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We look for long-living topological solutions of classical nonlinear (1þ 1)-dimensional φ4 field theory.
To that effect we use the well-known cut-and-match method. In this framework, new long-living states are
obtained in both topological sectors. In particular, in one case a highly excited state of a kink is found. We
discover several ways of energy reset. In addition to the expected emission of wave packets (with small
amplitude), for some selected initial conditions the production of kink-antikink pairs results in a large
energy reset. Also, the topological number of a kink in the central region changes in the contrast of
conserving full topological number. At lower excitation energies there is a long-living excited vibrational
state of the kink; this phenomenon is the final stage of all considered initial states. Over time this excited
state of the kink changes to a well-known linearized solution—a discrete kink excitation mode. This
method yields a qualitatively new way to describe the large-amplitude bion, which was detected earlier in
the kink-scattering processes in the nontopological sector.

DOI: 10.1103/PhysRevD.95.056009

I. INTRODUCTION

We consider the λφ4 theory with a real scalar field φðt; xÞ
in (1þ 1) dimensions [1–3]. Its dynamics is determined by
the following Lagrangian:

L ¼ 1

2

�∂φ
∂t

�
2

−
1

2

�∂φ
∂x

�
2

− UðφÞ; ð1Þ

where UðφÞ is a potential, defining the self-interaction of
the field in the considered model [1],

UðφÞ ¼ λ

4

�
m2

λ
− φ2

�
2

: ð2Þ

The plot of Eq. (2) is shown in Fig. 1. We analyze a model
with a non-negative potential with two minima, so all static
solutions with finite energy split into disjoint classes, so-
called topological sectors, according to their asymptotic
behavior at very large x. Solutions with φð−∞Þ ≠ φðþ∞Þ
are called topological, while those with φð−∞Þ ¼ φðþ∞Þ
are nontopological. Both types of solutions are of growing
interest in physics. In particular, they arise in the questions
of three- or two-dimensional domain walls. However, the
one-dimensional case is also curious and was considered in
different works for diverse models [4–6]. In the λφ4 model
there is a soliton solution called a kink; the phenomenon of

a “wobbling kink”was studied in [7,8].Moreover, a three- or
two-dimensional domain wall presents a one-dimensional
kink interpolating two different vacua of the model. In some
cases these can be solved approximately [9]. The domain
walls in the λφ4 model can be applied to some cosmological
models, for example, during discussions of dark matter and
dark energy [10]. The results of numerical simulations in
other models [9] can be applied to solid-state physics [11].
The Lagrangian (1) with (2) yields the equation of

motion for φðt; xÞ. After transition to dimensionless
variables it reads

φtt − φxx − φþ φ3 ¼ 0: ð3Þ

As a next step, we find and study the analytical solutions

of Eq. (3). Note that the vacua of this model φð1Þ
vac ¼ −1

FIG. 1. The dimensionless potential (2) of the λφ4 model.
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and φð2Þ
vac ¼ þ1 are stable solutions of (3). Moreover, there

is the unstable permanent solution φ ¼ 0 with infinite
energy.
In addition to the previous solutions, there is also a static,

nontrivial, topological, solitary wave-like solution. It can be
easily found by solving the static limit of Eq. (3),

K≡ φKðx − x0Þ ¼ tanh
ðx − x0Þffiffiffi

2
p : ð4Þ

The antikink K is given by minus K. The energy functional
for the Lagrangian (1), in the static case (4), is called the
mass of the kink MK ¼ 2

ffiffiffi
2

p
=3. The plot of Eq. (4) is

presented by Fig. 2.

A. Excitation spectrum of the kink

In order to analyze the excitation spectrum of the static
kink, we add a small perturbation δφ to it. In other words,
we make the ansatz

φðt; xÞ ¼ φKðxÞ þ δφðt; xÞ ¼ φKðxÞ þ eiωtψðxÞ:
By taking the terms in Eq. (3) linear in δφ, we obtain the
following equation:

Ĥψ ¼ Eψ ; Ĥ ¼ −
d2

dx2
− 3cosh−2

xffiffiffi
2

p ;

E ¼ ω2 − 2: ð5Þ
The eigenvalue ω0 ¼ 0 belongs to the discrete part of the
excitation spectrum (5) [1], but also there is one vibrational
excitation given by

δφ1 ¼ ψ1ðxÞeiω1t; ω1 ¼
ffiffiffiffiffiffiffiffi
3=2

p
;

ψ1ðxÞ ¼
�

3

2
ffiffiffi
2

p
�

1=2
tanh

xffiffiffi
2

p cosh−1
xffiffiffi
2

p : ð6Þ

B. Analytical solution, depending on x

The above solutions are not a full set of solutions to the
φ4 model. Let us consider a static wave solution with
infinite energy. We consider the static limit of Eq. (3),

