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Frederik M. Lauridsen
Intermediate Logics
Admitting a Structural
Hypersequent Calculus

Abstract. We characterise the intermediate logics which admit a cut-free hypersequent

calculus of the form HLJ+R, where HLJ is the hypersequent counterpart of the sequent

calculus LJ for propositional intuitionistic logic, and R is a set of so-called structural

hypersequent rules, i.e., rules not involving any logical connectives. The characterisation

of this class of intermediate logics is presented both in terms of the algebraic and the rela-

tional semantics for intermediate logics. We discuss various—positive as well as negative—

consequences of this characterisation.

Keywords: Intermediate logics, Hypersequent calculi, Algebraic proof theory, Heyting

algebras.

1. Introduction

Constructing cut-free proof calculi for intermediate logics can be notoriously
difficult. In fact, we know only of very few intermediate logics having a cut-
free Gentzen-style sequent calculus obtained by adding a finite number of
sequent rules to the single-succedent1 sequent calculus LJ for IPC.2 On
the other hand few decisively negative results have been obtained in this
respect. The few such results in the literature are of a rather general na-
ture ruling out sequent systems with rules of a particular syntactic shape
for certain (classes of) logics, see, e.g., [22, Cor. 7.2] and [40].3 However, by
moving to the framework of hypersequent calculi [3,45,47] it is possible to
construct cut-free hypersequent calculi for many well-known intermediate

1Recall that a sequent is a single-succedent sequent if at most one formula occurs on
the right-hand side of the sequent arrow.

2In [29,50] a sequent calculus for the intermediate logic LC is obtain by adding infinitely
many rules to the multi-succedent calculus LJ′ for IPC and [38] gives a Gentzen-like
calculus for KC in terms of finitely many rules which are, however, non-local. Finally, [2]
gives examples of tableau calculi for the seven interpolable intermediate logics from which
corresponding sequent calculi may be obtained.

3See also [39,44] for negative result about cut-free sequent systems for modal logics.
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logics, see, e.g., [4,20,21,26]. Hypersequents are nothing but finite multi-
sets of sequents. In general adding so-called structural hypersequent rules,
viz., rules not involving the logical connectives, usually behaves well with
respect to the cut-elimination procedure. In fact, a systematic approach to
the problem of constructing cut-free proof calculi has been developed and
a class of formulas, called P3, has been singled out for which corresponding
cut-free structural single-succedent hypersequent calculi may be obtained in
a uniform manner [22,24]. However, negative results demarcating the class
of intermediate logics admitting cut-free structural hypersequent calculi are
still to some extent lacking. Considering substructural logics proper some
meaningful necessary conditions for admitting a cut-free structural hyper-
sequent calculus have been provided [22, Cor. 7.3], [25, Thm. 6.8].

Our contribution consists in singling out a purely semantic criterion deter-
mining when an intermediate logic can be captured by a cut-free structural
single-succedent hypersequent calculus extending the basic single-succedent
hypersequent calculus HLJ for IPC. This is done by considering a subclass
of the so-called (0,∧,∨, 1)-stable logics studied in [7,10,13]. More precisely,
we introduce a class of intermediate logics, which we call (0,∧, 1)-stable,
determined by classes of Heyting algebras closed under taking (0,∧, 1)-
subalgebras of subdirectly irreducible Heyting algebras. We are also able
to show that all such intermediate logics are elementarily determined and
we obtain a characterisation of the first-order frame conditions determining
intermediate logics with a cut-free structural hypersequent calculus. These
frame conditions are analogous to the frame conditions introduced by Lahav
[42] for constructing analytic hypersequent calculi for modal logics. Finally,
we compare the class of (0,∧, 1)-stable intermediate logics to the class of
(0,∧,∨, 1)-stable intermediate logics. We show that there are (0,∧,∨, 1)-
stable intermediate logics which are not (0,∧, 1)-stable. Furthermore, we
show that the (0,∧,∨, 1)-stable logics given by the so-called (0,∧,∨, 1)-
stable rules [10, Sec. 5] determined by finite well-connected Heyting algebras
which are projective as objects in the category of distributive lattices will
necessarily be (0,∧, 1)-stable. Lastly, we show that the (0,∧, 1)-stable logics
are precisely the cofinal subframe logics which are also (0,∧,∨, 1)-stable.

The paper is structured as follows. Section 2 contains a short introduc-
tion to hypersequent calculi and their algebraic interpretation. Section 3 con-
tains the algebraic characterisation of intermediate logics with a (cut-free)
structural hypersequent calculus. In Section 4 the first-order frame condi-
tions associated with the class of intermediate logics admitting a cut-free
structural hypersequent calculi are determined and in Section 5 this class of
intermediate logics is compared with the class of (0,∧,∨, 1)-stable logics.
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2. Preliminaries on Algebraic Proof Theory

In this section we will briefly review the necessary background on algebraic
proof theory [22,24,25] on which the findings of the present paper heavily
relies.

