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We re-analyse high redshift and high resolution Lyman-α forest spectra considered in [1], seeking to 
constrain the properties of warm dark matter particles. Compared to this previous work, we consider 
a wider range of thermal histories of the intergalactic medium. We find that both warm and cold dark 
matter models can explain the cut-off observed in the flux power spectra of high-resolution observations 
equally well. This implies, however, very different thermal histories and underlying reionization models. 
We discuss how to remove this degeneracy.

© 2017 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Dark matter is a central ingredient of the current standard cos-
mological model. It drives the formation of structures, and explains 
the masses of galaxies and galaxy clusters. If dark matter is made 
of particles, these yet-unseen particles should have been created 
in the early Universe long before the recombination epoch. If such 
particles were relativistic at early times, they would stream out 
from overdense regions, smoothing out primordial density fluctu-
ations. The signature of such warm dark matter (WDM) scenario 
would be the suppression of the matter power spectrum at scales 
below their free-streaming horizon. From cosmological data at 
large scales (CMB and galaxy surveys) we know that such a sup-
pression should be sought at comoving scales well below a Mpc.

The Lyman-α forest has been used for measuring the matter 
power spectrum at such scales [2–4]. In previous works only upper 
bounds had been reported on the mass of the thermal relic [5–10]. 
However, while in the SDSS spectra there is no cut-off in the 
transmitted flux power spectrum, there is a cut-off in the high res-
olution spectra, for example [4,11,7]. Recently [1] has observed the 
cut-off of the flux power spectrum at scales k ∼ 0.03 s/km and 
redshifts z = 4.2–5.4.
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However, the Lyman-α forest method measures not the distri-
bution of dark matter itself, but only the neutral hydrogen density 
as a proxy for the overall matter density. The process of reioniza-
tion heats the hydrogen and prevents it from clustering at small 
scales at the redshifts in question [12]. Therefore, the observed hy-
drogen distribution eventually stops to follow the DM distribution. 
Indeed, it was demonstrated in [1] that within �CDM cosmol-
ogy there exists a suitable thermal history of intergalactic medium 
(IGM) that is consistent with the observed cutoff. This does not 
mean, however, that this scenario is realized in nature.

In this Letter we investigate this issue in depth. We ask whether 
the cutoff in the flux power spectrum can be attributed to the suppression
of small scales with warm dark matter and what this means for the 
thermal history of IGM. To this end we reanalyze the data used 
in [1]. We use the same suite of hydrodynamical simulations of the 
IGM evolution with cold and warm dark matter models as in [1]
and demonstrate that the data is described equally well by the 
model, where flux power spectrum suppression is mainly due to 
WDM.

2. Data and model

The data set is constituted by 25 high-resolution quasar spec-
tra, in the redshift interval 4.48 ≤ zQSO ≤ 6.42. The spectra were 
taken with the Keck High Resolution Echelle Spectrometer (HIRES) 
and the Magellan Inamory Kyocera Echelle (MIKE) spectrograph on 
the Magellan clay telescope. The QSO spectra are divided into four 
 BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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redshift bins centered on: z = 4.2, 4.6, 5.0, 5.4. The resulting range 
of wave-numbers probed by this dataset is k = 0.005–0.08 s/km.

At these redshifts, the IGM is thought to be in a highly ionized 
state, being photo-ionized and photo-heated by early sources. Both 
the WDM cosmology and the IGM temperature affect the amount 
of flux power spectrum at small scales through three distinct phys-
ical mechanisms: (1) a suppression in the initial matter power 
spectrum; (2) Jeans broadening; and (3) Doppler broadening of the 
absorption lines [12–17]. The first mechanism is cosmological, the 
latter two are astrophysical. The Doppler broadening is a one di-
mensional smoothing effect that originates from observing the hot 
IGM along a line of sight. The Maxwellian distribution of velocities 
in the gas then leads to the broadening effect. The Jeans broad-
ening smooths the three-dimensional underlying gas distribution 
relative to the dark matter.

