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Abstract

Complex systems can be modelled at various
levels of detail. Ideally, causal models of the
same system should be consistent with one an-
other in the sense that they agree in their pre-
dictions of the effects of interventions. We for-
malise this notion of consistency in the case of
Structural Equation Models (SEMs) by intro-
ducing exact transformations between SEMs.
This provides a general language to consider, for
instance, the different levels of description in the
following three scenarios: (a) models with large
numbers of variables versus models in which
the ‘irrelevant’ or unobservable variables have
been marginalised out; (b) micro-level models
versus macro-level models in which the macro-
variables are aggregate features of the micro-
variables; (c) dynamical time series models ver-
sus models of their stationary behaviour. Our
analysis stresses the importance of well speci-
fied interventions in the causal modelling pro-
cess and sheds light on the interpretation of
cyclic SEMs.

1 INTRODUCTION

Physical systems or processes in the real world are com-
plex and can be understood at various levels of detail. For
instance, a gas in a volume consists of a large number of
molecules. But instead of modelling the motions of each
particle individually (micro-level), we may choose to con-
sider macroscopic properties of their motions such as tem-
perature and pressure. Our decision to use such macro-
scopic properties is first necessitated by practical consid-
erations. Indeed, for all but extremely simple cases, mak-
ing a measurement of all the individual molecules is prac-
tically impossible and our resources insufficient for mod-
elling the ∼1022 particles present per litre of ideal gas.

Furthermore, the decision for a macroscopic description
level is also a pragmatic one: if we only wish to reason
about temperature and pressure, a model of 1022 particles
is ill-suited.
Statistical physics explains how higher-level concepts such
as temperature and pressure arise as statistical properties
of a system of a large number of particles, justifying the
use of a macro-level model as a useful transformation
of the micro-level model [1]. However, in many cases
aggregate or indirect measurements of a complex system
form the basis of a macroscopic description of the system,
with little theory to explain whether this is justified or
how the micro- and macro-descriptions stand in relation
to each other.
Due to deliberate modelling choice or the limited ability
to observe a system, differing levels of model descriptions
are ubiquitous and occur, amongst possibly others, in the
following three settings:
(a) Models with large numbers of variables versus mod-

els in which the ‘irrelevant’ or unobservable variables
have been marginalised out [3]; e. g. modelling blood
cholesterol levels and risk of heart disease while ig-
noring other blood chemicals or external factors such
as stress.

(b) Micro-level models versus macro-level models in
which the macro-variables are aggregate features of
the micro-variables [4, 5, 9, 11, 17]; e. g. instead
of modelling the brain as consisting of 100 billion
neurons it can be modelled as averaged neuronal
activity in distinct functional brain regions.

(c) Dynamical time series models versus models of their
stationary behaviour [6, 8, 11–13, 15]; e. g. mod-
elling only the final ratios of reactants and products
of a time evolving chemical reaction.

In the context of causal modelling, such differing model
levels should be consistent with one another in the sense
that they agree in their predictions of the effects of inter-
ventions. The particular causal models we focus on in this
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Figure 1: As illustrated by (a), the current consensus is
that LDL (resp. HDL) has a negative (resp. positive) effect
on heart disease (HD). Considering TC = LDL + HDL
to be a causal variable as in (b) leads to problems: two
diets promoting raised LDL levels and raised HDL levels
have the same effect on TC but opposite effects on heart
disease. Hence different studies come to contradictory
conclusions about the effect of TC on heart disease.

paper are Structural Equation Models (SEMs, Section 2,
Section 3) [16, 19].
In Section 4, we introduce the notion of an exact transfor-
mation between two SEMs, providing us with a general
framework to evaluate when two models can be thought
of as causal descriptions of the same system. An impor-
tant novel idea of this paper is to explicitly make use of
a natural ordering on the set of interventions. On a high
level, if an SEM can be viewed as an exact transforma-
tion of another SEM, we are provided with an explicit cor-
respondence between the two models in such a way that
causal reasoning on both levels is consistent. We discuss
this notion of consistency in detail in Sections 4.4 and 4.5.
In Section 5 we apply this mathematical framework and
prove the exactness of transformations belonging to each
of the three categories listed above, with practical impli-
cations for the following questions in causal modelling:
When can we model only a subsystem of a more complex
system? When does a micro-level system admit a causal
description in terms of macro-level features? How do
cyclic SEMs arise? The fact that these distinct problems
can all be considered using the language of transforma-
tions between SEMs demonstrates the generality of our
approach. We close in Section 6 with a discussion.

1.1 A HISTORICAL MOTIVATION:
CHOLESTEROL AND HEART DISEASE

In the following we give an example of the problems that
can arise when there exists no consistent correspondence
between two causal models, i. e. neither model can be
viewed as an exact transformation of the other. This ex-
ample falls into category (b) of the differing model levels
listed above and was used by [18] to illustrate problems
in the causal modelling process.
Historically, the level of total cholesterol in the blood
(TC) was thought to be an important variable in determin-
ing risk of heart disease (HD). To investigate this, differ-

ent experiments were carried out in which patients were
assigned to different diets in order to raise or lower TC.
Conflicting evidence was found by different experiments:
some found that higher TC had the effect of lowering HD,
while others found the opposite (cf. Figure 1b) [20, 21].
From our point of view, this problem (seemingly con-
flicting studies) arose from trying to perform an ‘invalid’
transformation of the ‘true’ underlying model (cf. Fig-
ure 1a). According to the American Heart Association,
the current scientific consensus is that the two types of
blood cholesterol, low-density lipoprotein (LDL) and high-
density lipoprotein (HDL), have a negative and positive
effect on HD respectively. Assigning diets that raise LDL
or HDL both raise TC but have different effects on HD.
It is therefore not possible to transform the model in Fig-
ure 1a into the model in Figure 1b without leading to con-
flict: in order to reason about the causes of HD we need
to consider the variables LDL and HDL separately.

