UNIVERSITY OF AMSTERDAM
X

UvA-DARE (Digital Academic Repository)

Dynamic Information Aggregation: Learning from the Past

Huo, Z.; Pedroni, M.

DOI
10.2139/ssrn.3687529

Publication date
2020

Document Version
Final published version

Link to publication

Citation for published version (APA):
Huo, Z., & Pedroni, M. (2020). Dynamic Information Aggregation: Learning from the Past.
SSRN. https://doi.org/10.2139/ssrn.3687529

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

UVA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date:09 Mar 2023


https://doi.org/10.2139/ssrn.3687529
https://dare.uva.nl/personal/pure/en/publications/dynamic-information-aggregation-learning-from-the-past(6776f17f-a280-42b4-8f98-5166d940166a).html
https://doi.org/10.2139/ssrn.3687529

Dynamic Information Aggregation: Learning from the Past*

Zhen Huo Marcelo Pedroni
Yale University University of Amsterdam
August, 2020
Abstract

In an environment with dispersed information, how much can agents learn from past endoge-
nous aggregate outcomes such as prices or output? We show that, in a rational expectations
equilibrium, two possible regimes can arise endogenously: a perfect revealing regime and a con-
founding regime. The economic fundamental can be perfectly inferred in the former but is only
partially revealed in the latter. The confounding regime arises only when general equilibrium
feedback effects are strong enough. Then, even when the past aggregate outcomes are perfectly
observed, the effects of informational frictions are persistent over time. Furthermore, in the con-
founding regime, the aggregate outcomes do not permit a finite-state representation, and they
display an initial underreaction relative to their perfect information counterparts followed by a
delayed overreaction. In a standard New Keynesian model, we show that the confounding regime

is more likely to arise under a dovish monetary policy rule.

Keywords: Information Aggregation, Dispersed Information, Monetary Policy
JEL classifications: D8, E3

*Huo: Yale University, 28 Hillhouse Ave, New Haven, CT, 06510, US, zhen. huo@yale.edu. Pedroni: University of
Amsterdam, PO Box 15867, 1001 NJ Amsterdam, Netherlands, m.pedroni@uva.nl. Acknowledgements: We are thankful to
Yan Xiong for discussing our paper in the 2019 PHBS Workshop in Macroeconomics and Finance. The paper benefits from
comments from Marios Angeletos, Ryan Chahrour, Simas Kucinskas, Keith Kuester, Jeniffer La’O, Christian Stoltenberg,
and Pengfei Wang, and an early discussion with Giacomo Rondina and Todd Walker. We would also like to thank the
seminar participants at PHBS, University of Bonn, TI Macro Conference in Rotterdam. We thank Flint O'Neil for providing
excellent research assistance. Lastly, we thank Zhao Han, Fei Tan, and Jieran Wu for generously sharing their computational

results with us.



1. INTRODUCTION

In this paper, we revisit a number of classical questions in the information literature: how much can
agents learn from endogenous aggregate outcomes about underlying fundamentals? Can monetary
policy generate persistent real effects when the history of inflation is observed? How does the
informativeness of aggregate statistics depend on the strength of the underlying general equilibrium
(GE) effects? We explore these questions in economies with persistent information and strategic
interactions between agents.

We consider a beauty-contest model in which agents care about some persistent economic funda-
mental and also an endogenous aggregate outcome. We assume agents receive two types of signals:
private noisy signals about current fundamentals and the perfect observation of the history of past
aggregate outcomes. The lack of observation of the current aggregate outcome captures the idea
that firms and households often make their production and consumption decisions before contem-
poraneous aggregate statistics are available. We show that in a rational expectations equilibrium,
two possible regimes can arise endogenously: a revealing regime and a confounding regime.! In the
revealing regime, the history of outcomes perfectly aggregate information, and agents can infer the
underlying fundamental without error. This is in line with the conventional wisdom that, even with
dispersed information, prices or output help eliminate uncertainty about the aggregate fundamental.
However, there also exists a confounding regime in which agents make persistent forecast errors, and
consensus about the fundamental is never achieved.

Whether the confounding regime arises depends on the degree of strategic complementarity
between agents which captures the strength of GE feedback effects, and on the precision of private
signals about the fundamental. Endogenous outcomes aggregate information only if agents respond
to their private signals which are direct sources of information. The more agents rely on past aggregate
outcomes in their inference, the less information contained in private signals can be encoded into
individuals” actions, resulting in potential information dilution. The extent to which agents rely on
the history of aggregate outcomes is decreasing in the precision of private signals and increasing in
the need to coordinate with other agents.? In an environment with persistent information, a sufficient
amount of information dilution can make the process of the aggregate outcome non-invertible.

The dynamics of aggregate outcomes also differ in a significant way under these two regimes.
In the revealing regime, in response to an innovation to the fundamental, the aggregate outcome
underreacts on impact, since information about the current fundamental is dispersed. Afterwards,
the aggregate outcome exactly follows the fundamental since, by observing past aggregate outcomes,
agents reach common knowledge about the innovation. In contrast, in the confounding regime,

past outcomes are not sufficient for agents to infer the underlying innovations, and agents’ forecast

The notion of confounding dynamics that results from a non-invertible process was first introduced in an early version
of Rondina and Walker (2020).

2See a more detailed discussion on this point in Morris and Shin (2002), Angeletos and Pavan (2007), and Huo and
Pedroni (2020).



errors are persistent over time. Still, the observation of past aggregate outcomes does not allow for the
systematic under- or overestimation of the fundamental. As a result, the aggregate outcome fluctuates
around the fundamental, alternating between overreaction and underreaction. Furthermore, we prove
that the process for the aggregate outcome is complex in the sense that it does not permit a finite-state
representation. In a monetary model, this implies that a money supply shock can have long-lasting
real effects even when firms observe the history of inflation.

An implication of the two informational regimes is that there exists a “kink” on how the in-
formativeness of aggregate outcomes is related to the structural parameters. Within the revealing
regime, a local variation of parameters only affects the impact response of the aggregate outcome but
does not change its response afterwards nor its invertibility. In response to a large enough shift in
the parameters, the economy enters the confounding regime, in which case either a larger strategic
complementarity or a lower signal precision decrease the informativeness of the aggregate outcome.

To highlight the mechanism, we consider a classical monetary model & la Woodford (2003) with
the crucial departure that firms are allowed to observe past aggregate prices to infer monetary shocks.
When pricing complementarities are sufficiently strong, prices fail to perfectly aggregate information,
and monetary shocks can generate long-lasting real effects. Moreover, the inflation dynamics in this
confounding regime can be empirically relevant. The impulse response function of inflation forecasts
displays an initial underreaction and a delayed overreaction, which is consistent with the evidence on
expectations documented in Angeletos, Huo, and Sastry (2020) and Kucinskas and Peters (2018).® The
model also predicts waves of under- and overshooting of the inflation itself, similar to the identified
responses from Christiano, Eichenbaum, and Evans (2005) and Altig, Christiano, Eichenbaum, and
Linde (2011).

The aforementioned insights extend to various environments with multiple signals, forward-
looking beauty-contest games, and multivariate systems, among which we highlight the following
applications. First, we explore the effect of adding additional public signals, and we show it does not
necessarily make the economy more likely to be in the revealing regime. On one hand, more signals
tend to alleviate informational frictions, which makes the revealing regime more likely to arise. On
the other hand, public signals crowd out reliance on private signals, which reduces the information
aggregated by aggregate outcomes. These two effects may exactly cancel out.

Second, we show that with dispersed information, the confounding regime is more likely to arise
with a lower nominal rigidity in the New Keynesian Phillips curve and a higher marginal propensity
to consume (MPC) in the dynamic IS curve. With more flexible prices, those firms that can adjust
their prices need to pay more attention to others’ prices; with a higher MPC, consumers are more
sensitive to the aggregate demand. Both of these map to stronger GE feedback effects, and hence lead
to non-invertible aggregate outcomes.

When the central bank employs a Taylor-type monetary policy, a more aggressive response of

3In Angeletos, Huo, and Sastry (2020), this pattern is rationalized by imposing a behavioral bias—over-extrapolation—
and we show it can be a natural result of imperfect information aggregation.



nominal interest rate to inflation reduces the positive feedback effects between the supply and demand
block, resulting in a lower degree of strategic complementarity. With incomplete information, a more
aggressive policy not only modifies the magnitude of the economy’s response to shocks, but it can
also alter the entire dynamic pattern by shifting the economy from the confounding to the revealing
regime. It follows that a dovish monetary policy rule tends to induce hump-shaped and oscillatory

responses of inflation and output.

Related Literature

The study of how well endogenous variables like prices summarize relevant dispersed information
dates back to Hayek (1945). What makes information aggregation nontrivial in our model is the
fact that fundamentals and signals are correlated over time. Our work therefore complements the
line of research that focuses on endogenous information aggregation that relies on the history of
signals, including, for instance, Townsend (1983), Sargent (1991), Kasa (2000), Nimark (2014), and
Bacchetta and Wincoop (2006). This paper is closely related to Kasa, Walker, and Whiteman (2014)
and Rondina and Walker (2020) who also explore non-invertible equilibrium dynamics. In Kasa,
Walker, and Whiteman (2014), the non-invertibility is due to the underlying fundamental itself being
non-invertible, and in Rondina and Walker (2020), a prerequisite is that the endogenous signal is
non-invertible when information is perfect. Besides providing a general condition on the determinant
of equilibrium invertibility, our work differs from theirs in two ways: First, in our environment,
endogenous variables always perfectly aggregate information in the absence of informational frictions,
and the aggregation is imperfect only when information is dispersed.* Second, the equilibrium in
their models follows a tractable finite-state process. In our paper, the equilibrium dynamics is
more involved and we prove that it does not permit a finite-state representation, even with a square
information structure.

This paper is also related to the large literature on monetary non-neutrality due to informational
frictions. Lucas (1972, 1973) showed this is consistent with rational expectations. In that setup, real
effects of monetary shocks were predicated on variations in aggregate nominal expenditure not being
forecastable. It follows that, if data on past aggregates were available these effects could, at most, be
transitory. Woodford (2003), following Sims (2001), argues that the main informational bottleneck
is not its plain availability but the “limited capacity of private decision-makers to pay attention”
to it. Then, assuming aggregates are never fully observed, he shows that monetary shocks can
have persistent effects. One could also generate persistent effects by including additional exogenous
aggregate shocks in the model or imposing rational inattention, as in Nimark (2008), Adam (2007),
Mackowiak and Wiederholt (2009), and Melosi (2017), or endogenous sentiment shocks, as in Acharya,
Benhabib, and Huo (2017). In this paper, we show that even if past aggregates are perfectly observed,

4This is due to the fact that aggregate variables are observed with a lag in our environment, which allows the invertibility
of aggregate variables to be endogenous to informational frictions.



monetary policy can have long-lasting effects which arise endogenously only if GE effects are strong
enough.®

A common assumption in the literature is that information is static or the underlying states are
perfectly revealed after one period, which allows one to focus on the within-period inference problem.
Grossman (1976) and Hellwig (1980) studied to what extent prices can summarize multidimensional
information in a static setting. Messner and Vives (2005), Angeletos and Pavan (2009), Amador and
Weill (2010,2012) and Vives (2014, 2017) study learning externalities associated with the observation of
endogenous aggregates. A particular type of learning externality plays an important role in deviations
from perfectinformation aggregation in our model: strategic complementarity leads agents to respond
less to their private information, which has the negative side effect of reducing the informativeness of
aggregates in general and prices in particular. In persistent information settings as the one considered
in our paper, this crowding out can lead to non-invertibility and oscillatory dynamics. Angeletos,
Iovino, and La’O (2020) explore optimal policy under this type of learning externality. They find that
agents are better off when incentivized to respond more aggressively to their belief variations, which
helps to achieve better information aggregation. Gaballo (2018) and Chahrour and Gaballo (2019)
show that learning from prices can play either a propagating or a mitigating role. Their mechanism
relies on agents receiving different types of signals, while our framework focuses on the classical case
with a common information structure.

The rest of the paper is organized as follows: Section 2 sets up a simple monetary model with
informational frictions. Section 3 establishes the main result about the two regimes of price dynamics.
Section 4 introduces noisy price observation which allows us to bridge the predictions of the model
with the ones from its exogenous-information counterpart. Section 5 extends the main results to more

general information and payoff structures, and explores various applications. Section 6 concludes.

2. A MoNETARY MODEL

In this section, we introduce a simple model of monopolistic competition to illustrate the basic idea of
information aggregation through endogenous actions. The model is largely borrowed from Woodford
(2003)¢ and it is designed not to exhaust the implications of our main results but to be the simplest
setup in which we can highlight the role of strategic complementarity in determining the information
content of endogenous information. It allows us to examine the question of how efficiently prices and
other macro variables aggregate the information that firms need to make their decisions.

Suppose the producer of good i chooses the current and future prices of their good, {Pj;+r}, to

5An exception is Hellwig and Venkateswaran (2015). They identify special cases in which dispersed information is
irrelevant for allocation.
¢The main difference relative to Woodford (2003) is that we consider a more general information structure.



maximize the expected present value of future (real) profits

0]

P,
Z ﬁkm(YHk) [ﬁyi,ﬁk = C(Y t+k, Yt+k)]
k=0 +

E;

subject, in every period t + k, to the demand function

Pi vk -0
Yi,t+k = Yt+k ( P, ) ’ (2-1)
t+k
for some 0 > 1. The producer takes the Dixit-Stiglitz index of real aggregate demand, Y;, and the
corresponding price index, P, as given. The real cost of producing is given by C(Y;;, ¥;) and depends
not only on the amount produced by the firm, Yj;, but also on the aggregate output, Y}, to account for
its effect on factor prices. The firm weights different states by the stochastic discount factor, m(Y;), so
that the expected discounted profits can be interpreted as a financial market valuation of the firm.
To focus on informational frictions we abstract from price frictions here. The firms can choose

their prices every period independent of the past. Thus, in period ¢, firm i chooses P;; to maximize

Eit

where E;; denotes the expectation conditional on the information set of firm 7 in period t. The optimal

pricing decision of firm i implies a first order condition which can be log-linearly approximated by

pit = Eit[(1 — @)y: + pi],

where lower-case variables denote log-deviations from the full-information steady-state versions of
the corresponding upper-case variables, which satisfty P;; = P; and Y; = Y”. The parameter a can be
written as a function of deep parameters.”

