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ABSTRACT
There is a growing interest in using the Internet of Things (IoT)
to create smart environments, which hold the promise to provide
personalized experience based on the trail of user interactions with
smart devices. We experiment with behavioral user models based
on interactions with smart devices in a museum, and investigate
the personalized recommendation of what to see after visiting an
initial set of Point of Interests (POIs), a key problem in personal-
izing museum visits or tour guides. We have logged users’ onsite
physical information interactions of visits in a museum. Moreover,
to have a better understanding of users’ information interaction be-
haviors and their preferences, we have collected and studied query
logs of a search engine of the same collection, and we have found
similarities between users’ online digital and onsite physical infor-
mation interaction behaviors. We exploit user modeling based on
users’ di�erent information interaction behaviors and experiment
with a novel approach to a critical one-shot POI recommendation
using deep neural multilayer perceptron based on explicitly given
users’ contextual information, and set-based extracted features us-
ing users’ physical information interaction behaviors and similar
users’ digital information interaction behaviors. Experimental re-
sults indicates that our proposed behavioral user modeling, using
both physical and digital user information interaction behaviors, im-
proves the onsite POI recommendation baselines’ performances in
all common Information Retrieval evaluation metrics. Our proposed
approach provides an e�ective way to achieve a high precision at
rank 1 in onsite critical one-shot POI recommendation problem.

KEYWORDS
Human information interaction; Onsite logs;  Behavioral user mod-
els; POI recommendation;  Internet of things
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Figure 1: Interactive POIs in a museum physical space

1 INTRODUCTION
The last decade witnessed a tremendous interests in implementa-
tion of Internet of Things (IoT) in di�erent applications[2, 3, 10, 16–
18, 25], such as smart shopping malls and smart museums, which
provides the infrastructure for understanding users’ physical inter-
action behavior and consequently their preferences in interacting
with smart environments. This prompts the question:

How tracking people in their real-life and understanding their in-
teraction behaviors would be helpful? Is it possible to give e�ective
suggestions to users by user tracking using IoT but without getting
any explicit information about their preferences like ratings?

Imagine you are at a huge museum like the Louvre Museum in
Paris and you want to explore the museum. Usually, it is impossible
to visit the whole objects of some big museums like the Louvre
Museum in one day. Moreover, museum free roaming is more desir-
able in comparison to the traditional �xed walking route designed
in a non-personalized way. Providing personalized experiences for
users is so valuable in this context and will help them to visit all
interesting objects of the museum according to their preferences. In
this case, how amazing would it be if the contextual recommender
system can tell you accurately what to visit without using any
history or explicit feedback from you?

Emergence of the above applications leads to rise interests in log-
ging users’ onsite physical information interactions, which creates
a new potentially exponentially growing data like search engine
query logs. Although understanding users’ search behavior and
their information needs based on query logs is well-studied [7, 29],
to the best of our knowledge, there is not any study on how to
understand users’ behaviors and their information needs based on
similarities between users’ onsite physical and online digital infor-
mation interaction behaviors. Addressing this research problem by

UMAP 2017 Full Paper UMAP’17, July 9-12, 2017, Bratislava, Slovakia

50



S
POI8 POI7 POI6 POI5 POI4 POI3

POI2

POI1

C-in

Figure 2: Variance in onsite users’ behavior after visiting a set of POIs. The �gure indicates variance of three visitors’ pref-
erences in visiting POIs. Each of them shown by a di�erent color, and the black edges are the ones walked by all the three
visitors. C-in is the check-in station and the S is the check-out station.

learning a behavioral user model using both onsite physical and
online digital user behaviors is our main contribution in this paper.

To this aim, users’ onsite physical interactions of visits in a
museum and users’ online query logs of a search engine of the same
collection are logged. Onsite physical information interactions are
based on unlocking contents of an installed iPod at each POI using
RFID tags. Figure 1 shows an example of the museum space with
the mentioned installation. In this way, we log users’ interactions
with POIs and track users’ visits in the museum.

As it is shown in Figure 2, users behave di�erently after visiting
a set of POIs. Figure 2 plots walk-through graph of 3 real users
after checking in at POI1 and POI2. The blue and red paths show
walk-through behaviors of two users tend to check-in at POIs one
after the other but with di�erent preferences. The green path shows
a user who behaves completely di�erent from the other two and
does not check-in at POIs one after the other. This �gure shows an
example of how di�erent are users onsite physical behaviors, which
indicates understanding and prediction of users’ onsite physical
behaviors are challenging and di�cult.

