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S1.  The null distribution of 	
∗ and 	

∗  

Similar to the notation used in the main text, denote the actual observed data by , 	, 1, 2,… . Here 

 represents the group label of the -th subject, taking the value 0 if it is in the control group and 1 if it is 

in the experimental group. Also  represents the observed value of  for the -th subject. The definitions 

of minimized error rates for the down rule remains unchanged in the presence of zeros, i.e. 	
∗

	where: 

	 0

0

0,
1

1

1

1,
1

																																																																 

Again  is the common CDF of  under the null hypothesis for both the control and experimental groups, 

but  must now take the form (2) in the main paper. That is, some ’s may be zero, while the non-zero 

’s are all greater than the detection limit 0:  

		 0, , 		 		 0, , 0	  

		 1, 	, 	 		 		 1, , 0	 																																			 

Now evaluate each term in the above equation for  and . Considering the first term, if  the 

intersection of the events  and  is equivalent to , which in turn is equivalent to 0

. If  the intersection of  and  is vacuous. Considering the second term, 

regardless of whether  or , the intersection of the events 0 and  is equivalent to 

0, which in turn is equivalent to 0 0. Consider the third term, if  the intersection of the 

events  and  is equivalent to , which in turn is equivalent to . If  the 

intersection of the events  and  is equivalent to , which in turn is equivalent to 

	or	 0. Consider the fourth term, regardless of whether  or not, the intersection of the 

events  and 0 is vacuous and this term is equal to zero. 
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Putting  and , it follows that  can be restated as: 

0, 0 		 0, 0	 		 

		 		 1, 		 																																																																																																																																	 

The range 0 is equivalent 0 1 so that 	
∗ . To derive the null distribution 

of 	
∗ from this expression requires the common CDF of the ‘s. Note that the ‘s are independent 

and identically distributed ( ), since the ‘s were assumed to be  for the purpose of calculating the null 

distribution. The common CDF of the ‘s, which by definition is equal to , was derived in the 

main text as  for 0 while 1  for 0. Again, the common 

distribution of the ‘s is also a mixture between a jump at zero of the size  and a uniform distribution on 

(0,1). The distribution of the ‘s only depends on  and since  is only a function of the ‘s, the 

same holds for 	
∗ . To conclude, the null distribution of 	

∗  depends only on 

the parameter  and can be simulated in the same way as 	
∗ . However, since the differences between 

the equation for  and  are no longer just in terms of the inequalities, i.e.  vs  and  vs 

 as described in [1], the null distributions are no longer the same.  

Finally, the distribution of for the minimum rule can be obtained by simulating 

∗ ,  
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S2.  Simulating the null distribution 

The original ERp approach required the following steps to simulate the null distributions needed to 

convert error rates (in this instance ∗ ) into p-values: 

• Generate  independent observations from a uniform (0,1) distribution, i.e. the ’s 

• Assign the first  ′  as 0 and the remainder as 1 

• Minimize ∑ 1 ∑  by varying  over the midpoints of the 

increasingly ordered ’s to obtain ∗  

• Repeat these steps  times to build up a file of  copies of ∗ , say ∗ , 1, … , , 

providing a simulation approximation of the null CDF 

• If  of the ∗ ’s fall below an actually observed ∗  its associated -value is approximately 

⁄ . Approximations are more accurate for large	 .   

In the XERp context the ‘s must be sampled from the CDF given by (6a) and (6b), as explained in the 

main manuscript. We do so by first defining ‘s as  observations from a uniform (0,1) distribution and 

express the ‘s relative to the ‘s by setting 0 if  and 1⁄ . To prove that 

this substitution has the desired effect, we again look at the common CDF of the ‘s (i.e. , 

where  denotes the argument of the CDF). Considering separately the cases 0  and 0  

0  

and for 0 	

, ,  

1
,  

1 ,  

1  
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S3.  The null hypothesis probability of getting a zero error rate 

Here we provide an explicit formula for 	
∗ 0 . The event 	

∗ 0 happens if and only if all the -

values of the experimental group are all larger than those of the control group. Under the null hypothesis 

this amounts to all the -values in (5) corresponding to the experimental group being larger than those 

corresponding to the control group. Under the null hypothesis, the ’s are  according to (6a) and (6b) 

and then  

	
∗ 0 1 1 1 1  

1
!

! !
1 1  

1
!

! !
1

! 1 !
!