Changes in nominal aggregate demand, Q; = P;Y;/Y”, can be decomposed into changes in the

price level and in the real output,
9t =Pt + Y-
We assume that the nominal aggregate demand is determined exogenously by the central bank,
following an AR(1) process®
qe = pqe-1+ 1, ne~ N(O,1).

Therefore, though the innovations to the nominal aggregate demand, 1;, can have a broader interpre-

tation, from now on, we refer to them as monetary shocks.

Cyy (Y Y)Y +Cyy (Y, Y)Y
C,(Y",Y")+0C,, (YY)

"More specifically, Y* solves (1 - 0) + 0Cy(Y*,Y*) =0,and a =1~

8We relax this assumption in Section 5.



From an individual firm’s perspective, their pricing decision can be expressed as the best-response

function of a standard static beauty-contest game, that is

pi = (1= WBalgi + aBulps], with ps = / b, 22)

and where o € (=1, 1) controls the degree of strategic complementarity between firms, or the strength
of GE feedback effects—we use both terms interchangeably.

With incomplete information, the aggregate price depends not only on the firms’ first-order ex-
pectations about the nominal aggregate demand but also on higher-order expectations as emphasized
in Morris and Shin (2002) and Woodford (2003). We formalize this in the following lemma.

Lemma 1. The aggregate price is given by
k+1
pi=(-a) Z oE, (23)

where the higher-order expectations are defined recursively as follows

E?[qt] =gq¢, and k+1[Qt] = / it [Ef[‘h]] .

The real effects of a monetary shock on output are captured by the gap between p; and g;.
Condition (2.3) implies that this gap depends on the dynamics of all higher-order expectations, which
in turn depend on the information structure faced by firms. To proceed, we first consider a benchmark
case with dispersed but exogenous information, in which the information content is independent of
equilibrium objects. In the next section, we turn to the endogenous information case, in which the

information content is a function of equilibrium objects.

Exogenous Information Benchmark. Suppose that every period, ¢, firm i receives a new private

signal, x;¢, about the nominal aggregate demand®
xig =+ tie, g ~ N0, T), (2.4)

With 7 — oo, we return to the frictionless case where firms observe nominal aggregate demand, g;,
perfectly. Not only is there no first-order uncertainty about the fundamental, but also all higher-
order expectations become common knowledge and collapse to the first-order expectation, that is,
Ef[qt] = q; for all k > 0. It follows that

pi=4qi,  y;i=0. (2.5)

°This information structure is similar to those used in Woodford (2003) and Angeletos and La’O (2010).




Thus, prices vary with the nominal aggregate demand in a one-to-one fashion, leaving aggregate
output unchanged.

With 7 < oo, information is incomplete, and the equilibrium outcome is shaped by the complicated
dynamics of all the higher-order expectations in condition (2.3). We can, however, bypass this
complexity by applying the single-agent result in Huo and Pedroni (2020), which directly yields a

simple characterization of the price dynamics.

Proposition 2.1. Under exogenous information, aggregate prices follow an AR(2) process,

9 1
pr = (1 - E) T—or It (2.6)

where 9 € (0, p) is given by

2
. p1<1_>\/(p1<1_>) 4

2 P P

The aggregate price moves less than the nominal aggregate demand, captured by the term 1-39/p
in equation (2.6), which implies that real output co-moves with its nominal counterpart. In addition,
it takes time for firms to learn the monetary shock; and the deviation of prices from the nominal
aggregate demand is persistent, captured by the term 1/(1 — 9L). This leads to long-lasting effects of

monetary shocks on real output.?

3. ENDOGENOUS INFORMATION AGGREGATION

In this section, we allow the signals in firms’ information set to include endogenous aggregate
variables, so that the informativeness of the information is determined in equilibrium. We show that
this change can lead to significantly different price and output dynamics, and affects how much can

be learned from observing aggregate variables.

Information Structure. We assume that in any period ¢, signals in firms’ information set include
1. private exogenous signals, {x; ¢, xi¢-1,...} as in (2.4);
2. past prices, {pt-1, pt-2, .. -}

The first set of signals makes information dispersed as mentioned before, while the second set of
signals allow agents to better coordinate and learn from each others’ actions.
There are two main reasons why we assume agents do not observe the contemporaneous aggregate

outcomes but rather their delayed values: First, from a practical point of view, firms and households

Tn Angeletos and Huo (2018), aggregate outcomes follow similar dynamics in a forward-looking game, where the
determination of 9 is more complicated.



typically need to plan their production or purchasing with a period of time in advance of the realiza-
tions the fundamentals like demand shocks or income. There are lags in the publication of aggregate
statistics as well, and nowcasts are necessary for most aggregate variables probably with the exception
of frequently traded asset prices. Second, from a theoretical point of view, the simultaneity of making
an individual decision while observing the aggregate outcomes is easier to be justified when the ag-
gregate states are perfectly observable and agents can form rational expectations about the aggregate
variables without frictions. In our economy with dispersed information, observing past outcomes
is a more natural timing of decisions as aggregate states are observed with noise. Nevertheless, the
period length is a priori not determined, so one could consider the smallest of lags and the analysis
that follows still applies.

To measure the amount of information aggregated by price, we define price informativeness as

_ Var[q: —E [q:lp']]
Var[g;] '

x=1

Notice that x € [0, 1]. When prices perfectly reveal the nominal aggregate demand, the mean squared
prediction error is zero and price informativeness reaches its maximum level, xy = 1. When prices are

not informative at all, the forecast E [qt |pt] =0and x =0.

3.1 Invertibility

We start with a thought experiment in which only a single firm can observe past prices. As this firm
is infinitesimal, the aggregate price process is the same as in the exogenous information case. How
much can this firm learn from the history of prices? To answer this question, we rearrange condition
(2.6), which leads to

-1
giot = (1 - %) (Pt - Spi2). (3.1)

That is, by observing the history of prices, the uncertainty about past shocks is completely eliminated.
Price informativeness is, then, at its maximal level, y = 1.

This is the basic logic behind the conventional wisdom that prices can effectively aggregate
information and facilitate allocative efficiency. In the context of monetary neutrality, it would imply
that when firms observe past prices, the monetary shock can only have transitory effects. However,
this logic does not necessarily extend to the case in which all firms can observe past prices, since
the different information structure leads to different equilibrium price dynamics. Importantly, the
mapping from prices to underlying shocks obtained in condition (3.1) may not be possible. What
determines if a price process is able to perfectly aggregate information is its invertibility, as we

formalize in the next lemma.



Lemma 2. A price process p; = g(L)n; is invertible if g(L) does not contain any inside root.™ When invertible,

prices perfectly aggregate information about the underlying shock, i.e.,

g(L) " pi—k

Elgi—klp'] = T=pL =qi-k, fork>=0. (3.2)

Corollary 1. With exogenous information, for all admissible parameters (a, T, p), the price process is always

invertible and the history of prices contains the same information.

The aforementioned exogenous information case is an example of an invertible process. Perhaps
somewhat surprisingly, even with very large noise (small 7), the history of prices still reveals all
the information about the monetary shock, even though the magnitude of the price response can be
arbitrarily small.

On the other hand, the following hypothetical price process is non-invertible:?
pt =(L—=A)q:, with|A| <1. (3.3)

Note that, if we attempt to use the formula in equation (3.2) to forecast nominal aggregate demand, we
would run into the problem that g(L)™! contains L with negative powers.!3 Thus, to apply the formula
we would need to use future realizations of prices which are not in the firms’ information sets. It is
important to note, however, that the actual equilibrium price dynamics share some similarities with

this example but can be significantly more involved.

3.2 Two Regimes of Information Aggregation

When information is endogenous and dispersed, the extent to which prices efficiently aggregate
information hinges both on the severity of informational frictions and, crucially, on the degree of

strategic complementarity.

Proposition 3.1. The equilibrium with endogenous information exists. The equilibrium price, p;, perfectly
aggregates information, that is, B[q:|p'] = q, if and only if the triple (a, T, p) is in the invertible region that
satisfies

p

a<1-L, (3.4)
T

Proof. See Appendix B. m]

This proposition partitions the parameter space into two regions: the invertible region in which
prices fully reveal the underlying fundamental, and the non-invertible region in which they do not.

In the invertible region, p' contains the same information as the nominal aggregate demand ¢,

The function g(L) is said to have an inside root if there exists a complex number, z, inside the unit circle of the complex
plane, such that g(z) = 0.

12This example is similar to the ones used in Rondina and Walker (2020) and Acharya, Benhabib, and Huo (2017).

15To see this, notice that, if [A| < 1, then (L - A)~! = L71 £ (A71L)7%.
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Figure 1: Two Regions of Price Informativeness

The solid line corresponds to p = 0.9 and the dashed line to p = 0.5.

and therefore we call this the perfect revealing regime. In the non-invertible region, p' contains less
information than g’ and firms are no longer able to infer the monetary shocks perfectly, which we
refer to as the confounding regime.

As shown in Figure 1, the invertible region features relatively mild degrees of informational
frictions and strategic complementarity. The opposite prevails in the non-invertible region. To
understand this partition of the parameter space, we first go through a more “mechanical” explanation,
and then we provide a more intuitive argument. Consider the impulse response function of prices
to a monetary shock, and suppose that the process of p; is invertible. We now explore under which
conditions this conjecture can be verified. In period t = 0, firms observe the price history except for
the current one. Since it is common knowledge that the monetary shocks in the past are equal to
zero, to infer the current monetary shock firms rely solely on their private signal, x; 9. The aggregate
price level in this period, po, is determined the same way as in a static beauty-contest game with
exogenous information. In period t = 1, firms observe pg and, by invertibility, g0 becomes common
knowledge. It follows that, in periods t > 1, prices are perfectly in line with the nominal aggregate

demand, p; = g; = p'qo. Taking stock, the law of motion of price is given by

g)= po  +y——r oL (3.5)
——
impact effect

where the first term, pg, captures the impact effect, and the second term captures the response in the
following periods when the monetary shock effectively becomes public.
The analysis above is based on the assumption that the process of p; is invertible. To examine

whether this is indeed the case, we need to check if any of the roots of g(L) are inside the unit circle,

11



which is true if and only if
_ _(-a) p
=T A—a)e  1+p (36)

That is, prices perfectly aggregate information if and only if the initial response is large enough. It
is exactly when the informational friction is relatively small (large 7) and the coordination motive is
relatively weak (small a) that the impact response is sizable. The former increases the responsiveness
of first- and higher-order expectations, and the latter decreases the weight on generally more inertial
higher-order expectations.

Intuitively, the information contained in prices ultimately comes from each individual firm’s
private information. The more firms rely on their private signals when making decisions, the more
information can be potentially encoded in prices. With more private signal noise or higher degree
of complementarity, firms put more weight on information in the public domain which reduces the
usage of private signals. This intuition is reminiscent of the one in Amador and Weill (2010), where
an increase of the public signal’s precision may actually lower the information content of prices as the
information contained in private signals is utilized less than a social planner would prefer.

This intuition is subject to the following caveat. Recall that, with exogenous information, indepen-
dent of the informational friction and coordination motive, the price process is always invertible. With
endogenous information, invertibility is obtained in a subset of the parameter space. This difference
highlights that the informativeness of prices is affected not only by their overall responsiveness but
also by their particular dynamic pattern. The importance of dynamic information aggregation also
manifests itself via condition (3.4): with p = 0, information is always perfectly aggregated. Moreover,
a higher p moves the fundamental process away from a static i.i.d. and increases the non-invertible
region, as can be seen in Figure 1.

Proposition 3.1 already indicates that varying the degree of strategic complementarity affects the
invertibility of prices. Figure 2 shows how price informativeness changes with the complementar-
ity. A higher a diverts agents from the use of private information, which tends to lower the price
informativeness. In the non-invertible region, this is indeed the case. Woodford (2003) emphasizes
that higher strategic complementarity results in more inertia in inflation as higher-order expectations
play a more important role. Our results imply that, when information is endogenous, there is an
additional information channel through which the degree of complementarity shapes the aggregate

outcome, a point we further elaborate on in Section 4.

3.3 Price Dynamics

We have characterized the invertible region in which prices perfectly aggregate information and the
corresponding price dynamics. What does the stochastic process for prices look like if the parameters
are in the non-invertible region? The following proposition shows that the price dynamics become

significantly more complex.

12
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Parameters: p =0.9,and 7 = 1.

Proposition 3.2. 1. In the invertible region, the law of motion of p; is p; = q¢ — mW.

2. In the non-invertible region, the law of motion of p; does not have a finite-state representation.

Proof. See Appendix C. m]

In the invertible region, the law of motion for prices differs from the nominal aggregate demand
only at the impact response, following an ARMA(1,1) process. To visualize the process, the red
dashed line in Figure 3 plots the impulse response of prices, p;, with @ = 0.1, which is on the edge
of the invertible region (we set p = 0.9, and © = 1). Except for the first period, prices are equal to
nominal aggregate demand. Varying the parameters within the invertible region only changes the
initial response. Recall that real output is equal to the difference between the nominal aggregate
demand and the price level, y; = q; — p;. So, in this case, the effect of the shock on real output is only
transitory. This is in line with the conventional wisdom that the effects of a monetary shock to real
aggregates are transitory when prices become public.

In the non-invertible region, the law of motion for p; does not follow any finite ARMA process. In
the literature, when the number of signals is the same as the number of shocks, one can typically obtain
the equilibrium law of motion with a finite-state representation (see Kasa (2000), Kasa, Walker, and
Whiteman (2014), Rondina and Walker (2020) for example). In contrast, in our environment, where the
fundamental is invertible and the non-invertibility of equilibrium prices is obtained endogenously
when the degree of strategic complementarity is high enough, no stochastic process with a finite
number of inside roots can be supported as an equilibrium.

