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Three Insights from a
Bayesian Interpretation of
the One-Sided P Value

Maarten Marsman1 and Eric-Jan Wagenmakers1

Abstract

P values have been critiqued on several grounds but remain entrenched as the domi-
nant inferential method in the empirical sciences. In this article, we elaborate on the
fact that in many statistical models, the one-sided P value has a direct Bayesian inter-
pretation as the approximate posterior mass for values lower than zero. The con-
nection between the one-sided P value and posterior probability mass reveals three
insights: (1) P values can be interpreted as Bayesian tests of direction, to be used only
when the null hypothesis is known from the outset to be false; (2) as a measure of
evidence, P values are biased against a point null hypothesis; and (3) with N fixed and
effect size variable, there is an approximately linear relation between P values and
Bayesian point null hypothesis tests.
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Across the empirical sciences—be it in medicine, biology, neuroscience, economics,

sociology, or psychology—the classical P value is arguably the single most influen-

tial concept for statistical inference. Scientific claims about the presence of hypothe-

sized effects are judged fit for publication only when the associated statistical tests

yield P\:05, in which case researchers feel sanctioned to ‘‘reject the null hypoth-

esis’’ and consequently embrace the alternative hypothesis. Despite its stranglehold

on statistical reporting, however, the P value has been subject to intense scrutiny and

numerous critiques; accessible overviews are provided by D. H. Johnson (1999),
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Morrison and Henkel (1970), Mulaik and Steiger (1997), Nickerson (2000), and

Wagenmakers (2007).

The P value detractors usually do not mince words. For instance, Edwards (1965,

p. 400) argued that ‘‘classical significance tests are violently biased against the null

hypothesis.’’ Berger and Delampady (1987, p. 330) stated that ‘‘when testing precise

hypotheses, formal use of P-values should be abandoned. Almost anything will give

a better indication of the evidence provided by the data against H0.’’ Meehl (1978)

claimed that

the almost universal reliance on merely refuting the null hypothesis as the standard method

for corroborating substantive theories in the soft areas is a terrible mistake, is basically

unsound, poor scientific strategy, and one of the worst things that ever happened in the his-

tory of psychology. (p. 817)

Rozeboom (1997, p. 335) echoed this statement when he called P value significance

testing ‘‘surely the most bone-headedly misguided procedure ever institutionalized in

the rote training of science students.’’

Undeterred by such verbal onslaughts, some researchers believe that the critiques

against P values are overstated or misplaced. For instance, Wainer (1999, p. 212)

feels ‘‘a little at a loss to understand fully the vehemence and vindictiveness’’ of the

P value critiques; Hagen (1997, p. 22) praises the logic of P value hypothesis testing,

calling it ‘‘elegant’’ and ‘‘extraordinarily creative’’; and Leek and Peng (2015, p.

612) point out that ‘‘arguing about the p value is like focusing on a single misspell-

ing, rather than on the faulty logic of a sentence,’’ and recommend that statisticians

‘‘need to stop arguing about P values.’’

In this article, we continue to argue over P values. We depart by outlining a well-

known Bayesian interpretation of the one-sided P value, and then sketch three imme-

diate consequences. By doing so we hope to increase the field’s awareness of what P

values are and what they are not (Schervish, 1996).

Point of Departure: A Bayesian Interpretation of the
One-Sided P Value

The Bayesian interpretation of the one-sided P value has a long and ongoing history

(e.g., Berger & Mortera, 1999; Casella & Berger, 1987; Greenland & Poole, 2013;

Jeffreys, 1961; Lee, 2012; Lindley, 1965; Marin & Robert, 2007; Morey &

Wagenmakers, 2014; Pratt, 1965; Pratt, Raiffa, & Schlaifer, 1995; Rouanet, 1996).

The main result may be summarized as follows. Consider Bayesian parameter esti-

mation for the location parameter m in a statistical model from the exponential fam-

ily, assume the prior on m is uniform on the real line, and denote the observed data

by y: Then the proportion of the posterior distribution with mass lower than zero

equals the one-sided classical P value, that is (e.g., Lindley, 1965; Pratt et al., 1995),
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ð0

�‘

p(mjy)dm = P1: ð1Þ

Thus, for the classical statistician the one-sided P value represents the outcome of a

significance test that assumes the null hypothesis is true, whereas for the Bayesian

statistician the one-sided P value can be obtained from an estimation procedure (i.e.,

posterior updating of m) that assumes the null hypothesis is false.