In this paper, our main aim is to study the question: How to
model users’ information interaction behavior with IoT having an aim
of providing a personalized onsite POI recommendation? Speci�cally,
we answer the following research questions:

(1) How to understand users’ onsite physical behavior and create
a behavioral user model that is able to e�ectively predict
relevant unseen POIs?

(2) How strong are di�erent users’ interaction behaviors with
IoT in understanding users’ preferences?
(a) Are online digital behaviors similar to onsite physical

behaviors? Does understanding online digital users’
information interaction behaviors have a positive e�ect
in learning a model to predict unseen relevant POIs and
complete users’ personalized onsite visits?

(b) What are the relative importance of each feature ex-
tracted based on di�erent users’ interaction behaviors
in e�ectiveness of POI recommendation systems?

(3) How e�ective is behavioral POI recommendation system in
one-shot POI recommendation problem?

The rest of the paper is organized as follows. In Section 2, we
review some related work on context aware recommendation and
POI recommendation systems. Section 3 is devoted to stating the
problem and discussing baselines. Our proposed onsite POI rec-
ommendation approach is detailed in Section 4. The experimental
setup and results are discussed in Section 5 and 6. Finally, we
present the conclusions and future work in Section 7.
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2 RELATEDWORK
In this section, we discuss related work on context aware recom-
mendation systems, POI recommendation systems, and recommen-
dation systems in museums.

Traditionally, recommendation systems deal with applications
having just two types of entities, users and items. However, creation
of more complex and realistic applications leads to interests in a new
line of research about how to incorporate contextual information
as an extra dimension to the recommendation systems. There
are 3 ways of incorporating context in the recommender systems:
contextual pre-�ltering, contextual post-�ltering, and contextual
modeling [1]. As the later approach is closer to our study in this
paper, we will discuss some of the related research in the contextual
modeling.

In order to contextually model the context aware recommenda-
tion system, Karatzoglou et al. proposed a multiverse recommen-
dation method based on tensor factorization [21], which integrate
contextual information by modeling data as User-Item-Context
N-dimensional tensor instead of traditional 2-dimensional User-
Item matrix. One problem of this method is the data sparseness,
which is proportional to the number of de�ned context in their
method. Liu et al. [22] proposed to partition the User-Item matrix
by grouping ratings of similar context, which could be helpful to
decrease the data sparseness. The other problem of the multiverse
recommendation method is that it only works for categorical fea-
tures. To overcome this problem, Rendle et al. [26] proposed to use
factorization machines to model contextual information. The above
studies are done to model contextual information, however none of
them are really scalable and e�ective for the recent exponentially
growing data.

There have also been lots of studies to solve the POI recommenda-
tion problem in both academia and industry [14, 38]. They generally
try to adapt traditional recommendation algorithms to the POI rec-
ommendation problem. One line of research includes collaborative
�ltering and matrix factorization approaches in location-based so-
cial networks (LBSNs). Berjani et al. in [5] proposed regularized
matrix factorization, in which they apply personalized collaborative
�ltering on dimensionally reduced user-POI matrices to minimize
the squared regularized error. In addition to the geographical as-
pects, they are some researches in POI recommendation that in
addition to the geographical dimension, tried to include temporal
dimension in the matrix factorization framework [11, 13].

Within the POI recommendation literature, there are some stud-
ies that are related to ours in the sense that they studied users’
check-in behavior [24, 27, 30–34, 36, 37]. As three interesting ex-
amples of these related works, Zheng et al. proposed collaborative
location activity �ltering [35]. Particularly, they used collective
factorization to recommend locations or activities to users. To this
aim, they used comments having GPS data in a web-based GPS
management system as a data source. Moreover, Ye et al. in [31]
proposed a collaborative POI recommendation algorithm based
on geographical in�uence. To this aim, they used users check in
activities in LBSNs. At last, Scholz et al. [27] studied talk atten-
dance prediction in an academic conference using a link prediction
approach. To this aim, they logged talk attendance behavior using
RFID tags. However, none of the above studies used both the actual

users’ onsite physical information interaction behaviors and users’
online digital click-through behaviors.