2 STRUCTURAL EQUATION MODELS

SEMs are a widely used framework in causal modelling,
with applications in neuroscience, economics and the so-
cial sciences [2, 16]. In this section we introduce them as
an abstract mathematical object; in Section 3 we describe
their use as a causal modelling tool. Readers already fa-
miliar with SEMs should note that our definition is more
general and deviates from the standard definition of SEMs
in the following ways: we do not require that all possible
perfect interventions be modelled; we do not assume inde-
pendence of exogenous variables;1 and we do not require
acyclicity.
Definition 1 (Structural Equation Model (SEM)). Let
IX be an index set. An SEM X over vari-
ables X = (Xi ∶ i ∈ IX) taking value in  is a triple
(

X ,X ,ℙE
)

where

• X is a set of structural equations, i. e. it is a set of
equations Xi = fi

(

X,Ei
)

for i ∈ IX;
• (X ,≤X) is a subset of all perfect interventions

equipped with a natural partial ordering (see below),
i. e. it is an index set where each index corresponds
to a particular perfect intervention on some of theX
variables;

• ℙE is a distribution over the exogenous variables
E = (Ei ∶ i ∈ IX);

• with ℙE-probability one, under any intervention
i ∈ X there is a unique solution x ∈  to the inter-
vened structural equations. This ensures that for any

1Exogenous variables are also referred to as noise variables
in the literature. Our relaxation of the assumption of independent
exogenous variables means our models may be considered a type
of semi-Markovian causal model.



intervention i ∈ X ,X induces a well-defined dis-
tribution over  .2

In an SEM, each Xi is a function of the X-variables and
the exogenous variable Ei. In this mathematical model,
a perfect intervention on a single variable do(Xi = xi) isrealised by replacing the structural equation for variable
Xi in X with Xi = xi. Perfect interventions on multi-
ple variables, e.g. do(Xi = xi, Xj = xj), are similarly re-
alised by replacing the structural equations for each vari-
able individually. Elements of X correspond to perfectly
intervening on a subset of the X variables, setting them
to some particular combination of values.
X has a natural partial ordering in which, for inter-
ventions i, j ∈ X , i ≤X j if and only if i intervenes
on a subset of the variables that j intervenes on and
sets them equal to the same values as j. For example,
do(Xi = xi) ≤X do(Xi = xi, Xj = xj).3 The observation
that this structure is important is a contribution of this pa-
per. We make crucial use of it in the next section.
The purpose of the following example is to illustrate how
SEMs are written in our notation and to provide and ex-
ample of a restricted set of interventions X .
Example 2. Consider the following SEM defined over the
variables {B1, B2, L}

X =
{

B1 = E1, B2 = E2, L = OR(B1, B2, E3)
}

X =
{

∅, do(B1 = 0), do(B2 = 0),

do(B1 = 0, B2 = 0)
}

,

{E1, E2, E3}
iid∼ Bernoulli(0.5)

where by the element ∅ ∈  we denote the null-
intervention corresponding to the unintervened SEM.

3 SEMS FOR CAUSAL MODELLING

In addition to being abstract mathematical objects, SEMs
are used in causal modelling to describe distributions of
variables and how they change under interventions [16].
The do-interventions as abstract manipulations of SEMs
are understood as corresponding to actual (or potentially

2That is, with probability one over the exogenous variables
E, for each draw E = e there exists a unique value x ∈ 
such that e and x satisfy the intervened structural equations.
The distribution of E in conjunction with X then implies a
distribution over for each intervention i ∈ X via these unique
solutions. If the SEM is acyclic, this is always satisfied; we
impose this condition because we also consider cyclic SEMs [3].

3Informally, this means that j can be performed after i with-
out having to change or undo any of the changes to the structural
equations made by i. Not all pairs of elements must be compara-
ble: for instance, if i = do(X1 = x1) and j = do(X2 = x2), thenneither i ≤X j nor j ≤X i.

only hypothetical) physical implementations in the real
world, i. e. the model is ‘rooted in reality’. For instance, if
a binary variable B1 in an SEM reflects whether a light
bulb is emitting light, then do(B1 = 0) could be achieved
by flipping the light switch or by removing the light bulb.
The SEM in Example 2 could be thought of as a simple
causal model of two light bulbs B1 and B2 and the pres-ence of light L in a room with a window. Suppose that
we have no access to the light switch and there are no cur-
tains in the room but that we can intervene by removing
the light bulbs. We can model this restricted set of inter-
ventions by X , i. e. the do-intervention on the SEM side
do(B1 = 0) corresponds to removing the light bulb B1.
The partial ordering of X corresponds to the abil-
ity to compose physical implementations of interven-
tions. The fact that we can first remove light bulb B1(do(B1 = 0)) and then afterwards remove light bulbB2 (re-sulting in the combined intervention do(B1 = 0, B2 = 0))
is reflected in the partial ordering via the relation
do(B1 = 0) ≤X do(B1 = 0, B2 = 0).

4 TRANSFORMATIONS BETWEEN
SEMS

We now work towards our definition of an exact transfor-
mation between SEMs. Our core idea is to analyse the
correspondence between different levels of modelling by
considering one model to be a transformation of the other.
We discuss in Section 4.4 how causal reasoning in two
SEMs relate when one SEM can be viewed as an exact
transformation of the other and in Section 4.5 we illus-
trate what can go wrong when this is not the case.

4.1 DISTRIBUTIONS IMPLIED BY AN SEM

Usually, a statistical model implies a single joint distribu-
tion over all variables once its parameters are fixed. SEMs
are different in that, once the parameters are fixed, an
SEM implies a family of joint distributions over the ran-
dom variables, one for each intervention. That is, for each
intervention i ∈ X , the SEM X defines a distribution
over  which we denote by ℙdo(i)

X . Throughout, we will
denote the null-intervention corresponding to the uninter-
vened setting by ∅ ∈ X . We can write the poset of all
distributions implied by the SEM X as

X ∶=
({

ℙdo(i)
X ∶ i ∈ X

}

,≤X
)

where ≤X is the partial ordering inherited from X , i. e.
ℙdo(i)
X ≤X ℙdo(j)

X ⟺ i ≤X j.4
4More formally, one would need to define X to be the poset

of tuples
(

i,ℙdo(i)
X

)

to avoid problems in the case that ℙdo(i)
X =



Note that X contains all of the information inX about
the different distributions implied by the SEM and, impor-
tantly, how they are related via the interventions.5

4.2 TRANSFORMATIONS OF RANDOM
VARIABLES

Suppose we have a function � ∶  →  which maps the
variables of the SEMX to another space  . Observe
that since X is a random variable, �(X) is also a random
variable. For any distribution ℙX on  we thus obtain the
distribution of the variable �(X) on  as ℙ�(X) = �

(

ℙX
)

via the push-forward measure.
In particular, for each intervention i ∈ X we can define
the induced distributionℙi�(X) = �

(

ℙdo(i)
X

)

. We can write
the poset of distributions on  that are induced by the
original SEM X and the transformation � as

�(X) ∶=
({

ℙi�(X) ∶ i ∈ X
}

,≤X
)

where ≤X is the partial ordering inherited from X (and
in turn from X).
�(X) is just a structured collection of distributions over ,
indexed by interventions X on the -level; importantly,
the indices are not interventions on the -level.