The level of ionization is captured by the effective optical depth, 
τeff, that is computed from the mean flux, 〈F 〉, through the rela-
tion 〈F (z)〉 = exp(−τeff(z)). Because the IGM spans a wide range 
of density, describing the IGM temperature may be complicated 
in principle. But, assuming that the IGM is heated by photo-
heating, the temperature of the IGM follows a simple power-law 
temperature-density relation [18]:

T (δ) = T0(z)
(
1 + δ

)γ (z)−1
, (1)

where δ = δρm/ρ̄m is the matter overdensity and T0(z), γ (z) are 
unknown functions of redshift. The results of Ref. [1] are based on 
single power-law parametrizations, T0(z) and γ (z). In this letter 
we let the parameters of the IGM thermal state vary independently 
in each redshift bin, with a total of 8 parameters describing the 
IGM thermal state (T0(zi) and γ (zi) in 4 distinct redshift inter-
vals).1

We want to point out that T0 and γ are not varied in post-
processing. The original work of [1] considered 9 simulation runs 
with distinct thermal histories for each cosmology considered. The 
different thermal histories are realized by changing the photo-
heating function in the simulations. The resulting values of T0 and 
γ are approximately distributed on a regular grid. In [1] the ef-
fect of Jeans smoothing is accounted by considering two additional 
simulation runs, where the time at which the ultraviolet back-
ground is switched on, zreion, is varied. We caution the reader that 
the resulting constraints on zreion must not be intended as a mea-
surement of the time of reionization, because this depends on the 
details of the implementation of the ultraviolet background. In-
stead, varying zreion must be considered as a way to account for 
the unknown level of Jeans smoothing. Finally, as in [1], we allow 
the effective optical depth vary independently in each redshift bin, 
τeff[zi].

It should be noted that this interpolation scheme between sim-
ulations with different temperatures may also vary the amount 
of Jeans broadening (also known as the “filtering scale”). While 
the degeneracy between the WDM cosmologies and the Doppler 
smoothing has been extensively considered in the literature, the 
degeneracy between Jeans smoothing and WDM cosmology has 
not been considered in depth so far. In particular this has not been 
done for the suite of simulations in the original work [1] on which 
we base our analysis. We leave the study of the degeneracy be-
tween the Jeans smoothing and WDM for future work.

The results also depend on the cosmological parameters ns , 
�M , σ8, H0. However the small scale Lyman-α data by itself 
does not sufficiently constrain the cosmological parameters. There-
fore, in the final likelihood function for these parameters we used 

1 Ref. [1] also performed such a “binned analysis”, see the detailed comparison 
below.
Table 1
Parameter estimation from Bayesian analysis. We show the 1-σ and 2-σ confidence 
intervals. We only show the parameters that are constrained at 1 or 2-σ level.

parameter mean 1-σ 2-σ

H0 [km/s/Mpc] 63 < 67 –
mWDM [keV] 3.9 [143,2.3] > 2.1
T0(z = 4.2) [103 K] 10.6 [9.4,11.8] [8.3,12.9]
T0(z = 4.6) [103 K] 9.8 [8.6,11.1] [7.5,12.2]
T0(z = 5.0) [103 K] 4.0 [2.0,5.6] < 6.9
T0(z = 5.4) [103 K] 3.8 < 4.5 < 8.2
τeff(z = 4.2) 1.12 [1.05,1.19] [1.00,1.25]
τeff(z = 4.6) 1.30 [1.21,1.39] [1.15,1.47]
τeff(z = 5.0) 1.88 [1.74,2.00] [1.64,2.13]
τeff(z = 5.4) 2.91 [2.69,3.10] [2.54,3.31]
γ (z = 4.2) 1.3 > 1.1 –
γ (z = 5.4) 1.3 > 1.1 –

Fig. 1. Measured flux power spectrum in dimensionless units, 
2
F (k) = P F (k) × k/π , 

compared with the theoretical model with the best-fitting values of the astrophys-
ical and cosmological parameters for WDM and CDM cosmologies. The solid refer 
the best-fitting values for WDM cosmology. The dotted lines refer to the best-fitting 
case for CDM cosmology. These best-fitting models largely overlap, except at the 
highest redshift and on the smallest scales. The blue, gray and green points are 
SDSS-III/BOSS DR9 data for z = 4.0, z = 4.2 and z = 4.4 from [20]. (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

best fit Planck values [19] with Gaussian priors (as in [1]), �M =
0.315 ± 0.017, σ8 = 0.829 ± 0.013, ns = 0.9603 ± 0.0073.

3. Results

In Table 1 we give the result of the parameter estimation. Fig. 1
shows the theoretical flux power spectrum for the mean values 
of the parameters, compared with the MIKE and HIRES data used 
in this analysis. In order to clarify the effect of different thermal 
histories on our constraints, we show the effect of changing the 
thermal parameters (T0 and γ ) and ionization parameters (τeff) 
and the mass of the thermal relic (1/mwdm) in Fig. 2, analogous to 
Figs. 5 and 6 of [1].

