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ABSTRACT
Objective: Normative comparison is a method to compare an 
individual to a norm group. It is commonly used in neuropsychological 
assessment to determine if a patient’s cognitive capacities deviate 
from those of a healthy population. Neuropsychological assessment 
often involves multiple testing, which might increase the familywise 
error rate (FWER). Recently, several correction methods have been 
proposed to reduce the FWER. However these methods require that 
multivariate normative data are available, which is often not the case. 
We propose to obtain these data by merging the control group data 
of existing studies into an aggregated database. In this paper, we 
study how the correction methods fare given such an aggregated 
normative database. Methods: In a simulation study mimicking the 
aggregated database situation, we compared applying no correction, 
the Bonferroni correction, a maximum distribution approach and a 
stepwise approach on their FWER and their power to detect genuine 
deviations. Results: If the aggregated database contained data on all 
neuropsychological tests, the stepwise approach outperformed the 
other methods with respect to the FWER and power. However, if data 
were missing, the Bonferroni correction produced the lowest FWER. 
Discussion: Overall, the stepwise approach appears to be the most 
suitable normative comparison method for use in neuropsychological 
assessment. When the norm data contained large amounts of missing 
data, the Bonferroni correction proved best. Advice of which method 
to use in different situations is provided.

Introduction

Normative comparison is a method of comparing test scores of an individual to those of a 
norm group. It is often applied in neuropsychological assessment, with the goal to draw 
conclusions about an individual’s cognitive capacities, like memory or attention. If an indi-
vidual deviates sufficiently from the norm group, a group of healthy individuals, we may 
speak of ‘abnormality’ (Crawford & Howell, 1998; Harvey, 2012; Kendall, Marrs-Garcia, Nath, 
& Sheldrick, 1999; Lezak, Howieson, Bigler, & Tranel, 2012). As such conclusions may affect 
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one’s academic, professional and personal life, assessment accuracy is vitally important. For 
example, a ‘healthy’ individual being falsely diagnosed with cognitive impairments could 
result in a waste of time and treatment resources, as well as personal suffering. Similarly, an 
undiagnosed condition may linger or worsen over time, possibly with dire consequences 
for the individual and her/his surroundings (Harvey, 2012). As such, the focus of this paper 
will be on improving statistical methods for normative comparison, as used in neuropsy-
chological assessment.

In neuropsychological assessment it is common to administer multiple tests (Harvey, 
2012). However, multiple testing is associated with an increased chance of at least one test 
falsely indicating abnormality, that is, with an increased familywise error rate (FWER) (Binder, 
Iverson, & Brooks, 2009; Feise, 2002; Huizenga, Agelink van Rentergem, Grasman, Muslimovic, 
& Schmand, 2016; Huizenga, Smeding, Grasman, & Schmand, 2007; Van der Laan, Dudoit, & 
Pollard, 2004). In terms of neuropsychological assessment, this means that administering 
more tests to an individual increases the chance of at least one test falsely indicating cog-
nitive abnormality. Therefore, methods that correct for an increased FWER should be applied.

Unfortunately, FWER corrections may decrease the ability to detect true deviations 
(Verhoeven, Simonsen, & McIntyre, 2005). In neuropsychological assessment, this means 
that a method’s ability to detect real cognitive abnormalities decreases. Still, both a low FWER 
and a high power to detect true deviations are important for good assessment accuracy. As 
such, the goal of this study is to develop a normative comparison method that successfully 
reduces the increased FWER associated with multiple testing while not sacrificing too much 
power. Three candidate methods will be examined: the well-known Bonferroni correction, 
and two new methods, the maximum distribution approach, and the stepwise approach.

 The Bonferroni correction reduces the increased FWER caused by multiple testing. This 
method is often favored for its simplicity (Armstrong, 2014; Cao & Zhang, 2014) but is also 
known for its excessively low power when tests are correlated (Bland & Altman, 1995; Moran, 
2003; Narum, 2006; Verhoeven et al., 2005). As such, this method is not expected to perform 
well, but is included nonetheless due to its simplistic nature.

Next is the maximum distribution approach (or max-approach, for short), which also 
reduces FWER. (Huizenga et al., 2016; Nichols & Holmes, 2002). An advantage this method 
has over the Bonferroni correction is that it better retains power when tests are correlated 
(Huizenga et al., 2016). This is expected to improve assessment accuracy.

