the demand for XYZ will lie in the interval 973 to
1374 with confidence .90. However, I am particularly
interested in the interval 1300 to 1500. What con-
fidence can I place on that interval?’ Unfortunately,
this question cannot be answered. Of course, however,
it is possible to give a posterior probability to that
particular interval—or any other—based on the sam-
ple data and on a codification of the manager’s prior
judgments.

Cox (1958, p. 363) expresses a similar concern (see also
Lindley, 1965, p. 23):

(...) the method of confidence intervals, as usually for-
mulated, gives only one interval at some preselected
level of probability. (...) For when we write down
the confidence interval (...) for a completely unknown
normal mean, there is certainly a sense in which the
unknown mean θ is likely to lie near the centre of the
interval, and rather unlikely to lie near the ends and
in which, in this case, even if θ does lie outside the
interval, it is probably not far outside. The usual the-
ory of confidence intervals gives no direct expression
of these facts.

Benefit 3. Bayesian estimation conditions on what is known
(i.e., the data)

The Bayesian credible interval (and Bayesian inference in
general) conditions on all that is known. This means that
inference is based on the specific data set under consider-
ation, and that performance of the methodology for other
hypothetical data sets is irrelevant. In contrast, the classical
confidence interval is based on average performance across
hypothetical data sets. To appreciate the difference, consider
a scale that works perfectly in 95% of the cases, but returns
a value of “1 kilo” in the remaining 5%. Suppose you weigh
yourself on this scale and the result is “70 kg”. Classically,
your confidence in this value should be 95%, because the
scale is accurate in 95% of all cases. However, the data tell
you that the scale has not malfunctioned, and hence you can
be 100% confident in the result. Similarly, suppose the scale
returns “1 kilo”. Classically, you can have 95% confidence
in this result. Logically, however, the value of “1 kilo” tells
you that the scale has malfunctioned, and you have learned
nothing at all about your weight (Berger & Wolpert, 1988).

Another example is the 50% confidence interval for a
binomial rate parameter θ (i.e., θ is allowed to take on val-
ues between 0 and 1). A classically valid 50% interval can
be constructed by ignoring the data and randomly reporting
either the interval (0− 0.5) or (0.5− 1). This random inter-
val procedure will cover the true value in 50% of the cases.
Of course, when the data are composed of 10 successes out
of 10 trials the interval (0−0.5) is nonsensical; however, the
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confidence of the classical procedure is based on average
performance, and the average performance of the random
interval is 50%.

Thus, one of the crucial differences between classi-
cal and Bayesian procedures is that classical procedures
are generally “pre-data”, whereas Bayesian procedures are
“post-data” (Jaynes, 2003).4 One final example, taken from
by Berger and Wolpert (1988), should suffice to make the
distinction clear. The situation is visualized in Fig. 4: two
balls are dropped, one by one, in the central tube located at
θ . Each ball travels down the central tube until it arrives at
the T-junction, where it takes either the left or the right tube
with equal probability, where the final outcome is registered
as θ − 1 and θ + 1, respectively.

Consider that the first ball registers as “12”. Now there
are two scenarios, both equally likely a priori, that provide
radically different information. In the first scenario, the sec-
ond ball lands in the other tube. For instance, the second ball
can register as a “14”. In this case, we know with 100% cer-
tainty that θ is 13 – the middle value. In the second scenario,
the second ball lands in the same tube as the first one, regis-
tering another “12”. This datum is wholly uninformative, as
we still do not know whether θ equals 13 (when “12” is the
left tube) or 11 (when “12” is the right tube). Hence we sim-
ply guess that the balls have traveled down the left tube and
state that θ equals 13. The first scenario always yields 100%
accuracy and the second scenario yields 50% accuracy. Both
scenarios are equally likely to occur and hence the overall
probability that the above procedure correctly infers the true
value of θ is 75%. This indicates how well the procedure
performs in repeated use, averaged across the sample space
(i.e., all possible data sets).

However, consider that two balls have been observed and
you are asked what you have learned about θ . Even classi-
cal statisticians agree that in cases such as these, one should
not report an unconditional confidence of 75%; instead, one
should take into account that the first scenario is different
from the second, and draw different conclusions depending
on the data at hand. As a technical side note, the nega-
tive consequences of averaging across hypothetical data sets
that are fundamentally different is known as the problem
of “recognizable/relevant subsets”. Ultimately, the problem
can only be overcome by conditioning on the data that were
observed, but doing so removes the conceptual basis of
classical inference. In Bayesian inference, the problem of
relevant subsets does not occur (for a more detailed discus-
sion see e.g., Brown, 1967; Cornfield, 1969; Gleser, 2002;
Morey et al., 2016; Pierce, 1973; Pratt, 1961). Relevant

4This difference was already clear to Laplace, who argued that the
post-data viewpoint is “obviously” the one that should be employed
(Gillispie, 1997, p. 82).

Fig. 4 Two balls are dropped consecutively in a tube at location θ ;
each ball lands randomly at tube location θ −1 or θ +1. When the two
balls land in different locations, θ is known with 100% certainty; when
the two balls land in the same location, θ is known with 50% certainty.
The pre-data average of 75% confidence is meaningless after the data
have been observed. The example is taken from Berger and Wolpert
(1988)

subsets are easy to detect in somewhat contrived exam-
ples such as the above; however, they also exist in standard
inference situations such as the comparison of two means
(Buehler & Fedderson, 1963).

The conceptual and practical difference between clas-
sical and Bayesian intervals is eloquently summarized by
Jaynes (1976, pp. 200–201):

Our job is not to follow blindly a rule which would
prove correct 90% of the time in the long run; there are
an infinite number of radically different rules, all with
this property. Our job is to draw the conclusions that
are most likely to be right in the specific case at hand
(...) To put it differently, the sampling distribution of
an estimator is not a measure of its reliability in the
individual case, because considerations about samples
that have not been observed, are simply not relevant
to the problem of how we should reason from the one
that has been observed. A doctor trying to diagnose
the cause of Mr. Smith’s stomachache would not be
helped by statistics about the number of patients who
complain instead of a sore arm or stiff neck. This does
not mean that there are no connections at all between
individual case and long-run performance; for if we
have found the procedure which is ‘best’ in each indi-
vidual case, it is hard to see how it could fail to be
‘best’ also in the long run (...) The point is that the
converse does not hold; having found a rule whose
long-run performance is proved to be as good as can be
obtained, it does not follow that this rule is necessar-
ily the best in any particular individual case. One can
trade off increased reliability for one class of samples
against decreased reliability or another, in a way that
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has no effect on long-run performance; but has a very
large effect on performance in the individual case.

Benefit 4. Bayesian estimation is coherent (i.e., not
internally inconsistent)

One of the defining characteristics of Bayesian inference is
that it is coherent, meaning that all inferential statements
must be mutually consistent; in other words, Bayesian infer-
ence does not depend on the way a problem is framed
(de Finetti, 1974; Lindley, 1985, 2006; Ramsey, 1926). In
Bayesian statistics, coherence is guaranteed by the laws of
probability theory: “Coherence acts like geometry in the
measurement of distance; it forces several measurements
to obey the system.” (Lindley, 2000, p. 306). For instance,
when we know that for a posterior distribution, p(0 < ρ <

0.3) = a and p(0.3 < ρ < 0.4) = b, then it has to follow
that p(0 < ρ < 0.4) = a+b. Any other conclusion violates
the laws of probability theory and is termed incoherent or
absurd (Lindley, 1985). A famous example of incoherence
is provided by (Tversky & Kahneman, 1983, p. 297), who
gave participants the following background story:

Linda is 31 years old, single, outspoken and very
bright. She majored in philosophy. As a student, she
was deeply concerned with issues of discrimination
and social justice, and also participated in anti-nuclear
demonstrations.