As another line of related research, there are several researches
that study recommender systems for museum visitors. Grieser et
al. [12] studied next exhibition recommendation problem in the
museum space using visitors history. They applied Naive Bayes
learning model using textual description, geospatial proximity and
popularity of exhibitions. In their study, popularity baseline, which
is one of our de�ned baseline in this paper, was reported as the
most successful next exhibition recommendation model.

Bohnert et al. [6] studied unseen exhibition recommendation
using nearest-neighbor content-based �ltering approach by taking
visitors explicit ratings of exhibitions as inputs. They did the study
using 41 museum visitors as participants. Moreover, in a recent
work of Bartolini et al. [4], they study recommendation of diverse
multimedia data across several web repositories, and arrangement
of them in visiting paths. They consider location, number of persons
and weather condition as context in their contextual pre-�ltering
system, and they did the study based on 90 users as participants.

Apart from di�erent recommendation methods being used in
the above studies in the museum domain, they are very limited in
term of number of participants. In addition, none of them log and
study users’ onsite physical information interactions behaviors. In
this paper, we log more than 21,000 users’ visits of a museum in a
5 months period, and our proposed model is based on users’ both
online digital and onsite physical information interaction behaviors.

Closest in spirit to our work is [17], in which users’ onsite physi-
cal behaviors in the existence of a crowd of users have been studied.
They studied skip or stay behavior prediction in checking in dif-
ferent POIs as a classi�cation problem. Their study is di�erent
from ours as they do not investigate on similarities between users’
physical and digital behaviors. Moreover, we study a POI rank-
ing problem in this paper but they did research on onsite physical
interaction behavior classi�cation problem.

3 BACKGROUND AND PRELIMINARIES
In this section, we state the behavioral unseen POI recommenda-
tion problem and the best baselines comparable with our proposed
model.

3.1 Problem Statement
Let u = {u1,u2, ...,ui } ⊂ U i be a subset of users visited a smart
environment, cseen = {c1, c2, ..., c j } ⊂ C j

seen a subset of seen or
occurred contexts, and pseen = {p1,p2, ...,pk } ⊂ Pk seen a subset
of seen POIs. Then, let Rseen ∈ Ri×j×kseen be a user-context-POI
matrix containing i users, j seen contexts and k seen POIs. Value
ri, j,k ∈ Rseen refers to the visit frequency of user i , in context j
to the POI k . In this paper, due to the fact that museum visitors
rarely check in to a POI more than once, we have used binary seen
or unseen values rather than considering the frequency.

Having above information about users, given a subset of unseen
contexts (i.e., cunseen = {c1, c2, ..., cm } ⊂ Cmunseen ), and a subset
of unseen POIs (i.e., punseen = {p1,p2, ...,pn } ⊂ Pnunseen ), the
behavioral unseen POI recommendation problem is estimation of
ri,m,n ∈ Runseen based on users interaction behaviors with the
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seen POIs, in which Runseen ∈ Ri×m×nunseen is a user-context-POI
matrix containing i users,m unseen contexts and n unseen POIs.

3.2 Baselines
In this section, baselines created for the evaluation purposes are
detailed.

3.2.1 Popularity. The popularity based recommendation ranks
POIs candidates according to their popularity scores. The popularity
is computed as the number of users who checked in at each POI. The
popularity baseline is usually used in evaluation of personalized
recommendation systems and it is informed as a very challenging
and hard-to-beat baseline [23].

3.2.2 Bias-Based Filtering. As Hashemi et.al. discussed in [16],
there are some biases in onsite user information interaction logs.
They introduces the walk-through position-bias that shows users
tend to visit POIs one after the other from check-in to check-out
stations. They also observed time-rank bias that indicates users
tend to spend less time at the end of exhibitions. Considering these
two biases, the probability of checking in at a POI is proportional
to the distance from the Check-out station. Therefore, Bias-based
baseline ranks POIs based on their distance from the check-out
station.

3.2.3 Content-Based Filtering. As descriptions of POIs in mu-
seums are well curated, they are very informative source of infor-
mation that makes the content-based �ltering as a very e�ective
baseline in this domain. In this study, each POI contains 3 museum
objects with reach descriptions. In order to build a content-based
�ltering model, we build a pro�le of each user after visiting a set of
POIs using Language Modeling framework. Each pro�le’s language
model is based on all seen objects of pseen .

Since we have pro�les of users at each context, KL-Divergence
of each unseen POI’s language model and the pro�le is considered
as content-based �ltering scores for ranking unseen POIs.