In Figure 3, the blue solid line shows the impulse response for p; with @ = 0.9, which is in the
non-invertible region. The response of p; is initially dulled, and builds up gradually. Different from
the invertible case, it does not coincide with the nominal demand, g;, after period ¢t = 1. Instead,
it oscillates around gq;. This pattern is the result of the imperfect dynamic information aggregation.

To understand this oscillation pattern, it is useful to consider the following two observations: First,
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Period

Figure 3: Response of Aggregate Price to Monetary Shock

Parameters: p =0.9,and 7 = 1.

recall from Lemma 2 that prices are essentially the average forecasts about the fundamental, which
cannot systematically deviate from the nominal demand. For example, with exogenous information,
the impulse response of price is uniformly below that of the nominal aggregate demand, and this
implies a persistent underestimation of the monetary shock and past prices. However, this type of
persistent underestimation of past prices does not square with the fact that past prices are already
part of agents” information set. Second, prices cannot be precisely equal to the nominal aggregate
demand, as this would make them perfectly informative, contradicting the assumed non-invertibility
of the price process. As a result, the only possible scenario is the waves of optimism and pessimism
that we see here.

A directimplication of Proposition 3.2 is that the monetary shocks can induce persistent real output
fluctuations. To allow long-lasting effects of monetary shocks on output, it is necessary that prices do
not fully reveal the underlying shock. Woodford (2003) directly assumes that past prices cannot be
observed, which can be rationalized by rational inattention, as in Mackowiak and Wiederholt (2009).
Another way to avoid perfect revelation is to add additional exogenous aggregate shocks, as in Nimark
(2008) and Melosi (2017), or to add endogenous sentiment shocks, as in Acharya, Benhabib, and Huo
(2017). Ouwur results differ from those in the literature. The non-invertibility of the price process is
an endogenous equilibrium outcome, and whether it is indeed the case depends on the underlying
parameters. Prices efficiently aggregate information only when individual firms’ responses to their
private signals are sufficiently strong. When such response is relatively weak, monetary shocks have
persistent real effects even if past prices are perfectly observed.

We conclude this section with a remark on uniqueness of equilibrium. In general, multiple
equilibria may arise when information is endogenous (see Gaballo (2018) and Acharya, Benhabib, and
Huo (2017) for example). In our setting, the equilibrium is unique in the invertible region, which we
show by construction. Though we cannot rule out multiplicity in the non-invertible region, we think it

is not likely for the following reason: the common cause of multiplicity is the strong complementarity
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between the responsiveness of the current action and the informativeness of endogenous signals.
Since we assume that the aggregate outcome is observed with a one-period delay, the informativeness
of newly arrived signals does not depend on agents’ contemporaneous actions.* Lastly, regardless
of whether the equilibrium is unique or not, all the theoretical results and analyses we have derived

remain true.

4. ImPERFECT PrRICE OBSERVATION

In this subsection, we explore to which extent previous results remain true when prices are not per-
fectly observed. The imperfect observation could arise when prices are recorded with measurement
errors, or firms perceive published prices in an imperfect way due to costly contemplation. We show
that the exogenous information case in Section 2 and the endogenous information case with perfect
price observation in Section 3 serve as two useful benchmarks: the outcomes of the noisy price ob-
servation case live in the middle of these two extremes. In addition, we suggest a potential empirical

footprint for endogenous information aggregation.

4.1 Noisy Prices: An Intermediate Case

Suppose firms observe past prices with idiosyncratic noise v;t,
zit = pr—1 +vie,  vie ~ N(O, K_1)~ (4.1)

The information set for firm i, then, becomes 7;; = {xlt., zf }. This information structure nests the two
benchmarks we have studied: by setting « to infinity, we return to the case where prices are perfectly
observed; by setting « to zero, we obtain the other extreme where firms only have access to exogenous
information, {xlt.}. In the intermediate range, information is still endogenous as the informativeness
of the price signal, z;;, is determined endogenously in equilibrium.'

We first show how the price dynamics changes when we vary the noise to the price observation. In
Panel (b) of Figure 4, the blue solid line corresponds to the case in which prices are perfectly observed,
K — 00, and the parameters lie in the non-invertible region. When the magnitude of the private noise
is positive but relatively small, by continuity, the price dynamics is similar to the limiting case. The
red dashed line in Panel (c) confirms this logic: with x = 10, it resembles the pattern of the blue solid
line though the oscillation around the fundamental is less pronounced. When x = 0 (the exogenous
information case), there is no oscillation anymore. The yellow line in Panel (d) is always below the

fundamental. In summary, our analysis in the previous two sections can serve as two baseline cases.

14]f there is an initial period, it follows that the equilibrium is always unique no matter where it converges to. Moreover,
though this is certainly not definitive, our numerical algorithm always yields a unique solution.

15To solve the intermediate case, one has to resort to numerical methods as, generally, no finite-state solution is available.
See Huo and Takayama (2017) for a more detailed discussion.
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Parameters: p = 0.9, a = 0.5, and 7 = 0.25.

As x changes from infinity to zero, the properties of the price dynamics shift from one extreme to the
other.

A notable implication of dispersed information is that higher-order expectations differ from first-
order expectations. Depending on the information structure, higher-order expectations display quite
different patterns, as shown in Panels (b) to (d) in Figure 4. With only private exogenous information,
there is little information in the public domain besides the common prior. As a result, higher-order
expectations significantly depart from first-order expectations. On the other end of the spectrum,
with perfect observation of past prices, the expectations about the fundamental are much better coor-
dinated, resulting in a high level of synchronization among first-order and higher-order expectations.
With moderate private noise on the price observation, the patterns of higher-order expectations again
strike a balance between the two benchmarks.

The comparison above implies that the way in which the strategic complementarity shapes the

outcomes hinges on whether information is endogenous or not. In particular, the effect of shifting the
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degree of complementarity from « to & can be split into two parts,
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The first channel is associated with changes in higher-order expectations, we call this the information
channel. A different @ may modify the informativeness of prices which, in turn, affects higher-
order expectations. The second channel is the weighting channel. It has to do only with the fact
that, for higher levels of «, the equilibrium actions put relatively more weight on expectations of
higher order. With exogenous information, only the second channel is at work. With perfect price
observation, though qualitatively both channel are present, the impact of the second channel is
quantitatively limited as higher-order expectations are close to first-order expectations. Figure 5
displays the variance decomposition of prices, p¢, into the information and weighting channels. With

noisy price observation, both channels can have similar quantitative contributions.

4.2 Oscillatory Dynamics

The pattern of oscillation with endogenous information is not only theoretically interesting but can
also be empirically relevant. In Figure 6, we reproduce the identified impulse responses of inflation
and output to a monetary policy shock from Altig, Christiano, Eichenbaum, and Linde (2011). The
literature has emphasized that the delayed peak of inflation is difficult to rationalize in standard
DSGE models but is consistent with models with informational frictions. However, another feature of
the identified impulse responses is that aggregate variables do not return to their steady-state values

monotonically but display waves of over- and undershooting, which few models are able to generate.

To show that this pattern can be the result of endogenous information aggregation, we extend the

baseline model in Section 2 in two ways: First, we allow the observation of past prices with noise as
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Figure 6: Estimated impulse responses of real GDP and inflation to an unexpected interest rate
reduction. Source: Altig, Christiano, Eichenbaum, and Linde (2011).

in equation (4.1). Second, we allow the growth rate of the nominal aggregate demand to follow an
AR(1) process as in Woodford (2003),

gt — qe-1 = p(Ge-1 — Ge—2) + 1. (4.2)

The left panel of Figure 7 shows what happens with dispersed but exogenous information. It
reproduces the last panel in Figure 5 of Woodford (2003), which he uses to argue that the model can
generate a hump-shaped response of inflation and output with a delayed peak for inflation. In this
case, however, the responses of aggregate variables return to their steady-state values monotonically
after their initial peak. In contrast, the right panel shows the impulse responses with noisy endogenous
learning, introduced via an increase in the precision of the price observation, k, from 0 to 1. As in
the identified impulse responses, besides inflation peaking after output, both also display oscillation

over time.

12f — T, 12+ —

-t

-0.21

Period Period

Figure 7: Comparison of impulse response functions predicted by the two models, for k¥ = 0 (Exoge-
nous Information) and « = 1 (Endogenous Information)

Other parameters, as in Woodford (2003): p = 0.9, « = 0.85,and 7 = 1/6.

18



Moreover, the model yields interesting patterns for the forecasts of aggregate outcomes. The
yellow dashed line in the right panel plots the one-period ahead inflation forecast errors. It is positive
initially and turns to negative later on, implying that agents” average forecasts underreact initially and
overreact later on. This pattern is an empirical regularity which is emphasized in Angeletos, Huo,
and Sastry (2020) and also identified by Kucinskas and Peters (2018).1® Angeletos, Huo, and Sastry
(2020) rationalize this pattern by combining dispersed information with over-extrapolation, and here
we find that it can be the result of imperfect information aggregation under rational expectations. A
more detailed analysis of how well the model is able to match empirical evidence of this kind is left
for future work.” But we think the model offers some promise of providing a satisfactory explanation
to this type of dynamics.

Different from the concesus forecasts, Bordalo, Gennaioli, Ma, and Shleifer (2020) examine the
correlation between forecast errors and forecast revisions for various variables at the individual level,
and show that agents tend to overreact to news on average. Our benchmark model could not replicate
this fact, since some deviation from rational expectations is required. Nevertheless, when augmented
with either overconfidence as in Broer and Kohlhas (2019) or the diagnostic expectations as in Bordalo,
Gennaioli, Ma, and Shleifer (2020), our main results on aggregate dynamics remain valid, while it

would help to match the empirical evidence at the individual level at the same time.®

5. ExTENsIONS AND OTHER APPLICATIONS

In this section we show that the main insights developed in this paper extend to significantly more
involved information structures, allowing for fundamentals that can follow any stochastic process,
and multiple public and private signals with noise that also follows arbitrary processes. We also
extend the results to environments with more sophisticated linkages among agents featuring forward
and backward complementarities, and multivariate systems that can be viewed as a network game

with incomplete information.

5.1 General Information Structure

To facilitate the analysis, we switch to a more general notation, since the applications of the following
results encompass a wide range of settings that may differ from the one considered in the monetary

model analyzed above.

16This oscillatory pattern of forecast errors could help reconcile the seemingly conflicting evidence documented by
Coibion and Gorodnichenko (2015) and Kohlhas and Walther (2019)—the former finds underreaction of average forecasts
while the latter finds overreaction, as explained in Angeletos, Huo, and Sastry (2020).

7Here, the law of motion (4.2) is too simple, and we have assumed that nominal aggregate demand is affected only by
monetary shocks which is not consistent with the identified VAR.

18]f, for instance, agents’ perceived precision, 7, was higher than the actual precision, 7, our results on aggregate dynamics
remain true, with the only exception of replacing by 7. However, at the individual level, econometricians would find
agents overreact to their signals.
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Best Response. Denote agent i’s action in period ¢ by a;;. Their best response function is given by
ait = PEit [Eit] + aBir [a:], (5.1)

where &;; denotes the individual fundamental, which can depend in a flexible way on the aggregate

and idiosyncratic shocks, n; and wj¢,
Eit =d(L)ns + e(L)uir, with n ~ N(O, E% , and wui ~ N(0,X2).

The lag-operator polynomial vectors, d(L) and e(L), are assumed to have square-summable coeffi-
cients. We also assume that d(L) is not a constant vector to rule out fundamentals that are i.i.d. on
common shocks; in which case the equilibrium is always invertible, and we rule out redundant shocks

by assuming that X, and X, have full rank.

Information Structure. Agents have perfect recall and, in each period ¢, observe three sets of signals:
(1) the previous period aggregate action, a;_1, (2) a vector of private signals, x;, (3) and a vector of

public signals, z;, where
xiy = A(L)n: + B(L)u;;, and z; = C(L)n;.

We make two assumptions: first, that there are as many common shocks as there are public signals
(including a;_1), that is dim(7;) = dim(z;) + 1; second, that the matrix B(L) is invertible. To see why
we impose the first assumption, note that, when dim(7;) < dim(z;) + 1, there are more public signals
than common shocks and past aggregate fundamentals are always perfectly revealed independently
of the degree of strategic complementarity or of informational friction; when dim(n;) > dim(z;) + 1,
there are more common shocks than public signals and the system is non-invertible by construction,
as in Section 4. The interesting case for a discussion about invertibility is the one in which dim(7n;) =
dim(z;) + 1. The second assumption is more standard, it essentially excludes the cases in which
non-invertibility is due to exogenously imposed shock processes. If B(L) = By, which is usually the
case in most information structures considered in the literature, then the invertibility of B(L) is only
violated if By is singular or not square in which case one of the private signals is redundant. Moreover,

the polynomial matrices, A(L), B(L) and C(L), must have square-summable coefficients.

Invertibility. In the economy studied in Section 3 there is only one aggregate shock, the monetary
shock, and invertibility is obtained if and only if the equilibrium process for the price index does not
contain an inside root. When there are multiple aggregate shocks, the equilibrium process can be

expressed as

ar = g(L)n;.
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Driven by more than one aggregate shock, the aggregate outcome by itself can no longer reveal all
underlying states. The relevant question becomes whether the history of signals, taken altogether,
contains sufficient information.

Formally, we define an equilibrium process to be invertible if the history of the public signals,
{a', z'}, contains the same information as the common shocks. The following lemma provides the

corresponding criterion for invertibility.

Lemma 3. If det [g(L) C(L)] does not contain any inside root, the equilibrium is invertible. Then, the public

signals and the aggregate outcomes perfectly aggregate information,
E [nt|at1zt] =n, and E [éit|at1zt1w§] = éit' (52)

This result generalizes Lemma 2 to a multivariate system. The exogenously specified signal
structure and the endogenously determined equilibrium process jointly determine whether agents can
perfectly infer past shocks in the economy. Note that, once aggregate shocks are known, idiosyncratic
shocks are also known since B(L) has been assumed to be invertible.