φxx ¼ −φþ φ3: ð7Þ

This equation is analogous to Newton’s equation

ẍ ¼ FðxÞ ¼ −∇VðxÞ; where

Vðx → φÞ ¼ φ2

2
−
φ4

4
þ const: ð8Þ

Figure 3 shows a plot of a Vðx → φÞ. In this case φðxÞ
describes a trajectory of an oscillatory movement between
the points −φ0 and φ0. In the range 0 < φ0 < 1 oscillations
are periodic. In the limiting case φ0 ¼ 1 the fluctuations
disappear, because the time necessary to return to the
starting point φ0 ¼ 1 reaches infinity.
Defining the dimensionless variable φðxÞ ¼ φ0χðxÞ and

the constants

k2 ¼ φ2
0=2

1 − φ2
0=2

; b2 ¼ 1 −
φ2
0

2
;

where 0 ≤ k2 ≤ 1 and 1=2 ≤ b2 ≤ 1, leads us to

Z
χðxÞ

0

dχffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − χ2Þð1 − k2χ2Þ

p
¼ hχ ¼ sinψi ¼

Z
arcsin χ

0

dψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − k2cos2ψÞ

p :

The last integral is nothing but the elliptic integral of the
first kind [Fðarcsin χ; kÞ ¼ bx] [12]. Then, the static peri-
odic solution of Eq. (7) can be written as

φelðxÞ ¼ φ0snðbx; kÞ; ð9Þ

where snðbx; kÞ is the elliptic sine [12]. At small k
(corresponding to φ0 ≪ 1) there is a concordance
snðzÞ ≈ sinðzÞ. At φ0 → 0 the solution (9) becomes a
permanent unstable solution φ ∼ 0, as previously noted.
Plots of Eq. (9) are shown in Figs. 4 and 5 for different
values of the parameter φ0. The elliptic sine period is
calculated using the following formula [12]:

FIG. 2. The kink solution [Eq. (4)].

FIG. 3. The potential in Eq. (8). The arrow shows the domain of
the solution φðxÞ for an arbitrarily chosen value 0 < φ0 < 1.
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T ¼ 4Fðπ=2; kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 0.5φ2

0

p : ð10Þ

II. FORMULATION OF THE PROBLEM

The long-living solutions with high amplitude are of
increasing interest in classical field theory. This type of
solution, called the bion or breather, was found early in the
kink-antikink collisions in the φ4 model both in one- and
three- dimensional cases [13–18].
Here, we propose to use the popular cut-and-match

method to find a long-living field configuration, using
previously found solutions φ ¼ 0, Eq. (4), and Eq. (9). In
this case, a part of the initial state is composed by the kink
(4), which is divided in two equal pieces at x ¼ 0. These
halves of the kink are fixed at �x0. Then, one of the
solutions (φ ¼ 0 or φel on the finite interval) of (3) is placed
in the space between these two halves. An initial state
constructed in the manner described is shown in Fig. 6.
Note that if we take φ ¼ 0, the initial state will become

unstable. Its energy linearly increases with growing
distance 2x0.
In another case we make a solution in terms of the elliptic

solution (9) for a fixed value 0 < φ0 < 1. For a smooth
gluing of selected solutions one defines the value of x0 as a

half of the period T of the elliptic function φel. Thus we
obtain an initial configuration

ð−1;φ0; 0;−φ0; 1Þ
which we define to mean the following: in the area −∞ <
x < −T=2 the initial state consists of the left half of (4),
in −T=2 < x < þT=2 it is given by (9) [such that
φðx ¼ −T=4Þ ¼ φ0, φðx ¼ 0Þ ¼ 0, and φðx ¼ T=4Þ ¼
−φ0], and in the area T=2 < x < ∞ the solution consists
of the right part of (4). There T is the period of the elliptic
function (10). The profile of this type of initial state is
shown in Fig. 6 (for φ0 ¼ 0.8). First, we consider a “static
initial state” (∂tφ0 ¼ 0), but later we take into account
some configurations with dynamics defined by

∂φ0ð0; xÞ
∂t ¼ φ0ðτ; xÞ − φ0ð0; xÞ

τ
¼ δφ0 ≠ 0:

A. Numerical solution of the equation of motion

We solve the partial differential equation (3) using a
convergent difference scheme and with nonfixed boundary
conditions, while derivatives are approximated by finite
differences. The steps are taken as h ¼ 0.04 (space step)
and τ ¼ 0.02 (time step), while the equation is solved from
t ¼ 0 to t ¼ 100. This choice of steps helps to optimize a
ratio accuracy of the obtained results and the duration of
computing. During the evolution a check of the conservation
of energy is performed by taking into account a flow of
energy from fixed boundaries. The initial states are compiled
with the use of the computer algebra systemMathematica 8.