4 POI RECOMMENDATION USING USERS’
BEHAVIORS

This section studies how to predict relevant POIs to the given user
and context based on users’ interaction behaviors, aiming to answer
our �rst research question: How to understand users’ onsite physical
behavior and create a behavioral user model that is able to e�ectively
predict relevant unseen POIs?

In order to model the set-based contextual POI recommendation,
we cast the context-aware recommendation problem to a binary
classi�cation problem, in which relevant POIs are labeled 1 and
irrelevant ones labeled 0. In this way, we try to learn a behavioral
model to predict relevant unseen POIs to the given user and context
based on the user’s interaction behaviors in the context. Then,
relevance probability of POIs to the user and context pairs will be
used to rank the unseen POIs. To this aim, a set of features that
represent users’ interaction behaviors in given contexts is de�ned.

4.1 Feature Set
In order to learn an e�ective model to rank POIs, we have extracted
18 di�erent features. As it is shown in Table 1, we have classi�ed
features to 3 sets, namely, explicit context, onsite and online.

Explicit context refers to information explicitly given by users
about the context. In our study, we collected users’ gender, their
preferred language, their age range and their chosen perspective of
the narratives at the exhibition. Previous study on these explicit
contexts [16] shows that users behave di�erently in these di�erent
contexts. For example, as it is discussed in [16], children tends to
spend less time in front of the POI about the death. Therefore, it
seems a reasonable set of features to consider as explicit contexts.

The second group of features is the one gathered onsite without
asking users to give any information about their preferences. These
features extracted based on users walk-through data. f5 is the
number of seen POIs, which can be considered as a con�dence
indicator of some other features’ scores like f6. f6 is the content-
based �ltering score of POI candidate based on the pro�le built
using the seen POIs. This content-based �ltering score is calculated
based on the onsite POI descriptions and users’ onsite interactions.
That is why it is considered as one of the onsite features in our
feature classi�cation.

In addition to f5 and f6, we build users’ walk-through graph
using their onsite interactions with POIs based on the train set
onsite information interaction logs, and calculate f7, f8, f9, f10, f11
and f12 features. Details of these features are available in Table 1.

The third group of features is de�ned based on an onsite selected
POIs using the onsite users’ interactions logs. However, the feature
calculation is based on online click-through graph of the museum
search engine. Therefore, we classi�ed them as online features.
The online click-through graph is �ltered to the objects available
at onsite POIs. In this study, each onsite POI contains 3 di�erent
museum objects. We merge all the objects related to each POI as one
node, and the click-through graph’s edges are aggregated from all
the edges of POIs’ objects. As a result, same as onsite walk-through
graph, the online click-through graph has onsite POIs as nodes.
Details of these features are available in Table 1.

4.2 Learning Model
In order to learn a set-based behavioral POI recommendation model,
we have implemented a logistic regression classi�er and a deep
neural multilayer perceptron with dropouts to estimate relevance
of each POI to the given user after visiting a set of POIs. The logis-
tic regression classi�er and the deep multilayer perceptron have
been trained separately based on each group of features extracted
using di�erent users’ information interaction behaviors to study
which user information interaction behavior is more e�ective in
understanding users’ preferences in their interactions with the IoT
in smart environment. In the rest of this section, we will detail the
logistic regression and the deep multilayer perceptron implemented
for the set-based behavioral POI recommendation.

4.2.1 Logistic Regression. Logistic regression classi�er is a linear
classi�er that transparently helps to understand contribution of
each feature in estimation of POIs relevancy. In fact, we would like
to know which trained logistic classi�er performs better and why.
To this aim, we train di�erent logistic regression classi�ers based
on di�erent feature sets using di�erent users’ interaction behaviors.

In order to learn a logistic classi�er, we use variable c ∈ {0, 1}
to show relevance of a POI to a user in a context. Speci�cally,
Pθ (c = 1|u, c,p) is the relevance score of the POI p to the user u
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Table 1: De�ned features to predict relevant unseen POIs to users after visiting a set of POIs.