With the general information structure, we can no longer provide a simple partition of the param-
eter space into invertible and non-invertible regions as in Proposition 3.1. However, the basic insight

derived in Section 3 remains true.
Theorem 1. There exists a € (—1,1) such that, if @ > @, the equilibrium is not invertible.
Proof. See Appendix D. O

The exact threshold «a, above which the equilibrium is not invertible, depends on the details of
the information structure. Independent of these details, however, such a threshold always exists.
As in Section 3, if the degree of strategic complementarity is high enough, the equilibrium is not
invertible. Under this more general information structure, however, the aggregate action may contain
information on the aggregate fundamental as well as the common noise. The degree of strategic
complementarity affects the invertibility of the joint dynamics of aggregate actions and public signals.

There is a sense in which the information structure we set up in this section is too general. In the
following example, we consider a simplified structure that encompasses many used in the literature.
Directly, it allows for the introduction of public signals to the monetary model from Section 3. We also
allow agents to have idiosyncratic fundamentals which they observe with arbitrary precision. Hence,
it also encompasses the information structure in the business-cycle model from Angeletos and La’O
(2010) (with the addition of the observation of past aggregate outcomes). With this simpler structure,
we can characterize in more detail how public signals affect information aggregation with takeaways

that are still broadly applicable.
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Example: how public signals affect invertibility. Suppose the best response function is given by

equation (5.1) with the individual fundamental, &;;, and the aggregate fundamental, &, satisfying
Cir=&+wir, wi~N©O,7Y), and & =d(L)n, e~ N(O,1),

for some arbitrary d(L) with the normalization dy = 1. For simplicity we set ¢ = 1 — a. Every period,

agent i observes last period’s aggregate action, a;_1, a private, and a public signal,
xXip = &+, uip ~NO, 1), and zp =& +e, & ~NO, ).

In this setup, we can establish the following proposition which provides an explicit condition for

invertibility. The proof of it also serves as a sketch of the proof of Theorem 1.

Proposition 5.1. The equilibrium is invertible if and only if every root of the function I'(z)

at, + Te
Ty + 7o+ (1 —a)7, (T + To)

I'(z) =d(z) - (5.3)
lies outside the unit circle, which is not the case for o high enough.

In particular, if the fundamental follows an AR(1) process, i.e. d(L) = 1/(1 — pL), it is necessary and
sufficient for invertibility that

p(Tu + 70)
Tu(l+p+7Te+10)

a<l- (5.4)

Proof. Suppose the equilibrium is invertible. Then, agents can infer past aggregate shocks perfectly
and the effect of common shocks on the aggregate outcome can only be transitory. It follows that,
the impulse response of the aggregate outcome to any common shock only differs from that of the
aggregate fundamental, &;, on impact. Accordingly, the law of motion of the aggregate outcome can

be expressed as

ar = gyt + e +(d(L) — D)1
N—————
impact effect

To verify if the equilibrium is indeed invertible, we need to check the condition in Lemma 3, which,

in this case, reduces to checking if any of the roots of

[(z) = d(z) - — 3, (5.5)
1-g.
are inside the unit circle. The impact effects
) = (1-a)t,(1+74) + Te(T0 + Ty) and g, = Te(To + aTy) (5.6)

- (1-a)tyte + (1 +7e)(Ty + Ta))’ (1-a)tyte + (1 + 7)1y + Tw),

can be obtained by solving a simple static forecasting problem. Then, equation (5.3) follows from

substituting equation (5.6) into (5.5). Next notice that, as a increases towards 1, equation (5.3)
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converges to d(z) — 1 which has root zero, since dg = 1. Hence, since the roots of a polynomial
are a continuous function of its coefficients, there exists some a € (-1, 1) such that, for all « > @,
this equation has an inside root and the equilibrium cannot be invertible. Moreover, condition (5.4)
follows immediately from solving for the root of equation (5.3) and requiring it to be outside the unit

circle. 0

Two opposing forces. How does the precision of the public signal, 7., affect invertibility? Note that
in the proof of Proposition 5.1, the root of evil that causes non-invertibility is that 1:—‘;’: — 0 when
the magnitude of a approaches to zero. In general, the equilibrium is more likely to be invertible,
or I'(z) less likely to have an inside root when 1:—?! is relatively large. This observation suggests that

intuitively, a higher 7, has the following two opposing effects:

1. The extra precision leads to a better estimate of the fundamental and a stronger response to the

fundamental, a higher g,,. This tends to make the equilibrium invertible.

2. The response to the common noise, g, also increase since agents rely relatively more on the
public signal z;. This makes the information content of the aggregate action a;_1 closer to
that of the public signal z;. Put differently, there is less differential information contained in the
aggregate outcome in comparison with the public signal, and this tends to make the equilibrium

non-invertible.

To further appreciate this last point, consider the special case in which d(L) = 1/(1 — pL) and
To — 0. The information structure, then, reduces to the one from Section 3 with the addition of a

public signal. In this case, the invertibility condition (5.4) becomes

a<1—£,

Tu

which is identical to condition (3.4). This may seem puzzling at first, as the precision of the public
signal plays no role in determining invertibility. However, this is because the two forces discussed
above exactly cancel each other. In the extreme, when 7. goes to infinity, agents can infer the
fundamental almost perfectly using the public signal. On the other hand, they correspondingly
discard their private signals, and the aggregate outcome contains no more information than the one
already obtained with the public signal. These effects cancel, leaving open the possibility that the
equilibrium is not invertible.

In contrast, when 7, is finite, agents always use their private signals to learn about their idiosyn-
cratic fundamental. It follows that the aggregate outcome necessarily aggregates the information
contained in private signals, which differentiates itself from the public signal z;. The two forces do
not cancel each other, and the precision of the public signal, 7., does matter for the determination of

invertibility.
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5.2 Forward Complementarities

The best-response function in equation (5.1) only allows for static strategic complementarities, that is,
agent i’s action depends on the current aggregate action. Here, we extend the analysis to allow for
arbitrary forward-looking complementarities, that is, agent i’s action can depend on future aggregate
actions or on their own future actions in a flexible way. We consider the following best-response
function,

ait = QEit[&it] + aEi[ar] + Eit[y(L)at] + Eit[B(L)ai], (5.7)

where

y(L)= > yl™, BL)= Y gL, and al+ [y@) +[BL) < 1.
k=1 k=1

and we impose a relatively weak condition on the parameters that guarantees existence of the equi-
librium. "

Even though the model structure is more sophisticated, it turns out that when the equilibrium is
invertible, the general best-response function in condition (5.7) collapses to the static best response
in condition (5.1) with a modified fundamental, as forward-looking higher-order expectations col-
lapse to first-order expectations in this scenario. The following proposition formalizes the required

transformation.

Proposition 5.2. If the equilibrium is invertible, then the actions under best response (5.7) are observationally

equivalent to those under the following transformed best response

1—-«a

1—a-y(L)-pB(L)

air = Bu&ir] + aBilay), with & = it

Proof. See Appendix E. m|

With this transformation, Theorem 1 can be applied to the general class of best-response functions
described by condition (5.7). The fact that there are forward complementaries does not change the
fact that there always exists a threshold level for the degree of static strategic complementarity, a, such
that, if @ > «, the equilibrium is not invertible.

The effects of forward complementarities on the invertibility of the equilibrium, however, are not
as simple as in the static case. In Appendix H we provide an analysis of the invertiblility condition
with an ARMA (1,1) fundamental process, which is fairly complicated as it hinges on the interaction
between the fundamental and the coordination structure. In Appendix I we show how Theorem 1
can be further extended to economies with both forward and backward complementarities which
encompasses many environments considered in the DSGE literature.

In what follows, we focus on a stylized forward-looking game, which allows us to explore how

price stickiness and MPC affect the invertibility of inflation and output, respectively.

¥In these conditions, [|-|| denotes the operator norm.
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Example: effects of price stickiness and MPC on invertibility. Consider the following best response
ait = PEit[&e] + aBirlar] + PEir[aie].

This setting can nest the two building blocks of the New Keynesian model, the Dynamic IS curve,
and the New Keynesian Philips curve (NKPC). Relaxing the common-knowledge foundations of the
New Keynesian model along the lines of Angeletos and Lian (2018) yields?

it = kKEjt[mce] + (1 — O)Ej[me] + 00E;[mir11], (5.8)
cit = —¢(1 —mpc)E;[r¢] + mpc Eit[c¢] + (1 —mpc) Eit[cit41]- (5.9)

In the NKPC, mc; is the real marginal cost, 0 is the Calvo parameter, and 0 is the discount rate. In
the dynamic IS curve, r; is the real rate, ¢ is the intertemporal elasticity of substitution, mpc is the
marginal propensity to consume. With complete information, these two conditions reduce to their
familiar textbook versions. Crucially, the price stickiness 6 and the MPC control the degree of static
strategic complementarity in firms’ pricing decision and consumers’ saving-consumption decision.

Here, we treat the marginal cost, mc;, and the real rate, r;, as exogenous fundamentals, and
therefore the supply block (5.8) and the demand block (5.9) do not interact with each other and
can be treated separately, as in Nimark (2008) and Angeletos and Huo (2018). As in our baseline
specification, we assume that the fundamentals mc; and r; follow AR(1) processes. Every period,
firms and consumers observe an exogenous signal about the fundamental with private noises, and
the past realization of m; and c;, respectively.

Applying Proposition 5.2 and Theorem 1 leads to the following observation.

Corollary 2. For a fixed level of private noise, inflation is noninvertible when prices are sufficiently flexible

(lower 0), and aggregate consumption is noninvertible when MPC is sufficiently high (higher mpc).

Proof. See Appendix F. m]

The underlying logic for this result can be understood as follows: a lower 0 implies more frequent
price adjustments. As a result, for the firms that can adjust their prices, there is a greater need to
worry about other firms’ price-setting decisions. A higher MPC makes consumption more sensitive
to income changes, which leads to a stronger dependence on aggregate demand. Both of these effects
map to a higher degree of static strategic complementarity when the best responses are transformed

according to Proposition 5.2.

5.3 Multivariate System: effect of aggressiveness of nominal interest rate response

In the previous example, we treat inflation and output separately. In this section, we show that the

main insights extend to the case where the supply and demand block of the economy interact with

2 Appendix F presents a derivation of these equations together with the proof of Corollary 2.

25



each other. Particularly, we show that when the central bank follows a standard Taylor rule, a less
aggressive response of the nominal interest rate to inflation tends to reduce the amount of information
aggregated by output and inflation, yielding a non-invertible equilibrium.

We extend the model in the following way;,

it = kBit[cr + E; ]+ (1 = O)Eit[r1;] + 0OE[1tir41], (5.10)
cit = —c(1 —mpc)Eitlir — mer1 + E7] +mpc Eie[er] + (1 —mpc) Eitlci 1], (5.11)
i = dum (5.12)

The first equation is the NKPC, modified to to allow a real marginal cost proportional to aggregate
output, and subject to a cost-push shock £°. The second equation is the dynamic IS curve replacing real
interest rate by the difference of nominal interest rates and expected future inflation, and augmented
with a preference shock £7. The third equation is the Taylor rule for the nominal interest rate, where
¢ controls how aggressive monetary policy is against inflation.

In terms of information, we allow individual firms and consumers to observe private signals about
d

it’

realizations. To simplify the analysis, we assume that both &; and Ef follows an AR(1) process with

the demand and supply shocks, xj, = & +u7,, xf,t = &%+ uf , as well as past inflation and output
persistence p, and that u;, and uf, ; are both i.i.d shocks with variance 7~

System (5.10)-(5.12) effectively consists of a forward-looking network game. As a result, the
strength of GE effects, or the degree strategic complementarity, no longer depends on a single scalar
but on all the relevant structural parameters that control within-group and cross-group dependences.
Here, we highlight the role of ¢,. When the nominal interest rate is passive (such as in the zero-
lower bound), higher inflation induces higher demand, which further pushes up marginal costs
and inflation. A higher ¢, suppresses aggregate demand’s response and mutes this reinforcing
mechanism, which implies a higher degree of strategic substitutability.

With perfect information, varying ¢, only matters for the magnitude of the responses of output
and inflation to shocks. With incomplete information and observation about endogenous outcomes,
varying ¢ also changes the information content of ¢; and 7t;. As a higher ¢, implies higher strategic
substitutability, it makes agents rely more on their private signals. Thus, the economy is more likely
to be invertible in the sense that, by observing {ct, '}, one can perfectly infer the demand and supply
shocks, i.e.,?2

E[&|c', 7'l =&, and E[&f|c', n'] = &].

This argument is formalized in the following proposition.

2'The main conclusion of our results on the comparative statics on ¢» does not depend on the symmetry assumption.
S
;ti] to satisfy the condition that det[g(L)] does

2Technically, invertibility requires the equilibrium process [ ] =g(L) [1
t

Ct 1
Tt n
not contain any inside root.

26



Proposition 5.3. The outcomes {n', c'} perfectly aggregate information only if ¢ exceeds the threshold @

given by
%, when (1-0 — mpc)2 < 4xc(l —mpc)dr,
D = (5.13)
=
Proof. See Appendix G. m]

The left panel of Figure 8 shows how equilibrium invertibility depends on the aggressiveness of
the nominal interest rate response, ¢, and the precision of the exogenous signals received by the
agents, 7. Following Proposition 5.3, a higher ¢, makes endogenous outcomes more likely to be
invertible. The right panel presents an example of an impulse response of inflation to the supply
shock & in the non-invertible region. In the invertible region, the IRF of inflation differs from its

perfect information counterpart only in the initial period, that is,
= T I

where 71} is the perfect information outcome, and ¢ is a constant modifying the response on impact.?