The stepwise approach also reduces FWER, and increases power even further (Huizenga 
et al., 2016; Nichols & Holmes, 2002). Notably, this method is the most demanding compu-
tationally. However, it can be implemented in user-friendly software.

 One problem all these methods face though is requiring an appropriate norm group. 
After all, comparing an 80-year old male to a norm group of 20-year old females may well 
result in deviation(s) attributable to demographic differences rather than cognitive abnor-
malities. As such, neuropsychological assessment requires a norm group that either: 1) con-
sists solely of people from a similar demographic background as the assessed individual or 
2) is sufficiently large and varied to correct for such influences (Crawford & Howell, 1998). 
Additionally, the max approach and stepwise approach require that multiple participants 
in the normative sample performed on all tests that were administered to the individual 
(Huizenga et al., 2016). Such a normative sample will rarely be available. In order to provide 
a solution, we propose to merge already available datasets – the ‘healthy’ control groups of 
previously conducted studies – to create one dataset that meets these demands (Agelink 
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van Rentergem, de Vent, Schmand, Murre, & Huizenga, in press; Agelink van Rentergem, 
Murre, & Huizenga, 2017; de Vent et al., 2016). With data-sharing increasing in popularity in 
the social sciences (Asendorpf et al., 2013; King, 2011; Poline et al., 2012; Vines et al., 2014), 
this seems like an opportune solution to the appropriate norm group problem.

 Aggregating studies like this results in a multilevel dataset with two levels; a participant 
and a study level, with the former nested within the latter (Steenbergen & Jones, 2002). This 
creates two potential problems. First, the data-set now contains both within-study variance 
and between study-variance, as opposed to only within-study variance. If and how this might 
affect the assessment accuracy (i.e. the FWER and power) of the aforementioned methods 
is yet unclear. Second, not every included study contains every test of interest, resulting in 
systematically missing data, which may also affect assessment accuracy (Dupont & Plummer, 
1990; Field, 2009). This is why the accuracy of normative comparison methods when applied 
to multilevel structured data with missing data needs to be examined.

Huizenga et al. (2016) investigated whether Bonferroni correction, max-approach and 
stepwise approach normative comparison methods based on resampling adequately cor-
rected for multiple testing if the normative database was of a non-aggregated nature. In the 
current study, we adapted Huizenga et al.’s max-approach and stepwise approach to the 
aggregated database case by including empirical instead of resampled distributions. Both 
are non-parametric methods, and therefore require fewer assumptions than those based 
on theoretical distributions (Nichols & Holmes, 2002). This imposes less restrictions on the 
norm data-set, making the methods more flexible in application. A difference is that the 
resampling methods of Huizenga et al. (2016) perform well with small samples sizes, whereas 
the current methods based on empirical distributions require a norm database consisting 
of many participants, which fortunately is the case in the suggested aggregated database 
case. An advantage of the current methods is that they: (1) can easily be extended to aggre-
gated data as described above and (2) that they are computationally and theoretically simpler 
than the resampling methods, making them more user-friendly and easily interpretable.

 Uncorrected normative comparison, and normative comparison with the Bonferroni 
correction, the max-approach and the stepwise approach were applied to non-multilevel 
and multilevel data, with and without missing data, while varying a number of data param-
eters, such as the number of tests and norm group sample size. Accuracy was estimated by 
calculating the FWER and power. The uncorrected method was expected to produce an 
increased FWER whenever multiple testing occurred. All FWER correction methods were 
expected to produce FWERs that: (1) were lower than the FWERs of the uncorrected method 
and (2) approximated the preset significance threshold (α = .05). Among the correction 
methods, the stepwise approach was expected to produce the highest power. The Bonferroni 
correction was expected to produce the lowest power when tests were correlated. The power 
of the new correction methods was aimed to equal or exceed that of the Bonferroni 
correction.