 

! !
1

! !
1  

This formula gives the null hypothesis probability for a zero upward rule error rate value. In case of a 

downward rule error rate the same formula applies but with the roles of  and  interchanged. For the 

minimum rule the two probabilities must be added. Below is a table which shows the upward rule zero 

probabilities for  and  ranging from 5 to and 10 and  varying from 0 to 0.9 in steps of 0.1. The zero 

probabilities decrease as 	 increases, slowly at first but then more rapidly. It also decreases with increasing 

sample sizes. For sample sizes both 10 or larger, the zero probability is below 0.000005 regardless of . 

In particular, if all the control measurements are zero and all the experimental measurements are positive 

in such a case, then 	
∗ 0 and the corresponding exact p-value is below 0.000005. 
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  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

5 5 0.003968 0.003968 0.003943 0.003780 0.003309 0.002472 0.001456 0.000596 0.000130 0.000006 

5 6 0.002165 0.002164 0.002139 0.001995 0.001631 0.001082 0.000534 0.000169 0.000025 0.000001 

5 7 0.001263 0.001262 0.001238 0.001114 0.000840 0.000489 0.000200 0.000049 0.000005 0.000000 

5 8 0.000777 0.000776 0.000754 0.000648 0.000446 0.000226 0.000076 0.000014 0.000001 0.000000 

5 9 0.000500 0.000499 0.000478 0.000390 0.000243 0.000106 0.000029 0.000004 0.000000 0.000000 

5 10 0.000333 0.000332 0.000313 0.000240 0.000134 0.000050 0.000011 0.000001 0.000000 0.000000 

6 5 0.002165 0.002164 0.002160 0.002118 0.001949 0.001571 0.001011 0.000455 0.000109 0.000006 

6 6 0.001082 0.001082 0.001078 0.001040 0.000911 0.000663 0.000362 0.000128 0.000021 0.000001 

6 7 0.000583 0.000583 0.000579 0.000546 0.000449 0.000291 0.000133 0.000036 0.000004 0.000000 

6 8 0.000333 0.000333 0.000329 0.000302 0.000231 0.000132 0.000050 0.000010 0.000001 0.000000 

6 9 0.000200 0.000200 0.000196 0.000174 0.000122 0.000061 0.000019 0.000003 0.000000 0.000000 

6 10 0.000125 0.000125 0.000122 0.000103 0.000066 0.000028 0.000007 0.000001 0.000000 0.000000 

7 5 0.001263 0.001263 0.001262 0.001251 0.001190 0.001018 0.000709 0.000349 0.000092 0.000005 

7 6 0.000583 0.000583 0.000582 0.000572 0.000526 0.000413 0.000248 0.000096 0.000018 0.000001 

7 7 0.000291 0.000291 0.000291 0.000282 0.000248 0.000176 0.000090 0.000027 0.000003 0.000000 

7 8 0.000155 0.000155 0.000155 0.000148 0.000122 0.000078 0.000033 0.000008 0.000001 0.000000 

7 9 0.000087 0.000087 0.000087 0.000081 0.000063 0.000035 0.000012 0.000002 0.000000 0.000000 

7 10 0.000051 0.000051 0.000051 0.000046 0.000033 0.000016 0.000005 0.000001 0.000000 0.000000 

8 5 0.000777 0.000777 0.000777 0.000774 0.000752 0.000673 0.000503 0.000269 0.000077 0.000005 

8 6 0.000333 0.000333 0.000333 0.000330 0.000314 0.000262 0.000171 0.000073 0.000015 0.000000 

8 7 0.000155 0.000155 0.000155 0.000153 0.000141 0.000108 0.000061 0.000020 0.000003 0.000000 

8 8 0.000078 0.000078 0.000078 0.000076 0.000067 0.000046 0.000022 0.000006 0.000001 0.000000 

8 9 0.000041 0.000041 0.000041 0.000039 0.000033 0.000021 0.000008 0.000002 0.000000 0.000000 

8 10 0.000023 0.000023 0.000023 0.000021 0.000017 0.000009 0.000003 0.000000 0.000000 0.000000 

9 5 0.000500 0.000500 0.000499 0.000499 0.000491 0.000455 0.000360 0.000208 0.000065 0.000005 

9 6 0.000200 0.000200 0.000200 0.000199 0.000193 0.000170 0.000119 0.000056 0.000012 0.000000 

9 7 0.000087 0.000087 0.000087 0.000087 0.000082 0.000068 0.000041 0.000015 0.000002 0.000000 

9 8 0.000041 0.000041 0.000041 0.000041 0.000037 0.000028 0.000015 0.000004 0.000000 0.000000 

