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Abstract In earlier work we introduced two systems for nonstandard analysis, one
based on classical and one based on intuitionistic logic; these systems were conserva-
tive extensions of first-order Peano and Heyting arithmetic, respectively. In this paper
we study how adding the principle of countable saturation to these systems affects
their proof-theoretic strength. We will show that adding countable saturation to our
intuitionistic system does not increase its proof-theoretic strength, while adding it to
the classical system increases the strength from first- to full second-order arithmetic.
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1 Introduction

InRef. [15]we introduced two systems for nonstandard analysis, one based on classical
logic and one on intuitionistic logic. Our aim was to have systems in which one
can formalise large parts of nonstandard analysis, which are conservative over well-
established standard systems andwhich allowone to extract computational information
from nonstandard proofs.

We analysed various nonstandard principles, but an important principle which we
did not discuss in any great detail was the principle of countable saturation:

CSAT : ∀stn0 ∃xσ Φ(n, x) → ∃ f 0→σ ∀stn0 Φ(n, f (n)).

One reason why this principle is important is that it is involved in the construction of
Loeb measures, an often used technique in nonstandard analysis. What we did say is
that the principle can be proved in the intuitionistic system introduced in [15], while
it adds greatly to the proof-theoretic strength of the classical system. The purpose of
this short paper is to prove the first claim and to show that the addition of countable
saturation to our classical system gives it the proof-theoretic strength of full second-
order arithmetic. To show the latter we will give an interpretation of full second-order
arithmetic in our classical system extended with countable saturation and rely on
earlier work of Escardó and Oliva [4] to interpret countable saturation using Spector’s
bar recursion.

2 Formalities

In this paperwewill workwith extensions of the systemE-HAω of extensionalHeyting
arithmetic in all finite types. There are several variants of this system differing, for
example, in the way they treat equality. For our purposes decidability of the atomic
formulas is not important, so in this respect all variants are equally good. But for the
reader who would like to see things fixed we could say we work with a version in
which only equality of natural numbers is primitive and equality at higher types is
defined extensionally. Also, we could have product types as a primitive notion or not;
both options have their advantages and disadvantages, but for us it turns out to be more
convenient to not have them as a primitive notion, so that we end up with the system
E-HAω as formalised in [8, Section 3.3] (this is the system called E-HAω

0 in [12] and
E-HAω→ in [13]). The price we have to pay, however, is that we often end up working
with tuples of terms and variables of different types and we will have to adopt some
conventions for how these ought to be handled. Fortunately, there are some standard
conventions here which we will follow (see [8,12] or [15]).

What will be important for us, is that E-HAω is able to handle finite sequences of
objects of the same type (not to be confused with the metalinguistic notion of tuple
from the previous paragraph). There are at least two ways of doing this: we could
extend E-HAω with types σ ∗ for finite sequences of objects of type σ , add constants
for the empty sequence and the operation of prepending an element to a finite sequence,
as well as a list recursor satisfying the expected equations (as in [15]). Alternatively,
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The strength of countable saturation 701

we could exploit the fact that one can code finite sequences of objects of type σ as a
single object of type σ in such a way that every object of type σ codes a finite sequence
(as in [14]). Moreover, the standard operations on sequences (such as extracting their
length or concatenating them) are given by terms in Gödel’s T . For the purposes of
this paper, it does not really matter what we do. But whether it is a genuine new type
or just syntactic sugar, we will use the notation σ ∗ for finite sequences of objects of
type σ .

In fact, for us finite sequences are really stand-ins for finite sets. For this reason
we will often use set-theoretic notation, such as ∅ for the empty sequence, ∪ for
concatenation and {x} for the finite sequence of length 1 whose sole component is
x . And for x of type σ and y of type σ ∗ we will write x ∈ y if x equals one of the
components of the sequence y.