In Fig. 3 we show the 2D confidence regions between mwdm, 
and T0 ≡ T (δ = 0) (marginalizing over the other parameters). We 
see that at redshifts z = 4.2, 4.6 there is no degeneracy and an 
IGM temperature T0 ∼ 104 K is needed to explain the observed 
flux power spectrum independently of mwdm. If dark matter is “too 
warm” (mwdm < 1.5 keV) it produces too sharp of a cut-off in the 
power spectrum and is inconsistent with the data.

At the z = 5.0 bin the situation is different. For the masses 
mwdm ∼ 2.2–3.3 keV even very low temperatures T0 � 2500 K are 
consistent with the data. In this case the cutoff in the flux power 
spectrum is explained by WDM rather than by the temperature. 
The situation is analogous at z = 5.4. Table 1 summarizes the pa-
rameter estimation.
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Fig. 2. Effect of the IGM parameters and mwdm on the flux power spectrum in dimensionless units, 
2
F (k) = P F (k) ×k/π . In the top-left (top-right, bottom-left, bottom-right) 

panel we show the effect of varying T0 (γ , τeff , 1/mwdm) by ±10% with respect to the best-fitting values for WDM cosmology. The solid line corresponds to the best-fitting 
case for WDM cosmology, the dashed (dotted) line corresponds to the relevant parameter increased (decreased) by 10%. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

Fig. 3. Confidence regions between mwdm, and T0 and γ at all redshift, and zreion. We show 1/mwdm instead of mwdm for visualization purposes. mwdm is degenerate with 
zreion , that is the redshift at which the ultraviolet background has been switched on in the simulations, and T0 at the redshift z = 5.0. mwdm is not degenerate with the 
T0 for the other redshift intervals. There is no obvious degeneracy with γ . Regarding mwdm and T0, at the redshifts z = 4.2, 4.6 there is no degeneracy and T0 ∼ 104 K is 
needed to explain the observed flux power spectrum, independently of mwdm. At z = 5.0 even very low temperatures T0 � 2500 K are consistent with the data, and the 
cutoff in the flux power spectrum is explained by WDM rather than by the temperature. At z = 5.4 the analysis prefers low values of T0 ∼ 5 × 103 K, independently of mwdm.
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Fig. 4. The evolution of the IGM mean temperature, T0, in redshift. Black vertical 
bars are 1-σ confidence limits; red vertical bars are 2-σ confidence limits. Filled 
dots are the parameter mean; the arrows mark the upper limits. The horizontal 
bars span the redshift interval of Lyman α absorbers considered for each measure-
ment of the flux power spectrum. The solid (dotted) lines refer to the constraints on 
temperature for WDM (CDM) cosmology (the constraints in CDM have been shifted 
by z = 0.05 for improving the readability of the figure). At z = 5.0 there is a 1-σ
level detection and only an upper limit at 2-σ level in WDM cosmology, instead 
there are both 1 and 2-σ detections for CDM cosmology. At z = 5.4, there are only 
upper limits at 1 and 2-σ levels for WDM cosmology and 1-σ detection and 2-σ
upper limit for CDM cosmology. Hence, the constraints on the temperature are sub-
stantially equivalent in the two cosmologies. The blue dashed line is the asymptotic 
IGM mean temperature in the case of early hydrogen and first helium reioniza-
tion from a stellar ionizing spectrum with slope α = 2, being the ionizing spectrum 
Jν ∝ ν−α . (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Another important property of Fig. 3 is that even assuming 
CDM cosmology, the temperature T0 is a non-monotonic function 
of redshift and should be colder than ∼ 8000 K at z = 5.0–5.4, see 
Fig. 4.2

The resulting χ2 for the Bayesian analysis is ∼ 25, for 30 de-
grees of freedom (49 data points − 19 free parameters). This is 
in agreement with the fact that the covariance matrix is uncertain 
and that has been multiplied by a factor that boosts the result-
ing error bars by 30%, with respect to the error bars computed 
by bootstrapping. This is done in the original analysis in order 
to account for presumed sample variance effect that affect other 
statistics like the transmitted flux PDF. The sample variance effect 
may affect the transmitted flux power spectrum, even if a detailed 
computation has not been performed.

For completeness we have also performed frequentist analysis 
for the same χ2 considered in the Bayesian analysis. As shown in 
Fig. 5 the two analyses are in broad agreement with each other.