Methods

Normative comparison methods

This section explains the aforementioned methods for normative comparison on a more 
detailed level. Normative comparison entails comparing a single test score to the distribution 
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of a norm group’s test scores. In the uncorrected normative comparison, this requires cal-
culating the proportion of norm group scores on a certain test that are more extreme than 
the individual’s score on this same test; this proportion constitutes the p-value of the indi-
vidual’s test score.1 If this p-value falls below the preset significance threshold (p < α), we 
may conclude that the individual deviates significantly from the norm group on the tested 
cognitive capacity. This is done separately for each of the M administered tests; when M = 1, 
the FWER equals the threshold, FWER = α; if M > 1, the FWER increases, FWER > α (Feise, 2002; 
Huizenga et al., 2016).

 To counter the increased FWER caused by multiple testing, normative comparison can 
be augmented with the Bonferroni correction. This correction entails implementing a new, 
stricter significance threshold, which is calculated by dividing the original threshold by the 
number of performed tests: αBonferroni = α/M. This results in a more stringent significance 
threshold as the number of tests increases. With a more stringent threshold, more extreme 
scores are required to produce a significant result, thus reducing the FWER. This correction 
is computationally easy and performs well when tests are not correlated amongst each other. 
Unfortunately, when tests are correlated it becomes too conservative, as the Bonferroni 
correction corrects as if the tests were uncorrelated, resulting in overcorrection (Bland & 
Altman, 1995; Holm, 1979; Narum, 2006). This causes an unnecessarily large decrease in both 
FWER and power, with the latter posing a problem for this method’s accuracy.

 Unlike the Bonferroni correction, the max-approach does not correct the significance 
threshold but instead changes the norm group distribution. That is, an individual’s test scores 
are not compared to the distribution of the norm group scores on the corresponding test 
– as is done in uncorrected normative comparison – but instead to the max-distribution. 
This max-distribution is obtained by taking every norm group participant’s most extreme 
score over all M tests, and combining these scores into one distribution. As a result, the 
max-distribution contains only the most extreme norm group scores. If an individual’s scores 
deviate significantly even when compared to these most extreme scores of a norm group, 
it is more likely to reflect true deviation. As such, the max-approach reduces FWER (Blakesley 
et al., 2009; Huizenga et al., 2016; Nichols & Holmes, 2002; Westfall & Young, 1993). An advan-
tage this method has over the Bonferroni correction is that it takes into account test corre-
lations. This prevents the overcorrection associated with correlated tests, allowing for FWER 
correction while not sacrificing too much power, resulting in better accuracy.

 The stepwise approach starts by ordering the individual’s M test scores and comparing 
the most extreme score to the max-distribution. All other scores are compared to the 
max-distribution over all tests, not including the ones corresponding to more extreme scores. 
That is, the second most extreme score is compared to the max-distribution over all tests 
except the one corresponding to the most extreme score, the third-most extreme score is 
compared to the max-distribution over all tests except the tests corresponding to the most 
and second-most extreme scores, etc. Like the max-approach, the stepwise approach reduces 
FWER by requiring more extreme results to obtain significance, while maintaining power by 
taking into account between-test correlations. Unlike the max-approach though, it compares 
less extreme scores to less extreme distributions, meaning these scores have a higher chance 
of reaching significance. This increases the power even further (Gordon & Salzman, 2008; 
Huizenga et al., 2016; Westfall & Young, 1993).2

 Both the max-approach and stepwise approach require standardized scores, as using 
unstandardized scores causes tests with a more extreme scoring range (e.g. the number of 
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seconds required in a Stroop task) to dominate the max-distribution, disallowing tests with 
a smaller scoring range (e.g. the number of errors in a Stroop task) from becoming 
significant.

Additionally, the max-approach and stepwise approach require norm group scores to be 
similarly distributed across tests. If not, tests with skewed distributions may be over- or 
underrepresented. Figure 1 shows a test with a normal distribution, a test with a skewed 
distribution, and the max-distribution the pair of tests produce. Herein, only scores from the 
normally distributed test are represented in the lower tail, beyond the critical value. As such, 
on the second (skewed) test, the assessed individual requires a score excessively extreme 
compared to the corresponding test’s norm distribution to be found significant, thus low-
ering the power. Should norm group test score distributions be found to substantially differ, 
transforming the data to normality is recommended (de Vent et al., 2016).

In the following paragraph, we outline how we compared these methods in a simulation 
study.