9 9 0.000021 0.000021 0.000021 0.000020 0.000018 0.000012 0.000005 0.000001 0.000000 0.000000 

9 10 0.000011 0.000011 0.000011 0.000010 0.000009 0.000005 0.000002 0.000000 0.000000 0.000000 

10 5 0.000333 0.000333 0.000333 0.000333 0.000330 0.000313 0.000261 0.000161 0.000055 0.000004 

10 6 0.000125 0.000125 0.000125 0.000125 0.000122 0.000112 0.000084 0.000042 0.000010 0.000000 

10 7 0.000051 0.000051 0.000051 0.000051 0.000050 0.000043 0.000028 0.000012 0.000002 0.000000 

10 8 0.000023 0.000023 0.000023 0.000023 0.000022 0.000017 0.000010 0.000003 0.000000 0.000000 

10 9 0.000011 0.000011 0.000011 0.000011 0.000010 0.000007 0.000004 0.000001 0.000000 0.000000 

10 10 0.000005 0.000005 0.000005 0.000005 0.000005 0.000003 0.000001 0.000000 0.000000 0.000000 

Table S1. Null hypothesis probabilities of the event that ∗  
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S4.  XERp Software 

Here we describe the XERp software, its variations, the inputs required and results produced. XERp was 

programmed in Matlab [2] and the scripts are provided in addition to this document of which Figure S1 

provides a graphical overview. The following inputs are required:  

 A data matrix containing the observed values for all subjects (represented by the rows of the matrix) 

and variables (represented by the columns of the matrix). 

 The variable names in a separate column vector of type character and the same length as the 

second dimension of the data matrix (i.e. each variable must have a name).  

 A vector containing the shift direction of interest for each variable and determining the test statistic 

to be used. The value 1 indicates that an upward shift should be evaluated using as a test statistic”; 

the value -1 indicates that a downward shift should be evaluated using as a test statistic”; and the 

value 0 indicates that both shift directions should be evaluated using as a test statistic”. 

 A categorical row vector indicating the group membership of each subjects. The vector must have 

the same length as the first dimension of the data matrix (i.e. each subject must have been assigned 

to a group). 

 The two string variables used as group labels in the group membership vector.  

 The cost of misclassification into the control group. The cost of misclassification into the 

experimental group is derived from the constraint on the weights, i.e. 1. Alternatively, 

the user can set 0 which prompts the software to calculate the weights from the group sizes, 

as explained in the main text, i.e.  and  

 The value of the preferred significance level  as a separate numeric input. 

 The method to use when correcting for multiple testing as a separate string variable. There are 

two options (i) ‘FDR’ controls the false discovery rate and makes use of the fdr script of Arnaud 

Delorme (2008) sourced through MathWorks (https://uk.mathworks.com/matlabcentral/ 

fileexchange/27960-resampling-statistical-toolkit/content/statistics/fdr.m). (ii) ‘BH’ controls the 

familywise error rate using the Bonferroni-Holm approach, as described in [1]. 

 The number of simulations to use when calculating the null distributions. 

 The file names to use when saving and exporting results. 

These user inputs must then be presented to the different scripts provided to (i) generate the null 

distributions; (ii) perform variable selection based on XERp; (iii) predict group membership based on the 
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results from the variable selection function; or (iv) perform leave-one-out (LOO) cross-validation. The scripts 

must be called in sequence as results files from one script are required as input to other scripts. The 

processing sequence is illustrated in Figure S1 as well as in the example provided (the Example.m file). In 

addition, the “help” command can also be used to ascertain the required inputs and resulting output of each 

script.  

Note that a different data may be provided when performing prediction to allow for the classification of 

subjects other than those used to perform variable selection. Doing so requires a data matrix of 

observations for the same variables originally presented, but for the new subjects. If the group membership 

of the new subjects is known, this can also be provided to the prediction script (XERp_Predict.m) which will 

add this information to the results for easier interpretation. Further, all predictions are performed on a per 

variable basis and the final classification is left to the user. One way to achieve this is by simply using 

majority vote as explained in [1]. 

The results from the software are automatically exported to an Excel workbook with the name provided. 