We would like to stress that our results depend crucially on al-
lowing for a non-monotonic redshift dependence of T0(z). In [1] it 
was shown that assuming a power-law (monotonic) redshift depen-
dence for T0(z) and γ (z), one predicts higher temperatures of IGM 
for the same data. In this case the CDM cosmology is preferred 
over WDM, leading to the 2σ lower bound mwdm ≥ 3.3 keV [1]. 
The “binned analysis” of [1] gave results similar to those, reported 
here. The authors of [1] however rejected these results, considering 
a temperature jump at z = 5–5.4 to be “unphysical” and arguing 
that the low χ2 is a sign of overfitting.

In our opinion the present analysis implies that more data is 
needed to study such a scenario, as it currently does not allow 
to make any definitive conclusion and in particular does not al-
low to rule it out. Moreover, as mentioned above, the error bars 
in [1] were inflated by 30% and therefore we consider the re-
duced χ2 = 25/30 ≈ 0.83 to be consistent with 1. We see that 2σ

2 The temperature values that we have estimated at high redshift could be inac-
curate, because the lowest temperature in the simulation grid was 5400 K.
Fig. 5. The results of the frequentist analysis: the χ2 − χ2
min versus the WDM mass, 

mWDM. There are two minima of the χ2 curve, CDM and mwdm = 2.7 keV.

lower bound on the WDM mass relaxes down to mwdm ≥ 2.1 keV 
(consistently with the results of binned analysis of [1]). More-
over, the non-monotonic thermal history makes the WDM with 
mwdm = 2–3 keV an equally good fit as CDM. The best fit values 
of T0 can be inaccurate as they lie below the lowest simulation 
point in T0 grid. Therefore more simulations are needed to settle 
this question. This is currently work in progress. In the absence of 
such additional studies the proposed non-monotonic thermal his-
tory cannot be ruled out based on the existing Lyman-α data.

For the interpretation of these results it is crucial to overview 
what is known about the thermal state of the IGM both theo-
retically and observationally. We argue below that the measured 
thermal history is in agreement with current models of galaxy for-
mation and reionization.

4. State of the IGM at z ∼ 5

The IGM temperature can be determined from the broadening 
of the Lyman-α absorption lines in QSO spectra [21–31,16]. Alter-
natively, it has been proposed to determine the IGM temperature 
by measuring the level of the transmitted flux [32–34,30], however 
there is no agreement between the two methods yet, see [35].

All the measurement of the IGM temperature in the literature 
assumed CDM cosmology. Because of the existing degeneracy be-
tween the IGM temperature and WDM, the assumption of the 
WDM cosmology could change the deduced values of the IGM 
temperature. Nevertheless, in the absence of such measurements, 
we compare our estimates for the IGM temperature with the mea-
surements based on the CDM assumption.

The IGM temperature at z < 5 is constrained relatively well 
to be at the level T0 � (8–10) × 103 K [25,22,27,28]. At z = 6.0
there is a single measurement, [29], that restricts T0 to the range 
5000 < T0 < 10000 K (68% CL) (see e.g. [1] for discussion). The 
simplest interpretation of these data (also adopted in [1]) is that 
the temperature is growing monotonically with redshift. Instead, 
given the large error bars of the measurements, and taking into 
account adiabating cooling one may expect a drop of temperature 
at z ∼ 5 with a subsequent rise to ∼ 104 K at z ∼ 4.6 in agreement 
with other measurements from [25,22,27,28]. This increase in IGM 
temperature can be explained with an early start of HeII reion-
ization predicted by some models of reionization by quasars, [36]
(see recent discussion of such “two-component” reionization mod-
els in [37]).

In such a scenario, the temperature at 5 < z < 6 depends on 
how long the first stage of reionization lasted and what the tem-
perature of IGM was at z � 6. As mentioned above, the measure-
ment [29] at z ∼ 6 has large uncertainties. Theoretically, T0(z = 6)

depends on how early the first stage of hydrogen (and HeI) reion-
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Fig. 6. Comparison between the linear transfer functions, T (k), of thermal relic 
(WDM) and sterile neutrinos (SN). The dashed (dotted) black line is the linear 
transfer function for mWDM = 2.1 keV (mWDM = 3.3 keV) as computed in [10]. The 
colored (green, red, cyan) lines are realistic linear transfer functions for some of 
the sterile neutrino models with mNRP