Data simulation

Data were simulated in R (R Core Team, 2015), with each data-set containing normative data 
(the norm group) and patient data (the assessed individual). Normative data were simulated 
as if the data from one or more studies (non-multilevel vs. multilevel data), each containing 
some or all of the possible tests (no missing data vs. missing data), were merged. In creating 
the datasets, the following parameters were varied: the number of studies (S), the number 
of participants per study (N), the number of tests (M), the between-test correlations (BTC), 
the between-study variance (BSV), and the number of tests in the patient data that showed 
deviation. Parameter settings were based on the Advanced Neuropsychological Diagnostics 
Infrastructure (ANDI), a recent initiative in neuropsychological diagnostics containing healthy 
participant data of various neuropsychological tests, as collected from multiple studies (de 
Vent et al., 2016; http://www.andi.nl/home).

Figure 1. example of how the max-distribution is affected by tests having different distributions; when 
one test is normally distributed (left), the other is skewed to the right (middle). The dotted line indicates 
the critical value at α = .05.

http://www.andi.nl/home
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Number of Tests (M): {1, 2, 3, 5, 15, 24, 50}
The number of administered tests was based on the mean number of tests per study in ANDI, 
resulting in M = 15; M = 24 was chosen to represent a larger, yet still realistic number of tests. 
We chose M = 50, as to investigate the effect an extremely large – albeit unrealistic – number 
of tests had on the analyses. Similarly, M = 2, M = 3, and M = 5 were chosen to investigate 
hypothetical situations with a relatively small number of tests. Finally, M = 1 served as a 
baseline, illustrating each method’s performance when multiple testing did not occur.

Number of studies (S): {1, 2, 5, 20, 40}
 The mean number of studies in ANDI to include at least one common test was 18, and the 
largest number was 37. Rounding upwards this became S = 20 and S = 40; S = 1 was included 
to investigate how each method performed when applied to non-multilevel data; S = 2 and 
S = 5 were added to examine the effect of multilevel data made up of a small number of 
studies.

Number of participants per study (N): {10, 20, 70, 200}
 The number of participants greatly varies within the ANDI database, as data sources vary 
from large community samples, to small matched samples in studies about rare diseases. 
We based our typical sample size on the latter, and chose N = 70. The minimum and maxi-
mum number of participants per study of N = 10 and N = 200 were based on the smallest 
and largest number of participants per study observed in the ANDI data, omitting the large 
community samples. Data were simulated as if all studies had the same number of 
participants.

Between-Test Correlations (BTC): {0, .27, .5, .8}
Between-test correlations describe the correlations between tests from the same study; 
BTC = .27 was the mean between-test correlation in ANDI, and BTC = .8 was the largest 
between-test correlation. Given the large difference between these values – mostly attrib-
utable to the unusually large value of .8 – BTC = .5 was added as to illustrate the effect of 
high but still common between-test correlations. Additionally, BTC = 0 was chosen to include 
a situation with completely uncorrelated tests.

Between-Study Variances (BSV):{0, .15, .4}
Between-study variance describes the variance in the norm group data-set attributable to 
differences between studies, leaving remaining variation attributable to individual differ-
ences. These values were based on the intra-class correlations (ICC) found in ANDI; .15 was 
the mean ICC in ANDI, and .4 the largest ICC found in this dataset. From these correlations, 
the between-study variances could be computed through the formula: BSV = ICC × �

2, 
wherein σ2 equals the total variance of the norm group data-set (Tabachnick & Fidell, 2007). 
In each data-set, σ2 was arbitrarily set to 1, resulting in BSV = .15 and BSV = .4. BSV = 0 was 
included to examine a situation wherein all studies involved were completely equivalent.

Missing data: {0%, 50%}
 The amount of missing data was set at either 0% (no missing data) or 50% (half of the data 
were missing). The latter was deemed a sufficiently large percentage to demonstrate the 
effects of missing data, and was computed by removing scores after data simulation. This 
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was done by removing the first half of the tests (test 1 to M/2) for the first half of the studies 
(study 1 to S/2), and removing the second half of the tests (test M/2 + 1 to M) from the second 
half of the studies (study S/2 + 1 to S), as illustrated in Figure 2.

Patient deviation: {1; 5}
The number of tests a patient could deviate on was varied to illustrate the expected increase 
in power of the stepwise approach over the max-approach in situations with multiple devi-
ating tests. The patient could deviate on either the first, or on the first five tests.

