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Supplement

1. Quantum speed limit and relation between orthogonality catastrophe and adiabaticity

In contrast to the main text, in the present section we use time, not λ, to parameterize the instantaneous ground state of
the system, Φt, and the evolving state of the system, Ψt. The former is a solution of the Schrodinger’s stationary equation

Ĥλ(t) Φt = Eλ(t) Φt, (S1)

while the latter satisfies the Schrodinger’s equation

i
∂

∂t
Ψt = Ĥλ(t) Ψt (S2)

with the initial condition Ψ0 = Φ0. Here λ(t) can be an arbitrary smooth function of time. We will also slightly abuse the
notations and writeR(t) ≡ R (λ(t)).

1.1. Relation between orthogonality catastrophe and adiabaticity

Here we prove the inequality (8) of the main text which relates the orthogonality overlap C(λ) with the adiabatic fidelity
F(λ). We rewrite it as follows:

|F (λ(t))− C (λ(t)) | ≤ R(t) ≡
∫ t

0

√
〈Ψ0|Ĥ2

λ(t′)|Ψ0〉 − 〈Ψ0|Ĥλ(t′)|Ψ0〉2 dt′. (S3)

Here the integration is performed over the path in the parameter space parameterised by time, and t corresponds to the end
point λ of this path.

In order to prove the bound (S3) we employ the quantum speed limit (QSL) in the following form:

D(Ψ0,Ψt) ≤
2

π
R(t), (S4)

where D defined by Eq. (9) of the main text is a distance on the Hilbert space known as Bures angle, quantum angle or
Fubini-Study metric. The QSL (S4) is a direct consequence of a more general result by Pfeifer [1, 2]. A detailed derivation
of eq. (S4) can be found in the next subsection.

Combining the QSL (S4) with the triangle inequality

|D(Φt,Ψ0)−D(Φt,Ψt)| ≤ D(Ψ0,Ψt) (S5)

and taking into account that Ψ0 = Φ0, one gets

|D(Φt,Φ0)−D(Φt,Ψt)| ≤
2

π
R(t). (S6)

Finally, one obtains the inequality (S3) from the inequality (S6) by observing that

|x2 − y2| ≤ | arccosx− arccos y| for all |x| ≤ 1, |y| ≤ 1. (S7)

One may wonder what is the reason for using the Bures angle distance instead of e.g. a more conventional trace distance,

Dtr(Ψ,Φ) ≡
√

1− |〈Φ|Ψ〉|2 . It is easy to see that the trace distance is bounded by the Bures angle, Dtr(Ψ,Φ) <

(π/2)D(Ψ,Φ), and thus eq. (S4) entails the following (weaker) version of the QSL,

Dtr(Ψ0,Ψt) ≤ R(t). (S8)

However, if we try to move forward with this QSL instead of eq. (S4), we get an extra factor 2 in the r.h.s. of the bound
(S3). Let us show this. Using (S8) and triangle inequality for the trace distance, one obtains an analog of (S6):

|Dtr(Φt,Φ0)−Dtr(Φt,Ψt)| ≤ R(t). (S9)

Now one has to relate the l.h.s. of this inequality with the l.h.s. of inequality (S3). This amounts to relating |
√

1− x2 −√
1− y2| with |x2 − y2|, and at this point extra 2 emerges. This is because one can only guarantee that

|x2 − y2| ≤ 2|
√

1− x2 −
√

1− y2|, (S10)

compare to eq. (S7).
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1.2. Quantum speed limit

Here we derive the QSL limit (S4) from a result by Pfeifer [1, 2] which reads

sin∗ (arcsin |〈F |Ψ0〉| − R(t)) ≤ |〈F |Ψt〉| ≤ sin∗ (arcsin |〈F |Ψ0〉|+R(t)) . (S11)

Here F is an arbitrary auxiliary state and

sin∗ x ≡

 0, x < 0,
sinx, 0 ≤ x ≤ π/2,
1, x > π/2.

(S12)

Noting that arcsinx+ arccosx = π/2 and sin∗(π/2− x) = cos∗ x with

cos∗ x ≡

 1, x < 0,
cosx, 0 ≤ x ≤ π/2,
0, x > π/2,

(S13)

one can rewrite (S11) as

cos∗ (arccos |〈F |Ψ0〉|+R(t)) ≤ |〈F |Ψt〉| ≤ cos∗ (arccos |〈F |Ψ0〉| − R(t)) . (S14)

Taking into account that

arccos(cos∗ x) =

 0, x < 0,
x, 0 ≤ x ≤ π/2,
π/2, x > π/2,

(S15)

one rewrites eq. (S14) in terms of the Bures angle:

max{D(F,Ψ0)−
2

π
R(t), 0} ≤ D(F,Ψt) ≤ min{D(F,Ψ0) +

2

π
R(t), 1}. (S16)