2.1. Hypersequents

Let P be a set of propositional letters and let Form be the set of proposi-
tional formulas in the language of intuitionistic logic given by the following
grammar

ϕ ::= ⊥ | p | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ, p ∈ P.

Note that in this language both the connective ↔ and the constant � is
definable, e.g., as (ϕ → ψ) ∧ (ψ → ϕ) and ⊥ → ⊥, respectively.

By a single-succedent sequent (in the language of propositional intuition-
istic logic) we shall understand a pair (Γ, Π), written Γ ⇒ Π, where Γ is a
finite multiset of formulas from Form and Π is a stoup, i.e., either empty or
a single formula in Form. The sequent system LJ, see, e.g., [31, Chap. 1.3],
provides a sequent calculus which is sound and complete with respect to
propositional intuitionistic logic IPC. However, when adding additional ax-
ioms to LJ the resulting system is no longer guaranteed to enjoy the same
proof-theoretic properties as LJ such as cut-elimination.

Nevertheless, many logics for which no cut-free Gentzen-style sequent
calculus is available may be captured nicely by the so-called hypersequent
calculus formalism. A hypersequent is simply a finite multiset of sequents
H written as Γ1 ⇒ Π1 | . . . | Γn ⇒ Πn, where the sequents Γi ⇒ Πi are
called the components of the hypersequent H. One may think of a hyper-
sequent as a “meta-disjunction” of sequents. The hypersequent formalism
can therefore be thought of as a proof-theoretic framework that allows for
the manipulation of sequents in parallel. In addition to the usual (internal)
structural rules such as contraction and weakening the hypersequent frame-
work allows us to consider a wide variety of so-called structural hypersequent
rule [22, Sec. 3.1], i.e., hypersequent rules not involving any of the logical
connectives, which operates on multiple components at once. For example
the structural hypersequent rules

H | Γ1, Γ2
′ ⇒ Π1 H | Γ2, Γ1

′ ⇒ Π2 (com)
H | Γ1, Γ1

′ ⇒ Π1 | Γ2, Γ2
′ ⇒ Π2

H | Γ1, Γ2 ⇒
(lq)

H | Γ1 ⇒ | Γ2 ⇒
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determines hypersequent calculi for the intermediate logics LC = IPC +
(p → q) ∨ (q → p) and KC := IPC + ¬p ∨ ¬¬p, respectively, when added
to HLJ, viz., the hypersequent version of LJ, defined below.

Definition 2.1. Let HLJ denote the hypersequent calculus consisting of
the following rules.

Logical rules:
(inti)

H | ϕ ⇒ ϕ
(⊥)

H | ⊥ ⇒

H | Γ ⇒ ϕ H | Γ, ψ ⇒ Π
(L →)

H | Γ, ϕ → ψ ⇒ Π
H | Γ, ϕ ⇒ ψ

(R →)
H | Γ ⇒ ϕ → ψ

H | Γ, ϕ, ψ ⇒ Π
(L∧)

H | Γ, ϕ ∧ ψ ⇒ Π
H | Γ ⇒ ϕ H | Γ ⇒ ψ

(R∧)
H | Γ ⇒ ϕ ∧ ψ

H | Γ, ϕ ⇒ Π H | Γ, ψ ⇒ Π
(L∨)

H | Γ, ϕ ∨ ψ ⇒ Π

H | Γ ⇒ ϕ
(R∨1)

H | Γ ⇒ ϕ ∨ ψ

H | Γ ⇒ ψ
(R∨2)

H | Γ ⇒ ϕ ∨ ψ

The internal structural rules
H | Γ ⇒ Π

(LW )
H | Γ, ϕ ⇒ Π

H | Γ ⇒
(RW )

H | Γ ⇒ ϕ

H | Γ, ϕ, ϕ ⇒ Π
(LC)

H | Γ, ϕ ⇒ Π

The external structural rules
H (EW )

H | G
H | G | G

(EC)
H | G

The cut-rule
H | Γ ⇒ ϕ H | Σ, ϕ ⇒ Π

(cut)
H | Γ, Σ ⇒ Π

For what follows it will be convenient to have fixed a notion of hyperse-
quent calculus.

Definition 2.2. An intermediate hypersequent calculus is a calculus of the
form HLJ + R, for a set R of hypersequent rules in the language of intu-
itionistic logic. Furthermore, if R is a set of structural hypersequent rules in
the language of intuitionistic logic we say that HLJ+R is a structural inter-
mediate hypersequent calculus. A hypersequent H is derivable in HLJ + R
from a set of hypersequents H, written H 
HLJ+R H, if H can be obtained
using the inference rules from HLJ + R possibly using hypersequents in



Structural Hypersequent Calculus 251

H as initial assumptions. In the case where H is empty we simply write

HLJ+R H. A hypersequent rule (r) is derivable in a calculus HLJ + R
if the conclusion of (r) is derivable in HLJ + R from the premises of (r).
Finally, we say that an intermediate hypersequent calculus HLJ+R is cut-
free if any hypersequent derivable in HLJ+R can be derived without using
the cut-rule.