Feature Category Description

f1 Explicit Context Gender (e.g., Female)
f2 Explicit Context Language (e.g., English)
f3 Explicit Context Visitor age range (e.g., Adults)
f4 Explicit Context Chosen perspective (e.g., Roman)

f5 Onsite Seen POIs set size
f6 Onsite Content-based relevance score of a POI candidate to a pro�le created using seen POIs’ content that was

shown onsite
f7 Onsite Unseen POI’s PageRank in onsite visits walk-through weighted graph built based on a train set
f8 Onsite Unseen POI’s PageRank in onsite visits walk-through unweighted graph built based on a train set
f9 Onsite Unseen POI’s centrality in onsite visits walk-through graph built based on a train set
f10 Onsite Minimum distance of the seen set of POIs to the POI candidate in the onsite visits walk-through graph built

based on a train set
f11 Onsite Median distance of the seen set of POIs to the POI candidate in the onsite visits walk-through graph built

based on a train set
f12 Onsite Mean distance of the seen set of POIs to the POI candidate in the onsite visits walk-through graph built

based on a train set

f13 Online Unseen POI’s PageRank in Online click-through weighted graph built based on a train set
f14 Online Unseen POI’s PageRank in Online click-through unweighted graph built based on a train set
f15 Online Unseen POI’s Centrality in Online click-through graph built based on a train set
f16 Online Minimum distance of the seen set of POIs to the POI candidate in the Online click-through graph built based

on a train set
f17 Online Median distance of the seen set of POIs to the POI candidate in the Online click-through graph built based

on a train set
f18 Online Mean distance of the seen set of POIs to the POI candidate in the Online click-through graph built based on

a train set

and the context c , in which θ is unknown parameters learned using
maximum likelihood estimation (MLE) based on the train set. Given
the relevance judgments r of each POI pk to a user ui and context
c j in the train set, the likelihood L of the train set is as follows:

L =

|U |∏
i=1

|C |∏
j=1

|Pseen |∏
k=1

Pθ (c = 1|ui , c j ,pk )r Pθ (c = 0|ui , c j ,pk )1−r ,

in which we assume relevance judgments r are generated inde-
pendently. We model Pθ (c = 1|ui , c j ,pk ) by logistic function on a
linear combination of features created based on each speci�c group
of users’ information interaction behaviors. Then, we optimize the
unknown parameters θ by maximizing the following log likelihood
function:

θ∗ = arдmaxθ

|U |∑
i=1

|C |∑
j=1

|Pseen |∑
k=1

rloдPθ
(
c = 1|ui , c j ,pk

)
+ (1 − r ) loдPθ

(
c = 0|ui , c j ,pk

)
.

In order to turn the logistic classi�er scores to probabilities, we
have used the softmax function:

S (yi ) =
eyi∑
j
eyj
,

in which yi is the logistic classi�er score, and S(yi ) is the output
relevance probability of our behavioral POI recommendation model.

At last, we rank unseen POIs based on the logistic classi�er output
probability of POIs’ relevancy being estimated based on features
created using interaction behaviors of a given user in a context.

4.2.2 Deep Neural Multilayer Perceptron. In this subsection, we
investigate on a deep neural multilayer perceptron by an aim of
improving e�ectiveness of the POI recommendation to be used in
critical one-shot POI recommendation applications. The motiva-
tion behind the critical one-shot POI recommendation is that an
irrelevant recommendation sometimes has a very negative e�ect in
users’ experience in a way that they might be incorrectly guided to
an uninteresting department of a museum that leads to a dissatis-
�ed experience. In this model, for each user in a context, our main
goal is to recommend a POI which is highly relevant to them. In
the one-shot POI recommendation, we do not care about relevant
POIs retrieved after rank 1. In the rest of this section, we detail our
deep multilayer perceptron with an aim of improving e�ectiveness
of POI recommendation to be used for the critical one-shot POI
recommendation problem.

In order to learn a set based behavioral POI recommendation
and learn users’ onsite complicated physical behaviors, we have
used a deep neural network with 3 hidden layers having 326 units.
To learn an e�ective model and overcome over�tting problem, we
have used a dropout feedforward neural network. Let l ∈ {1, 2, 3}
be the index of the hidden layers of the network. Let z(l ) be the
vector of input to layer l and y(l ) be the vector of outputs from
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layer l . The dropout neural network is modelled as follows for any
hidden unit i and l ∈ {0, 1, 2}[19, 28]:

r (l ) ∼ Bernoulli(p),

ỹ(l ) = r (l ) ∗ y(l ),

z
(l+1)
i = w

(l+1)
i ỹ(l ) + b(l+1)i ,

y
(l+1)
i = f (z(l+1)i ),

where r (l ) denotes a vector of independent Bernoulli random vari-
ables having probability p of being 1, ỹ(l ) is thinned outputs created
by multiplying a sample of r (l ) vector by outputs of layer l (i.e.,
y(l )) and used as input for the next layer l + 1, w(l ) and b(l ) are
weights and biases at layer l , and f is an activation function, which
is recti�ed linear units (ReLUs) in our setup. This process is done
at each layer.