B. Result for unstable vacuum φ= 0

The initial condition consists of two halves of the kink,
placed in�x0, and the unstable zero solutionφ ¼ 0 between
them.The energy increases linearlywith growingvalue ofx0.
Two parts in the evolution are observed. First, there is a
convergence of both halves of kink with velocity equal to the
speed of light. When the halves finally meet each other, two
processes alternate: a formation of loops and an emission of

FIG. 4. The dependence of the solution φelðxÞ on the parameter
φ0. The plot is for different φ0 from 0.1 to 0.9 with step 0.2. The
curves on the plot are ordered by the degree to which the
parameter φ0 grows.

FIG. 5. The dependence of the solution φelðxÞ on the parameter
φ0. The plot is for different φ0 from 0.991 to 0.999 with step
0.002. The curves on the plot are ordered by the degree to which
the parameter φ0 grows.

FIG. 6. The plot of the initial state, which is constructed with
the cut-and-match method. The dashed line shows the half-kinks
(4), while the solid line shows a solution in terms of elliptic
function φel for φ0 ¼ 0.8.
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waves from the kink (the so-called “wobbling kink”). The
obtained solution φsol is close to the linearized solution of
Eq. (3), where φsol ≈ φK þ δφ, which is very long lived and
is characterized by a small emission of waves. These waves
carry off some energy from the area of localization. Let us
explain this phenomenon. At small values of kðφ0Þ the
solution changes from φel ≈ snx to φ ≈ sin x. As the sin is a
periodic function, when 2x0 ≤ 2π the initial condition (with
loops) does not cause an excitation like an excitedmode of an
elliptic function, but instead an excitation like a high-
amplitude vibration of a kink. So, the evolution of the initial
state can be described qualitatively by

φsol ≈ tanh

�
xffiffiffi
2

p
��

1þ AðtÞ
cosh ðx= ffiffiffi

2
p Þ

�
;

AðtÞ ¼ A0 cosωt: ð11Þ
The evolution can be described by this equation as there are
two modes in the kink spectrum. One of them, which
correlates with Eq. (6), is responsible for small vibrations
across the solution.We have an idea that even if the observed
vibrations stop being small, they still can be described with a
periodic function like the cosωt [we take ω ¼ ffiffiffiffiffiffiffiffi

3=2
p

like in
Eq. (6)]. In Eq. (11) the parameter A0 is taken constant, but it
is not a constant in the numerical simulations because there is
a small emission from the area of localization of the solution.
Moreover, there is one precondition to describe quali-

tatively an obtained solution accurately by Eq. (11). The
function (11) equals zero in x ¼ 0 one time if A0 ≥ −1, and
three times if A0 < −1. Note that a quasiperiodic formation
of the loops with period equals≈2π; it is also one reason for
using the proposed phenomenological description. This
period correlates with cosωt,

T ¼ 2π

ω
≈ 2π; as ω ¼

ffiffiffi
3

2

r
≈ 1:

In [7], it is shown that considering the substitution of
φK þ δφ in Eq. (3) in the quadratic approximation by δφ
gives us an asymptotically stable solution. Its large ampli-
tude vibrations are characterized by strong suppression. In
Figs. 7 and 8 two parts of the evolution and a comparison
with the analytical solution (11) are shown for two chosen
moments of time.
For high values of x0 the observed loops in the evolution

are characterized by not-small amplitudes. In this case the

final states of evolution can be identify with the elliptic
solution φel between two halves of the kink.

C. Result for an elliptic function with 0 < φ0 < 1

1. Dynamical initial state (δφ0 < 0),
configuration ð−1;φ0; − 1Þ

In previous works a long-living configuration has been
found, the so-called bion [1]. However, an analytical
description of the observed process has not been given.
In our work we take an initial condition ð−1;φ0;−1Þ,
composed of one half-kink K and one half-antikink K as
well as a half of period of φel with fixed φ0. This initial state
is dynamical (φ0 þ δφ0, δφ0 < 0) and is shown in Fig. 9.
We obtain a long-living state with oscillation of the
amplitude of φ at x ¼ 0 (see Fig. 10). The observing
oscillations in terms of an amplitude φ0ðtÞ are called a

FIG. 7. The profile of φðt; xÞ at t ¼ 6 (left) and mapped plot of
the solution (11) for A0 ¼ 1.7 at t ¼ 2 (right), x0 ¼ 2.

FIG. 8. The profile of φðt; xÞ at t ¼ 9 (left) and mapped plot of
the solution (11) for A0 ¼ 1.7 at t ¼ 4.3 (right), x0 ¼ 2.

FIG. 9. The profile of φðt; xÞ at t ¼ 0, with parameters φ0 ¼
0.8 and δφ ¼ −0.001.

FIG. 10. The profile of φðt; 0Þ, with parameters φ0 ¼ 0.8 and
δφ ¼ −0.001.
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regular bion. They also can be a new description of early
found bion [1].