4.3 EXACT TRANSFORMATIONS BETWEEN
SEMS

Although �(X) is a poset of distributions over  , there
does not necessarily exist an SEM Y over  that
implies it. For instance, if there is some intervention
i ∈ X ⧵ {∅} such that none of the variables Yi is con-stant under the distribution ℙi�(X), then ℙi�(X) could not
possibly be expressed as arising from a do-intervention
j ∈ Y ⧵ {∅} in any SEM over  .6
The case in which there does exist an SEMY that im-
plies �(X) is special, motivating our main definition.
Definition 3 (Exact Transformations between SEMs). Let
X andY be SEMs and � ∶  →  be a function. We
sayY is an exact �-transformation ofX if there exists
a surjective order-preservingmap! ∶ X → Y such that

ℙi�(X) = ℙdo(!(i))
Y ∀i ∈ X

ℙdo(j)
X for some i ≠X j. Doing so would not require a change toDefinition 3 or affect the further results of this paper. To avoid

notational burden in our exposition, we omit this treatment.
5For example, the distribution over the variables X in the

observational setting, ℙ∅
X , changes to ℙdo(i)

X if we implement the
intervention do(i), and the partial ordering contains all informa-
tion about which interventions can be composed.

6This problem is elaborated upon in [7].

where ℙi�(X) is the distribution of the -valued random

variable �(X) with X ∼ ℙdo(i)
X .

Order-preserving means that i ≤X j ⟹ !(i) ≤Y !(j).It is important that the converse need not in general hold
as this would imply that ! is injective,7 and hence also
bijective. This would constrain the ways in which Ycan be ‘simpler’ thanX .8 That ! is surjective ensures
that for any do-intervention j ∈ Y on Y there is at
least one corresponding intervention on the X level,
namely an element of !−1({j}) ⊆ X . The following tworesults follow immediately from the definition (cf. proofs
in Appendix A).
Lemma 4. The identity mapping and permuting the labels
of variables are both exact transformations.

This is a good sanity check; it would be problematic if this
were not the case and the labelling of our variables mat-
tered. Similarly, compositions of exact transformations
are also exact.
Lemma 5 (Transitivity of exact transformations). IfZ
is an exact �ZY -transformation of Y and Y is an
exact �Y X-transformation ofX , thenZ is an exact
(�ZY ◦�Y X)-transformation of X .

The following theorem is a consequence of the fact that !
is order-preserving. This is a mathematical formalisation
of the sense in which an exact transformation preserves
causal reasoning, which will be elaborated upon in the
next subsection.
Theorem 6 (Causal consistency under exact transforma-
tions). Suppose that Y is an exact �-transformation of
X and! is a corresponding surjective order-preserving
mapping between interventions. Let i, j ∈ X be inter-
ventions such that i ≤X j. Then the following diagram
commutes:

ℙX ℙdo(i)
X ℙdo(j)

X

ℙY ℙdo(!(i))
Y ℙdo(!(j))

Y

do(i) do(j)

do(!(i)) do(!(j))

� � �

Proof. Let i, j ∈ X be interventions with i ≤X j. The
7Since!(i) = !(j) ⟺

(

!(i) ≤Y !(j)
)

∧
(

!(j) ≤Y !(i)
),

which, if the converse held, would imply that (i ≤X j
)

∧
(

j ≤X i
), which is equivalent to i = j.

8For instance, if it were necessary that ! be bijective, Theo-
rems 9 and 11 would not hold.



commutativity of the left square of the diagram follows
immediately from the definition of an exact transforma-
tion. It remains to be shown that the right square of the di-
agram commutes. By definition we have that �

(

ℙdo(i)
X

)

=

ℙdo(!(i))
Y and �

(

ℙdo(j)
X

)

= ℙdo(!(j))
Y . Thus, we only have

to show that ℙdo(!(i))
Y ≤Y ℙdo(!(j))

Y as elements of Y , i. e.
that the arrow ℙdo(!(i))

Y
do(!(j))
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ ℙdo(!(j))

Y exists. This fol-
lows from the order-preservingness of !.

4.4 CAUSAL INTERPRETATION OF EXACT
TRANSFORMATIONS

The notion of an exact transformation between SEMs was
motivated by the desire to analyse the correspondence be-
tween two causal models describing the same system at
different levels of detail. The purpose of this section is
to show that if one SEM can be viewed as an exact trans-
formation of the other, then both can sensibly be thought
of as causal models of the same system. In the following,
we assume that Y is an exact �-transformation of Xwith ! the corresponding map between interventions.
Surjectivity of ! ensures that any intervention in Y can
be viewed as anY -level representative of some interven-
tion on theX-level. Consequently, if do-interventionson the X-level are in correspondence with physical
implementations, then surjectivity of ! ensures that do-
interventions on the Y -level have at least one corre-
sponding physical implementation, i. e. ifX is ‘rooted
in reality’, then so is Y .
Commutativity of the left hand part of the diagram ensures
that the effects of interventions are consistently modelled
byX andY . Suppose we want to reason about the ef-fects on the Y -level caused by the intervention j ∈ Y .For example, we may wish to reason about how the tem-
perature and pressure of a volume of gaseous particles is
affected by being heated. We could perform this reasoning
by considering any corresponding X-level intervention
i ∈ !−1({j}) and considering the distribution this implies
over  via �. In our example, this would correspond to
considering how heating the volume of gas could be mod-
elled by changing the motions of all the gaseous particles
and then computing the temperature and pressure of the
volume of particles. Commutativity of the left hand part of
the diagram implies thatX andY are consistent in the
sense that Y allows us to immediately reason about the
effect of the intervention j ∈ Y while being equivalent to
performing the steps above. That is, we can reason directly
about temperature and pressure when heating a volume
of gas without having to perform the intermediate steps
that involve the microscopic description of the system.
Commutativity of the right hand side of the diagram en-