Following many researches in neural network domain, we have
used p = 0.5 in our dropout network. This value is reported as a
close to optimal value for a wide range of networks in di�erent
applications [28].

In the learning phase, the derivatives of the loss function are back-
propagated through the dropout network. The dropout network is
trained using the stochastic gradient descent (SGD) algorithm with
mini batches, which is widely used algorithm for training neural
networks. The learning rates are adjusted based on adaptive gradi-
ent algorithm (AdaGrad) [8]. In the test phase, the sub-network is
used without dropout, but the weights are scaled asW (l )test = pW

(l ).
For the classi�cation purpose and having probabilities as out-

puts, we have used Logistic classi�er in the last layer. The logistic
classi�er in the last layer is trained same as the logistic regression
classi�er being discussed in previous subsection. The only di�er-
ence is that, in the logistic classi�er being used in the last layer, we
model Pθ (c = 1|ui , c j ,pk ) by logistic function on a linear combi-
nation of inputs from the last hidden layer units’ outputs. At last,
the �nal relevance probability of Pθ (c = 1|ui , c j ,pk ) is used to rank
unseen POIs based on features created using interaction behaviors
of a given user in a context.

5 EXPERIMENTAL SETUP
In this section, we describe our experimental setup. We �rst de-
scribe the data set used in this paper, and second detail the evalua-
tion methodology used in this study.

5.1 Dataset
The dataset of this study is based on onsite and online interaction
logs collected at an archeological museum. In this archeological
museum, RFID tags are provided as a key to access some additional
information about objects being shown in the museum. Users can
enter their preferences at the beginning of the museum exhibition
in order to personalize the content being shown in all of the POIs.
These preferences are perspectives of the narratives, language,
gender and the user’s age range.

After checking in, users are free to put their tags on RFID readers
of POIs to unlock contents being shown about objects at the POIs.
Each POI contains 3 di�erent archeological objects. Users are free

Table 2: An example of records created for the test collection
using a user session. The judgments are based on seen POI
set-size 2 and 3.

Query
Context Seen POI set Candidate Relevance

c1 <POI1,POI2> POI3 0
c1 <POI1,POI2> POI4 1
c1 <POI1,POI2> POI5 0
c1 <POI1,POI2> POI6 0
c1 <POI1,POI2> POI7 1
c1 <POI1,POI2> POI8 0
c1 <POI1,POI2,POI4> POI3 0
c1 <POI1,POI2,POI4> POI5 0
c1 <POI1,POI2,POI4> POI6 0
c1 <POI1,POI2,POI4> POI7 1
c1 <POI1,POI2,POI4> POI8 0

to interact with POIs in any order. They can watch short movies,
interact with 3D photos of POIs’ objects, or read contents about
objects being shown at POIs. At last, users might check out in a
summary station, in which they might leave their name, birth date
and email. In this paper, 5 months onsite logs of the museum with
more than 21,000 sessions is used, which leads to 3,925 high-quality
onsite sessions to be used for evaluation purposes.

In addition to the users’ onsite information interaction logs, we
also collected query logs of the museum search engine. The online
features, detailed in Table 1, have been extracted based on 18,001
high-quality sessions created by �ltering bot sessions.

5.2 Evaluation Methodology
In our collected onsite information interaction logs, about 16,000
out of 21,000 sessions either did not have any interactions with
POIs or they did not check out at the summary station, and about
1,000 of them had interactions with all the POIs. In order to avoid
bias over users who are interested in visiting all or none of the POIs
at the museum, we exclude all sessions have checked in at all or
none of the POIs at the exhibition. As a result of this preprocessing
step, 3,925 out of 21,000 high-quality onsite information interaction
sessions remains for creating the test collection.

Considering the walk-through graph, for each user in a session
and at each checked in POI during their visit, we created a test
collection using the seen set of POIs, the user and the explicit
contexts as the query and the unseen POIs as the candidates, for
which we have judgments based on the user’s session. Basically,
we know which POI candidates are visited by the user and consider
them as relevant POIs. The rest of the POIs are considered as
irrelevant POIs.