It remains to define the system E-HAω
st from [15]. The language of E-HAω

st is
obtained from that of E-HAω by adding unary predicates stσ as well as two new
quantifiers ∀stxσ and ∃stxσ for every type σ ∈ T . Formulas in the old language of
E-HAω (so those not containing these new symbols) we will call internal; in contrast,
general formulas from E-HAω

st will be called external. We will adopt the following

Important convention: We follow Nelson [10] in using small Greek letters
to denote internal formulas and capital Greek letters to denote formulas which
can be external.

The system E-HAω
st is obtained by adding to E-HAω the axioms EQ, Tst and IAst,

where

− EQ stands for the defining axioms of the external quantifiers:

∀stx Φ(x) ↔ ∀x ( st(x) → Φ(x) ),

∃stx Φ(x) ↔ ∃x ( st(x) ∧ Φ(x) ).

− Tst consists of:
1. The axioms st(x) ∧ x = y → st(y),
2. The axiom st(t) for each closed term t in T ,
3. The axioms st( f ) ∧ st(x) → st( f x).

− IAst is the external induction axiom:

IAst : (
Φ(0) ∧ ∀stx0(Φ(x) → Φ(x + 1))

) → ∀stx0Φ(x).

In EQ and IAst, the expression Φ(x) is an arbitrary external formula in the language
of E-HAω

st, possibly with additional free variables. Besides external induction in the
form of IAst, the system E-HAω

st also contains the internal induction axiom

ϕ(0) ∧ ∀x0 (ϕ(x) → ϕ(x + 1)) → ∀x0 ϕ(x),

simply because this is part of E-HAω. But here it is to be understood that this principle
applies to internal formulas only. Of course, the laws of intuitionistic logic apply to
all formulas of E-HAω

st.
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702 B. van den Berg et al.

It is easy to see that E-HAω
st is a conservative extension of E-HAω: one gets an

interpretation of E-HAω
st in E-HA

ω by declaring everything to be standard. For more
information on E-HAω

st , we refer to [15].

3 Countable saturation is weak, intuitionistically

The purpose of this section is to show thatCSAT does not increase the proof-theoretic
strength of the intuitionistic systems for nonstandard arithmetic considered in [15].
Our main tool for showing this is the Dst-interpretation from [15]. We recall its salient
features.

The Dst-interpretation associates to every formulaΦ(a) in the language of E-HAω
st

a new formula

Φ(a)Dst :≡ ∃stx ∀sty ϕDst(x, y, a)

where all variables in the tuple x are of sequence type. We do this by induction on the
structure of Φ(a). If Φ(a) is an atomic formula, then we put

(i) ϕ(a)Dst :≡ ϕDst(a) :≡ ϕ(a) if Φ(a) is internal atomic formula ϕ(a),
(ii) stσ (uσ )Dst :≡ ∃stxσ ∗

u ∈σ x .

If Φ(a)Dst ≡ ∃stx∀sty ϕDst(x, y, a) and Ψ (b)Dst ≡ ∃stu∀stv ψDst(u, v, b), then

(iii) (Φ(a) ∧ Ψ (b))Dst :≡ ∃stx, u∀sty, v
(
ϕDst(x, y, a) ∧ ψDst(u, v, b)

)
,

(iv) (Φ(a) ∨ Ψ (b))Dst :≡ ∃stx, u∀sty, v
(
ϕDst(x, y, a) ∨ ψDst(u, v, b)

)
,

(v) (Φ(a) → Ψ (b))Dst :≡
∃stU , Y∀stx, v

(∀y ∈ Y [x, v] ϕDst(x, y, a) → ψDst(U [x], v, b)
)
.

In the last line we have used Y [x] as an abbreviation for

Y [x] :=
⋃

y∈Y

y(x).

This can be regarded as a new application operation, whose associated λ-abstraction
is given by

Λx .t (x) := {λx .t (x)}

(for then (Λx .t (x))[s] = t (s)).
It remains to consider the quantifiers. For that, assume

Φ(z, a)Dst ≡ ∃stx∀sty ϕDst(x, y, z, a),

with the free variable z not occuring among the a. Then

(vi) (∀z Φ(z, a))Dst :≡ ∃stx∀sty∀z ϕDst(x, y, z, a),

(vii) (∃z Φ(z, a))Dst :≡ ∃stx∀sty∃z∀y′ ∈ y ϕDst(x, y′, z, a),
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The strength of countable saturation 703

(viii) (∀stz Φ(z, a))Dst :≡ ∃stX∀stz, y ϕDst(X [z], y, z, a),

(ix) (∃stz Φ(z, a))Dst :≡ ∃stx, z ∀sty ∃z′ ∈ z ∀y′ ∈ y ϕDst(x, y′, z′, a).