Remark 2.3. Note that HLJ consists of all the rules of the sequent calculus
LJ with a hypersequent context together with the two external structural
rules. Consequently, all of the notions from Definition 2.2 also apply mutatis
mutandis to sequent calculi. In particular, it is not difficult to see that HLJ
and LJ derive exactly the same sequents.

Remark 2.4. We are here identifying hypersequent calculi with extensions
of the calculus HLJ, but we could of course equally well have consider
extensions of other cut-free hypersequent calculi for IPC. However, for what
follows it is essential that we consider single-succedent calculi as we will
be relying on results from [22,25] which only consider the single-succedent
case. In fact, it is not immediately clear if the approach of [22,25] can be
successfully adapted to the multi-succedent setting.

Each consistent hypersequent calculus HLJ+R determines an interme-
diate logic, namely,

Λ(HLJ + R) := {ϕ ∈Form :
HLJ+R ⇒ ϕ}.

Definition 2.5. Given an intermediate logic L we say that a hypersequent
calculus HLJ+R determines L if Λ(HLJ+R) = L. Furthermore, given a
property P we say that L admits a hypersequent calculus with property P if
L is determined by a hypersequent calculus HLJ+R with the property P .

Remark 2.6. Given a sequent S, say, Γ ⇒ Π, there exists a formula
ϕS , namely,

∧
Γ → ∨

Π, such that S and ϕS determine the same super-
intuitionistic logic. We make use of the convention that

∨ ∅ = ⊥ and∧ ∅ = �. Similarly, given a hypersequent rule (r) there exists a finite set of
multi-conclusion rules Mr such that (r) and Mr determine the same super-
intuitionistic logic, for details see, e.g., [16, Sec. 2]. Thus for the purpose of
axiomatising intermediate logics the two formalisms are equally good. How-
ever, when considering properties of formal derivations the hypersequent
formalism is arguably more natural. We will come back to multi-conclusion
rules, in the form of stable universal clauses, in Section 3.

We would like to know which intermediate logics can be determined by
structural intermediate hypersequent calculi as defined in Definition 2.2.
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That is, we would like to know which intermediate logics are of the form
Λ(HLJ+R), for R a set of structural hypersequent rules. This is interesting
to know since such intermediate logics can also be captured by a structural
hypersequent calculus without using the cut-rule [22].4 Thus answering this
question will help us better understand—from a semantical point of view—
which intermediate logics can be captured by cut-free proof calculi.

2.2. Structural Hypersequent Calculi and Universal Clauses

Let HA denote the variety of Heyting algebras. Then for any intermediate
logic L ⊇ IPC there is a variety V(L) ⊆ HA such that ϕ ↔ ψ ∈ L if and
only if V(L) |= ϕ ≈ ψ, for any pair of formulas ϕ and ψ in the language
of propositional intuitionistic logic, see, e.g., [18, Thm. 7.73(iv)]. Thus any
intermediate logic is sound and complete with respect to a variety, i.e., an
equationally definable class, of Heyting algebras.

Importantly we also have an analogous algebraic completeness theorem
for hypersequent calculi.

Theorem 2.7. Let R be a set of hypersequent rules and let H ∪ {H} be a
set of hypersequents. Then the following are equivalent:

1. H 
HLJ+R H;

2. H |=K(R) H,

where K(R) denotes the class of Heyting algebras validating all the rules
belonging to R.

Proof. This is nothing but a modified version of the Lindenbaum–Tarski
construction,5 see, e.g., [15,16,41].

Thus in order to use the algebraic semantics to study structural hyper-
sequent calculi we must identify the classes of Heyting algebras of the form
K(R) for R a collection of structural hypersequent rules.

Recall, e.g., [17, Def. V.2.19] that a first-order formula (in a language
without relational symbols) in prenex-normal form with all quantifiers uni-
versal is called a universal formula or universal clause. Thus, any universal

4In fact this holds for a much wider class of substructural logics.
5Note, however, that unlike the original Lindenbaum–Tarski construction, this con-

struction does not produce free algebras for the universal class of Heyting algebras vali-
dating the corresponding rules.
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clause may be written6 as

∀�x(t1(�x) ≈ u1(�x) and . . . and tm(�x) ≈ um(�x)

=⇒ tm+1(�x) ≈ um+1(�x) or . . . or tn(�x) ≈ un(�x)),

for terms tk(�x) and uk(�x), k ∈ {1, . . . , n}. In the presence of the lattice
operation ∧ we will use t ≤ u as an abbreviation of the equation t ≈ t ∧ u.
Finally, if it is clear from the context we will drop the universal quantifier,
leaving it to be understood that the variables, which may or may not be
displayed, are all universally quantified. A class of models of a collection of
universal formulas is called a universal class.

The following two propositions show that the structural intermediate hy-
persequent calculi correspond to certain kinds of universal classes of Heyting
algebras. For details, see, [25, Sec. 3.3, Sec. 4.4].