Norm data simulation
The norm group data were simulated as if test scores had already been corrected for demo-
graphic influences, meaning they had a mean of zero (de Vent et al., 2016). Thus, the scores 
of the norm group data only consisted of a within-study term epsilon (ε) and a between-study 
term denoted by nu (ν). Epsilons differed for each participant and each test. Nu’s differed for 
each study and each test. By adding these two elements, the test scores were computed: 
score = � + �. Epsilons were drawn from a multivariate normal distribution with means of 
zero and a covariance matrix with variances of 1 − BSV and covariances calculated with the 
BTC values. Nu’s were drawn from a multivariate normal distribution with means of zero and 
a covariance matrix with variances of BSV and covariances of 0. Note that because a non-mul-
tilevel data-set consists of only one study (S = 1), it should have no between-study variance 
(BSV = 0), causing the nu’s to equal zero, meaning non-multilevel scores consisted solely of 
epsilons.

Patient data simulation
Patient data had the same format as the norm data-set, but for N = 1. Patients were either 
healthy (with scores equaling the mean used in simulating the norm data) or deviant (two 
standard deviations below the mean used to simulate the normative data, either on the first 
test or on the first five tests). The inclusion of both healthy and deviant individuals enabled 
estimation of both the FWER and power of methods. Standard deviations were computed 
by taking the square root of the respective diagonal element of the summed within-study 

Figure 2. Missing data pattern with 50% of the data missing. grey areas indicate non-missing values, 
white areas indicate missing values.
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and between-study covariance matrices. Both the norm data scores and the patient data 
scores were standardized, as required for the max-approach and stepwise approach.

 A total of 1000 data-sets (each consisting of one norm data-set and one patient data-set) 
were simulated for each type of data, enabling accurate estimation of FWER and power.

Data analysis

 For all methods, for each type of norm data-set, the FWER and power were estimated. The 
FWER was defined as the proportion of healthy patient datasets that were incorrectly iden-
tified as deviant – meaning that significant deviation on at least one test (at least one false 
positive result) was found (Huizenga et al., 2016). The significance threshold was set at α = .05. 
The power was defined as the proportion of deviant patient data-sets where deviation was 
correctly identified – meaning that deviation was found on the first test (Malik, Turner, & 
Sohail, 2015; Parikh, Mathai, Parikh, Sekhar, & Thomas, 2008). This definition of power was 
maintained regardless of the number of deviating tests.

Results

Results were plotted for the default settings of 70 participants per study, from 20 studies, 
with 15 tests, with a between-tests correlation of .27, and a between-study variance of .15 
(N = 70; S = 20; M = 15; BTC = .27; BSV = .15), unless otherwise noted. These settings were 
chosen to be typical for the ANDI database. Unless explicitly stated otherwise, no norm data 
were missing.

Familywise error rate

Our first question was whether multiple normative comparisons using a multilevel structured 
norm group required FWER correction. Figure 3 shows the FWER results for the typical ANDI 
settings. For uncorrected tests, the FWER results were well above .05, at approximately .40, 
confirming the necessity of using correction methods. All three correction methods kept 
the FWER at .05, suggesting adequate correction. Because the FWER of the uncorrected 
method was so high, this method will not be shown in later figures.

Second, FWER was plotted as a function of between-test correlation (BTC) and between-
study variance (BSV), see Figure 4. This revealed that larger between-test correlations resulted 
in a minor decrease in the Bonferroni correction’s FWER. Between-test correlations had no 
effect on FWER of the max-approach and stepwise approach. The between-study variance 
had a small effect on the FWER, where a high between-study variance increased the FWER 
to slightly above .05 across methods. The uncorrected method produced FWER values 
between .157 (BTC = .8; BSV = 0) and .567 (BTC = 0; BSV = .15).

Third, we looked at the influence of sample size on FWER. Sample size could either be 
changed by changing the number of studies (S), or by changing the number of participants 
per study (N). In Figure 5, different combinations of these two factors are shown. With a high 
sample size all three methods produced FWERs of .05, but increased FWER values were found 
as the sample size decreased; herein, decreasing the number of studies had a more pro-
nounced effect than decreasing the number of participants per study. Noticeably, the 
Bonferroni correction produced a higher FWER than the other two methods when the 
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number of participants was low. The uncorrected method showed FWER values between 
.396 (S = 40; N = 200) and .636 (S = 2; N = 10).