We will write H for E-HAω
st together with the schema Φ ↔ ΦDst , where Φ can be

any external formula.

Remark 1 Alternatively, we could define H as

H := E-HAω
st + I + NCR + HAC + HIP∀st + HGMPst.

See [15] for a definition of these principles and a proof of this fact.

The main result of [15] on H and the Dst-interpretation was:

Theorem 1 If H � Φ and

ΦDst :≡ ∃stx ∀sty ϕDst(x, y),

then there is a sequence t of terms from Gödel’s T such that

E-HAω � ∀y ϕD(t, y).

Since ϕDst ≡ ϕ for internal ϕ, this implies that H is a conservative extension of
E-HAω.

The aim of this section is to prove that H � CSAT. Before we can do that, we first
need to observe that E-HAω proves a version of the “finite axiom of choice”.

Lemma 1 E-HAω proves that

∀s0
∗ (∀n ∈ s ∃xσ ψ(n, x) → ∃ f 0→σ ∀n ∈ s ψ(n, f (n))

)
.

Proof By induction on the length |s| of the sequence s. Assume

∀n ∈ s ∃xσ ψ(n, x).

1. If |s| = 0, then any function f will do.
2. If |s| = k + 1, then write si for the i th component of s (where s0 is the first

and sk is the last) and t = 〈s0, . . . , sk−1〉 for the sequence obtained from s by
deleting the last entry. By induction hypothesis, there is a function f0 such that
∀n ∈ t ψ(n, f0(n)). There are two possibilities:
(a) There is j < k such that sk = s j . Then f0 also works for s.
(b) For all j < k we have sk �= s j . Then choose x0 such that ψ(sk, x0) and let

f (n) =
{

x0 if n = sk,

f0(n) else.

��
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704 B. van den Berg et al.

Note that the previous lemma used that

E-HAω � ∃e0→(0→0) ∀x0, y0 (exy = 0 ↔ x = y).

This is necessary in view of the following observation:

Lemma 2 In E-HAω the finite axiom of choice for sequences of objects of type σ

∀sσ ∗ (∀x ∈ s ∃yτ ψ(x, y) → ∃ f σ→τ ∀x ∈ s ψ(x, f (x))
)

is equivalent to ∃eσ→(σ→0) ∀x0, y0(exy = 0 ↔ x = y).

Proof If there is a functional of type σ → (σ → 0) deciding equality of objects of
type σ , then the finite axiom of choice for sequences of objects of type σ can be argued
for as in Lemma 1. Conversely, suppose that this finite axiom of choice holds and let a
and b be two objects of type σ and s be the sequence 〈a, b〉. Then ∀x ∈ s ∃n0(x = sn),
so by the finite axiom of choice we have a function f : σ → 0 such that

∀x ∈ s x = s f (x).

There is now a functional e deciding the equality of f (a) and f (b), as these are
natural numbers. But this also allows us to decide the equality of a and b, for if
f (a) �= f (b), then a and b cannot be equal. If, on the other hand, f (a) = f (b), then
a = s f (a) = s f (b) = b. ��
Theorem 2 The theory H proves CSAT.

Proof Recall

CSAT ≡ ∀stn0 ∃xσ Φ(n, x) → ∃ f 0→σ ∀stn0 Φ(n, f (n)).

So suppose

(
Φ(n, x)

)Dst ≡ ∃stu ∀stv ϕ(u, v, n, x).