Two sets of results can be generated, namely, the results when using all subjects (i.e. the full sample or FS 

results) and the results when applying leave-one-out cross-validation (i.e. the LOO results). The FS results 

workbook contains the variable selection and classification (i.e. group membership prediction) results. The 

LOO results workbook contains the results for each iteration, namely: (i) a binary indicator taking the value 

1 if a variable was significant and selected as predictor; (ii) the minimizing threshold for each variable; (iii) 

the shift direction producing the smallest error rate, if the directional vector was set to 0, or the direction 

specified; and (iv) the group membership prediction for each variable for the subject “left out”. In addition, 

a summary of the LOO results is provided. 
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Figure S1.  Overview of the XERp software 
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S5.  Comparison of the p-values under the null hypothesis 

A comparative simulation study to assess the bias and power of the three p-value alternatives was done as 

discussed in the main text. The detailed simulation steps used to evaluate the bias, MSE and size are as 

follows: 

1. Choose values for 	, 	, 	 and .  

2. Let , , … ,  denote a grid of  values. It is convenient to choose  and 

1 ⁄ 	 (guaranteeing a sufficient grid). For each  in the grid compute the null CDF by simulation 

and table the results, referred to as the CDF-Table below. 

3. For 1, 2, … , 	 and for 1, 2,… , 	  

3.1. Generate , ,	 1, 2,… , 	  from the uniform 0,1  distribution and transform them to 

, 0 if ,  and , , 1⁄  otherwise.  

3.2. Put , 0	 for 1, 2,… ,  and , 1	 for 1, 	2, … , . 

3.3. Compute 	
∗ ,  by minimizing (5) based on the data , , ,  , 1, 2, … , . 

3.4. Convert 	
∗ ,  to the three p-value alternatives as defined in the main text. Also convert 

	
∗ , 	 to the true p-value by referring the 	

∗ ,  to the column corresponding to  in the 

CDF-table, calling the result , .  

4. Finally, ∑ ′ , , 	;  ∑ ′ , , 	 and 

∑ ′ , , 	 estimates the bias, MSE and size of the three p-values (represented 

here in general by ′ , ), respectively, when  is the true value of .  
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Figure S2 shows the test size (referred to as the size) used to assess the Type I error probability, as was 

done in the main text. Again, the size represents the fraction of times the estimate falsely rejected the null 

hypothesis, but for significance levels of 5 % (Figures S2a and S2b) and 1 % (Figures S2c and S2d). It is 

again evident that  is better able to retain the significance level specified, compared to the other 

estimates regardless of whether  is small or large. The reader may note the seemingly unexpected 

instability of , but this is simply due to the discrete nature of the distributions which become especially 

apparent in the tails. 
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S6.  Comparison of the p-values under the alternative hypothesis 

The comparative simulation study done to assess the power of the three p-value alternatives followed the 

following simulation steps: 

1. Choose values for 	, 	, 	 and .  

2. Choose a grid of distributional shift values ,	 1, 2, … ,  

3. For	 1, 2, … , 	 and for 1, 2,… , 	  

3.1. Generate , ,	 1, 2, … , 	 from the LN (0,1) distribution. Now, generate , ,	 

1, 2,… ,  from the uniform (0,1) distribution and set , 0 if ,  and 

, , 1⁄  otherwise The ,  represent the observations for the 

control group. 

3.2. Generate , ,	 1, 2,… , 	 from the LN (0, ) distribution. Now, generate , ,	 

1, 2, … ,  from the uniform (0,1) distribution and set , 0 if ,  and 

, , 1⁄  otherwise The ,  represent the observations for the 

experimental group. 

3.3. Combine the , ,	 1, 2, … , 	 and , ,	 1, 2, … , 	 observations as , ,	 

1, 2, … , 	 and put , 0	 for 1, 2, … ,  and , 1	 for 1, 	2,… , . 

3.4. Compute 	
∗ ,  by minimizing (5) based on the data , , ,  , 1, 2,… , . 

3.5. Convert 	
∗ ,  to the three p-values as defined in the main text. Also convert 	

∗ , 	 to 

the true p-value by referring the 	
∗ ,  to the column corresponding to  in the 

CDF-table, calling the result , .  

4. Finally, ∑ ′ , 	 and ∑ ′ , 	 estimates the average p-value 

and proportion of rejection for the three p-values, respectively, for a given significance level . 
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Next we report further results on the performance of the p-value alternatives under the alternative 

hypothesis based on the average p-value and the proportion of null hypothesis rejections. The alternative 

hypothesis was simulated using a shifted log-normal (LN) distribution for the experimental groups compared 

to a LN(0,1) distribution for the control group. A jump component was added to these distributions by 

assuming different proportions of zero values in each group.  