sures that once an intervention that fixes a subset of the
variables has been performed, we can still consistently
reason about the effects of further interventions on the
remaining variables in X and Y . Furthermore, it
ensures that compositionality of do-interventions on the
X-level carries over to the Y -level, i. e. if the inter-vention j on the X-level can be performed additionally
to the intervention i inX—that is, i ≤X j—, then the
same is true of their representations in Y .
IfX andY are models of the same system and it has
been established that Y is an exact �-transformation of
X for some mapping �, then the commutativity of the
whole diagram in Theorem 6 ensures that they are causally
consistent with one another in the sense described in the
preceding paragraphs. If we wish to reason about the ef-
fects of interventions on the -variables then it suffices to
use the modelY , rather than the (possibly more com-
plex) model X . In particular, this means that we can
view the -variables as causal entities, rather than only
functions of underlying ‘truly’ causal entities. Only if this
is the case, causal statements such as ‘raising tempera-
ture increases pressure’ or ‘LDL causes heart disease’ are
meaningful.

4.5 WHAT CAN GOWRONGWHEN A
TRANSFORMATION IS NOT EXACT?

In the previous section we argued that our definition of
exact transformations between SEMs is a sensible formal-
isation of causal consistency. In this section we will try to
give the reader an intuition for why weakening the condi-
tions of our definition would be problematic. In particular
we focus on the requirement that ! be order-preserving,
which we view as one of the core ideas of our paper.
The requirement that! be surjective is, as discussed above,
required so that all interventions on the Y -level havea corresponding intervention on the X-level. If we
were to only require that ! be surjective (but not order-
preserving), the observational distribution of X may
be mapped to an interventional distribution of Y , asillustrated by the following example (cf. Figure 2 for an
illustration).
Example 7. Consider the SEM X = {X ,X ,ℙE}
over  = ℝ3 where

X =
{

X1 = E1, X2 = E2, X3 = X1 +X2 + E3
}

X =
{

∅, do(X2 = 0), do(X1 = 0, X2 = 0)
}

,
E1 ∼ ℙE1

, E2 = −E1, E3 ∼ ℙE3

where ℙE1
and ℙE3

are arbitrary distributions. Let
� ∶  →  = ℝ2 be the mapping such that

�
(

x1, x2, x3
)

=
(

y1, y2
)

=
(

x1 + x2, x3
)



X1 X2

X3

(a) SEM X

Y1 = X1 +X2

Y2 = X3

(b) SEM Y

Figure 2: Graphical illustration of parent-child relation-
ships for the examples in Section 4.5. The micro-level
model X depicted in (a) is to be transformed into the
macro-level model Y depicted in (b) which is a coarser
descriptions as in it only considers the sum of X1 and X2.In Section 4.5 we give examples of what can go wrong if
the transformation is not exact.

LetY = {Y ,Y ,ℙF } be an SEM over  with

Y =
{

Y1 = F1, Y2 = Y1 + F2
}

Y =
{

∅, do(Y1 = 0)
}

,
F1 ∼ ℙE1

, F2 ∼ ℙE3

Let ! ∶ X → Y be defined by

! ∶

⎧

⎪

⎨

⎪

⎩

∅ ↦ do(Y1 = 0)
do(X2 = 0) ↦ ∅
do(X1 = 0, X2 = 0) ↦ do(Y1 = 0)

Then it is true that ℙi�(X) = ℙdo(!(i))
Y for all i ∈ X , while

! is not order-preserving and !(∅) ≠ ∅.

If the SEMs in the above example were used to model the
same system, it would be problematic that the observa-
tional setting ofX—a description of the system when
not having physically performed any intervention—would
correspond to an interventional setting inY , converselysuggesting that the system had been intervened upon.
To avoid the above conflict, we could demand in addition
to surjectivity that ! map the null intervention of X to
the null intervention ofY . This additional assumption
would ensure commutativity of the left-hand part of the
diagram in Theorem 6. However, as the following example
shows, this would not ensure that the right-hand part of the
diagram commutes for all pairs of interventions i ≤X j,
since in this case the arrow from ℙdo(!(i))

Y to ℙdo(!(j))
Y may

not exist.9
Example 8. Let , and � be as in Example 7. Consider
the SEMX = {X ,X ,ℙE} where

X =
{

X1 = E1, X2 = E2, X3 = X1 +X2 + E3
}

X =
{

∅, do(X2 = 0), do(X1 = 0, X2 = 0)
}

,
E1 = 1, E2 ∼ ℙE2

, E3 ∼ ℙE3

9By definition of the poset Y , this arrow exists if and only
if !(i) ≤Y !(j).

whereℙE2
andℙE3

are arbitrary distributions. LetY =
{Y ,Y ,ℙF } be the SEM over  with

Y =
{

Y1 = 1 + F1, Y2 = Y1 + F2
}

Y =
{

∅, do(Y1 = 0), do(Y1 = 1)
}

,
F1 ∼ ℙE2

, F2 ∼ ℙE3

Let ! ∶ X → Y be defined by

! ∶

⎧

⎪

⎨

⎪

⎩

∅ ↦ ∅
do(X2 = 0) ↦ do(Y1 = 1)
do(X1 = 0, X2 = 0) ↦ do(Y1 = 0)

Then it is true that ℙi�(X) = ℙdo(!(i))
Y for all i ∈ X and

!(∅) = ∅, although ! is not order-preserving.

If the above SEMs were used as models of the same sys-
tem, they would not suffer from the problem illustrated
in Example 7. Suppose now, however, that we have per-
formed the intervention do(X2 = 0) inX , correspond-ing to the intervention do(Y1 = 1) in Y . If we wish
to reason about the effect of the intervention do(X1 =
0, X2 = 0) inX , we run into a problem. X suggests
that do(X1 = 0, X2 = 0) could be implemented by per-
forming an additional action on top of do(X2 = 0). In
contrast, Y suggests that implementing the correspond-
ing intervention do(Y1 = 0) would conflict with the al-
ready performed intervention do(Y1 = 1).