2

0.6

T

T =1/3
~ - - -7 : perfect information

18 05F ~ 4

Invertible 041

1.6

= 03f
14
02t

12 Non-Invertible

0.1

(/)rr Period
Figure 8: Invertibility region and Example of a non-invertible impulse response function

Parameters: x = 0.05,0 =0.4,6 = 0.99, ¢ = 1,mpc = 0.1, and p = 0.9. For the right panel, ¢ = 1is used to generate the IRF.

In contrast, in the non-invertible region, inflation displays the now familiar early underreaction
and the following oscillatory pattern. This suggests that the central bank’s policy rule matters not
only for the magnitude of aggregate outcome’s response to shocks but also disciplines their entire
dynamic patterns. Interestingly, according to our theory, a more hawkish monetary policy, such as
that followed in the post-Volker era, is predicted to eliminate the additional persistence of inflation
due to imperfect information aggregation, which is consistent with the empirical findings in Fuhrer
(2010) and Cogley, Primiceri, and Sargent (2010).

BThe formulas for 7t} and ¢ can be found in Appendix G.
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6. CONCLUSION

We show that, with dispersed information, even when past aggregate outcomes are perfectly ob-
served, the underlying states may not be fully revealed. The extent to which endogenous outcomes
help aggregate information is increasing in the precision of private signals about economic funda-
mentals and is decreasing in the strength of general equilibrium feedback effects. With imperfect
information aggregation, the equilibrium dynamics oscillate around the economic fundamental, and
the forecast errors display an initial underreaction and a delayed overreaction which is consistent
with the empirical evidence in Angeletos, Huo, and Sastry (2020). Together with the solution to
the exogenous information environment, our results provide a second benchmark to characterize
properties of equilibrium under incomplete information.

When the theory is applied to familiar macro models, it leads to several applied implications. In
monetary models a la Woodford (2003), the GE feedback effect comes from firms’ pricing comple-
mentarity. When it is strong enough, monetary shocks can have persistent effects even when firms
observe past prices. In standard NKPC models, a less aggressive monetary policy induces a stronger
GE feedback effect between inflation and output, and can result in hump-shaped and oscillatory
responses of aggregate variables.

Left outside this paper is the extension beyond the standard linear-Gaussian framework. In
an asset pricing setting, Albagli, Hellwig, and Tsyvinski (2015) allow a much more flexible payoff
structure and shock distribution. Hassan and Mertens (2015) also incorporate dispersed information
into a non-linear DSGE model, and quantify the informational role of stock prices. These works allow
agents to observe past shocks, and therefore the learning is essentially static. It would be interesting

to explore the extent to which agents can learn from the past in a non-linear environment.
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Appendix

A. ProoFr ofF EXISTENCE
This proof of existence is based on the one contained in Huo and Takayama (2017).
Proposition A.1. If the best-response function can be written as
ai = QEi[&] + aEi¢[a],
with |a| < 1, then an equilibrium exists.
Proof. Let D C % be a bounded subset such that
I\lliir(lmsup{llo,o,...,xN,xNH,...|| :xeD}=0.
Let g € D and h € D be an arbitrary policy rule such that
aip = g(L)ny + h(L)ujy, and a; = g(L)n;.

With the norm

(o]

g, i}l = | D, 03g? + o312,
k=0

the set of such policy rules is a Banach space. Define {g¢, E,g },and {g,, h,} such that
Exl&n] = Se(L)m + he(Lyuir, and  Eglas] = Za(L)ns + ha(Lyuse.

Note that in the inference problem, the loading on past signals must converge to zero as signals realized in the
infinite past contain no information about current shocks. This implies that {g¢, Eé} and {g,, h,} are also in set
D.

Hence, for {g, h} to be an equilibrium it must be that
Sy + WLy = @ (e(Lyme + e Ly ) + (G + FaLyae)
Define the operator 7 : D X D — D x D as
T ({g, h}) = {(p§5 +ag,, phe + aﬁa} .

The equilibrium is a fixed point of the operator 7-, and existence follows from Schaefer’s fixed point theorem.
To apply this theorem, we need to show that 7" is a continuous mapping and it maps to compact set. Notice that
if O is bounded, then it is totally bounded. Since the space ¢? is complete, and therefore the set D is compact.
In below we show D is bounded.

By iteration on the best-response function and the definition of the aggregate action we obtain the higher-

33



order expectation representation of the agents’ actions,
aip = Ei[Eir] + @ Z Okaft[éit]-
k=1

By the law of total variance, the variances of E;;[&;] and ]Eft [£i¢] are bounded by the variance of &;;. Further,

we have that

Var

i akEk [Eit] ) = i a?* Var (E;{t[git]) +2 Z a* Cov (Ek [Eit], E [5zt])
k=1 k=1

1<k<g<oo

1<k<g<oo

i var (B5eal) +2 Y a0Var (E5[E]) Var (B [£4)
k=

2
Var lt[élt])) .

Therefore, no matter what the signal process is, the variance of a;; is bounded. It follows that 7 is a bounded
mapping. The fact that 7~ is continuous follows from the continuity of expectation operator. This completes
the proof. m]

B. Proor or ProprosiTION 3.1

Suppose that the stochastic process for p; is invertible, then observing {py};_! | perfectly reveals the underlying

aggregate shocks {n¢}.~! and, therefore, {qx so that the only shock the firms are uncertain about is the

k——oo’

current 1;. Guess that the equilibrium policy function has state variables x;; and g;-1, that is guess that firm i’s

k——oo

policy function can be written as
pit = (Pxxit + (Pth—l/
for some scalars ¢, and ¢;. It follows that, in aggregate terms,

Pt = Oxqr + Qg1

To verify the guess, notice that, since x;; — pq;-1 is a noisy signal about 1; with precision 7, we have that

Eitlqe] = Gi-1 + Xit.

1+71 1+1

Substituting these results into the best-response function (2.2) we obtain

(- +agy) (p(-a)+apy)

pit = 1+ 1 it 1+ 1 0((]5,1 qt-1,
which implies the following consistency requirement
3 o) - (1-o)r
= Tracar ™M ST aoor
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Pxt+¢qL

T=pL not have an

Hence,for p; to indeed follow an invertible process it is necessary and sufficient that g(L) =

inside root, or that |¢,/¢.| < 1 which implies the result.

C. Proor or ProrosiTiON 3.2

The first claim follows directly from the proof of Proposition 3.1. To establish the second claim we follow a
significantly more involved argument. To facilitate reading it we include the proof of the necessary lemmas at
the end of this section.

For a contradiction, suppose there is a finite-state representation, then the law of motion of the aggregate

action can be written as

pe = g(L)ne = CL)A(L)n,
where h(L) is analytic and does not contain any inside root, and C(z) is given by

ce=[]e-1.

i=1

where {11, A;,...,A,} are inside roots of g(z). The signal structure can be written as follows
Xit Uit 7712 ﬁ Uit
pe-1 Nt 0 Lg(L)||m

det[T(L)] = t2LC(L)h(L),

= T(L)

The determinant of I'(L) is

and it contains inside roots {11, ..., Ay, Ap41}, with A,41 = 0. Denote the Blaschke matrix by

1 0
B(L;2) = 1-AL
0 =X

4

and let the fundamental representation of the signal process be given by
r(Les =T "],
Mt

where

Uit

eir = A(L) , A(L) =B (L5 A) W) B (LTS )W, T(L) =T (L) A/ (L.

Mt

and {W,, } are the rotation matrices that satisfy W,,W’, = L. Next, define the following matrices recursively

To(L) =T(L),
T (L) = Tr_1(L)Wr, B(L; Ag).

The following lemma characterizes useful properties of I'y(L).

35



Lemma 4. The matrix T'r(L) is given by

yi(L) 7E(L)

I'v(L) =
HO= ke @

with all y¥(L) independent of g(L). Moreover,

k
7 (2)
ok (z) = =
72 (2)
satisfies the following recursive structure:
do(z) = TH3(1 - p2), (C.1)
L+ 61 (Ak) 0k-1(2) z — Ak
Ok (z) = . Cc2
() Ok-1(Ak) = 0k-1(2) 1 - iz (C2)
Finally, for k > 2, there exists some constant dy such that
Spo (2) = Dpg (Ag) + dy 2 (C.3)
k-1(2) = 0k-1 (A v .

Using the recursive structure of 0x(z), it is straightforward to verify that A(z) can be written as

A(2) =1 P(2) = Aps1 (2) An (2) ... A2 (2) As (2),

with
. n+1 yéc—l (Ak)
1= s
=\ @ + T ()
N R I oo e 1
Ay (Z): -1 1 B (Z ;/\k) W/\k = 0 z=Ag 1 5 A :
1) ( k) TArz - k—l( k)

The following lemma characterizes a useful property of ®(z).

Lemma 5. The elements of ®(z) satisfy

HZLl (6k—1 (/\k)2 + 1) 50(2—1)
Cc2 H(Z_l)
H(z)60(z ")0u+1(2) + 1
50(2)50(2_1) +1 ’

Dpp(z) = - +D(2)0p41(z7h),

Dyy(z) = c2

A .
where H(z) = T1{21 1Z—Tkkz' and c, is some constant.

The equivalence result in Huo and Pedroni (2020) implies that
pit = Eit[%],

where Ej; is the expectation conditional on the same information set but with a precision of private signals
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misperceived to be 7 = (1 — a)7. Then, the aggregate action is

pi= [Bulanl

Since the Hansen-Sargent formula implies

= 1(I(L) T"(0)A(L i
Ejt [Qt]:g( (L)_ ()L ())1“ [L’;:l,

we obtain the following fixed point problem,

g(z)zl[l‘(z)_r*(o)A(z)} 1 (;_S(Z))’
12

ol z z " pz \1-pz

or
1 1 1
h(z) = — —— —5(2)],
@) p zC(z) ((1 - pz) ( ))
where
0
se= 1 o] rOAE|[] = 00ne 5 00m)

For h(z) to be an equilibrium, it has to be that

1 _s0), forallie{l,. .. n} (C.4)

(1—p/\1) )y VA 7 .

so that the poles in C(z) can be removed.

Next, we show that with a finite number of inside roots, there does not exist an equilibrium.

Casel1l: n =1.. Firstletx =p+ 1% and notice that |p| < 1 and 7 > 0 imply |x| > 2. In this case S(z) takes a

simple form and we can calculate

1 T/\l X —/\1

o ) ,
T T T -2+ G —24) ()

so that equation (C.4) implies that A; = x which is outside the unit circle.

Case 2: n = 2.. Suppose that A1 # Ay, then

Sh) _1-pla _t(ha-M) (x-A)(x—A2) -1
S(2) 1-phi  (1-pAi) (1-A%) (p—x+A2) —(x —241) (x —A2) (p —x) +1)°

and equation (C.4) for i = {1, 2} implies that (x — A1) (x — A2) = 1, which implies that either [A;| > 1 or [A2] > 1.
Next, if A1 = A, = A, we have that

s 1 1A =312 +3xA — (x2 - 1)
1-pA T=Ap(1=A2) (A —x(1+A2) + (4xA —x2+ A4 =612+ 1) (p — x)

and equation (C.4) implies that 3A% — 3xA + x? = 1. Notice that the discriminant of this quadratic equation on A

is 9x2 — 12(x? — 1) and that it is negative whenever |x| > 2. Therefore, the solutions are complex. Complex A’s
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are allowed but necessitate a conjugate which is not possible in this case since we have assumed A1 = A».
Case 3: n > 2.. From the definition of S(z) and Lemma 5, it follows that

1+ 6n+1(0)5n+1()\1-_1)

S(Ai) = A
(Ai) = c1c2577(0) 1+60(/\i)50()\i_1)

Equation (C.3) together with the fact that A,,41 = 0 implies that
6n+1(z) = 6n+1(0) + dnlz/

for some constant d,,+1. Thus, we can rewrite S(A;) as

1+ 5n+1(0)(6n+1(0) + dn+1/\i_1)
1+ 60(A1)60(A7)

S(Ai) = c1c2751(0)
Suppose that the solution to the system of equations (C.4) includes A;, A;, A different from each other and all
inside the unit circle. It follows that

S(A)) 1- p)\j 1+ 0,41(0)(6,+1(0) + dn+1A;1) 1+ 6441(0)(0+1(0) + dn+1A;1)
sy 1-pr 1+ 60(A1)50(A7 1) - 1+ 00(A)00(A")

7

which can be written as
On1(0) (T + (1= pAi) (1= pAj)) + (1= pAi) (1= pAj) +Aidj7) p (1+67,,(0)) =0.
Suppose that 7 + (1 — pA;) (1 - pA;) # 0, then

(1 B /\iAj) T -1 dn+101+1(0)

T+ (1-pAi) (1-pAj) p(1+02,0)
Similarly, if T + (1 - p)\i) (1 - p)\k) # 0, then

(1-AiA)T _ d1+10,41(0)

T+ (1-pAi) (1= pAx) p(1+62,,00)

Combining the two conditions above, we have

(1-Aid)) _ (1= Aide)
T+ (1=pAi) (1=pAj) T+ (1-pAi) (1-pAk)’

which implies
A+ (1=Aip)IAi—p)=0 = 1+ 5(A)d0(A;") =0.

This cannot be the case since S(A;) must be a finite number. Therefore, if there exists a solution, it has to be that
T+ (1 - p)\i) (1 - p/\j) =0.
This condition, however, implies that A; and A; cannot be simultaneously within the unit circle.
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Next, suppose there exits a solution with A; = A, for all i € {1,...,n} with |1| < 1. Let {Alrk}]‘j’zo, ey
{/\n,k}io:o be n sequences such that limy e Ajx =Aand A;x # Ajx foralli,j € {1,...,n}and all k > 0. Define

n

w=)y

i=1

S(Aix) =

_ 1
1-pAik '

By continuity of S(-), wy approaches 0 as k goes to infinity, since A; x approaches to A for alli € {1,...,n}.
However, since A; x # A;, as established above, only if some A; x are outside the unit circle, can wy approach
0. Since |A] < 1, as k goes to infinity, all [A; x| < 6 for any 6 < 1, which implies that w cannot be close to zero.
This is a contradiction. The case where all A; equal to each other, except for one, can be dealt with in a similar

way, which concludes the proof.