After reading the story, participants were asked to pro-
vide the probability of several statements, including the
following two:

1. “Linda is a bank teller. (T)”
2. “Linda is a bank teller and is active in the feminist

movement. (T&F)”

The results showed that the great majority of participants
judged the conjunction statement T&F to be more prob-
able than the constituent statement T. This conjunction
error violates the laws of probability theory, according to
which the probability of T&F can never be higher than the
probability of either of its constituents (see also Nilsson,
Winman, Juslin, & Hansson, 2009). Within the restrictions
of the normative Bayesian framework, violations of logic
and common sense can never occur.

Coherence is about fitting together different pieces of
information in a way that is internally consistent, and this
can be done in only one way: by obeying the laws of prob-
ability theory. Consider the following example. A bent coin
is tossed twice: the first toss comes up heads, and the second
toss comes up tails. Assume that, conditional on the angle
of the bent coin, the tosses are independent. Then the final
inference about the angle should not depend on the order
with the data were observed (i.e., heads-tails or tails-heads).

Similarly, the final inference should not depend on whether
the data were analyzed sequentially, one at a time, or as a
single batch. This sequential form of coherence can only
be obtained by continual updating of the prior distribution,
such that the posterior distribution after datum i becomes
the prior distribution for the analysis of datum i+1; without
a prior distribution, coherence is impossible and inferential
statements are said to be absurd. Coherence also ensures
that Bayesian inference is equally valid for all sample sizes
– there is no need for “rules of thumb” to identify sample
sizes below which inference cannot be trusted.

Coherence has been argued to be the core element of
Bayesian inference; for instance, Ramsey (1926) argued that
“the most generally accepted parts of logic, namely, for-
mal logic, mathematics and the calculus of probabilities,
are all concerned simply to ensure that our beliefs are not
self-contradictory” (see Eagle, 2011, p. 65); Jeffreys (1961,
p. ix) starts the preface to the Bayesian classic “Theory of
Probability” by stating that “The chief object of this work
is to provide a method of drawing inferences from observa-
tional data that will be self-consistent and can also be used in
practice”. Moreover, Lindley (1985) used the term “coher-
ent statistics” instead of “Bayesian statistics”, and Joyce
(1998) highlighted the importance of coherence by proving
that “any system of degrees of belief that violates the axioms
of probability can be replaced by an alternative system that
obeys the axioms and yet is more accurate in every possible
world” (see Eagle, 2011, p. 89).

In contrast to Bayesian inference, the concept of coher-
ence plays no role in the classical framework. The resulting
problems become manifest when different sources of infor-
mation need to be combined. In the classical framework,
the usual remedy against incoherence is to focus on one
source of information only. Even though this hides the prob-
lem from view, it does not eliminate it, because almost
any data set can be divided into arbitrary batches, and the
final inference should not depend on the order or method of
division.

Benefit 5. Bayesian estimation extends naturally to
complicated models

The principles of Bayesian estimation hold for simple mod-
els just as they do for complicated models (e.g., Gelman
& Hilll, 2007; Gelman et al., 2014). Regardless of model
complexity, Bayesian inference features only one estimator:
the posterior distribution. When this posterior distribution
cannot be obtained analytically, it is usually possible to
draw samples from it using numerical algorithms such as
Markov chain Monte Carlo (MCMC; Gelfand & Smith,
1990; Gilks, Richardson, & Spiegelhalter, 1996; van
Ravenzwaaij, Cassey, & Brown, in press). By increasing the
number of MCMC samples, the posterior distribution can be
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approximated to arbitrary precision.With the help ofMCMC
sampling, Bayesian inference proceeds almost mechani-
cally, allowing for straightforward inference even in rela-
tively complex models (e.g., Lunn et al., 2012).

Consider the use of hierarchical nonlinear process mod-
els in cognitive psychology. Most models in cognitive psy-
chology are nonlinear in that they are more than the sum
of effects plus noise. An example of a nonlinear model is
Yonelinas’ dual process model, in which memory perfor-
mance is a mixture of recollection, modeled as a discrete
all-or-none process, and familiarity, modeled as a contin-
uous signal-detection process (e.g., Yonelinas, 2002). In
realistic settings each of several people observe each of sev-
eral items, but each person-item combination is unique. It
is reasonable to assume variation across people and items,
and once the model is expanded to include people and
item effects, it is not only nonlinear, but quite numerous in
parameters. One approach is to aggregate data across peo-
ple, items, or both. The drawback is that the fit to aggregated
data will be substantially distorted and perhaps reflect the
psychological processing of nobody (Estes, 1956; Heath-
cote, Brown, & Mewhort, 2000; Rouder et al., 2005). A
superior approach is to construct hierarchical nonlinear pro-
cess models that simultaneously account for psychological
process and nuisance variation from people and items. Pratte
and Rouder (2012), for example, fit an expanded, hierar-
chical dual process model with about 2000 parameters. It
is not obvious to us how to fit such models in a classi-
cal framework.5 Fortunately, the analysis is tractable and
relatively straightforward using Bayesian inference with
MCMC sampling.

Thus, Bayesian estimation is ideally suited for mod-
els that respect the complexity inherent in psychological
data; such realistic models can be hierarchical, involve
mixtures, contain nonlinearities, or be based on detailed
considerations of the underlying psychological process (Lee
& Wagenmakers, 2013; Shiffrin, Lee, Kim, & Wagen-
makers, 2008). Despite their surface differences, all such
models obey the same conceptual principles, and parame-
ter estimation is merely a matter of “turning the Bayesian
handle”:

“What is the principal distinction between Bayesian
and classical statistics? It is that Bayesian statistics
is fundamentally boring. There is so little to do: just
specify the model and the prior, and turn the Bayesian
handle. There is no room for clever tricks or an
alphabetic cornucopia of definitions and optimality
criteria. I have heard people who should know better
use this dullness as an argument against Bayesianism.

5Using maximum likelihood estimation, general-purpose gradient
decent algorithms in Matlab, R, and Excel often fail in nonlinear
contexts with more than just a few dozen parameters.

One might as well complain that Newton’s dynamics,
being based on three simple laws of motion and one
of gravitation, is a poor substitute for the richness of
Ptolemys epicyclic system.” (Dawid, 2000, p. 326)

Bayesian hypothesis testing

In Bayesian parameter estimation, the inferential end-goal
is the posterior distribution. In the earlier example featuring
election outcomes, the posterior distribution for ρ allowed
an answer to the question “What do we know about the cor-
relation between height and popularity in the US elections,
assuming from the outset that such a correlation exists?”
From this formulation, it is clear that we cannot use the
posterior distribution alone for the purpose of hypothesis
testing: the prior formulation ρ ∼ Uniform[−1, 1] presup-
poses that ρ is relevant, that is, it presupposes that ρ is
unequal to zero.6 To test an invariance or a general law,
this law needs to be assigned a separate prior probabil-
ity (Etz and Wagenmakers, 2016; Haldane, 1932; Jeffreys,
1961, 1973, 1980; Ly et al., 2016b; Wrinch & Jeffreys,
1921, 1923): to test H0 : ρ = 0, this hypothesis needs
to be taken serious a priori. In the election example, this
means that we should explicitly consider the hypothesis
that taller candidates do not attract a larger or smaller pro-
portion of the popular vote. This is something that the
estimation framework fails to do. Consequently, as stated by
Berger (2006, p. 383): “[...] Bayesians cannot test precise
hypotheses using confidence intervals. In classical statistics
one frequently sees testing done by forming a confidence
region for the parameter, and then rejecting a null value of
the parameter if it does not lie in the confidence region.
This is simply wrong if done in a Bayesian formulation
(and if the null value of the parameter is believable as a
hypothesis).”