Proposition 2.8. (cf. [25, Sec. 3.3]) For each structural hypersequent rule
(r) there exists a universal clause qr in the {0,∧, 1}-reduct of the language
of Heyting algebras such that

A |= (r) ⇐⇒ A |= qr,

for all Heyting algebras A.

Proof. Given a structural rule (r), say

H | S1 . . . H | Sm (r)
H | Sm+1 | . . . | Sn

we associate a unique first-order variable x to each multiset variable Γ oc-
curring in (r) and similarly we associate a unique first-order variable y to
each stoup variable Π occurring in (r). Then if Si is Γi1, . . . ,Γik ⇒ Πi we
define ti to be the term xi1 ∧ . . . ∧ xik and ui to be the term yi. If Si is
Γi1, . . . ,Γik ⇒ we define ti to be the term xi1 ∧ . . . ∧ xik and ui to be the
constant 0. Letting qr be the universal clause

t1 ≤ u1 and . . . and tm ≤ um =⇒ tm+1 ≤ um+1 or . . . or tn ≤ un,

it is then straightforward to verify that (r) and qr are equivalent.

6Following [23–25] we write and for conjunction and or for disjunction to avoid confusion
with the lattice operations ∧ and ∨. For arbitrary finite conjunctions and disjunctions we
use AND and OR, respectively. Similarly, we write =⇒ for classical implication to avoid
confusion with the Heyting algebra operation →.



254 F. M. Lauridsen

Example 2.9. For example the structural hypersequent rules (com) and
(lq) correspond to the universal clauses

x1 ∧ x2
′ ≤ y1 and x2 ∧ x1

′ ≤ y2 =⇒ x1 ∧ x1
′ ≤ y1 or x2 ∧ x2

′ ≤ y2

and

x1 ∧ x2 ≤ 0 =⇒ x1 ≤ 0 or x2 ≤ 0,

respectively.

A converse to Proposition 2.8 may be given.

Proposition 2.10. (cf. [25, Sec. 4.4]) For any universal clause q in the
{0,∧, 1}-reduct of the language of Heyting algebras there is a structural hy-
persequent rule (rq) such that

A |= q ⇐⇒ A |= (rq),

for any Heyting algebra A.

Proof. Let q be a universal clause in the {0,∧, 1}-reduct of the language
of Heyting algebras. Any such universal clause will be equivalent to a finite
set of clauses of the form

t1 ≤ u1 and . . . and tm ≤ um =⇒ tm+1 ≤ um+1 or . . . or tn ≤ un,

where for each i ∈ {1, . . . , n} the term ti is a meet of variables, say xi1 ∧
. . . ∧ xik, or the constant 1 and the term ui is either a variable, say yi, or
the constant 0. Thus without loss of generality we may assume that q is of
this form. In fact we may assume that the variables occurring in the terms
{ti}n

i=1 are disjoint from the variable occurring in the terms {ui}n
i=1, [25,

Thm. 4.15]. For each variable xi occurring in the terms {ti}n
i=1 we associate

a multiset variable Γi and for each variable yi occurring among the terms
{ui}n

i=1 we associate a stoup variable Πi. Finally, we let (rq) be the rule

H | S1 . . . H | Sm (rq)
H | Sm+1 | . . . | Sn

where Si is Γi1, . . . ,Γik ⇒ Πi, with the left-hand (resp. right-hand) side
empty if ti (resp. ui) is a constant. Again, it is easy to verify that (rq) and
(q) are indeed equivalent.

Thus Propositions 2.8 and 2.10 above establish that for R a collection of
structural hypersequent rules the class K(R) of Heyting algebras validating
all the rules in R is a universal class of Heyting algebras determined by
universal clauses in the {0,∧, 1}-reduct of the language of Heyting algebras
and in fact any such class arises in this way.
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This together with Theorem 2.13 below allows us to turn the proof-
theoretic question of which intermediate logics admit a cut-free structural
intermediate hypersequent calculus into a purely model-theoretic question
regarding the first-order theory of Heyting algebras.

Given the correspondence between structural intermediate hypersequent
calculi and universal clauses in the {0,∧, 1}-reduct of the language of Heyt-
ing algebras we may provide the first algebraic characterisation of the class of
intermediate logics admitting structural intermediate hypersequent calculi.
This characterisation is, however, not very informative and in the follow-
ing section we shall provide a characterisation which we believe to be more
enlightening.

Corollary 2.11. Let L be an intermediate logic. Then the following are
equivalent:

1. The logic L admits a structural intermediate hypersequent calculus;

2. The variety V(L) is generated by a universal class of Heyting algebras
axiomatised by universal clauses in the {0,∧, 1}-reduct of the language
of Heyting algebras.