Then

(∀stn0 ∃x Φ(n, x)
)Dst ≡ ∃stU ∀stn0, w ∃x ∀v ∈ w ϕ(U [n], v, n, x)

and

( ∃ f ∀stn0 Φ(n, f (n))
)Dst ≡ ∃stŨ ∀sts, w̃ ∃ f ∀ñ0 ∈ s, ṽ ∈ w̃ ϕ(Ũ [ñ], ṽ, ñ, f (ñ)),

so CSATDst is

∃stŨ , N , W ∀stU , s, w̃
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The strength of countable saturation 705

(
∀n0 ∈ N [U , s, w̃] ∀w ∈ W [U , s, w̃] ∃x ∀v ∈ w ϕ(U [n], v, n, x)

→ ∃ f ∀ñ0 ∈ s, ṽ ∈ w̃ ϕ(Ũ [U , ñ], ṽ, ñ, f (ñ))
)
.

So if we put

Ũ := Λ U , ñ . U [ñ],
N := Λ U , s, ṽ . s,

W := Λ U , s, w̃ . {w̃},

then we have to show that E-HAω proves

∀n0 ∈ s ∃x ∀v ∈ w̃ ϕ(U [n], v, n, x) → ∃ f ∀ñ0 ∈ s, ṽ ∈ w̃ ϕ(U [ñ], ṽ, ñ, f (ñ)).

But this is an instance of the finite axiom of choice (for ψ(n0, x) := ∀v ∈
w̃ ϕ(U [n], v, n, x)), so this follows from Lemma 1. ��

4 Countable saturation is strong, classically

From now on we will only work with classical systems. So let E-PAω be E-HAω

together with the law of excluded middle and E-PAω
st be E-HAω

st together with the
law of excluded middle.

The aimof this section is to show that, in contrast towhat happens in the intuitionistic
case, the principle CSAT in combination with nonstandard principles is very strong
in a classical setting. In fact, we need only a simple form of overspill

OS0 : ∀stx0 ϕ(x) → ∃x0 (¬st(x) ∧ ϕ(x))

in combination with “CSAT for numbers”

CSAT0 : ∀stn0 ∃x0 Φ(n, x) → ∃ f 0→0 ∀stn0 Φ(n, f (n)).

to obtain a theory which has at least the strength of second-order arithmetic (in the
next section we will show that this lower bound is sharp). More precisely, we have:

Theorem 3 The theory E-PAω
st + OS0 + CSAT0 interprets full second-order arith-

metic.

Proof For convenience, let us writePA2 for full second-order classical arithmetic. The
idea is to interpret the natural numbers in PA2 as standard natural numbers in E-PAω

st
and the subsets of N in PA2 as arbitrary (possibly nonstandard) elements of type 0∗
in E-PAω

st, where n ∈ s is interpreted as: n equals one of the entries of the sequence s
(as before). Now:

1. E-PAω
st is a classical system, hence classical logic is interpreted.
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706 B. van den Berg et al.

2. The Peano axioms for standard natural numbers are part of E-PAω
st, so these are

interpreted as well.
3. Full induction is interpreted, because E-PAω

st includes the external induction
axiom.

4. So it remains to verify full comprehension. For that it suffices to check that for
every formula Φ(n0) in the language of E-PAω

st there is a sequence s0
∗
such that

∀stn (
n ∈ s ↔ Φ(n)

)
.

First of all, note that we have

∀stn ∃k (k = 0 ↔ Φ(n))

by classical logic, so by CSAT0 there is a function f 0→0 such that

∀stn ( f (n) = 0 ↔ Φ(n)).

It follows easily by external induction that

∀stk0 ∃s0
∗ ∀n ≤ k (n ∈ s ↔ f (n) = 0),

so OS0 gives us a sequence s such that for any standard n we have

n ∈ s ↔ f (n) = 0 ↔ Φ(n),

as desired.

��
Remark 2 From the discussion in Chapter 4 of [9] it seems that E-PAω

st + OS0 +
CSAT0 is a suitable framework for developing Nelson’s “radically elementary proba-
bility theory”. In this connection it is interesting to observe that theorems usingCSAT0,
whichNelson calls “the sequenceprinciple”, are starred in [9],while in [5] the sequence
principle is dropped altogether. Proof-theoretically this makes a lot of sense, because
while E-PAω

st + OS0 is conservative over E-PAω (see Theorem 4 below), the system
E-PAω

st + OS0 + CSAT0 has the strength of full second-order arithmetic.