 

Figure S3 illustrates the average p-value, given the value is below 10 %, for the three p-value estimates 

as well as . The slight spike in the graphs illustrates how XERp first identifies the difference between  

and , the difference between the shift direction and these proportions result in a slight loss of power 

which is quickly regained once the shift is more pronounced. The three p-value alternatives perform 

equally well with  displaying slightly more power. The slight advantage of  over the other 

alternatives will become more pronounced for more accurate estimation of , as is evident from the red 

lines indicating the somewhat greater power of . 

Figures S4 and S5 illustrate the proportion of times the null hypothesis is rejected given significance 

levels of 5 and 1 %, respectively. To make the graphs more legible they are not displayed for the entire 

range of shift values ( ). Once no differences between p-value alternatives are apparent and sufficiently 
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high rejection rates are achieved (i.e. the average p-values have achieved sufficiently low levels) the 

graphs are no longer displayed. 
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Again the three p-value alternatives perform equally well. Notably, the significance level is retained 

reasonably well when there is no difference between the groups with and 0 (Figures S4c, 

S4d, S5c and S5d). XERp again loses some power in the dissonant case, but only until the distributional 

shift becomes more pronounced. 
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S7.  Comparison to random imputation 

This section takes a quick look at a random imputation strategy for replacing zero values and the use of 

XERp. The simulation made use of three variables selected based on their XERp results as provided in 

Table S2. 

Variable ER C Direction
Observed 
p-value 

Observed  

 Control Experimental All 

3,4-dihydroxyphenylacetic acid 0.24 0.99 Up 0.01 29% 18% 25%

2,6-dihydroxybenzoic acid 0.27 0.00 Up 0.05 55% 18% 42%

4-hydroxycyclohexanecarboxylic 
acid 

0.24 0.00 Down 0.01 35% 82% 52%

Table S2. XERp results 
 

From Table S2 we see that the variables are well balanced with regard to the placement and proportion of 

zero values. The p-values calculated by XERp round up to significance levels of 1 and 5 % meaning that, 

for illustrative purposes, the selection of the variable is sensitive to small fluctuations in the p-value 

calculated. Finally, both up- and downward shift scenarios are represented, as well as both threshold 

scenarios 0 and 0. 

To perform the simulation, the three variables were passed to the XERp software in two forms: (i) data with 

zeros (as was done in the main paper and corresponding to the results in Table S2); and (ii) data with zeros 

replaced by random values from a beta distribution, after which ERp [1] was applied. To average out the 

impact of random imputation a hundred thousand iterations were carried out. During each iteration random 

numbers were generated from a beta distribution with location and scale parameters set to half the minimum 

and the minimum of the non-zero data, respectively, while the shape parameters were both set equal to 2. 

The XERp estimated threshold for 3,4-dihydroxyphenylacetic acid is greater than zero, therefore the 

threshold and error rate are not affected by random imputation of zero values. The same XERp error rate 

as for the data with zeros of 0.2434 is obtained. The associated p-values did however, differ as different 

null distributions were referenced, i.e. where there are 25 % zeros 0.0123 (data with zeros) and no 

zeros 0.0126 (random imputation). It is important to note that in instance where 0 for the data 
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with zeros, the error rates will only be equal if the imputed numbers are not allowed to exceed the minimum 

of the non-zero values. More advanced imputations strategies such as k-nearest-neighbour and random 

forest may not conform to this rule and will produce different results. Also, in the event that the error rates 

are the same, the p-value for the data with zeros may not always be smaller as it depends on the proportion 

of zeros (refer to Figure 2 in the main manuscript). 

The results for the second and third variables, 2,6-dihydroxybenzoic acid and 4-

hydroxycyclohexanecarboxylic acid, are very similar since both have thresholds 0 for the data 

containing zeros (Table S2). In instances where the XERp estimated threshold is equal to zero, ERp 

combined with imputation by random numbers smaller than the minimum non-zero value, will result in a 

threshold estimate somewhere between two imputed numbers. In other words, the classification rule 

depends on some random value between the ranges set by the imputation rule, e.g. zero and the minimum 

observed value. A threshold that falls in random territory introduces unwanted randomness into the 

associated error rate and p-value. Most importantly, a threshold in random territory implies that a new 

subject with a measured value of zero, therefore requiring imputation, would be classified by comparing the 

random value from imputation to the threshold value, which is also based on random imputations. 

Classification is thus based on whether one random number is larger or smaller than another random 

number. 

Concluding, imputation with random numbers has no effect on the error rate when the XERp threshold is 

already above the detection limit, while it can have a dramatic effect when the XERp threshold value is 

lower than the detection limit. Moreover, random imputation introduces unwanted randomness into the 

thresholds, error rates and p-values without any obvious gain. 
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