Proof. Suppose that L admits a structural intermediate hypersequent cal-
culus, say HLJ+R with R a set of structural hypersequent rules. Then we
have that ϕ is a theorem of L iff the sequent ⇒ ϕ is derivable in the hyper-
sequent calculus HLJ + R. By Theorem 2.7 this is the case iff |=K(R)⇒ ϕ,
which in turn happens precisely when the equation 1 ≈ ϕ is valid on ev-
ery algebra in the class K(R). From this we may deduce that the variety
V(L) is indeed generated by the class K(R) which by Proposition 2.8 is a
universal class of Heyting algebras axiomatised by universal clauses in the
{0,∧, 1}-reduct as R is a collection of structural hypersequent rules.

Conversely, if the variety V(L) is generated by a universal class of Heyting
algebras axiomtised by universal clauses in the {0,∧, 1}-reduct, say U , then
by Proposition 2.10 there exists a set RU of structural hypersequent rules
such that the class K(RU) of Heyting algebras validating RU coincides with
the class U . Since by assumption U generates V(L) we have that ϕ is a
theorem of L iff |=U 1 ≈ ϕ. Therefore, we have that ϕ ∈ L precisely when
|=K(RU ) 1 ≈ ϕ, which by Theorem 2.7 is the case exactly when 
HLJ+RU ⇒
ϕ. Thus we may conclude that HLJ + RU is a structural hypersequent
calculus for L.

We finish this section with presenting a syntactic characterisation of the
intermediate logics admitting a structural intermediate hypersequent calcu-
lus [22].
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Definition 2.12. (cf. [26]) Let P0 = N0 be a (countable) set of propositional
variables and define sets of formulas Pn,Nn in the language of intuitionistic
logic by the following grammar

Pn+1 ::= � | ⊥ | Nn | Pn+1 ∧ Pn+1 | Pn+1 ∨ Pn+1

Nn+1 ::= � | ⊥ | Pn | Nn+1 ∧ Nn+1 | Pn+1 → Nn+1

The key insight is that using the invertible rules of HLJ, i.e., rules the
premises of which are derivable whenever the conclusion is, any P3-formula
can be transformed into a structural hypersequent rule which preserves the
redundancy of the cut-rule when added to HLJ. Thus any intermediate logic
axiomatisable by P3-formulas, i.e., any logic of the form IPC+{ϕi}i∈I with
ϕi ∈ P3 for all i ∈ I, admits a structural hypersequent calculus in which the
cut-rule is redundant.

Theorem 2.13. [22] Let L be an intermediate logic. Then the following are
equivalent:

1. The logic L admits a structural intermediate hypersequent calculus;

2. The logic L admits a cut-free structural intermediate hypersequent cal-
culus;

3. The logic L is axiomatisable by P3-formulas.

Proof. That items (1) and (2) are equivalent is established in [22], just as
the fact that item (3) entails item (1). That item (1) entails item (3) may
be seen via an argument analogous to the one used to prove [24, Prop. 7.5].
We supply the details. Given a structural hypersequent rule (r), as in the
proof of Proposition 2.8, there is a finite set of equivalent universal clauses

t1(�x) ≤ u1(�y) and . . . and tm(�x) ≤ um(�y) (qr)

=⇒ tm+1(�x) ≤ um+1(�y) or . . . or tn(�x) ≤ un(�y),

such that the variables �x and �y are disjoint and the terms t are (possible
empty) meets of variables (i.e., the constant 1) and the terms u are either a
single variable or the constant 0. In fact, we may assume that none of the
terms ti are the constant 1 for i ∈ {1, . . . , m}. Let ϕr be the formula

n∨

j=m+1

((
m∧

i=1

(ti(�x) → ui(�y))

)

→ (tj(�x) → uj(�y))

)

.

It is straightforward to verify that ϕr belongs to P3.
We claim that qr and ϕr are equivalent on any Heyting algebra with

a second greatest element. Therefore, suppose that A is such a Heyting
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algebra. If A |= ϕr then for any valuation ν on A we have that A, ν |=
(
∧m

i=1(ti(�x) → ui(�y))) → (tj0(�x) → uj0(�y)) for some j0 ∈ {m + 1, . . . , n},
since A has a second greatest element. Consequently, if A, ν |= ti ≤ ui for
all i ∈ {1, . . . ,m} then we must have that A, ν |= ∧m

i=1(ti(�x) → ui(�y))
and so A, ν |= tj0(�x) → uj0(�y), i.e., A, ν |= tj0(�x) ≤ uj0(�y), showing that
A, ν |= qr.

Conversely, if A |= qr then A also validates any substitution instance
of qr. We construct a substitution σ such that A |= σ(ti) ≤ σ(ui) for all
i ∈ {1, . . . ,m} and such that σ(tj) ≥ tj ∧ ∧m

i=1(ti → ui) and σ(uj) = uj ,
for all j ∈ {m+1, . . . , n}. From the existence of such a substitution we may
conclude that for any valuation ν on A there exists j0 ∈ {m + 1, . . . , n}
such that A, ν |= tj0 ∧ ∧m

i=1(ti → ui) ≤ uj0 , and hence that A |= ∧m
i=1(ti →

ui) ≤ tj0 → uj0 , showing that A, ν |= ϕr.
To construct the substitution σ we let σ(x) := x∧∧m

i=1(ti → ui) for each
variable x ∈ �x and σ(y) := y, for each variable y ∈ �y. Note that since �x and �y
are disjoint this is well-defined. It is now easy to verify that this substitution
has the desired properties and therefore that A |= ϕr. This shows that in
fact any Heyting algebra validating the clause qr also validates the formula
ϕr.