5 EXAMPLES OF EXACT
TRANSFORMATIONS

In the introduction we motivated the problem considered
in this paper by listing three settings in which differing
model levels naturally occur. Having now introduced
the notion of an exact transformation between SEMs, we
provide in this section examples of exact transformations
falling into each of these categories. The fact that a single
framework can be used to draw an explicit correspondence
between differing model levels in each of these settings
demonstrates the generality of our framework.
Observe that in each of the following examples, the par-
ticular set of interventions considered is important. If we
were to allow larger sets of interventions X in the SEM
X , the transformations given would not be exact. This
highlights the importance to the causal modelling pro-
cess of carefully considering the set of interventions. All
proofs are found in the Appendix.

5.1 MARGINALISATION OF VARIABLES

In the following two Theorems we consider two opera-
tions that can be performed on SEMs, namely marginali-
sation of childless or non-intervened variables, and prove



that these are exact transformations. That is, an SEM can
be simplified into an SEM with fewer variables by either
of these operations without losing any causal content con-
cerning the remaining variables.
Thus if the SEM Y can be obtained from another SEM
X by successively performing the operations in the fol-
lowing theorems, then Y is an exact transformation
of X and hence the two models are causally consis-
tent. This formally explains why we can sensibly con-
sider causal models that focus on a subsystem Y of a
more complex system X (cf. Figure 3). For a measure-
theoretic treatment of marginalisation in SEMs, see [3].
Theorem 9 (Marginalisation of childless variables). Let
X = (X ,X ,ℙE) be an SEM and suppose that
IZ ⊂ IX is a set of indices of variables with no children,
i. e. if i ∈ IZ then Xi does not appear in the right-hand
side of any structural equation in X . Let  be the set
in which Y =

(

Xi ∶ i ∈ IX ⧵ IZ
)

takes value. Then the
transformation � ∶  →  mapping

� ∶
(

xi ∶ i ∈ IX
)

= x↦ y =
(

xi ∶ i ∈ IX ⧵ IZ
)

naturally gives rise to an SEM Y that is an exact �-
transformation ofX , corresponding to marginalising
out the childless variables Xi for i ∈ IZ .
Theorem 10 (Marginalisation of non-intervened vari-
ables). Let X = (X ,X ,ℙE) be an acyclic SEM and
suppose that IZ ⊂ IX is a set of indices of variables that
are not intervened upon by any intervention i ∈ X . Let
 be the set in which Y =

(

Xi ∶ i ∈ IX ⧵ IZ
)

takes value.
Then the transformation � ∶  →  mapping

� ∶
(

xi ∶ i ∈ IX
)

= x↦ y =
(

xi ∶ i ∈ IX ⧵ IZ
)

naturally gives rise to an SEM Y that is an exact �-
transformation ofX , corresponding to marginalising
out the never-intervened-upon variables Xi for i ∈ IZ .

The assumption of acyclicity made in Theorem 10 can be
relaxed to allow marginalisation of non-intervened vari-
ables in cyclic SEMs, at the expense of extra technical
conditions (see Section 3 of [3]).
We remind the reader that our definition of an SEM does
not require that the exogenousE-variables be independent.
Theorem 10 would not hold if this restriction were made
(which is usually the case in the literature); marginalising
out a common parent node will in general result in its
children having dependent exogenous variables.

5.2 MICRO- TO MACRO-LEVEL

Transformations from micro- to macro-levels may arise
in situations in which the micro-level variables can be ob-
served via a ‘coarse’ measurement device, represented by

X1

X2

X3

subsystemY

X

Figure 3: Suppose that there is a complex model Xbut that we only wish to model the distribution over
X1, X2, X3 and how it changes under some interventions
onX1, X2, X3. By Theorem 9, we can ignore downstream
effects ( ) after grouping them together as one multivari-
ate variable and by Theorem 10 we can ignore intermedi-
ate steps of complex mechanisms ( ) and treat upstream
causes as noise fluctuations ( ). That is, we can exactly
transform the complex SEM X into a simpler model
Y by marginalisation.

the function �, e. g. we can use a thermometer to measure
the temperature of a gas, but not the motions of the in-
dividual particles. They may also arise due to deliberate
modelling choice when we wish to describe a system us-
ing higher level features, e. g. viewing the motor cortex as
a single entity responsible for movements, rather than as
a collection of individual neurons.
In such situations, our framework of exact transforma-
tions allows one to investigate whether such a macro-level
model admits a causal interpretation. The following the-
orem provides an exact transformation between a micro-
level model X and a macro-level model Y in which
the variables are aggregate features of variables in Xobtained by averaging (cf. Figure 4).
Theorem 11 (Micro- to macro-level). Let
X =

(

X ,X ,ℙE,F
)

be a linear SEM over
the variables W =

(

Wi ∶ 1 ≤ i ≤ n
)

and
Z =

(

Zi ∶ 1 ≤ i ≤ m
)

with

X =
{

Wi = Ei ∶ 1 ≤ i ≤ n
}

∪

{

Zi =
n
∑

j=1
AijWj + Fi ∶ 1 ≤ i ≤ m

}

X =
{

∅, do(W = w), do(Z = z),

do(W = w,Z = z) ∶ w ∈ ℝn, z ∈ ℝm
}

and (E, F ) ∼ ℙ where ℙ is any distribution over ℝn+m

and A is a matrix.

Assume that there exists an a ∈ ℝ such that each column
of A sums to a. Consider the following transformation



Ŵ ẐY :

X :

Figure 4: An illustration of the setting considered in Theo-
rem 11. The micro-variablesW1,… ,Wn and Z1,… , Zmin the SEM X can be averaged to derive macro-
variables Ŵ and Ẑ in such a way that the resulting macro-
level SEM Y is an exact transformation of the micro-
level SEM X .

that averages theW and Z variables:

� ∶  →  = ℝ2

(

W
Z

)

↦

(

Ŵ
Ẑ

)

=

(

1
n
∑n
i=1Wi

1
m
∑m
j=1Zj

)

Further, let Y =
(

Y ,Y ,ℙÊ,F̂
)

over the variables
{

Ŵ , Ẑ
}

be an SEM with

Y =
{

Ŵ = Ê, Ẑ = a
m
Ŵ + F̂

}

Y =
{

∅, do(Ŵ = ŵ), do(Ẑ = ẑ),

do(Ŵ = ŵ, Ẑ = ẑ) ∶ ŵ ∈ ℝ, ẑ ∈ ℝ
}

Ê ∼ 1
n

n
∑

i=1
Ei, F̂ ∼ 1

m

m
∑

i=1
Fi

Then Y is an exact �-transformation ofX .