Hence, when the goal is hypothesis testing, Bayesians
need to go beyond the posterior distribution. To answer
the question “To what extent do the data support the pres-
ence of a correlation?” one needs to compare two models:
a null hypothesis that states the absence of the effect (i.e.,
H0 : ρ = 0) and an alternative hypothesis that states its
presence. In Bayesian statistics, this alternative hypothe-
sis needs to be specified exactly. In our election scenario,
the alternative hypothesis we discuss first is specified as
H1 : ρ ∼ Uniform(−1, 1), that is, every value of ρ is
judged to be equally likely a priori (Jeffreys, 1961; Ly et al.,
2016b).7

6Under a continuous prior probability distribution, the probability
assigned to any single point (i.e., ρ = 0) is zero.
7Specification of prior distributions is an important component for
Bayes factor hypothesis testing, as the prior distributions define a
model’s complexity and hence exert a lasting effect on the test
outcome. We will return to this issue later.
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With the competing hypotheses H0 and H1 fully spec-
ified, the process of updating their relative plausibilities is
described by a simplification of Bayes’ rule:

p(H1 | data)
p(H0 | data)
︸ ︷︷ ︸

Posterior odds

= p(H1)

p(H0)
︸ ︷︷ ︸

Prior odds

× p(data | H1)

p(data | H0)
︸ ︷︷ ︸

Bayes factor BF10

. (1)

In this equation, the prior model odds p(H1)/p(H0)

indicate the relative plausibility of the two models before
seeing the data. After observing the data, the relative plau-
sibility is quantified by the posterior model odds, that is,
p(H1 | data)/p(H0 | data). The change from prior to pos-
terior odds brought about by the data is referred to as the
Bayes factor, that is, p(data | H1)/p(data | H0). Because
of the subjective nature of the prior model odds, the empha-
sis of Bayesian hypothesis testing is on the amount by which
the data shift one’s beliefs, that is, on the Bayes factor. When
the Bayes factor BF10 equals 6.33, the data are 6.33 times
more likely underH1 than underH0. When the Bayes factor
equals BF10 = 0.2, the data are 5 times more likely under
H0 than under H1. Note that the subscripts “10” in BF10
indicate that H1 is in the numerator of Eq. 1 and H0 is in
the denominator, whereas the subscripts “01” indicate the
reverse. Hence, BF10 = 1/BF01.

An alternative interpretation of the Bayes factor is
in terms of the models’ relative predictive performance
(Wagenmakers, Grünwald, & Steyvers, 2006;Wagenmakers,
Morey, & Lee, 2016). Consider two models,H0 andH1, and
two observations, y = (y1, y2). The Bayes factor BF10(y) is
given by p(y1, y2 | H1)/p(y1, y2 | H0), that is, the ratio
of the advance probability that the competing models assign
to the data. Thus, both models make a probabilistic predic-
tion about the data, and the model with the best prediction is
preferred. This predictive interpretation can also be given a
sequential slant. To see this, recall that according to the def-
inition of conditional probability, p(y1, y2) = p(y1)p(y2 |
y1). In the current example, both H0 and H1 make a pre-
diction about the first data point, yielding BF10(y1) =
p(y1 | H1)/p(y1 | H0) – the relative predictive perfor-
mance for the first data point. Next, both models incorporate
the knowledge gained from the first data point and make a
prediction for the second observation, yielding BF10(y2 |
y1) = p(y2 | y1,H1)/p(y2 | y1,H0) – the relative pre-
dictive performance for the second data point, given the
knowledge obtained from the first. These one-step-ahead
sequential forecasts can be combined –using the law of con-
ditional probability– to produce a model’s overall predictive
performance (cf. Dawid’s prequential principle; e.g., Dawid,
1984): BF10(y) = BF10(y1) × BF10(y2 | y1). The accu-
mulation of one-step-ahead sequential forecasts provides a
fair assessment of a model’s predictive adequacy, penalizing
undue model complexity and thereby implementing a form

of Occam’s razor8 (i.e., the principle of parsimony, Jefferys
& Berger, 1992; Lee &Wagenmakers, 2013; Myung & Pitt,
1997; Myung, Forster, & Browne, 2000; Vandekerckhove,
Matzke, & Wagenmakers, 2015; Wagenmakers & Waldorp,
2006). The predictive interpretation of the Bayes factor is
conceptually relevant because it means that inference can be
meaningful even without either of the models being true in
some absolute sense (Morey, Romeijn, & Rouder, 2013; but
see van Erven, Grünwald, & de Rooij, 2012).

From the Bayesian perspective, evidence is an inherently
relative concept. Therefore it makes little sense to try and
evaluate evidence for a specific hypothesis without having
specified exactly what the alternative hypothesis predicts.
In the words of Peirce (1878a), “When we adopt a cer-
tain hypothesis, it is not alone because it will explain the
observed facts, but also because the contrary hypothesis
would probably lead to results contrary to those observed.”
(as quoted in Hartshorne & Weiss, 1932, p. 377). As out-
lined below, this is one of the main differences with clas-
sical hypothesis testing, where the p value quantifies the
unusualness of the data under the null hypothesis (i.e., the
probability of obtaining data at least as extreme as those
observed, given that the null hypothesis is true), leaving
open the possibility that the data are even more likely under
a well-specified and plausible alternative hypothesis.

In sum, Bayes factors compare the predictive adequacy
of two competing statistical models. By doing so, they grade
the evidence provided by the data on a continuous scale,
and quantify the change in belief that the data bring about
for the two models under consideration. Its long history and
direct link to Bayes’ rule make the Bayes factor “the stan-
dard Bayesian solution to the hypothesis testing and model
selection problems” (Lewis and Raftery, 1997, p. 648) and
“the primary tool used in Bayesian inference for hypothesis
testing and model selection” (Berger, 2006, p. 378). We con-
sider the Bayes factor (or its logarithm) a thermometer for
the intensity of the evidence (Peirce, 1878b). In our opinion,
such a thermometer is exactly what researchers desire when
they wish to measure the extent to which their observed data
supportH1 orH0.

Benefits of Bayesian hypothesis testing

In psychology, several researchers have recently proposed,
developed, and promoted Bayes factor hypothesis testing
(e.g., Dienes, 2008, 2011, 2014; Hoijtink, 2011; Klugkist
et al., 2005; Masson, 2011; Morey & Rouder, 2011; Mulder
et al., 2009; Rouder et al., 2009, 2012; Vanpaemel, 2010;

8An overly complex model mistakes noise for signal, tailoring its
parameters to data patterns that are idiosyncratic and nonrepeatable.
This predilection to “overfit” is exposed when the model is forced
to make out-of-sample predictions, because such predictions will be
based partly on noise.
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Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 2010).
Table 1 provides a non-exhaustive list of five specific bene-
fits of Bayesian hypothesis testing over classical p value hy-
pothesis testing (see also Kass & Raftery, 1995, p. 773). We
now briefly discuss each of these benefits in turn. Other ben-
efits of Bayesian hypothesis testing include those already
mentioned for Bayesian parameter estimation above.

Benefit 1. The Bayes factor quantifies evidence that the
data provide forH0 vs. H1

As mentioned above, the Bayes factor is inherently com-
parative: it weighs the support for one model against that
of another. This contrasts with the p value, which is cal-
culated conditional on the null hypothesis H0 being true;
the alternative hypothesis H1 is left unspecified and hence
its predictions are irrelevant as far as the calculation of the
p value is concerned. Consequently, data that are unlikely
under H0 may lead to its rejection, even though these data
are just as unlikely under H1 – and are therefore perfectly
uninformative (Wagenmakers et al., in press). Figure 5 pro-
vides a cartoon highlighting that p value NHST considers
one side of the coin.