Thus, being equivalent on Heyting algebras with a second greatest el-
ement, viz., subdirectly irreducible Heyting algebras [5, Thm. IX.4.5], it
follows that (r) and ϕr determine the same intermediate logic.

Remark 2.14. Note that the proof of Theorem 2.13 presented in [22] is
semantic in nature and so does not directly yield an explicit procedure for
transforming a derivation using the cut-rule into a cut-free derivation. How-
ever, in concrete cases an explicit cut-elimination procedure may be given,
see, e.g., [20,21]. We also want to emphasise that it is not the case that
the cut-rule is redundant in every structural intermediate hypersequent cal-
culus but only that any such calculus is effectively equivalent a structural
intermediate hypersequent calculus in which the cut-rule is redundant.

Example 2.15. For n ≥ 1 let BTWn,BWn and BCn, be the intermediate
logics determined by intuitionistic Kripke frames of top width at most n, of
width at most n, and of cardinality at most n, respectively. All of these inter-
mediate logics have axiomatisations given by formulas which are ostensibly
P3, see, e.g., [18, Chap. 2], and so by Theorem 2.13 all of these logics admit
a hypersequent calculus of the form HLJ+R, with R a set of structural hy-
persequent rules, for which the cut-rule is redundant. Concretely, the rules,
(com) and (lq) yields cut-free structural intermediate hypersequent calculi
for the intermediate logics LC and KC, respectively, when added to HLJ.
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For more examples of structural hypersequent rules see [20,22].

Theorem 2.13 thus gives a very nice syntactic description of the class
of intermediate logics which admit cut-free structural intermediate hyper-
sequent calculi. Our aim is then to supply criteria describing this class of
intermediate logics in terms of the algebraic and the relational semantics for
intermediate logics. Among other things this will allow us to derive negative
results showing that certain well-known intermediate logics do not admit
such calculi.

3. Algebraic Characterisation

In this section we provide a semantic characterisation of the intermediate
logics admitting a structural—and therefore also a cut-free—intermediate
hypersequent calculus in terms of the algebraic semantics. This section
builds on the theory of (0,∧,∨, 1)-stable intermediate logics as developed
in [7,10] where these logics are simply called stable intermediate logics.

Notation 3.1. Given Σ ⊆ {0,∧,∨,→, 1} we will let Σc denote the set
Σ ∩ {0, 1} and Σo denote the set Σ ∩ {∧,∨,→}. Moreover, if K is a class
of Heyting algebras we let Ksi denote the class of subdirectly irreducible
Heyting algebras belonging to K.

Definition 3.2. Let Σ ⊆ {0,∧,∨,→, 1} and let A and B be Heyting al-
gebras. We say that a function h : A → B is a Σ-homomorphism if h com-
mutes with the operations in Σ. If h : A → B is a Σ-homomorphism we write
A →Σ B. A Σ-homomorphism h : A →Σ B is called a Σ-embedding if the
the function h : A → B is injective. In this case we write A ↪→Σ B, and say
that the algebra A is a Σ-subalgebra of the algebra B.

Definition 3.3. Let Σ ⊆ {0,∧,∨,→, 1}.

1. We say that a class K of Heyting algebras is (finitely) Σ-stable provided
that whenever B ∈ K and A ↪→Σ B then A ∈ K for all (finite) Heyting
algebras A;

2. We say that an intermediate logic L is (finitely) Σ-stable provided that
whenever B ∈ V(L)si and A ↪→Σ B then A ∈ V(L) for all (finite)
Heyting algebras A.

Remark 3.4. As will become evident below, in item (2) of Definition 3.3 we
could just as well have chosen the larger class V(L)wc of well-connected V(L)-
algebras, viz., Heyting algebras with a join-irreducible top element, instead
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of the class V(L)si of subdirectly irreducible V(L)-algebras. However, we
have chosen the definition which aligns best with [7,10].

Remark 3.5. Note that if Σ ⊆ Σ′ ⊆ {0,∧,∨,→, 1} then any Σ-stable
intermediate logic L must necessarily also be Σ′-stable. In particular, for
Σ ⊆ {0,∧,∨, 1}, any Σ-stable logic will be (0,∧,∨, 1)-stable and so by [7,
Thm. 6.8] must enjoy the finite model property. Furthermore, by similar
reasoning any (0,∧, 1)-stable intermediate logic will also be a cofinal stable
logic [10].