Furthermore, in this specific case the Bayesian estimation outcome is directly

related to a Bayesian test for direction, one in which we contrast Hþ : m . 0 (i.e., the

effect is positive) against H� : m\0 (i.e., the effect is negative). When the prior is

symmetric around m = 0, the Bayes factor hypothesis test (Jeffreys, 1961; Kass &

Raftery, 1995; Ly, Verhagen, & Wagenmakers, 2016) simplifies to

BF +� =
p(yjHþ)

p(yjH�)

=

Ð ‘

0
p(mjy)dmÐ 0

�‘
p(mjy)dm

= 1�P1

P1
,

ð2Þ

where P1 denotes the classical one-sided P value. Hence, there is a direct and exact

relation between the Bayes factor for a test of direction and the one-sided P value

such that log(BF� + ) = logit(P1):
As mentioned above, the relationship is exact for location parameters in models

from the exponential family when these parameters are assigned uniform priors; for

other parameters and prior distributions the relationship is approximate (e.g., Casella

& Berger, 1987; Greenland & Poole, 2013; for a critique, see Gelman, 2013). In what

follows we explore three consequences and insights afforded by the Bayesian inter-

pretation of the one-sided P value.

First Consequence: P Values Are Meaningful Only When the
Null Hypothesis Is False

The Bayesian interpretation of the one-sided P value is that it is a test for direction,

as the logit of the one-sided P value equals the log of the Bayes factor that contrasts

Hþ : m . 0 (i.e., the effect is positive) against H� : m\0 (i.e., the effect is negative).

Consequently, from this Bayesian perspective, the one-sided P value is appropriate

only when H0 : m = 0 is known from the outset to be false or uninteresting (Jeffreys,

1961; but see DeGroot, 1973).

The interpretation of a one-sided P value as a test for direction—not as a test for

the null hypothesis—is relevant because a common critique against the use of P val-

ues is that the null hypothesis is nearly always false. For instance, D. H. Johnson

(1999) complains,
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P is calculated under the assumption that the null hypothesis is true. Most null hypotheses

tested, however, state that some parameter equals zero, or that some set of parameters are

all equal. These hypotheses, called point null hypotheses, are almost invariably known to

be false before any data are collected. (p. 764)

The same sentiment was expressed by Cohen (1990):

A little thought reveals a fact widely understood among statisticians: The null hypothesis,

taken literally (and that’s the only way you can take it in formal hypothesis testing), is

always false in the real world. It can only be true in the bowels of a computer processor

running a Monte Carlo study (and even then a stray electron may make it false). If it is

false, even to a tiny degree, it must be the case that a large enough sample will produce a

significant result and lead to its rejection. So if the null hypothesis is always false, what’s

the big deal about rejecting it? (p. 1308)

From a Bayesian perspective, however, the one-sided P value is not a test that

involves the null hypothesis at all—instead, it is a test for the direction of an effect,

suitable exactly for those scenarios where D. H. Johnson (1999) and Cohen (1990)

argued it is meaningless. Note that in the Bayesian interpretation, collecting a large

enough sample does not confirm the obvious; instead, what will be confirmed is the

true direction of the effect. Paradoxically, the threat to the validity of the Bayesian

interpretation of the one-sided P value is not that the null hypothesis is false, but that

the null hypothesis is true. For when the null is exactly true, the test is between two

directional models that are both equally wrong: The truth is literally in the middle

(see also Sanborn & Hills, 2014; but see Rouder, 2014).

In sum, from a Bayesian perspective the one-sided P value represents a test for

direction, a test that is valid only when the null hypothesis is false. For readers famil-

iar with the popular argument against P values (i.e., ‘‘the null is never true’’) this line

of argumentation may come as a surprise.

Second Consequence: P Values Are Biased Against H0

As alluded to earlier, several statisticians have remarked that P values overestimate

the evidence against a point null hypothesis (e.g., Berger & Delampady, 1987;

Dickey, 1977; Edwards, Lindman, & Savage, 1963; V. E. Johnson, 2013; Sellke,

Bayarri, & Berger, 2001). The relation expressed in Equation 2 allows us to bypass

mathematical details and present an intuitive argument: the one-sided P value corre-

sponds to a Bayesian test for direction, in which Hþ is pitted against H�; for the

same data, such a test for direction generally yields a more diagnostic outcome than

a test for existence, for instance, one that compares H1 (i.e., ‘‘there is an effect’’)

against H0 (i.e., ‘‘there is no effect’’). The reason why tests for direction are rela-

tively diagnostic is because the models involved make opposite predictions: under

one model the effect is predicted to be negative, whereas under the other model the
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effect is predicted to be positive. In contrast, for a test of existence, H0 is often a

reduced case of H1, which means that the models can make similar predictions.