Employing obvious relations min{x, y} ≤ x and max{x, y} ≥ x one reduces (S16) to a more compact, though slightly
more rough inequality,

|D(F,Ψt)−D(F,Ψ0)| ≤
2

π
R(t). (S17)

Choosing F = Ψ0 one obtains the QSL (S4).
It should be noted that another choice, F = Φt, directly reduces the inequality (S17) (along with the condition Ψ0 =

Φ0) to the inequality (S6). Such a direct route which apparently dispenses with the triangle inequality is possible because
Pfeifer’s rather sophisticated result has, in fact, a more broad scope than elementary versions of the quantum speed limit
and contains the triangle inequality built in.

2. Rice-Mele model

2.1. Eigenstates and eigenenergies

The transformation

aj =
1√
N

∑
k

eikjak, bj =
1√
N

∑
k

eikjbk, k =
2π

N
l, l = −N

2
+ 1,−N

2
+ 2, ...,

N

2
, (S18)

where N is assumed to be even, allows one to represent the Rice-Mele Hamiltonian, eq. (12) in the main text, as a sum of
N commuting terms,

ĤRM =
∑
k

(a†k b
†
k)

(
∆ −(J + U)− (J − U)eik

−(J + U)− (J − U)e−ik −∆

)(
ak
bk

)
. (S19)

Observe that nk ≡ a†kak+b
†
kbk is conserved for each k. We assume half-filling, i.e. that the total number of particles equals

N . In this case the ground state of the Hamiltonian for any values of (J, U,∆) is an eigenstate of nk with the eigenvalue
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equal to 1, and this is maintained throughout the evolution. Restricting the Hamiltonian (S19) to the corresponding
subspace one obtains an effective Hamiltonian of N noninteracting spins,

ĤRM =
∑
k

pppk · σσσk, pppk =

 −(J + U)− (J − U) cos k
(J − U) sin k

∆

 , (S20)

where σσσ is a vector consisting of three Pauli matrices. Each two-level Hamiltonian Ĥk ≡ pppk ·σσσk has two eigenstates |χ±k 〉
and eigenenergies ε±k ,

ρ±k ≡ |χ±k 〉〈χ±k | =
1

2
(1± 1

|pppk|
pppk · σσσk), ε±k = ±

√
2(J2 + U2) + ∆2 + 2(J2 − U2) cos k. (S21)

The ground state of the whole system is the product of N single-spin eigenstates, |Φ〉 =
∏
k

⊗|χ−k 〉 while the ground state

energy is the sum of corresponding eigenenergies, E =
∑
k

ε−k .

2.2. Orthogonality catastrophe

Here we consider the orthogonality catastrophe induced by changing the parameters of the Hamiltonian (J, U,∆) along
some trajectory parameterized by λ. This is to say that (J, U,∆) and thus vectors pppk are functions of λ. In contrast to the
main text, we do not employ the convention that λ = 0 at t = 0.

The orthogonality overlap for a single spin reads

ck(λ
′, λ) ≡ |〈χ−k (λ′)|χ−k (λ)〉|2 = tr(ρ−k (λ)ρ−k (λ′)) =

1

2
(1 +

pppk(λ) · pppk(λ′)
|pppk(λ)| |pppk(λ′)|

). (S22)

The orthogonality overlap for the whole many-body system is given by

C(λ′, λ;N) ≡ |〈Φλ′ |Φλ〉|2 = exp

(
−
∑
k

log
1

ck

)
. (S23)

Further,

CN =
∑
k

ck with ck ≡ −
1

2

(
∂2

∂λ2
log ck(λ

′, λ)

)∣∣∣∣
λ′=λ

=
1

4

(
∂λpppk · ∂λpppk
|pppk|2

− (pppk · ∂λpppk)2

|pppk|4

)
. (S24)

This equation along with eq. (S20) enables one to calculate CN for any point of any trajectory in the parameter space
of the Rice-Mele model. For example, for J, U = const, ∆ = λER one obtains

ck =
1

8

1

J2 + U2 + (J2 − U2) cos k
(S25)

and

CN =
NE2

R

16JU
. (S26)

2.3. Quantum uncertainty of the driving potential

To deal with general trajectories we define the driving term as

V̂ ≡ ∂λĤλ, (S27)

which is consistent with the definition adopted in the main text. For the Rice-Mele model

V̂ =
∑
k

∂λpppk · σσσk. (S28)
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FIG. 1. Evolution of the ground state fidelity in the parameter space of the Hamiltonian (S19) for N = 10 particles. The fidelity F is
shown as a solid red curve, while the overlap function C is shown as a solid blue curve. The shaded region is the one, which has to
contain the F(λ) curve due to the inequality (S3). For N = 10 the inequality (S3) does not impose a meaningful upper bound on the
fidelity, and therefore has nothing to say about the relationship between the fidelity and the orthogonality catastrophe. The parameters
used read J = 0.4ER, U = 0.4ER and ∆ = λER with λ = Γt and Γ = 0.7ER. For the recoil energy ER = 6.4 ms−1 these coincide
with the parameters of the effective Hamiltonian describing the optical lattice in the experiment Ref. [3] at the ∆ = 0 point of the
pumping cycle.