2. Statistic initial state (δφ0 = 0), configuration
ð−1;φ0;0; − φ0;1Þ

We take an initial condition ð−1;φ0; 0;−φ0; 1Þ for
φ0 > 0.7 (for smoother stitching), while the observed
evolution does not qualitatively depend on φ0. We also
show the results for the case φ0 ¼ 0.8.
We find two phases in the evolution: the external phase

(a loop of high-amplitude formation) and the internal phase
(a highly deformed kink). After some time the loops
continue forming, but with smaller amplitude. After 4–5
cycles the external phase ends and the solution starts to
resemble a long-living excited kink with the wave packet
emission from the area of localization. This phenomenon is
called a wobbling kink. This state is a final step of the
evolution, which is observed for other variants of initial
states. The profiles of φðt; xÞ for φ0 ¼ 0.8 at some
particular time are shown in Figs. 11 and 12.

3. Dynamical initial state (δφ0 < 0), configuration
ð−1;φ0;0; − φ0;1Þ

An addition of δφ0 < 0 to the initial state of the
configuration ð−1;φ0; 0;−φ0; 1Þ leads to a faster reduction
of the amplitude. At low values of jδφ0j, where δφ0 < 0,
the loops arise. For the first time during the evolution, the
kink-antikink pairs KK turn up. This phenomenon has a
threshold. The increase of jδφ0j gives us a qualitatively new
type of the evolution (−0.0013 < δφ0 < −0.0044 for
φ0 ¼ 0.9). In the system, we achieve

K → KKK; ð12Þ
where in the center of the configuration a topological number
is changing. The initial state forφ0 ¼ 0.9 is shown in Fig. 13.
The transition (12) is shown in Fig. 14 for δφ0 ¼ −0.0040.
The next increasing of jδφ0j (−0.0045 ≤ δφ0 < … for
φ0 ¼ 0.9) gives us the next transition,

K → KKKKK: ð13Þ
In this casewe observe a conservation of topological number
in the center. These transitions are observed for different φ0.

FIG. 11. The profiles of φðt; xÞ at t ¼ 0 (left) and at t ¼ 9
(right), with parameters φ0 ¼ 0.8 and δφ0 ¼ 0.

FIG. 12. The profiles of φðt; xÞ at t ¼ 12 (left) and at t ¼ 14
(right), with parameters φ0 ¼ 0.8 and δφ0 ¼ 0.

FIG. 14. The profile of φðt; xÞ at t ¼ 39 and the formation of
(12), with parameters φ0 ¼ 0.9 and δφ0 ¼ −0.0040. The arrows
indicate the direction of movement of the formed kinks.

FIG. 13. The profile of φðt; xÞ at t ¼ 0, with parameter
φ0 ¼ 0.9.

FIG. 15. The profile of φðt; xÞ at t ¼ 41 and the formation of
(13), with parameters φ0 ¼ 0.9 and δφ0 ¼ −0.0045. The arrows
indicate the direction of movement of the formed (anti)kinks.
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The transition (13) is shown in Fig. 15 for δφ0 ¼ −0.0045.
We expect that with increasing value of jδφ0j, similar
qualitative changes will be observed in the evolution of
the initial state.

III. CONCLUSIONS

In this work we study new long-living solutions in the
classical λφ4 field theory model in (1þ 1) dimensions.
We use the cut-and-match method for forming initial

states for numerical simulations. Using this method gives
us new long-living solutions both for vacuum solutions and
solutions with nontrivial topological number.
In previous work [13], a long-living configuration was

observed in the kink-antikink scattering and was called a
bion. In current work the cut-and-match method gives us an
opportunity to describe a bion formation in a new quali-
tative way.
Furthermore, the highly excited states of the kink are

observed in a sector with nontrivial topological number.
We find a number of ways to reset this energy from this
state. Except for emission of wave packet with small
amplitude, firstly, an arising of kink-antikink pairs has
been observed. This phenomenon can be perceived as a
way to reset the energy. At the same time there is a change
of the topological number of the kink located in the
central zone in the area. At lower excitation energies
there is a long-living excited vibrational state of the kink.

The phenomenon called the wobbling kink is a final state
for all considered initial conditions. After some time the
excited state of a kink turns to a linearized one, which was
formerly known as a discrete mode of exciting kink.
Despite the large number of new results, the cut-and-

match method has a number of remaining issues in its
application to the λφ4 model. In particular, a more detailed
study of the dynamic of the initial conditions for the case of
δφ0 < 0 will be interesting, because in the last case there is
the phenomenon of the birth of new kink-antikink pairs.
In conclusion, we note that this research could be useful

in different area of physics and, in particular, could be
implemented in the description of the early stages of the
evolution of the Universe.
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