The practical relevance of this concern was underscored
by the infamous court case of Sally Clark (Dawid, 2005;
Hill, 2005; Nobles & Schiff, 2005). Both of Sally Clark’s
children had died at an early age, presumably from cot
death or SIDS (sudden infant death syndrome). The proba-
bility of a mother having to face such a double tragedy was

Fig. 5 A boxing analogy of the p value (Wagenmakers et al.,
in press). The referee uses null hypothesis significance testing and
therefore considers only the deplorable state of boxerH0 (i.e., the null
hypothesis). His decision to rejectH0 puzzles the public. Figure avail-
able at http://www.flickr.com/photos/23868780@N00/12559689854/,
courtesy of Dirk-Jan Hoek, under CC license https://creativecommons.
org/licenses/by/2.0/

estimated to be 1 in 73 million. Such a small probability
may have influenced judge and jury, who in November 1999
decided to sentence Sally Clark to jail for murdering her
two children. In an open letter published in 2002, the presi-
dent of the Royal Statistical Society Peter Green explained
why the probability of 1 in 73 million is meaningless: “The
jury needs to weigh up two competing explanations for the
babies’ deaths: SIDS or murder. The fact that two deaths
by SIDS is quite unlikely is, taken alone, of little value.
Two deaths by murder may well be even more unlikely.
What matters is the relative likelihood of the deaths under
each explanation, not just how unlikely they are under one
explanation.” (Nobles & Schiff, 2005, p. 19). This point of
critique is not just relevant for the case of Sally Clark, but
applies to all inferences based on the p value.

Bayes factors compare two competing models or
hypotheses: H0 and H1. Moreover, Bayes factors do so
by fully conditioning on the observed data y. In contrast,
the p value is a tail-area integral that depends on hypo-
thetical outcomes more extreme than the one observed in
the sample at hand. Such a practice violates the likelihood
principle and results in paradoxical conclusions (for exam-
ples see Berger & Wolpert, 1988; Wagenmakers, 2007).
Indeed, our personal experience suggests that this is one of
the most widespread misconceptions that practitioners have
about p values: interpreting a p value as the “probability
of obtaining these results given that the null hypothesis is
true”. However, as mentioned above, the p value equals
the probability of obtaining results at least as extreme as
those observed given that the null hypothesis is true. As
remarked by Jeffreys (1980, p. 453): “I have always consid-
ered the arguments for the use of P absurd. They amount
to saying that a hypothesis that may or may not be true is
rejected because a greater departure from the trial value was
improbable; that is, that it has not predicted something that
has not happened.” Towards the end of his life, this critique
was acknowledged by one of the main protagonists of the
p value, Ronald Fisher himself.9 In discussing inference for
a binomial rate parameter based on observing 3 successes
out of 14 trials, Fisher argued for the use of likelihood,
implicitly acknowledging Jeffreys’s concern:

“Objection has sometimes been made that the method
of calculating Confidence Limits by setting an
assigned value such as 1% on the frequency of observ-
ing 3 or less (or at the other end of observing 3 or
more) is unrealistic in treating the values less than 3,
which have not been observed, in exactly the same
manner as the value 3, which is the one that has been

9The first p value was calculated by Pierre-Simon Laplace in the
1770s; the concept was formally introduced by Karl Pearson in 1900
as a central component to his Chi-squared test (http://en.wikipedia.org/
wiki/P-value#History).

http://www.flickr.com/photos/23868780@N00/12559689854/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
http://en.wikipedia.org/wiki/P-value#History
http://en.wikipedia.org/wiki/P-value#History
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observed. This feature is indeed not very defensible
save as an approximation.” (Fisher, 1959, p. 68).

Benefit 2. The Bayes factor can quantify evidence in favor
of H0

It is evident from Equation 1 that the Bayes factor is able
to quantify evidence in favor of H0. In the Bayesian frame-
work, no special status is attached to either of the hypotheses
under test; after the models have been specified exactly, the
Bayes factor mechanically assesses each model’s one-step-
ahead predictive performance, and expresses a preference
for the model that was able to make the most accurate series
of sequential forecasts (Wagenmakers et al., 2006). When
the null hypothesis H0 predicts the observed data better
than the alternative hypothesis H1, this signifies that the
additional complexity of H1 is not warranted by the data.

The fact that the Bayes factor can quantify evidence in
favor of the null hypothesis can be of considerable substan-
tive importance (e.g., Galliset, 2009; Rouder et al., 2009).
For instance, the hypothesis of interest may predict an
invariance, that is, the absence of an effect across a varying
set of conditions. The ability to quantify evidence in favor of
the null hypothesis is also important for replication research,
and should be of interest to any researcher who wishes to
learn whether the observed data provide evidence of absence
or absence of evidence (Dienes, 2014). Specifically, the pos-
sible outcomes of the Bayes factor can be assigned to three
discrete categories: (1) evidence in favor of H1 (i.e., evi-
dence in favor of the presence of an effect); (2) evidence
in favor of H0 (i.e., evidence in favor of the absence of
an effect); (3) evidence that favors neither H1 nor H0. An
example of evidence for absence is BF01 = 15, where
the observed data are 15 times more likely to occur under
H0 than under H1. An example of absence of evidence is
BF01 = 1.5, where the observed data are only 1.5 times
more likely to occur under H0 than under H1. Evidentially
these scenarios are very different, and it is clearly useful and
informative to discriminate between the two. However, the
p value is not able to make the distinction, and in either of
the above scenarios one may obtain p = .20. In general, the
standard p value NHST is unable to provide a measure of
evidence in favor of the null hypothesis.

Benefit 3. The Bayes factor allows evidence to be
monitored as data accumulate

The Bayes factor can be thought of as a thermometer for the
intensity of the evidence. This thermometer can be read out,
interpreted, and acted on at any point during data collection
(cf. the stopping rule principle; Berger & Wolpert, 1988).
Using Bayes factors, researchers are free to monitor the evi-
dence as the data come in, and terminate data collection

whenever they like, such as when the evidence is deemed
sufficiently compelling, or when the researcher has run out
of resources (e.g., Berger, 1985, Chapter 7; Edwards et al.,
1963; Rouder, 2014; Wagenmaker, 2007). This freedom has
substantial practical ramifications, and allows experiments
to be conducted in a manner that is both efficient and ethical
(e.g., Schönbrodt, Wagenmakers, Zehetleitner, & Perugini,
in press).

Consider the hypothetical case where a memory
researcher, professor Bumbledorf, has planned to test 40
children with severe epilepsy using intracranial EEG. In sce-
nario 1, Bumbledorf tests 20 children and finds that the
data are so compelling that the conclusion hits her straight
between the eyes (i.e., Berkson’s interocular traumatic test,
Edwards et al., 1963, p. 217). Should Bumbledorf feel
forced to test 20 children more, inconveniencing the patients
and wasting resources that could be put to better use? In
scenario 2, Bumbledorf tests all 40 children and feels that,
although the data show a promising trend, the results are
not statistically significant (p = .11). Should Bumble-
dorf be disallowed from testing additional children, thereby
possibly preventing the patients’ earlier efforts from
advancing science by contributing to data that yield an
unambiguous conclusion? With Bayes factors, there are no
such conundrums (Berger & Mortera, 1999); in scenario 1,
Bumbledorf can stop after 20 patients and report the Bayes
factor; in scenario 2, Bumbledorf is free to continue testing
until the results are sufficiently compelling. This freedom
stands in sharp contrast to the standard practice of p value
NHST, where adherence to the sampling plan is critical; this
means that according to standard p value NHST dogma,
Bumbledorf is forced to test the remaining 20 patients in
scenario 1 (“why did you even look at the data after 20
patients?”), and Bumbledorf is prohibited from testing addi-
tion patients in scenario 2 (“maybe you should have planned
for more power”).

It should be acknowledged that the standard framework
of p value NHST can be adjusted so that it can accommo-
date sequential testing, either in a continual fashion, with
an undetermined number of tests (e.g., Botella, Ximénez,
Revuelta, & Suero, 2006; Fitts, 2010; Frick, 1998; Wald &
Wolfowitz, 1948) or in an interrupted fashion, with a pre-
determined number of tests (e.g., Lakens & Evers, 2014).
From a Bayesian perspective, however, corrections for
sequential monitoring are an anathema. Anscombe (1963, p.
381) summarized the conceptual point of contention:

‘Sequential analysis’ is a hoax(...) So long as all
observations are fairly reported, the sequential stop-
ping rule that may or may not have been followed
is irrelevant. The experimenter should feel entirely
uninhibited about continuing or discontinuing his trial,
changing his mind about the stopping rule in the
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middle, etc., because the interpretation of the observa-
tions will be based on what was observed, and not on
what might have been observed but wasn’t.