Fourth, we looked at the influence of the number of tests (M). The FWER of all correction 
methods for several numbers of tests was plotted in Figure 6. For the Bonferroni correction, 
the FWER became elevated for 24 tests or more. The max-approach and stepwise approach 
showed no increased FWER. As expected, the uncorrected method showed a strong FWER 
increase as a result of multiple testing, with FWER = .055 (M = 1) to FWER = .719 (M = 50).

Fifth, we looked at the influence of missing data. Figure 7 displays the FWER of the three 
correction methods with either complete data or 50% of the data missing. Both the max-ap-
proach and the stepwise approach showed an increased FWER when missing data were 
introduced. The Bonferroni correction showed a negligibly small FWER increase. The uncor-
rected method appeared almost unaffected by missing data, with FWER = .42 (complete 
data) and FWER = .413 (missing data).

To summarize, FWER analysis revealed that the uncorrected method consistently pro-
duced FWER values above .05. This confirmed that performing multiple normative compar-
isons using multilevel data requires FWER correction. All correction methods produced better 
FWER values across a variety of situations. Between-test correlations slightly affected the 
FWER of the Bonferroni method, but not the FWER of the other correction methods. Between-
study variance did affect FWER, with higher variances producing an increased FWER across 
correction methods, though only with relatively large between-study variances – which 
would be rare in clinical practice – and even then the increase was very mild. The number 
of tests only affected the Bonferroni correction, causing a small FWER increase as the number 

Figure 3. Familywise error rate on the y-axis, and type of correction on the x-axis. plotted for the anDi-
representative settings (N = 70; S = 20; M = 15; BTC = .27; BSV = .15), without missing data. error bars 
indicate 95% binomial confidence intervals. The dotted line indicates the significance threshold (α = .05).
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of tests increased. All correction methods showed an elevated FWER when the norm group 
was small, with the Bonferroni correction suffering most, especially when the number of 
participants was low. Missing data caused an increased FWER in the max-approach and 
stepwise approach alone. In short, the max-approach and stepwise approach outperformed 
the Bonferroni correction, especially when the norm data contained a low number of studies, 
or when the number of tests was high. Only when the norm data contained missing values, 
did the Bonferroni correction outperform the other correction methods.

Power

First, we looked at the power when the patient data deviated on the first test only, using the 
ANDI-representative settings (N = 70; S = 20; M = 15; BTC = .27; BSV = .15). The power of the 

Figure 4. Familywise error rate on the y-axis, and type of correction on the x-axis. plotted for various 
combinations of correlations between tests and various variances between studies (other parameters 
fixed at anDi-representative settings: N = 70; S = 20; M = 15), without missing data. error bars indicate 
95% binomial confidence intervals. The dotted lines indicate the significance threshold (α = .05). The graph 
marked by ‘Typical’ denotes that the between-test correlation and between-study variance corresponded 
to anDi-representative settings (BTC = .27; BSV = .15).
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three correction methods and uncorrected normative comparison was plotted in Figure 8. 
The uncorrected method had the highest power. The three FWER correction methods pro-
duced almost identical results, and thus were concluded not to differ amongst each other.

Next, we looked at the power when the patient data deviated on the first five tests. Recall 
that power calculations only identified deviation on the first test. Figure 9 displays the power 
of all four methods while varying the correlations between tests. The uncorrected method 
still produced the highest power. Out of the correction methods, the stepwise approach had 
the highest power – even approximating the power of the uncorrected method, especially 
at low between-test correlations. The max-approach behaved in an opposite manner, show-
ing increased power as between-test correlations increased, though never outperforming 

Figure 5. Familywise error rate on the y-axis, and type of correction on the x-axis. plotted for various 
combinations of number of studies and number of participants per study (other parameters fixed at 
anDi-representative settings: M = 15; BTC =  .27; BSV =  .15), without missing data. error bars indicate 
95% binomial confidence intervals. The dotted lines indicate the significance threshold (α =  .05). The 
graph marked by ‘Typical’ denotes that the number of studies and participants per study corresponded 
to anDi-representative settings (S = 20; N = 70).
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the stepwise approach. The Bonferroni method showed a consistently low power across 
between-test correlations.