Doing the above procedure in building the test collection leads to
create a contextual set-based POI recommendation test collection
having 1,083,623 judgments. Table 2 shows an example of records
created using a user session. To test our proposed model, in order
to avoid over�tting, we have done 5-fold cross-validation, in which
for each fold as a test set, 3 out of the 4 remained folds randomly
sampled and used as a train set, and the remained fold used as a

UMAP 2017 Full Paper UMAP’17, July 9-12, 2017, Bratislava, Slovakia

55



validation set. We repeat the process for all the �ve folds and report
the average of the evaluation metrics.

5.3 Evaluation Metrics
For the evaluation of the de�ned set-based behavioral POI recom-
mendation task, we cast the problem to a ranking task and use
mean reciprocal-rank (MRR), mean average precision (MAP ) and
R-precision (R-Prec) as metrics that are e�ective to evaluate pro-
posed models. Moreover, in order to evaluate the one-shot POI
recommendation systems, we use precision at rank 1 (P@1) as an
evaluation metric.

The MRR is the average of the reciprocal ranks of the �rst rel-
evant result for a set of queries Q as MRR = 1

|Q |
∑ |Q |
i=1

1
ranki

. For
a single query, AP is de�ned as the average of the p@n values
(i.e., p@n = # r elevant POIs in top n results

n ) for all relevant POIs

asAP =
∑N
n=1 p@n×r el (n)

R , in whichn is the rank, N is the number of
retrieved POIs candidates, and rel(n) is a binary function indicating
the relevance of a given rank. MAP is the mean value of the APs
computed for all queries. R-Prec is precision at rank R where R is
the number of relevant candidates for the given query. At last, p@1
is the precision at rank 1.

6 EXPERIMENTAL RESULTS
In this section, we provide answer to the research questions stated
in the introduction section.

6.1 POI Recommendation Using Users’
Information Interaction Behaviors

This section answer our second research question: How strong are
di�erent users’ interaction behaviors with IoT in understanding users’
preferences?

To this aim, we have used each of the three groups of features
extracted based on each information interaction behaviors to train
a POI recommendation system. Speci�cally, we have trained three
di�erent logistic regression classi�ers, which are trained based on:
1) the explicit context features (i.e., Logistic Regression-Explicit
Context) 2) the onsite features (i.e., Logistic Regression-Onsite) and
3) the online features (i.e., Logistic Regression-Online).

In the rest of this subsection, we �rst investigate whether users’
online digital interaction behaviors are similar to the users’ onsite
physical behavior. Then, we detail relative importance of each fea-
ture extracted based on features’ weights being learned by logistic
regression classi�ers using each type of users’ interaction behaviors
with an aim of understanding users’ behaviors.

6.1.1 Onsite Physical Behavior vs. Online Digital Behavior. We
�rst look at the question: Are online digital behaviors similar to
onsite physical behaviors? Does understanding online digital users’
information interaction behaviors have a positive e�ect in learning a
model to predict unseen relevant POIs and complete users’ personalized
onsite visits?

In order to answer this research question, we compare POI rec-
ommendation systems trained based on each type of interaction
behavior. As it is shown in Figure 3, the POI recommendation sys-
tem trained based on users’ online digital interaction behavior is
not only as good as the other POI recommendation systems being
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Figure 3: E�ectiveness of di�erent types of users’ interac-
tion behavior in understanding their onsite preferences.

trained based on either explicit context or onsite interaction behav-
iors, but also is performing better than them in terms of all common
tested information retrieval metrics. This experiment indicates that
availability of the considerable amount of online interaction logs in
comparison to onsite interaction logs leads to training an e�ective
onsite POI recommendation system based on users’ online digi-
tal interaction behaviors. As we achieve an e�ective onsite POI
recommendation system based on users’ online digital interaction
behaviors, we conclude that there is a similarity between onsite
physical and online digital information interaction behaviors.

6.1.2 Features Relative Importance in Understanding Users’ Inter-
action Behaviors. We now look at the question: What are the relative
importance of each feature extracted based on di�erent users’ interac-
tion behaviors in e�ectiveness of POI recommendation systems?

To this aim, we normalize features’ weights being learned in
each logistic regression classi�er trained for each group of features
separately. Then, average of the normalized features’ weights over
the 5-fold cross-validation are reported and compared in Figure 4.