C.1 Proof of Lemmai4

We prove this lemma by induction. For k = 0, this is clearly the case. For k > 1, suppose that
_| n@ 73 (@)
Tk (Z) - k k :
73 (28 ;@8 ()

Then, it follows that
Ti1(2) = Tkoq (2) Wi, B (2 Aka1)

with

W, . = 1 YEAke1)  —yE (M)
R 2 4k 2 [7EAka) YE () |
\/yl (Ak+1) +7/2 (/\k+l) 2 1
So that
T (2) = ! Vi (@) i@ | [rF k) —yE (M)
1(z) =
YE A1) + 78 (M) 7528 vy g@)| |5 (Ak)  vf (k)

1- Z/\k+1

~ (f Aes) 73 (2) + 75 M) 75 (2)) 8 (2) - (rf (Aisn) V5 (2) = ¥ (Aka) 74 (2)) Tkt g

\/7/{( (Ak1)? + 7K M)

(7f (Aks) 7§ (2) + 75 (Aks1) 5 (2) (vf ()\k+1)7/2 (z) - 7/2 (/\k+1))/1 (2)) et kaﬁf ]
g(z)

k+1 k+1

which has the desired structure. Note, moreover, that 7" and y,™" satisfy

YE A1) vE @) + v5 M) v5 (2)
\/Vf (Aks1)® + 7K (Akan)?
?/1 (Ak1) 73 (2) = 75 (Ag1) oF (Z) 1— 2k

\/)/1 (k1) + 78 (Agr)? Ak

niz) =

7
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It follows from these recursions that 0, (z) satisfies equation (C.2). To prove equation (C.3), first notice that, for
k =1, it follows from (C.1) and (C.2) that

(1-pA1) (A1 =p) + a7 2 - Ay

01(z) =61 (M) + \/?p (1—A%) 1-Az°

Next, suppose that there exists dy such that

Z = Ayt

0k () = 0k (Aks1) + dkm,

then, equation (C.2) implies that

(1 + Ok ()\k+1)2) (Ak = Aks1) — di (1 - /\iﬂ) Ok (Akst) ;4

Ok41 (2) = Ok1 (Aks1) + ) 1—Agsz’

2
dr (1 A

which, again by induction, establishes the result. O

C.2 Proof of Lemma5

From the definition of A(z) and equation (C.2), it follows that

1 1
Ax(z) = (0k-1 (Ak) = 0k-1(2)) :

—5k—1(2)] —0k(2)

Define
n+1 » —Ak n+1
H(z)= , and G(2) =] [ (6k1 (Ae) - 611 (2)).
1- /\kZ
k=1 k=1

Since A(z) = ¢1D(z), it follows that

G (z) = c2(1 = zAn41) H (z) = c2H(z2), (C5)
for some constant c;, and that

1 1
D(z) = G(z) . (C.6)
—060(z) ~0p+1(2)

For a function f(z), define the tilde operator as ]7(2) = f (1/z). Then,

— 1 0

’ _ 2

Rilz) Ax(2) = (051 (e +1) | J :

and, therefore,
_ 1 0 n+1
D ‘P = , h = Or-1 (A 2 +1).
(2 @ (z) 03[0 J where ¢ k[!( 1 (A7 +1)
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Next, apply the tilde transformation to equation (C.6) to obtain

&n(z)l | ]:é(z)l 1 ]
—60(z) —0n+1(2)
Transposing and multiplying from the right with ®(z) yields
e [1 Foa)] =1 ~Boe)| By @) =G [1 ~Fyn(x)| D).
Together with the equation (C.6) we obtain four linear equations for the four entries of ®(z),

@11(z) — P12(2)d0(2) = G(z)

D21(z) = P22(2)00(2) = —6n+1(2)G(2)
(@11(2) = P21(2)0141(2))G(2) = 3
(@12(2) — ©22(2)6441(2))G(2) = —c300(2).

The rank of the system is 3. Use the first, second and fourth equations to express ®11(z), P12(z), P21(z) in terms
of @2;(z). The third equation does not allow to solve for ®»(z), rather it collapses to

(14 001(20801(2)) G)G(2) = (1+ 60(2)80(2)) c5. (C7)
We can, now, determine ®;,(z) from?2*
D11(2)Pn2(z) — P12(2)P21(z) = det (®(z)) = c3H(z),

which implies

(C@B30(@)0,(2) + C@HE)es

Doy(z) = — as
(1 + 0441(2)04+1(2))G(2)G(2)

Together with (C.7), this can be simplified to

G(2)80(2)0441(2) + G(z)H(z)
50(2)00(z) + 1 '

Do(z) =
Applying the tilde operation to equation (C.5) yields
G(z) = coH(2).
Finally, it follows from the definition of H(z) that H(z)H(z) = 1, and therefore

€2H(2)00(2)0ms1(2) + €2

Dn(z) = =
50(2)50(2) +1

24Notice that A
z— Ak
Ap) = (1 _ 2) .
det (Ay) +0k-1 (Ag) T-2A,
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D. Proor ofF THEOREM 1

Suppose that when a = 0 the equilibrium is invertible, otherwise the result is trivial. Section D.1 characterizes
the equilibrium assuming invertibility. Using this characterization, Section D.2 takes the limit as a increases to

1 and shows that in it the equilibrium cannot be invertible.

D.1 Solution Assuming Invertibility

Suppose that the equilibrium is invertible, then the information set of agent i in period f is given by 1;; =

{Xit, Zc, -1, Wir—1}i=_. Therefore,
Eit [$it] = E[d(L)ns + e(L) wit|Zit] = (d(L) — do) m¢ + doE [m]Zi¢] + (e(L) — eo) wir + eo E [wit|Z;¢],
Eit [a:] = E[g(L)n:|Zit] = (g(L) — go) mt + go E [ | i ] -
Moreover, since
xit — (A(L) — Ag) mr — (B(L) — Bo) wit = Aont + Bouj;, and z; — (C(L) — Co) nr = Comy,

it follows that Agn; + Bou;; is a noisy signal about n; and w;;, and Cy) is a noisy signal about 7;, which allows

us to calculate

-1
2 2 2
E[nlZit] = [)ZZAT EZCT] AoZ;Ag +BoL; By AoZ,C) Agn; + Bou;
nto =% COE,ZYAJ CO}:}]CS Coms
-1
E [wit| ;] = [ZZBT 0] AOE%AJ * BOE?’BJ AOZ%IC(I Ao + Boui;
1 1 u=o CQE%A(-)F COE%CS— CO/’r]t .

Therefore,
ait =@ (d(L) — do) mt + do E [m¢|Zit] + (e(L) — eo) wir + eo E [wit|Zit]) + a ((g(L) — go) m: + go E [me|Zit]),
which can be reorganized as
air = [@ (d(L) — do) + a (g(L) — go)| mt + ¢ (e(L) — eo) wir + (pdo + ago) E[me|Lit] + peoE [uit| Lir] .
Consistency requires, in particular, that
9(L) = ¢ (d(L) - do) + a (g(L) — go) + (pdo + ago) k12 + peok2Q,

where

AOE%AJ +BoXZiB] AOZ%CJ
CoZiA] CoECy

Ag

ki = ZZAT Z%Cg] , kp= [E%{Bg 0] , and Q= C .
0

n==0

—
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We can rewrite the equation above as
(1 - a) g(L) =@ d(L) + ((pdo + O(g()) (k:lﬂ - I) + (Peok:QQ

It is useful to replace the lag operator in this equation with an arbitrary complex number z. Evaluating this

equation at z = 0, for instance, implies the following equilibrium condition,
90 = ¢ (doks + eok2) Q (1 - a1 Q).

Notice that, using the block-matrix inversion formula, gy can be rewritten as

90 = doE + ¢ (do (I-E)D +egF) Y o [I-E)D (- )Y, (D.1)

1-
24 =)

where
-1
D =x2A] (AO (I-E)E2A] + BoL2B] ) Ao,
-1
E=XiC] (i)
-1
F=X2B] (Ao (- E)E2AT + BoZ2B) Ao,

and we have used the fact that E is idempotent. Finally, substituting the expression for gy into the equation for

g(z) we obtain
9(z) = go + 70— (d(z) - o).

D.2 Taking the Limit as « Increases to 1

Let
1-«a

9(z) = go +d(z) - do,

so that
9(z) = ——g(2),
-

.
and notice that this is well defined for all & < 1 and that, if lim,_,;- det [C(z) g(z)] has an inside root, then

.
there exists @ < 1 high enough such that det [C(z) g(z)] is well defined and has an inside root. It is, in fact,
sufficient to show that .

lim det |Cy go] =0.

a—1-

Accordingly, using equation (D.1) we have that

1-«a

g0 = doE + lim (1 - ) (do (1~ E) D + eoF) i a/ [I-E)D(I-E)] .
j=0

lim gop = lim
a—1- a—1-

In order to proceed, it is useful to establish the following lemma.

Lemma 6. The matrix (I — E) D (I — E) has all eigenvalues in [0, 1).
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.
Proof. Notice that (I - E) £2 is symmetric, so that ((I _E) 23]) = (I-E)X2. LetM = Ay (I- E)E;and N = BoZ,,
then it follows that
MM' = Ag(I-E)E, (I-E)L,) A]
.
= Ay (I-E)L, ((1 _E) 2,272,;1) Al
T
= Ag(I-E) L3, ((I _E) 25) A]
2
— Ao (I-E)E2A].
Therefore
(I-E)D(I-E)=3,M" (MM" +NN") "' Mz, ",
so that (I - E) D (I — E) is similar to MT (MM " + NNT)_1 M. Let n = dim(uj;) and m = dim(7;), then, it follow
that Nisn xnand Mism —1xm. Ilf n > m,
spectrum (MT (MM" + NNT)_1 M) U{01,...,04_m} = spectrum (MMT (MM" + NNT)_l)
whileif n < m,

spectrum (MT (MMT + NNT)_1 M) = spectrum (MMT (MMT + NNT)_l) U{01,...,0_n}.

The matrix MM" (MM + NNT) ! is the product of a positive semi-definite with a positive definite matrix, so
must have positive eigenvalues while NNT (MMT + NNT)_1 is the product of two positive definite matrices,

and, therefore, has strictly positive eigenvalues. Finally, since
MM™ (MMT +NNT)" =1-NNT (MM" +NN")"",
it follows that MM " (MMT + NNT)_1 must have eigenvalues lower than 1. Hence,

spectrum ((I - E) D (I — E)) = spectrum (MT (MM™ + NNT)_1 M)

= spectrum (MM” (MM +NN") ) < [0,1).

The lemma implies that

[se]

2, @ I-BDI-EY

j=0

is well defined and finite, so that

lim (1~ a) (do (I~ E) D + oF) D [1-E)DA-E)Y =o0.
=0

Therefore,

lim go = doE,
a—1"
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and, using the definition of E,
-1
g0 = doE2C] (CoE2CT ) Co = aCy,

for some vector a. Finally, notice that
Co
aCo

det =0,

go

C
O} = det

T T
which implies that z = 0 is a root of det [C(z) g(z)] and, therefore, [C(L) g(L)] is not invertible for a close

enough to zero (from below).

E. Proor or ProPosITION 5.2

The following lemma establishes a type of law of iterated expectations.

Lemma 7. If Iy 2 {n., wi: .2\, then, for any stochastic variable Vit = FLNesj + gL ryj = X 2o fsMisjos +
Z‘;O:o GsUWittj—s,
Eit[Berklyie+ill = Bitlyisei]l,  forallk > 1.

Proof. Let fs =0, and gs =0, for all s < 0 and note that
Eitklyiiej] = Z(fj—k+snt+k—s + gj-krsUiprk—s) + Fiok(Hymiex + Hywi rok) + gk (Pymiak + Py pik),
s=1

where we have used the fact that: (1) Ei,t+k["7t+j] = Ei,t+k[ui,t+j] =0, forj > k; (2) Ei,t+k["7t+]’] = Mr+j, and
Ei tek[wit+j] = wirej, for j < k; and (3) E; rik[me+k] = Hymerk + Hywirrk, and B pyx[wi trk] = Pk + Putiss,
for some constant matrices H,, H,, P, and P,,.

In aggregate,

Erklyi il = Z Fi—k+sMisk—s + fj-kHynek + Gj—k PNtk
s=1

Consider agent i’s the inference in period ¢,
Eit [Et+k[]/i,t+j]] = Z fj—snt—s + fj(Hr]TIt +H,u) = Eit[]/i,t+j]/
s=1

where the last equality follows from the same three facts listed above (with k = 0). m]

Next, substituting the best-response (5.7) into itself, using the law of iterated expectations, we get
aip = Bit[@&it + (a + y(L)ar + B(L) (@it + (a + y(L))ar + B(L)air)],

and iterating on this procedure, using the fact that || B (L)” < 1in the operator norm, leads to

y(L) +ap(L)

ait = Birlp&in + (a +x(L)a;], where & = T=50)

and «x(L)= (E.1)

1
T30 T it
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Notice that xg = 0. Aggregating implies
ag = Et[@gz‘t + (a + x(L))ay].
Multiplying both sides by x(L) and considering the inference of agent i in period ¢, we have that,
Balk(L)ar] = Bt (Bl pZis + (@ + <(L)a]|
Since the equilibrium is invertible, Zi; 2 {1, uir 21 ., so that, using Lemma 7, it follows that,
Eilx(L)a] = Bulpr(L)E + x(L)@ + c(L)ar],

and, iterating on this procedure, using the fact that ||a + x(L)|| < 1,% we obtain

x(L) =

Eit[x(L)a;] = Ei @méit .

The result follows from substituting this fact and the definitions of E,-t and (L) into equation (E.1).