Benefit 4. The Bayes factor does not depend on unknown or
absent sampling plans

The Bayes factor is not affected by the sampling plan, that
is, the intention with which the data were collected. This
sampling-plan-irrelevance follows from the likelihood prin-
ciple (Berger & Wolpert, 1988), and it means that Bayes
factors may be computed and interpreted even when the
intention with which the data are collected is ambiguous,
unknown, or absent. This is particularly relevant when the
data at hand are obtained from a natural process, and the
concepts of “sampling plan” and “experiment” do not apply.

As a concrete demonstration of the practical problems
of p values when the sampling plan is undefined, consider
again the election example and the data shown in Fig. 1. We
reported that for this correlation, p = .007. However, this
p value was computed under a fixed sample size scenario;
that is, the p value was computed under the assumption that
an experimenter set out to run 46 elections and then stop.
This sampling plan is absurd and by extension, so is the p

value. But what is the correct sampling plan? It could be
something like “US elections will continue every four years
until democracy is replaced with a different system of gov-
ernment or the US ceases to exist”. But even this sampling
plan is vague – we only learn that we can expect quite a few
elections more.

In order to compute a p value, one could settle for the
fixed sample size scenario and simply not worry about the
details of the sampling plan. However, consider the fact that
new elections will continue be added to the set. How should
such future data be analyzed? One can pretend, after every
new election, that the sample size was fixed. However, this
myopic perspective induces a multiple comparison problem
– every new test has an additional non-zero probability of
falsely rejecting the null hypothesis, and the myopic perspec-
tive therefore fails to control the overall Type I error rate.10

In contrast to p value NHST, the Bayes factor can be
meaningfully interpreted even when the data at hand have
been generated by real-world processes outside of exper-
imental control. Figure 6 shows how the data from the
US elections can be analyzed as they come in over time,
an updating process that can be extended continually and
indefinitely, as long as the US electoral process exists. This
example also emphasizes the intimate connection between
the benefit of monitoring the evidence as it unfolds over

10For sequential tests the multiple comparisons are not independent;
this reduces but does not eliminate the rate with which the Type I error
increases.

Fig. 6 Forthy-six election-long evidential flow for the presence of a
correlation between the relative height of the US president and his
proportion of the popular vote. Top panel: two-sided analysis; bottom
panel: one-sided analysis. Figure based on JASP

time, and the benefit of being able to compute the evidence
from data outside of experimental control: both benefits
occur because the Bayes factor does not depend on the
intention with which the data are collected (i.e., hypothetical
data sets that are not observed).

Benefit 5. The Bayes factor is not “violently biased”
againstH0

Given a complete specification of the models under test,
the Bayes factor provides a precise assessment of their rel-
ative predictive adequacy. Poor predictive adequacy of H0

alone is not a sufficient reason to prefer H1; it is the bal-
ance between predictions from H0 and H1 that is relevant
for the assessment of the evidence. As discussed under
benefit 1 above, this contrasts with the NHST p value,
which only considers the unusualness of the data underH0.
Consequently, statisticians have repeatedly pointed out that
“Classical significance tests are violently biased against the
null hypothesis.” (Edwards, 1965, p. 400; see also Johnson,
2013; Sellke et al., 2001). Based on a comparison between
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p values and Bayes factors, Berger & Delampady (1987,
p. 330) argued that “First and foremost, when testing precise
hypotheses, formal use of P-values should be abandoned.
Almost anything will give a better indication of the evi-
dence provided by the data against H0.” In a landmark
article, Edwards et al. (1963, p. 228) concluded that “Even
the utmost generosity to the alternative hypothesis cannot
make the evidence in favor of it as strong as classical sig-
nificance levels might suggest.” Finally, Lindley suggested,
somewhat cynically perhaps, that this bias is precisely the
reason for the continued popularity of p values: “There is
therefore a serious and systematic difference between the
Bayesian and Fisherian calculations, in the sense that a Fish-
erian approach much more easily casts doubt on the null
value than does Bayes. Perhaps this is why significance tests
are so popular with scientists: they make effects appear so
easily.” (Lindley, 1986, p. 502).

The p value bias against H0 is also evident from the
election example, where a correlation of .39, displayed in
Fig. 1, yields p = .007 and BF10 = 6.33. Even though
in this particular case both numbers roughly support the
same conclusion (i.e., “reject H0” versus “evidence for
H1”), the p value may suggest that the evidence is com-
pelling, whereas the Bayes factor leaves considerable room
for doubt. An extensive empirical comparison between p

values and Bayes factors can be found in Wetzels et al.
(2011). For a Bayesian interpretation of the classical p value
see Marsman and Wagenmakers (in press).

In sum, the Bayes factor conditions on the observed data
to grade the degree of evidence that the data provide forH0

versus H1. As a thermometer for the intensity of the evi-
dence –either for H0 or for H1– the Bayes factor allows
researchers to monitor the evidential flow as the data accu-
mulate, and stop whenever they feel the evidence is com-
pelling or the resources have been depleted. Bayes factors
can be computed and interpreted even when the intention
with which the data have been collected is unknown or
entirely absent, such as when the data are provided by a
natural process without an experimenter. Moreover, its pre-
dictive nature ensures that the Bayes factor does not require
either model to be true.

Ten objections to the Bayes factor hypothesis test

Up to this point we have provided a perspective on Bayesian
estimation and Bayesian hypothesis testing that may be per-
ceived as overly optimistic. Bayesian inference does not
solve all of the problems that confront the social sciences
today. Other important problems include the lack of data
sharing and the blurred distinction between exploratory
and confirmatory work (e.g., Chambers, 2013; De Groot,
1956/2014; Nosek et al., 2015; Wagenmakers, Wetzels,

Borsboom, van der Maas, & Kievit, 2012), not to mention
the institutional incentive structure to “publish or perish”
(Nosek et al., 2012). Nevertheless, as far as statistical infer-
ence is concerned, we believe that the adoption of Bayesian
procedures is a definite step in the right direction.

In addition, our enthusiasm for Bayes factor hypoth-
esis testing is shared by only a subset of modern-day
Bayesian statisticians (e.g., Albert, 2007; Berger & Pericchi,
2001; Bové & Hekd, 2011; Liang, Paulo, Molina, Clyde,
& Berger, 2008; Maruyama & George, 2011; Ntzoufras,
Dellaportas, & Forster, 2003; Ntzoufras, 2009; O’Hagan,
1995; Overstall & Forster, 2010; Raftery, 1999; for an alter-
native perspective see e.g., Robert, 2016). In fact, the topic
of Bayes factors is contentious to the extent that it provides
a dividing line between different schools of Bayesians. In
recognition of this fact, and in order to provide a more bal-
anced presentation, we now discuss a list of ten objections
against the approach we have outlined so far. A warn-
ing to the uninitiated reader: some of the objections and
counterarguments may be difficult to understand from a
superficial reading alone; trained statisticians and philoso-
phers have debated these issues for many decades, without
much resolution in sight.

Objection 1: Estimation is always superior to testing

As mentioned in the introduction, it is sometimes argued
that researchers should abandon hypothesis tests in favor of
parameter estimation (e.g., Cumming, 2014). We agree that
parameter estimation is an important and unduly neglected
part of the inductive process in current-day experimental
psychology, but we believe that ultimately both hypothe-
sis testing and parameter estimation have their place, and
a complete report features results from both approaches
(Berger, 2006).