SN = 7 keV. The linear transfer functions with 
L6 = 10 and 12 (red and cyan lines) are partially warmer that the lower bound 
of [1] (the dotted black line), but still satisfy the constraints from this letter (the 
dashed black line) until the maximum k-mode used in the reference numerical sim-
ulations. The linear transfer function with L6 = 8 (green line) is colder than the 
bound of [1]. The linear transfer function with L6 = 0 (blue line) violates the con-
straint from this letter. The solid vertical line is the maximum k-mode used in the 
reference simulations. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

izations has ended, and what sources drove it (cf. [38,39]). It has 
been speculated that hydrogen is reionized by the metal-free (Pop-
ulation III) stars, whose spectral hardness predicts high values of 
the temperature. However, the properties of Population III stars are 
purely speculative – we do not know how long they lasted and 
whether they were indeed the sources of reionization. For exam-
ple, reionization could be due to a more metal rich population of 
stars with softer stellar spectra [40], leading to a lower values of 
IGM temperature at z ∼ 6. To settle this question, an independent 
constraint on the ultraviolet background at high redshift would 
be needed, however there are no such measurements to-date. The 
lower limit of [29] is T0(z = 6) ≈ 5 × 103 K or even slightly be-
low, fully consistent with the low values at z = 5.0–5.4 (Table 1) 
reached via adiabatic cooling.

We note that an indirect argument in favour of the IGM tem-
peratures at high redshifts being ∼ 104 K, is the “missing satellite 
problem” – high temperature would prevent gas from collapsing 
into dark matter halos with a mass below ∼ 107M� , thus sup-
pressing the formation of small galaxies (see e.g. [41–44]), explain-
ing in particular the small number of satellites of the Milky Way. 
However, in WDM cosmologies the matter power spectrum is sup-
pressed at the smallest scales, thus solving the missing satellite 
problem even if the gas was sufficiently cooler.

Finally, we use our results to explore the constraints on ster-
ile neutrino dark matter [45], resonantly produced in the presence 
of lepton asymmetry [46–48]. This is a non-thermal warm dark 
matter, whose primordial phase-space density distribution resem-
bles a mixture of cold + warm dark matter components [49,50], 
demonstrating a shallower cut-off. In Fig. 6 we compare the lin-
ear transfer function (the square root of the ratio of the modified 
linear matter power spectrum to that of cold dark matter, T (k) =√

PWDM(k)/PCDM(k)) of thermal relic WDM with a mass mwdm =
2.1 keV (lower bound from this work) and a mwdm = 3.3 keV [1]
with those of resonantly produced sterile neutrinos with the mass 
7 keV (motivated by the recent reports of an unidentified spec-
tral line at the energy E ∼ 3.5 keV in the stacked X-ray spec-
tra of Andromeda galaxy, Perseus galaxy clusters, stacked galaxy 
clusters and the Galactic Center of the Milky Way [51–53]). We 
show that depending on the value of the lepton asymmetry, L6 ≡
106(nνe − nν̄e )/s (see [50] for details) the linear power can be 
colder than that of thermal relics with mwdm = 2.1 keV (Fig. 6), 
thus being fully admissible by the data.3 Notice that the non-
resonant sterile neutrino dark matter with a 7 keV mass would 
be excluded at more than 3σ level by previous constraints from 
the SDSS [7,6].

5. Conclusion and future work

We demonstrated that the cut-off in the flux power spectrum, 
observed in the high resolution Lyman-α forest data may either 
be due to free-streaming of dark matter particles or be explained 
by the temperature of the intergalactic medium. Taking into ac-
count measurements at redshifts z ∼ 6 and at z < 5 we see that if 
dark matter is warm, this requires non-monotonic dependence on 
the IGM temperature on z with the local minimum at z ∼ 5.0–5.4. 
Even cold dark matter slightly prefers a non-monotonic T0(z).4 Im-
proving our knowledge of the IGM temperature at z ∼ 5–6 will 
therefore either result in very strong Lyman-α bounds on DM free-
streaming, essentially excluding its influence on observable small-
scale structures, or (if temperature will be found to be well below 
5000 K) would lead to the discovery of WDM.

A method that would allow to measure the IGM temperature at 
the redshifts of interest was presented in [16]. It is based on the 
following idea: for high resolution spectra it is not necessary to 
study average deviation from the QSO continuum per redshift bins 
(as it is done in lower resolution case) but it is possible to identify 
individual absorption lines and to measure their broadening. The 
thermal Doppler effect broadens the natural lorentzian line profile 
of the Lyman-α transition proportionally to the square root of the 
temperature, and one would like to use this information to deter-
mine the temperature of the IGM directly. However, there are other 
effects that contribute to the line width – the physical extent and 
the clustering of the underlying filaments. The method of [16] po-
tentially allows to disentangle these effects. In view of our results 
it is important to attempt to apply this method to observational 
data. This is a method that has been tested with simulations at 
redshift ∼ 3, and it still has to be seen if it works at redshift 5.
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