F. INVERTIBILITY IN NEW KEYNESIAN MODEL WITH INCOMPLETE INFORMATION

F.1 Firms: The New Keynesian Phillips Curve

The optimal reset price solves the following problem:
P; :argmaxZ(ée)kE‘t [Qttsk (PitYipakpt — PrakmcrskYiprkie) |
it Py £ i tt+ it dit+k|t + +k i t+k|t

subject to the demand equation, Y; ¢4x = (If%)_é Yi+k, where Q11 is the stochastic discount factor between ¢
and t + k, Vi and Pk are, respectively, aggregate income and the aggregate price level in period t + k, P;
is the firm’s price, as set in period t, Y; ;4 is the firm’s quantity in period ¢ + k, conditional on not having
changed the price since ¢, and mic;4f is the real marginal cost in period t + k. The firm’s discount factor is o,
and 0 is the Calvo parameter (probability of not resetting price).

Taking the first-order condition and log-linearizing around a steady state with no shocks and zero inflation,

we get the following, familiar, characterization of the optimal reset price:

piy=(1=060) > (60) Bis [merik +pro] (F1)
k=0
25To see this, notice that
o+ w0 = [ 2B < a0l - g < i+ 0 - po] < T <"

7

where the first inequality follows from Cauchy-Schwarz, the second from the fact that, for any operator T, Tt < ||T_1
and the fourth from the assumptions that ||ﬁ(L)|| <1, and |a| + ||y(L)|| + ||ﬁ(L)|| <1
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Suppose that firms observe the aggregate prices up to period t — 1, that is, they observe p!~!, then we can

restate condition (F.1) as
Pl —pra=(1-00) Y (60) Eig [mevik] + 3 (00) By [l (F2)

Since only a fraction 1 — 6 of the firms adjust their prices each period, the price level in period t is given by
pr=(1- Q)fp;‘tdi + Op;-1, and inflation is given by

T =pr—pr-1=(1- 9)/ (Pzt - Pt—1) .

Define the firm specific inflation rate to be

i = (1-0) (P;t - Pt—l) .

Then, it follows from equation (F.2) that

Tt = (1 — 6) Ei,t [(1 — 69) mcy + Tlt] + (SQEZ‘J

(1-0) Z (66)k Ei 1 [(1 = 00) meprk + 7Tt+1+k]] ,
k=0

and we obtain the following beauty contest game, which includes equation (5.8),

mip=(1-0)(1=00)E;;[mci]+ (1= 0)E;; [r;] + 60E; s [mip41], withm = /Tii,t-

F.2 Households: The Dynamic IS

The consumer’s problem is

1_1
(59

z t+k
max Z
{Ci,trBi,Hl} = C

subject to
Cit +Bitr1 =ReaBip + Y4,

where R; and W denote real interest rates and income. At any state, the life-time budget constraint can be

written as

[e]

ZH 112:1_& 1B”+Z

which can be log-linearized into

] 1Rt+] l

Z ,Bkci,t+k = Z ﬁk]/t+k-
k=0 k=0
Combining this with the log-linearized version of the households’ Euler equation,

cit = Bislcipar] — cBitlre],
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and using the market clearing condition, y; = c;, we obtain

cit =—¢p Z ﬂkEi,t[Tt+k] +(1-p) Z B E; t[crak]-
k=0 k=0
Finally, notice this is implied by the following beauty-contest game,
cip = —CBEit[re] + (1 = B)Eis[ct] + BEitlcit+1], withes = /Ci,t-
Letting mpc = 1 — j8 yields equation (5.9).

F.3 Invertibility: Proof of Corollary 2

Suppose that &; follows an AR(1) process
& = p&1+ 1+ 01, withne ~N(0,1),
and that, besides past prices, firms only observe a private signal about it with precision 7,
xip =& +uip, withuie ~N(0,7,1).
Then, it follows from Corollary 3 that for a best response
aip = Qi [&t] + aBiy [ar] + VEi s [ai1] + BEi [ai 4]

the equilibrium is invertible if and only if

- a

1 Ty
pa(l - H)

>1, where H= .
1+1,

Cla) = ’

For positive a and p, the relevant case here, it is easy to see that C(«) is a decreasing function. Hence, higher
degrees of static strategic complementarity make it less likely that the equilibrium is invertible. Since this
controlled by 1 — 0 in the NKPC and mpc = 1 — § in the Dynamic IS, invertibility is less likely for lower 6 and
higher mpc.

G. Proor or ProrosiTiON 5.3

Suppose the equilibrium is invertible and guess

d d d d
T = aoé; + an &y + aoni + asny, and ct = Po&i + P1&; + Pan; + Bany
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From the best-response functions, it follows that,

e = {x (1+Bo) + (1 — 0) ag + 60aop} p&S_; + {xp1 + (1 — 0) as + 66aip} p&d
+ {Kﬁz +(1-0)ar+x(1+po) +(1—6)ap+ 69a0p} E; [ni]
+{kBs+(1-0)as+xp1+(1—-0)ar +60a1p} E 7],

and

cr = {mpcpo — c(1 —mpc) (pao — pao) — ppo (mpc — 1)} p&;_,
+ {mpcB1 — ¢(1 —mpc) (pas — pay +1) — pp1 (mpc — 1)} p&f
+ {mpcBo — c(1 — mpc) (pao — pag) +mpcPz — pPo (mpc — 1) — ¢(1 —mpc)daz} E¢ [n} ]
+ {mpcﬁl - ¢(1 —mpc) (pa1 — par + 1) + mpcPs — pP1 (mpc — 1) — (1 — mpc)d)a3} E; [Wfl] :

Let A = %, then

1+7/

E¢ [nj] = An, and E; [nf] = An{.

Matching coefficients, we get a system of equations that can be split into a system for ay, o, @1, and f1,

2%y} (K (1+‘BO) +(1—9)(X0+696¥0p),

Bo = (mpcBo — c(1 —mpc) (pao — pao) — pPo (mpc — 1)),
a1 = (kp1+(1—-0) a1 + 66a1p),

(

B1 = (mpcp1 — c(1 —mpc) (pa1 — par + 1) — pp1 (mpc — 1)),

a system for ay, and B2,

(0(0 + 0(2) = (Kﬂz + (1 - 6) ay + K (1 +[30) + (1 - 6) ap + (590(0‘0) A,
(Bo + B2) = (mpcBo — ¢(1 —mpc) (pag — pag) +mpecPa — pPo (mpe — 1) — ¢(1 —mpc)paz) A,
and a system for a3, and f33,
(a1 +a3)= (kB3 +(1—0)as+xp1+ (1 - 0) a1 +66a1p) A,
(B1 + B3) = (mpcp1 — c(1 —mpc) (par — pag + 1) + mpcPs — pP1 (mpc — 1) — ¢(1 — mpc)Pas) A.
Solving the system yields

Y x (1 —mpc) (1-p)
* " (1—mpc) (1-p) (1-06p) 6 — xc(1 —mpc) (p— §)”
x¢(1 —mpc)

T T A —mpo) (1-p) (1= 0p) 0 — xc(1 —mpc) (p - @)’
o - xc(1 —mpc) (¢ - p)

(1-mpc) (1-p) (1-06p) 0 —xc(1—mpc) (p—¢)’
. 6c(1 —mpc) (1 - 5p)

_(1 —mpc) (1-p) (1 -6p) 6 — xc(1 —mpc) (P“P)’
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and

x (1= A) ((mpc — 1) (p — 1) (Ampc — 1) + xc(1 —mpc)A¢ — kc(1 — mpc)Ap)

a2 = ((1 = Ampc) (1 = A (1 - 0)) + xc(1 —mpc)pA2) (1 —mpc) (1 - p) (1= 06p) O — k(1 —mpc) (p— @)’
_ kc(l—mpc) (1= A) (¢ (1+A (6 —mpc— p+mpcp)) —p(1—A(1-06)))
P = ((1 = Ampc) (1 = A (1 - 0)) + xc(1 —mpc)pA2) (1 —mpc) (1 - p) (1= 6p) O — k(1 —mpc) (p — @)’
~ xc(1—mpc) (1 —A) (1+A (6 —mpc — 66p))
¥ = ((1 = Ampc) (1 = A (1 = 0)) + xc(1 = mpc)pA2) (1 —mpc) (1 - p) (1= 6p) 0 — k(1 —mpc) (p — @)’
gy = c(I-mpc)(1=A) (0 (1=06p) (1=A(1=-0))—xc(l—mpc)pA) ‘
((1 = Ampc) (1 = A (1= 0)) + k(1 —mpc)pA2) (1 —mpc) (1 — p) (1= 6p) 6 — kc(1 —mpc) (p — P))

This solution validates the guess. Next, to guarantee that the equilibrium is indeed invertible, we need the

n
i |-
un
For that, we need both roots of the determinant,

B [

to be outside the unit circle. The roots are given by

following system to be invertible,

agn [45}

l Tt ] _ [ —1H)L + a _1;3pL + a3
0 1

Ct T th T ths

7(1+6 —mpc) + T\/(l -0 - mpc)2 —4xc(1l —mpc)p

r = 2p ’

7(1+ 60 —mpc) — T\/(l - 0 —mpc)® — 4xc(1 - mpc) P

Ty = — .
2p

If(1-6- mpc)2 —4xc(1 —mpc)p < 0, the roots are complex and their magnitude is above 1 if

p? = 0 (1 —mpc) 72
xc(1 — mpc)T2

¢ >

Otherwise, the roots are real and |r1| > |r2]|. So we need to show that |r;| > 1, and for that we need to consider
two cases: If T(1+ 60 —mpc) < 2p, then |r,| is always less than 1, otherwise, it is a necessary and sufficient

condition that
7p (1 + 6 —mpc) — p* — 6 (1 — mpc) 72

¢ >

xc(1 — mpc)t?

H. ForwArRD COMPLEMENTARITY EXAMPLE

Consider the following simple version of equation (5.7),

ait = @B [&ir] + aBit[ar] + yEit[ar1] + PEit[ait+1],

50



and suppose that the equilibrium is invertible. Then, Proposition 5.2 implies that this is equivalent to the static

best response
1-a

l-a-(y+pL™

ajp = (PEit[Eit] +aBEyla;], with &= it

As noted above, we can see that forward aggregate and individual complementarities, controlled by y and p
have interchangeable effects. This property allows us to simplify the analysis since we do not need to distinguish
between the two types of forward complementarities focusing only on their sum.

Next, to be more concrete, suppose that &;; does not depend on idiosyncratic shocks (so we suppress the
notation i) and follows an ARMA(1,1) process,

& =p&+1ne + 01, e~ N(O,1),
and that, every period, agent i observes last period’s aggregate action, 4;_1, and a private signal,
Xip = &+, uip ~ N(O,7,0).
Then, we can establish the following corollary to Proposition 5.2.

Corollary 3. The equilibrium is invertible if and only if

Tu
1+1,

>1, where H =

‘ 1-a+6(y+p) (H.1)

p(l—a+6(y+p) - (p+0)(1-aH)

Proof. It follows from Proposition 5.2 that, for any d(L) such that & = d(L)n;, the law of motion for the aggregate

action satisfies,
1-a)L

(1-a)L=(y+p)

where [-]; denotes the annihilator operator, and H = 7, /(1+1,). Letx = (y +8)/(1 — ), replace the lag operator

d(L)| +a(g(L)—go)+ agoH.

+

S(L)=<P[

in this equation with an arbitrary complex number z, and rearrange to get

zd(z) — xd(x)
K

— + ago(H - 1).

(1-a)g(z)=¢

We can obtain g9 = ¢d(x)(1 — aH)~! by evaluating this equation at z = 0, and, then,

p_dE@)-dwx)_

l-a z-x

8(z) = go +
Using the fact that d(z) = (1 + 6z)/(1 — pz), we obtain

[ 1+ 0k 1 (p+0)z

8@ = T \T=am " T=a 1=pz )’
which has root
o= 1-a)1+ 06x)
T p(l-a)1+0x)—(p+0)1-aH)
The equilibrium is invertible if and only if this root to be outside the unit circle, that is |z*| > 1. O

Itis easy to see from equation (H.1) that the effect of forward complementarities, y +f, on the invertibility of
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the equilibrium is ambiguous and depends both on the autoregressive and moving-average parameters, p and
6. To interpret this condition, it is useful to consider some particular cases. If, for instance, the fundamental

follows an AR(1) process, with 8 = 0, the inequality simplifies to

1-a

aml—H)>L

and forward complementarities actually do not matter for invertibility.

To understand this, first let [-]; denote the annihilator operator which sets negative powers of the lag
operator to zero. Then, because the expected value of future shocks is always zero, we have that, for any
stochastic variable y; ++; and any j, Eit[vi t+j] = Eit[[yit+j]+]. When 0 = 0, we have that

1-a 1 _ 1-a 1
T-a-(+pLi1-pL"], " T=a=pGr+p1-pL™

[Ef]+ =

Thus, a change in y + § affects only the variance of the fundamental but not the autoregressive coefficient.
Loosely speaking, when f + y increases, the agent puts relatively more weight on the next period fundamental.
But since E;;[&41] = pEi[&¢] this amounts to a proportional increase in the aggregate action in every period
which does not affect invertibility.

Things are different if &; follows an MA(1) process, thatis, when p = 0 and 0 # 0. In that case, the inequality
simplifies to

’1—a+6(y+ﬁ) o1

0(1 — aH)

so that, if 0 > 0 (< 0) the equilibrium is non-invertible when y + f is low (high) enough.? In this case, we have

that
1-«

l-—a-(y+pL™!

0(y +B)
1

-

[&]s = [ 1+ GL)m] = (1 - + 6L ;.

Here, it is useful to consider the response of the aggregate action, a;, to a shock to the fundamental, 7, in period
t = 0, assuming the equilibrium is invertible. Also, for simplicity, suppose that 6 > 0. Then, an increase in
y + B decreases the response of a9 by an amount proportional to 6. On the other hand, it leaves a; unchanged
since the impulse response of &, for k > 2 is zero, so that forward-looking complementarities do not affect a;
or the action in any further period. It follows that ag/a; decreases, which reduces the signal-to-noise ratio and,
therefore, the informativeness of the observation of a¢ to forecast a1. This, in turn, makes it less likely that the
equilibrium is indeed invertible.