Finally, it follows from the characterisation of (0,∧, 1)-stable logics given
in Section 4 that any (0,∧, 1)-stable logic will be characterised by a class of
intuitionistic Kripke frames closed under taking (locally) cofinal subframes.
Thus any (0,∧, 1)-stable logic must also be a cofinal subframe logic [52,53]
and as such these logics will be both canonical and elementary [53, Thm. 6.8].

Definition 3.6. Let Σ ⊆ {0,∧,∨,→, 1}, let A be a finite Heyting algebra
and introduce for each element a ∈ A a distinct first-order variable xa. By
the Σ-stable (universal) clause qΣ(A) associated with A we shall understand
the universal clause ∀�x (P (�x) =⇒ C(�x)) where

P (�x) = AND{xa ≈ a : a ∈ Σc} and AND{xa • xa′ ≈ xa•a′ : a, a′ ∈ A, • ∈ Σo}
C(�x) = OR{xa ≈ xa′ : a, a′ ∈ A, a �= a′}.

Remark 3.7. Stable universal clauses may be seen as a propositional version
of diagrams as known from classic Robinson-style model theory, see, e.g.,
[36, Chap. 1.4]. Variants of the Σ-stable clauses defined above have been
studied before under the names stable and canonical multi-conclusion rules
[8–10,41].

The following lemma shows that the Σ-stable clause associated with a
finite algebra A encodes the property of not containing A as a Σ-subalgebra.

Lemma 3.8. (cf. [10, Prop. 4.2]) Let Σ ⊆ {0,∧,∨,→, 1} and let A,B be
Heyting algebras with A finite. Then the following are equivalent:

1. B �|= qΣ(A);

2. There exists a Σ-embedding h : A ↪→Σ B.

Proof. Given a valuation ν on B such that (B, ν) �|= qΣ(A) then we obtain
a Σ-embedding hν : A ↪→Σ B by letting hν(a) := ν(xa). Conversely, given a
Σ-embedding h : A ↪→Σ B we obtain a valuation νh on B such that (B, νh) �|=
qΣ(A) by letting νh(xa) := h(a).

We then show that a universal class of Heyting algebras is Σ-stable pre-
cisely if it is axiomatisable by Σ-stable clauses.
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Lemma 3.9. (cf. [10, Prop. 4.5]) Let Σ ⊆ {0,∧,∨, 1} be given and let U be
a universal class of Heyting algebras. Then the following are equivalent:

1. The universal class U is Σ-stable;

2. The universal class U is finitely Σ-stable;

3. The universal class U is axiomatised by Σ-stable clauses.

Proof. If U is a (universal) class axiomatised by Σ-stable clauses then U
must be Σ-stable, since universal clauses in the Σ-reduct of the language of
Heyting algebras are preserved by Σ-subalgebras. Moreover, any Σ-stable
universal class is evidently finitely Σ-stable.

Thus it remains to be shown that if U is finitely Σ-stable then U is axioma-
tised by Σ-stable clauses. Therefore, let U be a finitely Σ-stable universal
class and let Q = {qΣ(A) : |A| < ℵ0,A �∈ U}. We claim that for any Heyting
algebra B we have that B ∈ U iff B |= Q. To see this let Th∀

HA(U) be the
universal theory, in the language of Heyting algebras, of U . If B �∈ U then,
by the assumption that U is a universal class of Heyting algebras, there exist
a universal clause q ∈ Th∀

HA(U) such that B �|= q. Thus, by [10, Lem. 4.3] we
must have a finite (0,∧,∨, 1)-subalgebra, in particular a Σ-subalgebra, C of
B such that C �|= q, i.e., C �∈ U whence qΣ(C) ∈ Q. By Lemma 3.8 we must
have that B �|= qΣ(C) and so B �|= Q.

Conversely, if B �|= Q then for some finite Heyting algebra A �∈ U we
have B �|= qΣ(A). By Lemma 3.8 it follows that A is a Σ-subalgebra of B.
Since U is assumed to be finitely Σ-stable we must conclude that B �∈ U
since otherwise A ∈ U .

We then obtain the first necessary and sufficient conditions in terms of
V(L) for an intermediate logic L to admit a structural intermediate hyper-
sequent calculus.

Proposition 3.10. Let L be an intermediate logic. Then the following are
equivalent:

1. The logic L admits a cut-free structural intermediate hypersequent cal-
culus;

2. The logic L admits a structural intermediate hypersequent calculus;

3. The variety V(L) is generated by a (0,∧, 1)-stable universal class of Heyt-
ing algebras.

Proof. The equivalence between items (1) and (2) is contained in Theo-
rem 2.13. That items (2) and (3) are equivalent follows from Corollary 2.11
and Lemma 3.9.
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In principle Proposition 3.10 gives an algebraic characterisation of the
intermediate logics L which admit structural intermediate hypersequent cal-
culi in the sense of Definition 2.2. However, we wish to obtain a characterisa-
tion which is local in the sense that it pertains to properties of—individual—
algebras in the variety V(L) and not the variety V(L) taken as a whole. We
will obtain such a characterisation by showing that the varieties of Heyt-
ing algebras generated by (0,∧, 1)-stable universal classes are precisely the
varieties corresponding to (0,∧, 1)-stable logics.