For example, consider a match between two avid Rummikub players. After six

games, Player A is leading Player B by 4-2. If the choice is between Hþ: ‘‘Player A

is better than player B’’ versus H�: ‘‘Player B is better than Player A,’’ one might

have a strong intuitive preference in favor of Hþ: After all, Player B is unlikely to

be losing by 4-2 when she is in reality the better player. However, if the choice is

between H1: ‘‘Player A and Player B are not equally good’’ versus H0: ‘‘Player A

and Player B are equally good,’’ one’s preference is certainly less pronounced: A

score of 4-2 is not that unlikely to occur when the players are equally skilled.

In sum, tests for direction are easier than tests for existence: when applied to the

same data, tests for direction are more diagnostic than tests for existence. From a

Bayesian perspective, the one-sided P value is a test for direction; when this test is

misinterpreted as a test for existence—as classical statisticians are wont to do—this

overstates the true evidence that the data provide against a point null hypothesis.

Third Consequence: With N Fixed, the Relation
Between P Values and Bayesian Point Null Hypothesis
Tests Is Approximately Linear

Several authors have explored the lawlike relationship between the classical P value

and the Bayes factor against a point null hypothesis (e.g., Rouder, Morey, Speckman,

& Province, 2012; Wetzels et al., 2011). Specifically, when sample size N is relatively

stable and only effect size varies, lower P values will be accompanied by higher

Bayes factors against the point null hypothesis. Figure 1 shows the empirical relation

for 440 t tests reported by Wetzels et al. (2011) and reanalyzed by Rouder et al.

(2012).

We now formalize the relation between P values and Bayes factors for point null

hypotheses by exploiting two facts. The first fact is that the one-sided P value is the

posterior mass to the left of zero (i.e., Equation 1). The second fact is that the Bayes

factor hypothesis test for a point null hypothesisH0 versus an unrestricted alternative

H1 is given by the Savage–Dickey density ratio (e.g., Dickey & Lientz, 1970;

Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 2010; Wetzels, Grasman, &

Wagenmakers, 2010):

BF01 =
p(yjH0)

p(yjH1)
=

p(m = 0jy,H1)

p(m = 0jH1)
: ð3Þ

In words, the Bayes factor in favor of the null hypothesis H0 equals the ratio of the

posterior ordinate to the prior ordinate, evaluated under the alternative hypothesis H1

and for the point of interest (here m = 0; for a short proof see O’Hagan & Forster,

2004, p. 174–177).
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We examine the following simplified scenario. The prior for the location para-

meter m is a standard normal under H1 : p(mjH1) =N (0, 1). Data points yi,

i = 1, . . . , N , arrive and yield a posterior for m that is a normal distribution with mean

mm = N
N + 1

�y and variance s2
m = 1

N + 1
: p(mjy,H1) =N (mm, s2

m). We investigate the case

where sample size N is fixed but �y varies, that is, we keep s2
m constant but vary mm

such that the posterior distribution is shifted to the right. Figure 2 shows the prior

distribution and one example of a posterior distribution. The shaded area indicates

p(m\0jy,H1), the posterior mass lower than zero, and it is approximately equal to

the one-sided P value; the ratio between the posterior and prior ordinate at m = 0

equals BF01, the Bayes factor for the point null hypothesis (i.e., Equation 3). When

the posterior distribution is shifted to the right this will simultaneously decrease both

p(m\0jy,H1) and BF01:
The nature of these simultaneous changes is shown in Figure 3 for values of

P1 � :05 and N = 10: The left panel of Figure 3 shows the relation between the

Bayes factor for the point null hypothesis and the posterior mass lower than zero on

the untransformed scale, and the right panel shows the same relation on the log-scale.

Comparison against the straight grey line segments confirms that the relation on the

log-scale is approximately linear.

Figure 1. The highly regular relationship between one-sided P values and point null Bayes
factor hypothesis tests for 440 t test results reported by Wetzels et al. (2011) and reanalyzed
by Rouder et al. (2012).
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In this demonstration, the lower end-point corresponds to a value of mm for which

the point of interest (m = 0) is five standard deviations away from the mean (i.e., the

five s rule commonly used in physics), whereas the upper end-point corresponds to

a value of mm for which P1 = :05 (i.e., the threshold level of significance used in most

scientific disciplines).