Parameter estimation is most appropriate when the null
hypothesis is not of any substantive research interest. For
instance, in political science one may be interested in polls
that measure the relative popularity of various electoral
candidates; the hypothesis that all candidates are equally
popular is uninteresting and irrelevant. Parameter estima-
tion is also appropriate when earlier work has conclusively
ruled out the null hypothesis as a reasonable explanation of
the phenomenon under consideration. For instance, a study
of the Stroop effect need not assign prior mass to the hypoth-
esis that the effect is absent. In sum, whenever prior knowl-
edge or practical considerations rule out the null hypothesis
as a plausible or interesting explanation then a parameter
estimation approach is entirely defensible and appropriate.

Other research scenarios, however, present legitimate
testing problems. An extreme example concerns precogni-
tion: the question at hand is not “Assuming that people can
look into the future, how strong is the effect?” – rather, the
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pertinent question is “Can people look into the future?”.
The same holds for medical clinical trials, where the ques-
tion at hand is not “Assuming the new treatment works,
how strong is the effect?” but instead is “Does the new
treatment work?”. Note that in these examples, the param-
eter estimation question presupposes that the effect exists,
whereas the hypothesis testing question addresses whether
that supposition is warranted in the first place.

The relation between estimation and testing is discussed
in detail in Jeffreys’s book “Theory of Probability”. For
instance, Jeffreys provides a concrete example of the differ-
ence between estimation and testing:

“The distinction between problems of estimation and
significance arises in biological applications, though
I have naturally tended to speak mainly of physical
ones. Suppose that a Mendelian finds in a breeding
experiment 459 members of one type, 137 of the other.
The expectations on the basis of a 3 : 1 ratio would
be 447 and 149. The difference would be declared not
significant by any test. But the attitude that refuses to
attach any meaning to the statement that the simple
rule is right must apparently say that if any predic-
tions are to be made from the observations the best
that can be done is to make them on the basis of the
ratio 459/137, with allowance for the uncertainty of
sampling. I say that the best is to use the 3/1 rule, con-
sidering no uncertainty beyond the sampling errors of
the new experiments. In fact the latter is what a geneti-
cist would do. The observed result would be recorded
and might possibly be reconsidered at a later stage
if there was some question of differences of viability
after many more observations had accumulated; but
meanwhile it would be regarded as confirmation of
the theoretical value. This is a problem of what I call
significance.
But what are called significance tests in agricultural

experiments seem to me to be very largely problems of
pure estimation. When a set of varieties of a plant are
tested for productiveness, or when various treatments
are tested, it does not appear to me that the ques-
tion of presence or absence of differences comes into
consideration at all. It is already known that varieties
habitually differ and that treatments have different
effects, and the problem is to decide which is the best;
that is, to put the various members, as far as possible,
in their correct order.” (Jeffreys, 1961, p. 389).11

11Jeffreys’s statement that treatment effects are the domain of estima-
tion may appear inconsistent with our claim that medical clinical trials
are the domain of testing. However, the difference is that Jeffreys’s
treatment effects are random, whereas the treatment in a clinical trial
is targeted (see also footnote 1 in Bayarri, Benjamin, Berger, & Sellke,
2016).

Moreover, Jeffreys argues that a sole reliance on estima-
tion results in inferential chaos:

“These are all problems of pure estimation. But their
use as significance tests covers a looseness of state-
ment of what question is being asked. They give the
correct answer if the question is: If there is nothing
to require consideration of some special values of the
parameter, what is the probability distribution of that
parameter given the observations? But the question
that concerns us in significance tests is: If some spe-
cial value has to be excluded before we can assert any
other value, what is the best rule, on the data avail-
able, for deciding whether to retain it or adopt a new
one? The former is what I call a problem of estimation,
the latter of significance. Some feeling of discomfort
seems to attach itself to the assertion of the special
value as right since it may be slightly wrong but not
sufficiently to be revealed by a test on the data avail-
able; but no significance test asserts it as certainly
right. We are aiming at the best way of progress, not
at the unattainable ideal of immediate certainty. What
happens if the null hypothesis is retained after a sig-
nificance test is that the maximum likelihood solution
or a solution given by some other method of estima-
tion is rejected. The question is, When we do this, do
we expect thereby to get more or less correct infer-
ences than if we followed the rule of keeping the
estimation solution regardless of any question of sig-
nificance? I maintain that the only possible answer is
that we expect to get more. The difference as esti-
mated is interpreted as random error and irrelevant to
future observations. In the last resort, if this interpreta-
tion is rejected, there is no escape from the admission
that a new parameter may be needed for every obser-
vation, and then all combination of observations is
meaningless, and the only valid presentation of data
is a mere catalogue without any summaries at all.”
(Jeffreys, 1961, pp. 387–388)

In light of these and other remarks, Jeffreys’s maximmay
be stated as follows: “Do not try to estimate something until
you are sure there is something to be estimated.”12

Finally, in some applications the question of estima-
tion never arises. Examples include cryptography (Turing,

12This is inspired by what is known as Hyman’s maxim for ESP,
namely “Do not try to explain something until you are sure there is
something to be explained.” (Alcock, 1994, p. 189, see also http://
www.skeptic.com/insight/history-and-hymans-maxim-part-one/). For
a similar perspective see Paul Alper’s comment on what Harriet
Hall termed “Tooth fairy science” https://www.causeweb.org/wiki/
chance/index.php/Chance News 104#Tooth fairy science: “Yes, you
have learned something. But you haven’t learned what you think
you’ve learned, because you haven’t bothered to establish whether the
Tooth Fairy really exists”.

http://www.skeptic.com/insight/history-and-hymans-maxim-part-one/
http://www.skeptic.com/insight/history-and-hymans-maxim-part-one/
https://www.causeweb.org/wiki/chance/index.php/Chance_News_104#Tooth_fairy_science
https://www.causeweb.org/wiki/chance/index.php/Chance_News_104#Tooth_fairy_science
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1941/2012; Zabell, 2012), the construction of phylogenetic
trees (Huelsenbeck & Ronquist, 2001), and the comparison
of structurally different models (e.g., in the field of response
time analysis: the diffusion model versus the linear ballistic
accumulator model; in the field of categorization: proto-
type versus exemplar models; in the field of visual working
memory: discrete slot models versus continuous resource
models; in the field of long-term memory: multinomial pro-
cessing tree models versus models based on signal detection
theory).

In sum, hypothesis testing and parameter estimation are
both important. In the early stages of a research paradigm,
the focus of interest may be on whether the effect is present
or absent; in the later stages, if the presence of the effect
has been firmly established, the focus may shift towards an
estimation approach.

Objection 2: Bayesian hypothesis tests can indicate
evidence for small effects that are practically
meaningless

An objection that is often raised against NHST may also
be raised against Bayes factor hypothesis testing: with large
sample sizes, even small and practically meaningless effects
will be deemed “significant” or “strongly supported by the
data”. This is true. However, what is practically relevant
is context-dependent – in some contexts, small effects can
have large consequences. For example, Goldstein, Cialdini,
and Griskevicius (2008) reported that messages to promote
hotel towel reuse are more effective when they also attend
guests to descriptive norms (e.g., “the majority of guests
reuse their towels”). Based on a total of seven published
experiments, a Bayesian meta-analysis suggests that this
effect is present (BF10 ≈ 37) but relatively small, around
6% (Scheibehenne, Jamil, & Wagenmakers, in press). The
practical relevance of this result depends on whether or not
it changes hotel policy; the decision to change the messages
or leave them intact requires hotels to weigh the costs of
changing the messages against the expected gains from hav-
ing to wash fewer towels; for a large hotel, a 6% gain may
result in considerable savings.