5 The classical strength of countable saturation

From now on we will work in E-PAω
st extended with the principles

I : ∀stx ′ ∃y ∀x ∈ x ′ ϕ(x, y) → ∃y ∀stx ϕ(x, y) and

HACint : ∀stx ∃sty ϕ(x, y) → ∃stF ∀stx ∃y ∈ F(x) ϕ(x, y).

For convenience we will abbreviate this theory as P. Note that I impliesOS0 (see [15,
Proposition 3.3]), soP � OS0. The following theorem summarises themost important
facts that we established about P in [15]:
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The strength of countable saturation 707

Theorem 4 To any formula Φ in the language of E-PAω
st one can associate one of

the form

ΦSst :≡ ∀stx ∃sty ϕS(x, y),

in such a way that the following hold:

1. Φ and ΦSst are provably equivalent in P.
2. Whenever Φ is provable in P, there are terms t in Gödel’s T such that

E-PAω � ∀x ∃y ∈ t(x) ϕS(x, y).

3. ϕSst ≡ ϕ for internal formulas ϕ.

Hence P is a conservative extension of E-PAω.

The aim of this section is to prove that the strength of P extended with CSAT
is precisely that of full second-order arithmetic. As we have already shown that P
extendedwithCSAT has at least the strength of full second-order arithmetic, it suffices
to show that P + CSAT can be interpreted in a system which has the strength of full
second-order arithmetic. We do this by showing that the Sst-interpretation of CSAT
can be witnessed using Spector’s bar recursion [11], which has the strength of full
second-order arithmetic [1, p. 370]. In fact, recent work by Escardó and Oliva [4] has
shown that the Sst-interpretation of

ACst
0 : ∀stn0 ∃stxσ Φ(n, x) → ∃st f 0→σ ∀stn0Φ(n, f (n))

can be interpreted using bar recursion. So the following argument, which resembles
that in Section 5 in [10], suffices to establish that P + CSAT has the strength of full
second-order arithmetic:

Theorem 5 P � ACst
0 → CSAT.

Proof We work in P + ACst
0 and have to show that

∀stn0 ∃xσ Φ(n, x) → ∃ f 0→σ ∀stn0 Φ(n, f (n)).

In view of Theorem 4 it suffices to show this in case Φ(n, x) is of the form
∀stu ∃stv φ(u, v, n, x). To keep the notation simple we will ignore tuples and write
simply u and v. So, in short, it suffices to show that

∀stn0 ∃x ∀stu ∃stv ϕ(u, v, n, x) (1)

implies

∃ f ∀stn0 ∀stu ∃stv ϕ(u, v, n, f (n)). (2)
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708 B. van den Berg et al.

By HACint we get that (1) implies

∀stn0 ∃x ∃stV ∀stu ∃v ∈ V (u) ϕ(u, v, n, x),

which is logically equivalent to

∀stn0 ∃stV ∃x ∀stu ∃v ∈ V (u) ϕ(u, v, n, x),

which by ACst
0 implies that

∃stV ∀stn0 ∃x ∀stu ∃v ∈ V (n, u) ϕ(u, v, n, x). (1′)

On the other hand, (2) follows from

∃ f ∃stV ∀stn0, u ∃v ∈ V (n, u) ϕ(u, v, n, f (n)),

which logically equivalent to

∃stV ∃ f ∀stn0, u ∃v ∈ V (n, u) ϕ(u, v, n, f (n)).