5.3 STATIONARY BEHAVIOUR OF
DYNAMICAL PROCESSES

In this section we provide an example of an exact transfor-
mation between an SEM X describing a time-evolving
system and another SEMY describing the system after
it has equilibrated. In this setting, � could be thought of as
representing our ability to only measure the time-evolving
system at a single point in time, after the transient dynam-
ics have taken place.
In particular, we consider a discrete-time linear dynamical
system with identical noise and provide the explicit form
of an SEM that models the distribution of the equilibria
under each intervention (cf. Figure 5).10

10Note that the assumption that the transition dynamics be

Theorem 12 (Discrete-time linear dynamical process
with identical noise). Let X =

(

X ,X ,ℙE
)

over the
variables

{

Xi
t ∶ t ∈ ℤ, i ∈ {1,… , n}

}

be a linear SEM
with

X =

{

Xi
t+1 =

n
∑

j=1
AijX

j
t + E

i
t ∶ i ∈ {1,… , n}, t ∈ ℤ

}

i. e. Xt+1 = AXt + Et
X =

{

do(Xj
t = xj ∀t ∈ ℤ,∀j ∈ J ) ∶ x ∈ ℝ|J |, J ⊆ {1,… , n}

}

Et = E ∀t ∈ ℤ where E ∼ ℙ

where ℙ is any distribution over ℝn and A is a matrix.

Assume that the linear mapping v ↦ Av is a contraction.
Then the following transformation is well-defined under
any intervention i ∈ X:11

� ∶  → 
(xt)t∈ℤ ↦ y = lim

t→∞
xt

Let Y =
(

Y ,Y ,ℙF
)

be the (potentially cyclic) SEM
over the variables

{

Y i ∶ i ∈ {1,… , n}
}

with

Y =

{

Y i =
∑

j≠i AijY
j

1 − Aii
+ F i

1 − Aii
∶ i ∈ {1,… , n}

}

Y =
{

do(Y j = yj ∀j ∈ J ) ∶ y ∈ ℝ|J |, J ⊆ {1,… , n}
}

F ∼ ℙ

Then Y is an exact �-transformation ofX .

The above theorem demonstrates how a linear additive
SEM can arise as a result of making observations of a
dynamical process. This supports one interpretation of
SEMs as a description of a dynamical process that equi-
librates quickly compared to its external environment.12
The framework of exact transformations allows us to ex-
plain in a precise way the sense in which such equilibrium
models can be used as causal descriptions of an underly-
ing dynamical process.
linear can be relaxed to more general non-linear mappings. In
this case, however, the structural equations of Y can only be
written in terms of implicit solutions to the structural equations
ofX . For purposes of exposition, we stick here to the simpler
case of linear dynamics.

11In Appendix D.1 we show that A being a contraction map-
ping ensures that the sequence (Xt)t∈ℤ defined byX converges
everywhere under any intervention i ∈ X . That is, for any real-
isation (xt)t∈ℤ of this sequence, its limit limt→∞ xt as a sequenceof elements of ℝn exists.

12This interpretation corresponds to the assumption that the
noise in the dynamical model is constant through time, and is
used by e. g. [10, 12, 14, 15] and [13] to meaningfully interpret
cyclic SEMs.
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� �

X1
t X2

t X1
t X2

t

Figure 5: An illustration of the setting considered in The-
orem 12. The discrete-time dynamical process is exactly
transformed into a model describing its equilibria.

This result also sheds light on the interpretation of cyclic
causal models. One interpretation of the structural equa-
tions of an acyclic SEM is that they represent a temporally
ordered series of mechanisms by which data are gener-
ated. This is not possible in the case that the SEM exhibits
cycles: there does not exist a partial ordering on the vari-
ables and hence one cannot think of each variable being
generated temporally downstream of its parents. By show-
ing that cyclic SEMs can arise as exact transformations
of acyclic SEMs, we provide an interpretation of cyclic
SEMs that does not suffer from the above problem.

6 DISCUSSION AND FUTUREWORK

It’s turtles all the way down! There is no such thing as a
‘correct’ model, but in this paper we introduced the notions
of exact transformations between SEMs to evaluate when
two SEMs can be viewed as causally consistent models
of the same system. Illustrating how these notions can be
used in order to relate differing model levels, we proved
in Section 5 the exactness of transformations occurring
in three different settings. These have implications for
the following questions in causal modelling: When can
we model only a subsystem of a more complex system?
When does amicro-level system admit a causal description
in terms of macro-level features? How do cyclic causal
models arise?
Our work has implications for other problems in causal
modelling. It suggests that ambiguous manipulations [18]
may be thought of as arising due to the application of an in-
exact transformation to an SEMX . This was illustratedin Section 1.1 in which LDL and HDL cholesterol were
only measured via their sum TC, resulting in a model that

suffered from the problem of ambiguous manipulations
(cf. Figure 1b) since it was not an exact transformation of
the underlying model (cf. Figure 1a). This is related to the
problem of causal variable definition as studied by [7].
A future line of enquiry would be to generalise the notion
of an exact transformation in order to analyse the trade-
off between model accuracy and model complexity for
causal modelling using SEMs. For a transformation to be
exact, we require that the posets �(X) and Y be equal.
One could imagine a ‘softening’ of this requirement such
that the distributions in the posets are required to be only
approximately equal. A slightly inaccurate model with a
small number of variables may be preferable to an accurate
but complex model.
We discussed the importance of an order-preserving ! to
ensure a notion of causal consistency between two SEMs.
It would be interesting to better understand the conditions
under which different properties of consistency between
causal models hold – for instance, counterfactual reason-
ing, which we have not discussed in this paper.
While we have introduced the notion of an exact trans-
formation, we have not provided any criterion to choose
from amongst the set of all possible exact transformations
of an SEM. Foundational work in a similar direction to
ours has been done by [4, 5], who consider a particular
discrete setting. They provide algorithms to learn a trans-
formation of a micro-level model to a macro-level model
with desirable information-theoretic properties. We con-
jecture that our framework may lead to extensions of their
work, e. g. to the continuous setting.
Finally, suppose that we have made observations of an
underlying system X via a measurement device �, and
that we want to fit an SEMY from a restricted model
class to our data. By using our framework, asking whether
or not Y admits a causal interpretation consistent with
X reduces to asking whether the transformation is exact.
More generally, by fixing any two ofX , � andY , wecan ask what properties must be fulfilled by the third in
order for the two models to be causally consistent. We
hope that this may lead to the practical use of SEMs being
theoretically grounded.
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Appendix