To summarize, the uncorrected method produced the highest power. Unfortunately, this 
held little relevance as this method was already shown to fail in terms of FWER criteria. Out 

Figure 6. Familywise error rate on the y-axis, and number of tests on the x-axis. plotted for various numbers 
of tests (other parameters fixed at anDi-representative settings: N = 70; S = 20; BTC = .27; BSV = .15), 
without missing data. error bars indicate 95% binomial confidence intervals. The dotted line indicates 
the significance threshold (α = .05).

Figure 7.  Familywise error rate on the y-axis, and type of correction on the x-axis. plotted for both 
complete data (left) and data with half of the values removed (right), only for the anDi-representative 
settings (N = 70; S = 20; M = 15; BTC = .27; BSV = .15). error bars indicate 95% binomial confidence intervals. 
The dotted line indicates the significance threshold (α = .05).
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of the correction methods, the stepwise approach excelled when the assessed individual 
deviated on multiple tests. This agrees with the idea that both the Bonferroni and the max-ap-
proach are unfairly restrictive, especially for all except the most deviating test scores. Also, 
in neuropsychological assessment deviation on multiple tests is to be expected, as cognitive 
functions are correlated. As such, this advantage of the stepwise approach makes it very 
useful for clinical practice.

Figure 8. power on the y-axis, and type of correction on the x-axis. plotted for the anDi-representative 
setting (N = 70; S = 20; M = 15; BTC =  .27; BSV =  .15), without missing data. error bars indicate 95% 
binomial confidence intervals.

Figure 9.  power on the y-axis, and type of correction on the x-axis. Five deviations were simulated. 
power was estimated as proportion of significant deviations found on the first test. plotted for various 
between-tests correlations (other parameters fixed at anDi-representative settings: N = 70; S = 20; M = 15; 
BSV = .15), without missing data. error bars indicate 95% binomial confidence intervals.
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Other combinations of data simulation parameters that were varied are also available; all 
simulation results are provided online.3

Discussion

This study examined the assessment accuracy of several normative comparison methods 
when the norm group data were obtained from an aggregated data-set. The goal was to 
determine which method would be most suitable for use in neuropsychological assessment. 
Uncorrected normative comparison, and three FWER correction normative comparison 
methods – the Bonferroni correction, the max-approach, and the stepwise approach – were 
tested. Good assessment accuracy was defined as a familywise error rate (FWER) not exceed-
ing the preset significance threshold. Additionally, the power was aimed to be as high as 
possible.

The uncorrected method consistently produced too high FWER values, meaning it too 
often untruthfully indicated that the assessed individual deviated from the norm group. The 
correction methods were shown to reduce the FWER. Several data parameters were varied 
to examine which correction method performed best under different circumstances. When 
the norm group contained many missing data, the Bonferroni correction controlled the 
FWER better than the max-approach and stepwise approach. Without missing data the step-
wise approach performed preferably, as it had equivalent or better control over the FWER, 
and an equivalent or higher power across a variety of situations. This was especially pro-
nounced in situations with a smaller number of studies or participants, situations with a 
higher number of tests, and when between-test correlations were low.

Several points require discussion. First, the max-approach and stepwise approach per-
formed well as long as the norm group contained a sufficient amount of studies, while the 
Bonferroni correction suffered when either the number of studies or the number of partic-
ipants was reduced. This difference can be explained by the fact that reducing norm group 
size results in fewer data points to make up the norm group distribution. Especially the tails 
of the distribution are affected by this, as they contain few data points to begin with. This 
affects the Bonferroni correction most because it implements a lower significance threshold 
for each test, and a lower threshold directs the comparison towards the most extreme part 
of the distribution (essentially the tail of the tail), which contains even fewer scores, and is 
thus even more affected by decreased sample size.

Second, introducing missing data to the norm group data-set led to an increased FWER 
in the max-approach and stepwise approach, but did not substantially affect the Bonferroni 
correction. This can be explained by the former two methods constructing norm group 
distributions by selecting extreme scores across tests; when half of the tests are missing 
these distributions may become too narrow (i.e. not critical enough). The Bonferroni correc-
tion isn’t affected as it does not use the extreme values over all tests to make a new distri-
bution to which the patient scores are compared.