As it is shown in Figure 4, among the explicit context interac-
tion, the chosen language (i.e., f2) at the start of museum visits is
relatively more important in comparison to other explicit context
based features. Moreover, mean distance of the seen POIs to a POI
candidate in the onsite visits’ walk-through graph (i.e., f12) has
relatively more importance in comparison to other onsite inter-
action behavior based features. Regarding the online interaction
behaviors, median distance of the seen set of POIs to the given
candidate in the online click-through graph (i.e., f17) is relatively
more important than other online features in the e�ectiveness of
the POI recommendation systems.

6.2 One-Shot POI Recommendation Using
Users’ Interaction Behaviors

This section answer our third research question: How e�ective
is behavioral POI recommendation system in one-shot POI recom-
mendation problem? To this aim, we study e�ectiveness of the
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Figure 4: Features’ relative importance in POI recommendation trained based on each group of users’ information interaction
behaviors.

Table 3: Set-based one-shot POI recommendation e�ective-
ness comparison between the Deep MLP-Online and base-
lines. * indicates the improvement is statistically signi�cant
(ρ < 0.05).

Run P@1 MRR

Content-based Filtering 57.45 75.68
Popularity 60.86 77.67
Bias-Based Filtering 61.57 77.71
Logistic Regression-Online 56.97 75.73
Deep MLP-Online 75.81 (23.12%*) 86.39 (11.17%*)

implemented deep multilayer perceptron in one-shot onsite POI
recommendation problem in comparison to the discussed baselines
as well as the logistic regression POI recommendation system. In
addition to baselines’ e�ectiveness, Table 3 shows performance of
the best deep multilayer perceptron (i.e., Deep MLP) and logistic
regression classi�ers, trained based on online digital interaction
behaviors, in terms of p@1 and MRR.

As it is shown in Table 3, the deep MLP signi�cantly improves
the best hard-to-beat baseline (i.e., Bias-Based Filtering) in one-shot
POI recommendation. In particular, the deep MLP has 23.12% im-
provement over the bias-based �ltering baseline in term of p@1,
which is the only used metric that measure one-shot POI recom-
mendation performance. This experimental result shows that our
proposed deep MLP one-shot POI recommendation system is very
e�ective, and can lead to an interesting personalized experience in
such a critical application.

7 DISCUSSION AND CONCLUSIONS
The main focus of this paper is the study of how to build a behav-
ioral user model for the set-based POI recommendation problem
using users’ both onsite and online information interaction behav-
iors. A study on the strength of using each type of users’ interaction
behaviors with IoT in understanding users’ onsite information in-
teraction preferences shows that POI recommendation systems
trained using features extracted from a combination of both onsite
physical and online digital information interaction behaviors (i.e.,

online features) performs better than the ones trained by explicitly
given context or onsite information interaction behavior. Therefore,
we conclude that there is a similarity between onsite physical and
online digital interaction preferences that causes an improvement
on the onsite POI recommendation e�ectiveness. Moreover, we
have studied the critical one-shot POI recommendation problem.
According to our analysis, the learned models based on just basic
explicit given contexts or onsite users’ behaviors do not improve
the hard-to-beat de�ned baselines (i.e., popularity and bias-based
�ltering). However, using a deep multilayer perceptron based on fea-
tures extracted by online interaction behaviors leads to a signi�cant
improvement over the best baseline in all the de�ned evaluation
metrics. Speci�cally, it has a statistically signi�cant improvement
over all baselines with 23% improvement in term of p@1 and 11%
improvement in term of MRR. Therefore, our proposed approach
is very e�ective in critical one-shot POI recommendation. The
proposed behavioral user model is very general and can be widely
used in any environment with an integrated Internet of Things (IoT)
infrastructure. Speci�cally, in the Cultural Heritage domain, the
implemented technology being used in this study and implemented
within the European meSch project 1, is listed in [9, 20] as one of
the implemented technologies in museums that provides a more
interactive and multisensory experiences for visitors. This is one of
the technologies mentioned in museum edition of the NMC Horizon
2015 and 2016 reports as a technology being integrated in museums
in four to �ve years time-to-adoption horizon. As a future work, we
are going to increase number of POIs in the museum and see how
e�ective is the proposed behavioral set-based POI recommendation
model for the bigger datasets. Moreover, in addition to the evalua-
tion detailed in this paper based on a high volume of real users, we
are eager to do a user study to test our proposed behavioral user
model. As another line of future work, we will investigate on using
recursive neural network to improve our proposed behavioral user
models to be used in contextual suggestion problem [15].
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