By I, this follows from

∃stV ∀sts0∗
, t ∃ f ∀n ∈ s, u ∈ t ∃v ∈ V (n, u) ϕ(u, v, n, f (n)). (2′)

Hence it suffices to show that (1′) implies (2′).
Now to do so, let some standard V satisfy (1′), so that we have

∀stn0 ∃x ∀stu ∃v ∈ V (n, u) ϕ(u, v, n, x), (3)

and fix arbitrary but standard s0
∗
and t . From (3) and the fact that the components of

a standard finite sequence are again standard (see [15, Lemma 2.11]) it follows that

∀n ∈ s ∃x ∀u ∈ t ∃v ∈ V (n, u) ϕ(u, v, n, x)

which by Lemma 1 implies that

∃ f ∀n ∈ s, u ∈ t ∃v ∈ V (n, u) ϕ(u, v, n, f (n)),

as desired. ��
Remark 3 In [14] it is shown that the principle that we obtain by restricting ACst

0 to
internal formulas only

ACint
0 : ∀stn0 ∃stxσ ϕ(n, x) → ∃st f 0→σ ∀stn0 ϕ(n, f n)

can be interpreted using aweak form of bar recursion (for binary trees). In the presence
of this principle the implication in the previous theorem can be reversed, that is:
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The strength of countable saturation 709

Proposition 1 P � CSAT ∧ ACint
0 → ACst

0 .

Proof We work in P + CSAT + ACint
0 and need to prove

∀stn0 ∃stxσ Φ(n, x) → ∃st f 0→σ ∀stn0Φ(n, f (n)).

So assume ∀stn0 ∃stxσ Φ(n, x), or, in other words,

∀stn0 ∃xσ (st(x) ∧ Φ(n, x)).

Then it follows fromCSAT that there is a (not necessarily standard) function g : 0 → σ

such that
∀stn0 (st(g(n)) ∧ Φ(n, g(n))). (4)

In particular,

∀stn0 ∃stxσ (x = g(n)),

so by ACint
0 there is a standard function f : 0 → σ such that

∀stn0 f (n) = g(n).

But then it follows from (4) that

∀stn0 Φ(n, f (n)),

as desired. ��
So, over P, the principle ACst

0 is equivalent to the conjunction of ACint
0 and CSAT.

Remark 4 Wehave shown thatP+CSAT can be interpreted inE-PAω +BR, whereBR
stands for Spector’s bar recursion, which has the strength of second-order arithmetic.
We could also add countable choice

∀n0 ∃σ x ϕ(n, x) → ∃F0→σ ∀n0 ϕ(n, F(n))

to the interpreting system and still get a system with the strength of second-order
arithmetic. If we do this, we can also interpret transfer with numerical parameters, by
which we mean

NP − TP∀ : ∀stt
(
∀stx ϕ(x, t) → ∀x ϕ(x, t)

)
,

where the only free variables which are allowed to occur in ϕ are x and t , and all
variables in t are of type 0. (See Theorem 3.3 andRemark 3.4 in [16].) This strengthens
earlier results from [6].
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710 B. van den Berg et al.

6 Conclusion

We have shown that countable saturation is a weak principle in the intuitionistic con-
text, and is even provable in the intuitionistic nonstandard system we introduced in
[15]. It does however add considerably to the strength of the classical systems we
considered there. Indeed, by making heavy use of earlier work of Escardó and Oliva
we could calibrate its precise strength as that of full second-order arithmetic. This
confirms a pattern first observed by Henson et al. [6]: also in their work countable
saturation had the effect of making their systems, which originally had the strength of
arithmetic, as strong as full second-order arithmetic. Their work in [7] also suggests
that the full saturation principle

SAT :≡ ∀stxσ ∃yτ Φ(x, y) → ∃ f σ→τ ∀stxσ Φ(x, f (x))

should make the classical systems we considered as strong as full higher-order arith-
metic. It would be interesting to see if that is true (the work of Awodey and Eliasson
might be useful here [2,3]).

It is also unclear to us what the strength of SAT in the intuitionistic context is. Had
we built H on top of the intensional system I-HAω (see [12,13]) instead of E-HAω

we could again have proved it in H by the argument in Theorem 2 using Lemma 2.
But as we have based H on E-HAω, we do not know whether SAT is provable in H or
whether H + SAT is a conservative extension of E-HAω.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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