A PROOFS FOR SECTION 4.3: ELEMENTARY EXACT TRANSFORMATIONS

Lemma 4. The identity mapping and permuting the labels of variables are both exact transformations. That is, if X
is an SEM and � ∶ IX → IX is a bijection then the transformation

� ∶  → 
(xi ∶ i ∈ IX) ↦ (x�(i) ∶ i ∈ IX)

naturally gives rise to an SEMY that is an exact �-transformation ofX , corresponding to relabelling the variables.

Proof of Lemma 4. Consider the SEM Y obtained from X by replacing, for all i ∈ IX , any occurrence of Xi inthe structural equations X and interventions X by Y�(i) and leaving the distribution over the exogenous variables
unchanged.

Proof of Lemma 5 (Transitivity of exact transformations). Let !ZY ∶ Y → Z and !Y X ∶ X → Y be the map-
pings between interventions corresponding to the exact transformations �ZY and �Y X respectively and define !ZX =
!ZY ◦!Y X ∶ X → Z . Then !ZX is surjective and order-preserving since both !ZY and !Y X are surjective and
order-preserving. Since �ZY and �Y X are exact it follows that for all i ∈ X

ℙi�ZX (X) = ℙ!ZY (!Y X (i))�ZY (�Y X (X)) = ℙdo(!ZX (i))
Z

i. e.Z is an �ZX-exact transformation of X .

B PROOFS FOR SECTION 5.1: MARGINALISATION OF VARIABLES

Proof of Theorem 9 (Marginalisation of childless variables). By Lemma 5 it suffices to proof this for marginalisation
of one childless variable. Without loss of generality, let X1 be the childless variable to be marginalised out.
LetY = (Y ,Y ,ℙF ) be the SEM where

• the structural equations Y are obtained from X by removing the structural equation corresponding to the childless
variable X1;

• Y is the image of the map ! ∶ X → Y that drops any reference to the variable X1 (e. g.
do(X1 = x1, X2 = x2) ∈ X would be mapped to do(X2 = x2) ∈ Y );

• F = (Ei ∶ i ∈ IX ⧵ {1}) are the remaining noise variables distributed according to their marginal distribution
under ℙE .

By construction, ! is surjective and order-preserving. Let i ∈ X be any intervention. The variable X1 being childless
ensures that the law on the remaining variables Xk, k ∈ IX ⧵ {1} that we obtain by marginalisation of the childless
variable, i. e. ℙi�(X), is equivalent to the law one obtains by simply dropping the childless variable, which is exactly what
the law underY amounts to, i. e. ℙ!(do(i))Y .

Proof of Theorem 10 (Marginalisation of non-intervened variables). By Lemma 5 it suffices to proof this for marginal-
isation of one never-intervened-upon variable. Without loss of generality, let X1 be the never-intervened-upon variable
to be marginalised out. By acyclicity of the SEMX , the structural equation corresponding to variable X1 is of theform X1 = f1

(

Xpa(1), E1
) and X1 does not appear in the structural equation for any of its ancestors.

Now let Y = (Y ,Y ,F ) be the SEM where

• Y = X ;



• Fi = ((Ei, E1) ∶ i ∈ IX ⧵ {1}) are the noise variables distributed as implied by ℙE ;
• the structural equations Y are obtained from X by removing the structural equation of X1 and replacing any

occurrence of X1 in the right-hand side of the structural equations of children of X1 by f1
(

Xpa(1), E1
), yielding

Xi = fi
(

f1
(

Xpa(1), E1
)

, Xpa(i), Ei
).

Note that the structural equations of the resulting SEM are still acyclic and are all of the form Xi = ℎi
(

X⧵i, Fi
).

Then Y is, by construction, an �-exact transformation of X for ! = id.

C PROOF FOR SECTION 5.2: MICRO- TO MACRO-LEVEL

Proof of Theorem 11. We begin by defining a mapping between interventions
! ∶ X → Y

∅ ↦ ∅

do(W = w) ↦ do

(

Ŵ = 1
n

n
∑

i=1
wi

)

do(Z = z) ↦ do

(

Ẑ = 1
m

m
∑

i=1
zi

)

do(W = w,Z = z) ↦ do

(

Ŵ = 1
n

n
∑

i=1
wi, Ẑ = 1

m

m
∑

i=1
zi

)

Note that ! is surjective and order-preserving (in fact, it is an order embedding). Therefore, it only remains to show that
the distributions implied by �(X) under any intervention i ∈ X agree with the corresponding distributions implied by
Y . That is, we have to show that

ℙi�(X) = ℙdo(!(i))
Y ∀i ∈ X

In the observational setting, the distribution over  is implied by the following equations:

Ŵ = 1
n

n
∑

i=1
Wi =

1
n

n
∑

i=1
Ei

Ẑ = 1
m

m
∑

i=1
Zi =

1
m

m
∑

i=1

( n
∑

j=1
AijWj + Fi

)

= a
m
Ŵ + 1

m

m
∑

i=1
Fi

Since the distributions of the exogenous variables inY are given by Ê ∼ 1
n
∑n
i=1 Ei, F̂ ∼ 1

m
∑m
i=1 Fi, it follows that

ℙdo(∅)
�(X) and ℙdo(∅)

Y agree. Similarly, the push-forward measure on  induced by the intervention do(W = w) ∈ X is
given by

Ŵ = 1
n

n
∑

i=1
Wi =

1
n

n
∑

i=1
wi

Ẑ = 1
m

m
∑

i=1
Zi =

1
m

m
∑

i=1

( n
∑

j=1
AijWj + Fi

)

= a
m
Ŵ + 1

m

m
∑

i=1
Fi

which is the same as the distribution induced by the !-corresponding intervention do
(

Ŵ = 1
n
∑n
i=1wi

)

inY .
Similar reasoning shows that this also holds for the interventions do(Z = z) and do(W = w,Z = z).