An interesting observation about the relations shown in Figure 3 is that they are

invariant across different choices of N and the choice of prior variance for the loca-

tion parameter m. That is, we can define a prior p(mjH1) =N (0, t2) for the location

parameter m with t2 6¼ 1, or we can use a different value for N, and—except for a

change of values on the y-axis—the same two panels would result. This means that

the lawlike relation between the approximate one-sided P value and the Bayes factor

is relatively general.

In sum, for a fixed value of N there exists a lawlike relation between the (approxi-

mate) one-sided P value and the Bayes factor for a point-null hypothesis. This rela-

tion implies that one can traverse from the one-sided P value to the Bayes factor and

vice versa. Assuming that the relation between log (P1) and log (BF01) is

log (P1)’a + b log (BF01), then we can compute P1 as exp (a)BF
b
01, approximately.

Figure 2. Prior and posterior distribution for a hypothetical data set. The shaded area of
the posterior distribution indicates the mass that is lower than zero, whereas the two dots
visualize the Savage–Dickey density ratio. As the posterior distribution shifts to the right, the
shaded area and the posterior ordinate at m = 0 decrease simultaneously.
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This also implies that when two equal-N studies have been done yielding one-sided

P values Pa and Pb = 2Pa, we have that Pb = 2Pa’ exp (a)2BF01(a)b’ exp (a)

BF01(b)b, such that BF01(b)’BF01(a)
ffiffiffi
2b
p

:

Concluding Comments

We have demonstrated that one-sided P values can be given a Bayesian interpretation

as an approximate test of direction, that is, a test of whether a latent effect is negative

or positive. From a Bayesian perspective, this means that P values may be used when

the null hypothesis is false or when its veracity is not at issue (and when a diffuse,

symmetric prior on the location parameter is acceptable). When misinterpreted as

tests of existence, P values overestimate the evidence against the null hypothesis, as a

test for direction is generally easier than a test for existence. Finally, with N fixed and

effect size variable, P values and point null Bayesian hypothesis tests are approxi-

mately linearly related on the log-scale. This latter finding may falsely suggest that

tests for direction and tests for existence are closely related. Although we have

demonstrated this to be the case for N fixed, the situation changes if N is variable

(e.g., Cano, Carazo, & Salmerón, 2013; Girón, Martı́nez, Moreno, & Torres, 2006).

With N variable, sharp conflicts between test of direction and tests of existence are

unavoidable, a phenomenon known as Lindley’s paradox (Lindley, 1957). Consider

the scenario shown in Figure 2 and imagine that more data are collected, causing the

posterior distribution to become more peaked. At the same time, imagine that the pos-

terior mean moves toward zero such that the posterior area lower than zero remains

constant; when this happens the posterior ordinate will increase and this strengthens

Figure 3. Lawlike relation between the one-sided P value and the point null Bayes factor
BF01 for values of P1\:05 and N = 10: The left panel shows the relation on the untransformed
scale, and the right panel shows the relation after a logarithmic transformation. In grey are
straight line segments that connect the endpoints of the scale.
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the evidence in favor of the point null hypothesis. Thus, as N increases and the poster-

ior area lower than zero remains constant, the evidence in favor of the point null

hypothesis increases indefinitely. This means that in a test for direction, one may be

relatively certain that the effect is positive rather than negative; for the same data, a

test for existence may reveal that the null hypothesis is much stronger supported than

the alternative hypothesis. Of course, the paradox seizes to feel like a paradox as soon

as it is properly understood. In the foreword to his monograph Theory of Probability,

Jeffreys already underscores the main point:

The most beneficial result that I can hope for as a consequence of this work is that more

attention will be paid to the precise statement of the alternatives involved in the questions

asked. It is sometimes considered a paradox that the answer depends not only on the obser-

vations but on the question; it should be a platitude. (p. x)

The Bayesian interpretation of the one-sided P value presents a double-edged

sword. On the one hand, researchers can feel more confident in their use of the one-

sided P value; after all, it has a Bayesian interpretation and it is valid when the null

hypothesis is false (and when a diffuse, symmetric prior on the location parameter is

acceptable). On the other hand, it is clear that the Bayesian interpretation of the one-

sided P value presents a test of direction, not a test of existence. Despite the fact that

many statisticians and methodologists have argued that tests of direction are more

meaningful than tests of existence, we are not convinced that their arguments reso-

nate with medical researchers, geneticists, experimental psychologists, and research-

ers in similar fields where general laws and invariances are regularly tested by means

of empirical investigations.
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