Thus, from a Bayesian perspective, context-dependence
is recognized and incorporated through an analysis that
computes expected utilities for a set of possible actions
(Lindley, 1985). The best action is the one with the high-
est expected utility. In other words, the practicality of the
effects can be taken into account, if needed, by adding
an additional layer of considerations concerning utility.
Another method to address this objection is to specify the
null hypothesis not as a point but as a practically relevant
interval around zero (Morey & Rouder, 2011).13

13We plan to include this functionality in a future version of JASP.

Objection 3: Bayesian hypothesis tests promote binary
decisions

It is true that Jeffreys and other statisticians have suggested
rough descriptive guidelines for the Bayes factor (for a
more detailed discussion seeWagenmakers et al., this issue).
These guidelines facilitate a discrete verbal summary of a
quantity that is inherently continuous. More importantly,
regardless of whether it is presented in continuous numer-
ical or discrete verbal form, the Bayes factor grades the
evidence that the data provide for H0 versus H1 – thus,
the Bayes factor relates to evidence, not decisions (Ly, Ver-
hagen, & Wagenmakers, 2016a). As pointed out above,
decisions require a consideration of actions and utilities of
outcomes (Lindley, 1985). In other words, the Bayes factor
measure the change in beliefs brought about by the data, or
–alternatively– the relative predictive adequacy of two com-
peting models; in contrast, decisions involve the additional
consideration of actions and their consequences.

Objection 4: Bayesian hypothesis tests are meaningless
under misspecification

The Bayes factor is a measure of relative rather than abso-
lute performance. When the Bayes factor indicates over-
whelming support in favor ofH1 overH0, for instance, this
does not imply that H1 provides an acceptable account of
the data. Instead, the Bayes factor indicates only that the
predictive performance of H1 is superior to that of H0; the
absolute performance ofH1 may well be abysmal.

A simple example illustrates the point. Consider a test
for a binomial proportion parameter θ . Assume that the null
hypothesis specifies a value of interest θ0, and assume that
the alternative hypothesis postulates that θ is lower than θ0,
with each value of θ judged equally likely a priori. Hence,
the Bayes factor compares H0 : θ = θ0 against H1 : θ ∼
Uniform(0, θ0) (e.g., Haldane, 1932; Etz & Wagenmakers,
2016). Now assume that the data consist of a sequence of
length n that features only successes (e.g., items answered
correctly, coin tosses landing tails, patients being cured). In
this case the predictions of H0 are superior to those of H1.
A straightforward derivation14 shows that the Bayes factor
in favor of H0 against H1 equals n + 1, regardless of θ0.15

Thus, when n is large the Bayes factor will indicate deci-
sive relative support in favor of H0 over H1; at the same
time, however, the absolute predictive performance of H0

depends crucially on θ0, and becomes abysmal when θ0 is
low.

14See supplemental materials available at the Open Science Frame-
work, https://osf.io/m6bi8/.
15This surprising result holds as long as θ0 > 0.

https://osf.io/m6bi8/
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The critique that the Bayes factor does not quantify abso-
lute fit is therefore entirely correct, but it pertains to sta-
tistical modeling across the board. Before drawing strong
inferential conclusions, it is always wise to plot the data,
inspect residuals, and generally confirm that the model un-
der consideration is not misspecified in a major way. The
canonical example of this is Anscombe’s quartet, displayed
here in Fig. 7 (see also Andraszewics et al., 2015; Anscombe,
1973; Heathcote, Brown, & Wagenmakers, 2015; Lindsay,
2015). Each panel of the quartet displays two variables with
the same mean and variance. Moreover, for the data in each
panel the Pearson correlation coefficient equals r = 0.816.
An automatic analysis of the data from each panel yields
the same four p values, the same four confidence intervals,
the same four Bayes factors, and the same four credible
intervals. Yet a mere glance at Fig. 7 suggests that these
inferential conclusions are meaningful only for the data
from the top left panel.

Objection 5: vague priors are preferable over informed
priors

Bayes factors cannot be used with extremely vague or
“uninformative” prior distributions for the parameters under
test. For instance, a t-test on effect size δ cannot specify
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Fig. 7 “Anscombe’s quartet highlights the importance of plotting data
to confirm the validity of the model fit. In each panel, the Pearson
correlation between the x and y values is the same, r = 0.816. In fact,
the four different data sets are also equal in terms of the mean and
variance of the x and y values. Despite the equivalence of the four data
patterns in terms of popular summary measures, the graphical displays
reveal that the patterns are very different from one another, and that
the Pearson correlation (a linear measure of association) is only valid
for the data set from the top left panel.” (Heathcote et al., 2015, p. 34).
Figure available at http://tinyurl.com/zv2shlx under CC license https://
creativecommons.org/licenses/by/2.0/

H1 : δ ∼ Uniform(−∞, ∞), as this leaves the Bayes
factor undefined. The use of an almost uninformative prior
does not solve the problem; the specification H1 : δ ∼
Uniform(−10100, 10100) means that for all sets of reason-
able data, the null hypothesis will be strongly preferred.
The reason for this behavior is that with such a vague prior,
H1 predicts that effect size is virtually certain to be enor-
mous; these predictions are absurd, and H1 is punished
accordingly (Rouder & Morey, 2012).

Consequently, a reasonable comparison between H0 and
H1 requires that both models are specified in a reason-
able way (e.g., Dienes, 2011; Vanpaemel, 2010; Vanpaemel
& Lee, 2012). Vague priors for effect size are not reason-
able. In parameter estimation such unreasonableness usually
does not have negative consequences, but this is different
for Bayes factor hypothesis testing. Thus, the core prob-
lem is not with Bayes factors – the core problem is with
unreasonable prior distributions.

Objection 6: default priors are not sufficiently subjective

Jeffreys (1961) and other “objective” Bayesians have pro-
posed default priors that are intended to be used regardless
of the area of substantive application. These default priors
provide a reference result that can be refined by includ-
ing subjective knowledge. However, “subjective” Bayesians
may argue that this needs to be done always, and the
subjectivity in the specification of priors for Bayes factor
hypothesis testing does not go far enough. For instance, the
t-test involves the specification H1 : δ ∼ Cauchy(0, r). But
is it reasonable for the Cauchy distribution to be centered on
zero, such that the most likely value for effect size underH1

equals zero? Perhaps not (e.g., Johnson, 2013). In addition,
the Cauchy form itself may be questioned. Perhaps each
analysis attempt should be preceded by a detailed prior elic-
itation process, such that H1 can be specified in a manner
that incorporates all prior knowledge that can be brought to
bear on the problem at hand.

The philosophical position of the subjective Bayesian is
unassailable, and if the stakes are high enough then every
researcher would do well to turn into a subjective Bayesian.
However, the objective or consensus Bayesian methodol-
ogy affords substantial practical advantages: it requires less
effort, less knowledge, and it facilitates communication
(e.g., Berger, 2004; but see Goldstein, 2006). For more
complicated models, it is difficult to see how a subjective
specification can be achieved in finite time. Moreover, the
results of an objective analysis may be more compelling
to other researchers than those of a subjective analysis
(Morey, Wagenmakers, & Rouder, in press). Finally, in
our experience, the default priors usually yield results that
are broadly consistent with those that would be obtained
with a more subjective analysis (see also Jeffreys, 1963).

http://tinyurl.com/zv2shlx
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
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Nevertheless, the exploration of more subjective specifica-
tions requires more attention (e.g., Dienes, 2014; Verhagen
& Wagenmakers, 2014).

Objection 7: subjective priors are not sufficiently
objective

This is an often-heard objection to Bayesian inference in
general: the priors are subjective, and in scientific com-
munication one needs to avoid subjectivity at all cost. Of
course, this objection ignores the fact that the specification
of statistical models is also subjective – the choice between
probit regression, logistic regression, and hierarchical zero-
inflated Poisson regression is motivated subjectively, by a
mix of prior knowledge and experience with the statisti-
cal model under consideration. The same holds for power
analyses that are conducted using a particular effect size,
the choice of which is based on a subjective combination
of previous experimental outcomes and prior knowledge.
Moreover, the scientific choices of what hypothesis to test,
and how to design a good experiment are all subjective.
Despite their subjectivity, the research community has been
able, by and large, to assess the reasonableness of the
choices made by individual researchers.