D PROOF FOR SECTION 5.3: STATIONARY BEHAVIOUR OF DYNAMICAL
PROCESSES

Proof of Theorem 12. We begin by defining a mapping between interventions
! ∶ X → Y

do(Xj
t = xj ∀t ∈ ℤ, ∀j ∈ J ) ↦ do(Y j = xj ∀j ∈ J )

Note that ! is surjective and order-preserving (in fact, it is an order embedding). Therefore, it only remains to show that
the distributions implied by �(X) under any intervention i ∈ X agree with the corresponding distributions implied by
Y . That is, we have to show that

ℙi�(X) = ℙdo(!(i))
Y ∀i ∈ X

For this we consider, without loss of generality, the distribution arising from performing the X-level intervention
i = do(Xj

t = xj ∀t ∈ ℤ,∀j ≤ m ≤ n) ∈ X

for m ∈ [n] (for m = 0 this amounts to the null-intervention).
Since A is a contraction mapping, it follows from Lemma 15 that for any intervention in X , the sequence of random
variablesXt defined byX converges everywhere. That is, there exists a random variableX∗ such thatXt

everywhere
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

t→∞
X∗.

In the case of the intervention i above, the random variable X∗ satisfies:
{

Xk
∗ = xk if k ≤ m

Xk
∗ =

∑

j AkjX
j
∗ + Ek if m < k ≤ n

(1)

Since �(X) = limt→∞Xt, it follows from the definition of X∗ that �(X) = X∗, and hence �(X) also satisfies the
equations above. It follows (rewriting the second line in Equation 1 above) that under the push-forward measure
ℙi�(X) = �

(

ℙdo(i)
X

)

the distribution of the random variable �(X) = X∗ is given by:

⎧

⎪

⎨

⎪

⎩

Xk
∗ = xk if k ≤ m

Xk
∗ =

∑

j≠k AkjX
j
∗

1−Akk
+ Ek

1−Akk
if m < k ≤ n

We need to compare this to the law of Y as implied byY under the intervention !(i), i. e. ℙdo(!(i))
Y . TheY -levelintervention !(i) corresponding to i is

!(i) = do(Y j = xj ∀j ≤ m ≤ n) ∈ Y

and so the structural equations of Y under the intervention !(do(i)) are
⎧

⎪

⎨

⎪

⎩

Y k = xk if k ≤ m

Y k =
∑

j≠k AkjY
j

1−Akk
+ F k

1−Akk
if m < k ≤ n

Since F ∼ E it indeed follows that �(X) ∼ Y , i. e. ℙi�(X) = ℙdo(!(i))
Y .

Thus Y is an exact �-transformation of X .

D.1 CONTRACTION MAPPING AND CONVERGENCE

The following Lemmata show that A being a contraction mapping ensures that the sequence (Xt)t∈ℤ defined by X in
Theorem 12 converges everywhere under any intervention i ∈ X . That is, for any realisation (xt)t∈ℤ of this sequence,
its limit limt→∞ xt as a sequence of elements of ℝn exists.



Lemma 13. Suppose that the function

f ∶ ℝn → ℝm

x↦ f (x)

is a contraction mapping. Then, for any e ∈ ℝm, so is the function

f ∗ ∶ ℝn → ℝm

x↦ f (x) + e

Proof. By definition, there exists c < 1 such that for any x, y ∈ ℝn,
‖f ∗(x) − f ∗(y)‖ = ‖(f (x) + e) − (f (y) + e)‖ = ‖f (x) − f (y)‖ ≤ c‖x − y‖

and hence f ∗ is a contraction mapping.
Lemma 14. Suppose that the function

f ∶ ℝn → ℝn

x =
⎛

⎜

⎜

⎝

x1
⋮
xn

⎞

⎟

⎟

⎠

↦
⎛

⎜

⎜

⎝

f1(x)
⋮

fn(x)

⎞

⎟

⎟

⎠

is a contraction mapping. Then for any m ≤ n, and x∗i ∈ ℝ, i ∈ [m], so is the function

f ∗ ∶ ℝn → ℝn

x =
⎛

⎜

⎜

⎝

x1
⋮
xn

⎞

⎟

⎟

⎠

↦

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x∗1
⋮
x∗m

fm+1(x)
⋮

fn(x)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Proof. By definition, there exists c < 1 such that for any x, y ∈ ℝn,

‖f ∗(x) − f ∗(y)‖ =

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x∗1
⋮
x∗m

fm+1(x)
⋮

fn(x)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

−

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x∗1
⋮
x∗m

fm+1(y)
⋮

fn(y)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

=

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
⋮
0

fm+1(x) − fm+1(y)
⋮

fn(x) − fn(y)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

≤
‖

‖

‖

‖

‖

‖

‖

⎛

⎜

⎜

⎝

f1(x) − f1(y)
⋮

fn(x) − fn(y)

⎞

⎟

⎟

⎠

‖

‖

‖

‖

‖

‖

‖

= ‖f (x) − f (y)‖
≤ c‖x − y‖

and hence f ∗ is a contraction mapping.
Lemma 15. Consider the SEMX in Theorem 12, and suppose that the linear map A ∶ ℝn → ℝn is a contraction
mapping. Then, for any intervention i ∈ X , the sequence of Xt converges everywhere.

Proof. Consider, without loss of generality, the intervention
do(Xj

t = xj ∀t ∈ ℤ,∀j ≤ m ≤ n) ∈ X

for m ∈ [n] (for m = 0 this amounts to the null-intervention). The structural equations under this intervention are
{

Xk
t+1 = xk if k ≤ m

Xk
t+1 =

∑

j AkjX
j
t + E

k if m < k ≤ n



and thus the sequence Xt can be seen to transition according to the function f = g◦ℎ, where
ℎ ∶ ℝn → ℝn

v↦ w = Av + E

g ∶ ℝn → ℝn

w =
⎛

⎜

⎜

⎝

w1
⋮
wn

⎞

⎟

⎟

⎠

↦

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x1
⋮
xm
wm+1
⋮
wn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

By Lemma 13 and Lemma 14, f is a contraction mapping for any fixed E. Thus, by the contraction mapping theorem,
the sequence of Xt converges everywhere to a unique fixed point.