Since the ground state is of the product form, the quantum uncertainty of V̂ is expressed through individual uncertainties
of states of single spins:

δV 2 =
∑
k

(
tr
(
ρ−k (∂λpppk · σσσk)2

)
−
(
tr
(
ρ−k ∂λpppk · σσσk

))2)
=
∑
k

(
|∂λpppk|2 −

(pppk · ∂λpppk)2

|pppk|2

)
. (S29)

This equation along with eq. (S20) allows one to calculate δVN for any point of any trajectory in the parameter space of
the Rice-Mele model. For example, for J, U = const, ∆ = λER one gets

δV RM
N =

√
NER. (S30)

With the knowledge of CN and δVN one can make practical use of the inequality (8) of the main text, or, alternatively,
inequality (S3). For a fixed Γ the r.h.s. of this inequality inevitably diminishes with growing N , leading to F(λ) ' C(λ),
as illustrated in Fig. 2 (a) of the main text. The opposite situation when the r.h.s. of (S3) is large and thus the inequality
(S3) is inconclusive is illustrated in Fig. 1.

2.4. Current and transferred charge

The current flowing between the l’th and (l + 1)’th elementary cell reads

ĵl = i(J − U)
N∑
l=1

(b†l+1al − a
†
l bl+1). (S31)

Due to translation invariance of the Hamiltonian and the initial state the current is the same for all cells. It is convenient to
define an average current,

ĵ ≡ 1

N

N∑
l=0

ĵl, (S32)

and then express it in terms of ak, bk:

ĵ =
i

N

∑
k

(a†k b
†
k)

(
0 −(J − U)eik

(J − U)e−ik 0

)(
ak
bk

)
. (S33)

In terms of spin variables the current can be written as

ĵ =
1

N

∑
k

ĵk with ĵk = jjjk · σσσk, jjjk =

 (J − U) sin k
(J − U) cos k

0

 , (S34)
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FIG. 2. Fidelity (solid curves) and pumped charge (dashed curves) after a single cycle in the Rice-Mele realisation of the Thouless
pump, eq. (S19). The trajectory of the cycle is given by ∆ = (J/2) sinλ, U = (J/2) cosλ with λ = Γt. The system is initiated in
equilibrium. Red and blue curves correspond to N = 100 and N = 1000 fermions in a lattice, respectively. One can see that the charge
transferred in a single cycle hardly depends on the number of particles for N & 100 while the fidelity decays more rapidly for larger N .

The pumped charge is the integral of the quantum average of this current over the elapsed time:

Q(t) =

∫ t

0

dt′ 〈Ψt′ |ĵ|Ψt′〉. (S35)

Thanks to eq. (S20) and factorized initial condition Ψ0 = Φ0 =
∏
k

χ−k , eq. (S35) can be written as

Q(t) =

∫ t

0

dt′
∏
k

〈χk(t′)|ĵk|χk(t′)〉, (S36)

where χk(t) is found from the Schrodinger equation

i ∂t χk(t) = (pppk(t) · σσσk)χk(t). (S37)

In the context of Thouless pumping we enquire how much charge is transferred per cycle immediately after the first
cycle is over, and in the steady state regime. To answer the former question we calculate Q(t) by solving the Schrodinger
equations (S37) numerically. The result is illustrated in Fig. 2. The latter question is addressed by counting the number of
right- and left- moving excitations produced during the cycle. To this end we define the average population of the excited
state with the quasimomentum k,

wk = 〈χk(T )|1
2

(1 + pppk(T ) · σσσk)|χk(T )〉. (S38)

Remind that χk(T ) should be found numerically from the Schrodinger equation (S37). Taking into account that pppk(T ) =
pppk(0) this can be rewritten with the use of eq. (S21) as

wk = |〈χ+
k |χk(T )〉|2. (S39)

The sign of the group velocity of the excitations, ∂(ε+k − ε−k )/∂k, coincides with the sign of k for −π < k < π, as is
clear from eq. (S21). Therefore the charge transferred from left to right per cycle in the steady state, ∆Q, reads

∆Q =
∑

0<k<π

wk −
∑

−π<k<0

wk. (S40)
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