Third, the stepwise approach produced a much higher power than the other correction 
methods when multiple tests deviated, especially when between-test correlations were low. 
This may be explained by the stepwise approach computing different distributions for each 
test score. More extreme scores are compared to more extreme distributions – distributions 
made up of the most extreme norm group scores. When tests are highly correlated, extreme 
scores on one test come with extreme scores on other tests, meaning there are more extreme 
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scores in total. Thus the distributions become more critical, making it harder to detect devi-
ation, thus reducing power.

Fourth, despite the stepwise approach yielding higher power than Bonferroni correction 
or max-approach, it occasionally produced a low power, which may spark reluctance to use 
it in clinical practice. However, the stepwise approach still outperformed the Bonferroni 
correction, and while the uncorrected method consistently produced the highest power, it 
also produced a highly increased FWER. It is the overall accuracy, the combination of a low 
FWER and relatively high power that makes the stepwise approach most suitable for practical 
application. When high(er) power is preferred, we recommend a more liberal threshold (e.g. 
α = .20 instead of α = .05). This has the advantage of the true FWER being known (i.e. when 
the significance threshold of the stepwise approach is set to α = .20, the resulting FWER will 
approximate .20), whereas using the uncorrected comparisons will produce an FWER increase 
of an unknown extent.

Fifth, norm data were simulated so that the number of participants was equal across 
studies, which is unlikely to occur in real aggregated data. A post hoc simulation study with 
unequal sample sizes (using the default settings) showed similar patterns in terms of FWER 
results as it did with equal sample sizes.

Sixth, due to this being a simulation study, generalizability of results may be called into 
question. However, data simulation allowed for the examination of each method’s perfor-
mance under many different circumstances, thus boosting generalizability. More importantly, 
simulation parameters were based on real data to enhance generalizability, leading us to 
believe that these results are representative of real life situations.

Finally, it must be stressed that none of the discussed statistical methods are meant to 
be the sole basis of diagnosis, with contextual information and the assessors’ professional 
opinion playing an important role – both in interpreting analysis results and in translating 
them into a meaningful judgment and effective treatment.

Practical advice

When the norm data contain no missing data, the stepwise approach appears to be the most 
suitable method for normative comparison with an aggregated norm group; it best corrects 
the increased FWER associated with multiple testing, with FWER least affected by the prop-
erties of the norm group. Moreover, it produces a relatively high power when the assessed 
individual deviates on multiple tests. Based on this, we recommend the stepwise approach 
as the default method for neuropsychological assessment with an aggregated normative 
database. However, when the norm data contains (large portions of ) missing data – for 
example, when several of the administered tests are relatively uncommon – the Bonferroni 
corrections should be preferred.

Also, when the norm group sample size is small, neither correction method performs well. 
In such instances, we recommend the resampling-based normative comparison methods 
from Huizenga et al. (2016). These methods were made specifically with small norm groups 
in mind, and proved to have good assessment accuracy with small sample sizes (Huizenga 
et al., 2016; Li & Dye, 2013; Troendle, 1995). However, note that these methods have not yet 
been tested for multilevel data or norm groups with missing data.
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The uncorrected method, the Bonferroni correction, the max-approach and stepwise 
approach have been implemented in a freely available online app (see: https://joost.shin-
yapps.io/EmpiricalNormComp/).

Final comments

FWER corrections are needed in neuropsychological assessment when performing more 
than one normative comparison. In this simulation study, we have shown that correcting 
multiple comparisons using the stepwise approach can be a useful alternative to Bonferroni 
corrections when using aggregated norm data. We hope that this leads to a broader adoption 
of correction methods, as it is important to reduce the number of false positives in clinical 
practice, while remaining sensitive to true deviations.
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Notes

1.  In the current setting, with a large sample size, we do not need test statistics, but can instead 
work with the raw percentiles as is done in many test manuals.

2.  An added restriction (referred to as the ‘monotonicity assumption’) is that less extreme scores 
are not allowed to produce lower p-values than more extreme scores, and if this occurs the 
p-value of the less extreme score is set to equal that of the more extreme score. This implements 
the logical assumption that less extreme scores cannot produce more significant results 
(Gordon, 2011).

3.  See: https://raw.githubusercontent.com/JAvRZ/SupplementalMaterialUnivariateNormative 
Comparisons/master/Simulationdata.csv
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