When the choice is between a method that is objective
but unreasonable versus a method that is subjective but
reasonable, most researchers would prefer the latter. The
default priors for the Bayes factor hypothesis tests are a
compromise solution: they attempt to be reasonable without
requiring a complete subjective specification.

Objection 8: default priors are prejudiced against small
effects

On his influential blog, Simonsohn has recently argued that
default Bayes factor hypothesis tests are prejudiced against
small effects.16 This claim raises the question “Prejudiced
compared to what?”. Small effects certainly receive more
support from a classical analysis, but, as discussed above,
this occurs mainly because the classical paradigm is biased
against the null as the predictions made by H1 are ignored
(cf. Fig. 5). Furthermore, note that for large sample sizes,
Bayes factors are guaranteed to strongly support a true H1,
even for very small true effect sizes. Moreover, the default
nested prior specification of H1 makes it difficult to col-
lect compelling evidence for H0, so the most prominent
advantage is generally with H1, not with H0.

These considerations mean that a Bayes factor analysis
may be misleading only under the following combination of
factors: a small sample size, a small true effect size, and a

16http://datacolada.org/2015/04/09/35-the-default-bayesian-test-is-
prejudiced-against-small-effects/

prior distribution that represents the expectation that effect
size is large. Even under this unfortunate combination of
circumstances, the extent to which the evidence is mislead-
ing will be modest, at least for reasonable prior distributions
and reasonable true effect sizes. The relevant comparison is
not between the default Bayes factor and some unattainable
Platonic ideal; the relevant comparison is between default
Bayes factors and p values. Here we believe that practical
experience will show that Bayes factors are more informa-
tive and have higher predictive success than that provided
by p values.

Objection 9: increasing sample size solves all statistical
problems

An increase in sample size will generally reduce the
need for statistical inference: with large samples, the
signal-to-noise ratio often becomes so high that the
data pass Berkson’s interocular traumatic test. However,
“The interocular traumatic test is simple, commands gen-
eral agreement, and is often applicable; well-conducted
experiments often come out that way. But the enthu-
siast’s interocular trauma may be the skeptic’s random
error. A little arithmetic to verify the extent of the
trauma can yield great peace of mind for little cost.”
(Edwards et al., 1963, p. 217).

Moreover, even high-powered experiments can yield
completely uninformative results (Wagenmakers, Verhagen,
& Ly, 2016). Consider Study 6 from Donnellan, Lucas,
and Cesario (2015), one of nine replication attempts on the
reported phenomenon that lonely people take hotter showers
(in order to replace the lack of social warmth with physi-
cal warmth; Bargh & Shalev, 2012). Although the overall
results provided compelling evidence in favor of the null
hypothesis (Wagenmakers, Verhagen, & Ly, 2016), three
of the nine studies by Donnellan et al. (2015) produced
only weak evidence for H0, despite relatively large sample
sizes. For instance, Study 6 featured n = 553 with r = .08,
yielding a one-sided p = 0.03. However, the default one-
sided Bayes factor equals an almost perfectly uninformative
BF0+ = 1.61. This example demonstrates that a high-
powered experiment does not need to provide diagnostic
information; power is a pre-experimental concept that is
obtained by considering all the hypothetical data sets that
can be observed. In contrast, evidence is a post-experimental
concept, taking into account only the data set that was
actually obtained (Wagenmakers et al., 2015).

Objection 10: Bayesian procedures can be hacked too

In an unpublished paper, Simonsohn has argued that Bayes
factors are not immune to the biasing effects of selec-
tive reporting, ad-hoc use of transformations and outlier

http://datacolada.org/2015/04/09/35-the-default-bayesian-test-is-prejudiced-against-small-effects/
http://datacolada.org/2015/04/09/35-the-default-bayesian-test-is-prejudiced-against-small-effects/
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removal, etc. (Simonsohn, 2015a).17 In other words, Bayes
factors can be “hacked” too, just like p values. This observa-
tion is of course entirely correct. Any reasonable statistical
method should be sensitive to selective reporting, for else
it does not draw the correct conclusions in case the data
were obtained without it. Bayes factors are elegant and often
informative, but they cannot work miracles and the value of
a Bayes factor rests on the reliability and representativeness
of the data at hand.

The following example illustrates a more subtle case
of “B-hacking” that is able to skew statistical conclusions
obtained from a series of experiments. In 2011, Bem pub-
lished an article in the Journal of Personality and Social
Psychology in which he argued that eight of nine experi-
ments provided statistical evidence for precognition (Bem,
2011), that is, the ability of people to anticipate a completely
random event (e.g., on which side of the computer screen
a picture is going to appear). A default Bayes factor analy-
sis by Wagenmakers, Wetzels, Borsboom, and van der Maas
(2011) showed that the evidence was not compelling and
in many cases even supported H0. In response, Bem, Utts,
and Johnson (2011) critiqued the default prior distribution
and re-analyzed the data using their own subjective “pre-
cognition prior”. Based on this prior distribution, Bem et al.
(2011) reported a combined Bayes factor of 13,669 in favor
of H1. The results seems to contrast starkly with those of
Wagenmakers et al. (2011); can the subjective specification
of the prior distribution exert such a huge effect?

The conflict between Bem et al. (2011) and Wagenmak-
ers et al. (2011) is more apparent than real. For each exper-
iment separately, the Bayes factors from Bem et al. (2011)
andWagenmakers et al. (2011) are relatively similar, a result
anticipated by the sensitivity analysis reported in the online
supplement to Wagenmakers et al. (2011). The impressive
Bayes factor of 13,669 in favor of the precognition hypoth-
esis was obtained by multiplying the Bayes factors for the
individual experiments. However, this changes the focus of
inference from individual studies to the entire collection of
studies as a whole. Moreover, as explained above, multiply-
ing Bayes factors without updating the prior distribution is a
statistical mistake (Jeffreys, 1961; Rouder andMorey, 2011;
Wagenmakers et al., 2016).

In sum, the Bayes factor conclusions from Bem et al.
(2011) and Wagenmakers et al. (2011) are in qualitative
agreement about the relatively low evidential impact of the
individual studies reported in Bem (2011). The impression
of a conflict is caused by a change in inferential focus
coupled with a statistical mistake. Bayesian inference is
coherent and optimal, but it is not a magic potion that
protects against malice or statistical misunderstanding.

17The paper is available at http://papers.ssrn.com/sol3/papers.cfm?
abstract id=2374040.

Concluding comments

Substantial practical rewards await the pragmatic researcher
who decides to adopt Bayesian methods of parameter esti-
mation and hypothesis testing. Bayesian methods can incor-
porate prior information, they do not depend on the intention
with which the data were collected, and they can be used to
quantify and monitor evidence, both in favor ofH0 andH1.
In depressing contrast, classical procedures apply only in
the complete absence of knowledge about the topic at hand,
they require knowledge of the intention with which the data
were collected, they are biased against the null hypothe-
sis, and they can yield conclusions that, although valid on
average, may be absurd for the case at hand.

Despite the epistemological richness and practical bene-
fits of Bayesian parameter estimation and Bayesian hypoth-
esis testing, the practice of reporting p values continues its
dominant reign. As outlined in the introduction, the reasons
for resisting statistical innovation are manyfold (Sharpe,
2013). In recent years our work has focused on overcoming
one reason for resistance: the real or perceived difficulty of
obtaining default Bayesian answers for run-of-the-mill sta-
tistical scenarios involving correlations, the t-test, ANOVA
and others. To this aim we have developed JASP, a soft-
ware program that allows the user to conduct both clas-
sical and Bayesian analyses.18 An in-depth discussion of
JASP is provided in Part II of this series (Wagenmakers
et al., this issue).
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