Figure 9 shows how when the sign of the moving average parameter, 0, flips the effect of an increase in
the degree of forward-looking complementarities, § + y, on invertibility. It also illustrates, in accordance with
Theorem 1 and Proposition 5.2, that it is always the case that for a high enough degree of static complementarity,

a, the equilibrium is non-invertible.

2%6More specifically, for 6 > 0, the equilibrium is non-invertible if y + § < (1 —aH) - (1 — a)/6, and, for 8 < 0, if
y+p>-(1-aH)-(1-a)/6.

52



0 =0.8and p=0.0 0 =—0.8 and p =0.0

0.8 0.8
Not Feasible Not Feasible Not Feasible Not Feasible
0.6 0.6
04 0.4
0.2 0.2
SN Non-Invertible SE Non-Invertible
0.2 -0.2
Invertible Invertible
0.4 0.4

-0.6 -0.6

-0.8 -0.8

0.2 0.4 0.6 0.8 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

) -1 -0.8 -0.6 -0.4 -0.2 0
B+ B+

Figure 9: Regions of Invertibility with Forward-Looking Complementarities

The only free parameter, 7,, is set to 1.

I. BAcCKkwWARD AND FORWARD COMPLEMENTARITIES

Section 5.2 considers a best response function
ait = Bit[it] + aBir[ar] + 6(L)Eit[ar] + A(L)Eit[ait], (L1)

with forward looking complementarities, that is, assuming that 6(L) and A(L) are functions only of negative
powers of the lag operator L. This section handles the cases in which backward complementarities as well.
First, Section 1.1 discusses the case with only static and backward complementarities. Then, Section 1.2 deals

with the case in which there are both backward and forward complementarities.
aip = QBi[ir] + aBit[ar] + 6(L)Eit[ar] + A(L)Ejt[air],

I.1 Backward Complementarities

Consider the best response in equation 1.1 with only backward complementarities, that is, such that 6(L) and
A(L) only have positive powers of the lag polynomial. Since past aggregate actions have been assumed to be in

agent’s information sets, it immediately follows that
Eit [at_k] =at—k, forall k > 1. (12)

Assume that the perfect information equilibrium,

_ 4 £,
T 1-a-6(L)-AL) "

at

is well defined, that is, that ||a + 6(L) + A(L)|| < 1 in the operator norm.

Proposition 1.1. The equilibrium is invertible with the best response

ai = @E;[Eir] + aEi[a:],
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if and only if it is invertible with the best response in equation 1.1 with
5(L) = Z o¢LK, and A(L) = Z/\kLk.
k=1 k=1

Proof. Tt follows from equation (I.2) that the best response with backward complementarities can be rewritten
as
air = @Bit[&ir] + aBirlar] + 6(L)ar + A(L)aiy.

Analogously to the steps in the proof of Theorem 1, we obtain the following consistency requirement for the

law of motion of the aggregate action,
9(L) = ¢ (d(L) — do) + a (g(L) — go) + (pdo + ago) k12 + peok2Q + (6(L) + A(L)g(L),
which can be rewritten as
(1—a—056(L)—AL)g(L) = ¢ d(L) + (pdo + ago) (k1Q —I) + pegkQ
Since 09 = A¢ = 0, we have that, just as in the proof of Theorem 1,
g0 = ¢ (doky + egko) Q (1 — ak, Q)" .

and it follows that
_ (1-a)go+ ¢(d(L) — dp)

I = s D - D
Let .
9(z) = — gy +d(z) - do,
so that
g(z) = P g(2),
1-a-06(z)—Az)

and notice that g(z) is the same as in the proof of Theorem 1, so that, if the equilibrium is invertible in the static
best response, it remains invertible with any feasible 6(L) and A(L) since, by assumption, ||a + 6(L) + A(L)|| < 1.

If it is non-invertible it remains non-invertible for the same reason. m]

It follows that the result in Theorem 1 immediately generalizes to settings with backward-looking comple-
mentarities. So that, regardless of these complementarities, if the static complementarity, «, is large enough

the equilibrium is not invertible.

1.2 Interacting Backward and Forward Complementarities

Next, consider the following best-response function which encompasses most environments considered in the

literature including, for instance, the Euler equation in a New-Keynesian model with capital,

ait = QEit[&] + aEiat] + yEit[ar11] + BEit[airs1] + 0Eit[ar 1] + AEi[ai-1].
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Perfect Information Benchmark. It is easy to see that, if agents observe every shock up to the current

period perfectly, the equilibrium must satisfy the following consistency requirement

9(L) — 90

L) = L) +ag(t) + () 4

) + (6 +A)g(L)L,
which, replacing the lag operator with an arbitrary complex number z, can be rewritten as

[-(6+M)z22+(1—a)z - (y + B)] 9(z) = pd(2)z = (¥ + B)go.

In order for this equilibrium to exist and be unique, the polynomial on the left-hand side of this equation must
have exactly one inside root, an assumption that we maintain throughout. By inside root we mean that the
root is inside the unit circle in the complex plane. The right-hand side of the equation must be zero at any
inside root of the polynomial at the left-hand side to avoid poles inside the unit circle. This condition is used
to determine go. With two outside roots, go is indeterminate so that there are multiple equilibria, and with two
inside roots, go is over-determined so that, in general, an equilibrium does not exist. Let k1 and « be the inside

and outside roots respectively, then, we would have that, the unique perfect-information equilibrium satisfies

o &' dL)L-d(x1)i
6+A1—K£1L L—1xq ’

In what follows we only consider the set of parameters in which this perfect-information equilibrium exists and
is unique, that is, such that |x1| < 1 and |x;| > 1. We refer to parameters that do not satisfies these conditions
as infeasible. In this setup, we can establish the following result.

Theorem 2. Suppose that e(L) = e and B(L) = B. For any w1, w2 # 0 such that |w1| < 1 and |wz| < 1, there exists
e > 0 low enough such that if a =1 — (1 + wirw2)e, B+ Y = wig, and O + A = wae, the equilibrium is not invertible.

Proof. The proof is presented in the next Section 1.3. m|

This theorem extends the result in Theorem 1 for the case in which there are both forward and backward
complementarities under the restriction that e(L) = e and B(L) = B. This restriction is not particularly
relevant since most environments considered in the literature do satisfy it. The theorem implies that there
always a region in the space of feasible complementarity-parameters («, v, 8, 6, A) such that the equilibrium is
non-invertible. The reason why it is not enough to take the limit as the static degree of complementarity, «,
increases to 1, as in Theorem 1, is because, depending on the starting point, that might lead into an infeasible
set of parameters. Hence, the limit must be taken in a careful enough way to guarantee that the region of

non-invertibility is reached without violating feasibility.

1.3 Proof of Theorem 2

This proof follows very similar steps to the ones in the proof of Theorem 1, for clarity we closely follow the
argument of that proof. Suppose that when a = 0 the equilibrium is invertible, otherwise the result is trivial.
Section 1.3.1 characterizes the equilibrium assuming invertibility. Using this characterization, Section 1.3.2 takes
the appropriate limit and shows that, in it, the equilibrium cannot be invertible.
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I.3.1 Solution Assuming Invertibility

Suppose that the equilibrium is invertible, then the information set of agent i in period ¢t is given by f;; =
{Me-1, Wiz—1, Tir, 2}y We guess (and verify below) that the individual policy function takes the form

ajs = g(L)eta; + huj;. Therefore,
Eit [&it] = E[d(L)n: + ewit|Ljt] = (d(L) — do) m; + doE [ |1t ] + e E [wit|L3¢],

Ejt [a] = E[g(L)n:|Lit] = (g(L) — go) m¢ + go E [m¢|Zit],

g(L) - (go + g1L)
L

Eit [ait+1] = E[g(L)nt+1 + bt | L] = ( )nt + g1 E [ Zit],

g(L) = (go + g1L)
L

Eit [at+1] = E[g(L)ne+1|Lit] = ( ) e + g1 E [l Lt ],

Eit [ait-1] = E[g(L)ni-1 + hui—1]Lit] = g(L)mi-1 + huis-1,
Eit [ai-1] = E[g(L)ni-11Zit] = g(L)m-1.
Moreover, since
zit — (A(L) — Ag)mt = Aomr + Bujr, and  z — (C(L) — Co) mr = Com,

it follows that x;; — (A(L) — Ag) 1 is a noisy signal about n; and wj;, and z; — (C(L) — Cp) 7 is a noisy signal

about 7¢, which allows us to calculate

-1

2 2 o
E[n:|Zi¢] = [Z2AT ZQCT] AoZjAg +BEBT  AoL;Cj Aon: + Buy;
o =% CoXi Ay Cox2Cy Comi
-1
2 2 >
E[uitl—z—it] = [ZZBT 0] AOZ’YAE)r + BEuBT AOEWCE)F Agn; + Buj; ‘
u COZ%]AS— COE%CS— CO"]t

Therefore,

ait =@ ((d(L) — do) ¢ + do E [t ] + e E[wit| L3t ]) + a ((g(L) — go) m: + go E [m:1Zi])

e e LR ) B e e LRt

+ (6 + A)g(L)Ln; + AhLujy,

which can be reorganized as

g(L) - (go + g1L)
L

@ (d(L) - do) + a (g(L) — go) + ( + B) ( ) +(0+ /\)g(L)L} t

ait =

+ AhLui + (pdo + ago + (y + B) 91) E[me|Zit] + @eE [wit| Zi] .
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Consistency requires, in particular, that

oL =0 AD) - do) + gD~ gn) + -+ ) (LEEAD) 64 gy

+ ((pdo + ago + (y + ‘8) g1) klg + (pekzzﬂ,

where

AGE2A] +BoE2B]  AoZ2Cy|

2 2
CoX2A7 Cox2Cy

Ag

klz[EZAT Z%Cg], kQE[EiBg 0], and Q= el
0

"0

The guess for the policy function can be verified by collecting the terms associated with the idiosyncratic shocks
and noticing that they are zero for any period other than the current one. Thus, we can rewrite the equation

above as

y+p o6+4
l1-a 1-a«a

(1-a) (L - LZ) g(L) =@ d(L)L - (y +B) g0

+ (pdo + ago + (v + B) g1) (k1Q =) L + pekQL (I.3)
It is useful to replace the lag operator in this equation with an arbitrary complex number z. Evaluating this
equation at different values of z implies conditions that allow for the characterization of the equilibrium.

Solving for g(z). The right-hand side of equation (1.3) must be equal to 0 when evaluated at the inside root,
x1, of the second-order polynomial on the left-hand side of the equation; we denote the outside root by x>.%
Moreover, the equation must be consistent with the values of gy and g;. Consistency at z = 0,i.e. g(0) = go is

automatic. Next, set z = k1 to get

(1 — 0() go = god(1<1) + ((Pdo + ago + ()/ + ﬁ) g1) (k]Q — I) + (pek:QQ.

It follows that
9@ -go ___ @UE)-dix) gy
z O+y)z-x1)(z-x2) z-%k2
and since, by definition,
g =2 (z) = g0
Z z=0

we obtain

_ 9, 9d(x1) - do)
K2 y+p

Putting these results together we obtain that

p_d(z)-dx)_
)/+ﬁ zZ— K1

(k2 — 2)g(z) = x2g0 +

7

ZExplicitly,

_1-a-A-aP 4@ +p0+A)

= and K2:l—a+\/(l—a)2—4(y+ﬁ)(6+/\).

2(6 + A) 2(6 +4)
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where
go = @ (d(k1)k1 + ek) QL — (a + (6 + A)x1)k1 Q)"

Notice that, using the block-matrix inversion formula, gy can be rewritten as

_ P
T 1-(a+ 6+ Axy)

90 d(x1)E

+¢(d(x)) I-E)D+eF) Y (a+(5+A)x1) [I-E)DA-B),
=0

where
-1
D =X2A7 (Ao (1- E)E2AT + BoZ2B] ) Ao,
-1
E=X/C] (cozgcg ) Co,
-1
F= Z%,BT (AO (I - E) E'ZTA(—)F + BoZ%Bg) Ay,

and we have used the fact that E is idempotent.

1.3.2 Taking the Appropriate Limit

Suppose that @ =1 — (1 + wiw)e, ¥ + f = wi€, and 6 + A = wae. It follows that, for all € > 0,

K1 = w1, K2:w2_1, and a+(0+A)x1=1-c¢.

To establish the claim, we consider the limit of

7

_ % w2d(z) —d(w1) | €
g(z)_(l—wzz)e W zZ-w oY

as ¢ decreases towards 0. Let
w2 d@) —dwn), | e

g(2)=a)1 p— e
so that
9(z) = ——g(z)
(1—wpz)e” ™

(1.4)

.
and notice that this is well defined for all ¢ > 0 and that, if lim,_,o+ det ([C (z) g(z)] ) has an inside root,

.
then there exists ¢ low enough such that det ( [C (2) g(z)] ) is well defined and has an inside root. Recall that

|wsz| < 1. It is, in fact, sufficient to show that

lim det ([c 0) go]T) - 0.
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Accordingly, using equation (I.4) we have that

e—0"

j=0

It follows from Lemma 6 that

i(l—e)f [(1-E)D(I-E)Y

j=0

is well defined and finite, so that

lim go = lim %go = d(w)E+ lim ¢ (d(w1) (1= E)D + eF) Z (1-¢)[I-E)DA-E)] .

lim ¢ (d(wr) (I ~E)D +¢F) > a-e[1-BDA-EY =0.

=0
Therefore,
lim go = d(wl)E
e—0*
and, using the definition of E,
-1
g0 = doE3C] (CoE2CT)  Co = aCy

for some vector a. Finally, notice that
Co
90

Co
aCo

det = det =0,

.
which implies that z = 0 is a root of det [C(z) g(z)] and, therefore, [C(L)

enough to zero.
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g(L)] is not invertible for ¢ close
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