3.1. (0,∧, 1)-Stable Logics

In this subsection we characterise the (0,∧, 1)-stable logics in terms of prop-
erties of the subdirectly-irreducible algebras in the corresponding variety
V(L). As discussed above this will yield a characterisation of the intermedi-
ate logics admitting cut-free structural intermediate hypersequent calculi.

Definition 3.11. Let Σ ⊆ {0,∧,∨,→, 1}, let A be a finite Heyting algebra
and introduce for each element a ∈ A a distinct variable xa. By the Σ-
stable equation εΣ(A) associated with A we shall understand the equation
1 ≈ ∧

Γ → ∨
Δ where

Γ = {xa ↔ a : a ∈ Σc} ∪ {xa • xa′ ↔ xa•a′ : a, a′ ∈ A, • ∈ Σo}
Δ = {xa → xa′ : a, a′ ∈ A, a �≤ a′}.

The Σ-stable equations encode information about finite Heyting alge-
bras in almost the same way as the Σ-stable clauses. However, a version of
Lemma 3.8 only obtains for so-called well-connected Heyting algebras, that
is, Heyting algebras validating the universal clause ∀x∀y(1 ≤ x ∨ y =⇒
1 ≤ x or 1 ≤ y). Note that every subdirectly irreducible Heyting algebra
will be well-connected and that every finite well-connected Heyting algebra
will be subdirectly irreducible, see, e.g., [12, Thm. 2.3.14] and the references
therein.

We will need the following lemma showing that homomorphic images of
a finite Heyting algebra A must also be (0,∧, 1)-subalgebras of A.

Lemma 3.12. Let A and B be finite Heyting algebras. If B is a homomorphic
image of A, then B is a (0,∧, 1)-subalgebra of A.

Proof. If h : A � B is a surjective Heyting algebra homomorphism then
B is isomorphic to A/F , as a Heyting algebra, for some filter F on A. As A
is finite the filter F must be a principal filter, say F = ↑a for some a ∈ A,
and therefore B ∼= [0, a]. Evidently, we have a (0,∧, 1)-embedding f from
[0, a] into A, given by
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f(x) =
{

x x < a,
1 x = a,

showing that B ↪→0,∧,1 A.

We may then establish a version of Lemma 3.8 for (0,∧, 1)-stable equa-
tions.

Lemma 3.13. (cf. [7, Thm. 6.3]) Let A, B be Heyting algebras with A finite.

1. If B �|= ε0,∧,1(A) then A ↪→0,∧,1 B;

2. If B is well-connected and A ↪→0,∧,1 B then B �|= ε0,∧,1(A).

Proof. If B �|= ε0,∧,1(A) then by [7, Lem. 3.6] we must have a finite Heyt-
ing algebra C which is a (0,∧,∨, 1)-subalgebra of B, and so in particular a
(0,∧, 1)-subalgebra of B, such that C �|= ε0,∧,1(A). This means that there is
a valuation ν on C such that ν(

∧
Γ → ∨

Δ) < 1, where Γ and Δ are as in
Definition 3.11. By Wronski’s Lemma [51, Lem. 1] there exists a subdirectly
irreducible Heyting algebra D together with a Heyting algebra homomor-
phism π : C � D such that π(ν(

∧
Γ → ∨

Δ)) = cD, where cD denotes
the unique co-atom of D. By Lemma 3.12 we have that D is a (0,∧, 1)-
subalgebra of C and therefore also a (0,∧, 1)-subalgebra of B. We claim that
A is a (0,∧, 1)-subalgebra of D and therefore also a (0,∧, 1)-subalgebra of
B. We obtain a valuation μ on D such that μ(

∧
Γ → ∨

Δ) = cD by letting
μ(xa) = π(ν(xa)). From this it follows that μ(

∧
Γ) = 1 and μ(

∨
Δ) = cD

and hence we may conclude that hμ : A → D given by hμ(a) = μ(xa) is an
(0,∧, 1)-embedding of A into D.

Conversely, if there is a (0,∧, 1)-embedding h : A ↪→0,∧,1 B then defining
a valuation νh on B by νh(xa) = h(a) we obtain that νh(

∧
Γ) = 1 by

the fact that h is a (0,∧, 1)-homomorphism. Moreover, by the fact that h
is also a (0,∧, 1)-embedding we must have that 1 �≤ νh(xa → xa′) for all
xa → xa′ in Δ. Thus, assuming B to be well-connected we may conclude
that 1 �≤ νh(

∨
Δ) and therefore that 1 �≤ ν(

∧
Γ → ∨

Δ). Thus, νh witnesses
that B �|= ε0,∧,1(A).

The following lemma shows that the varieties of Heyting algebras gener-
ated by (0,∧, 1)-stable universal classes are in fact axiomatised by (0,∧, 1)-
stable equations. Thus a variety can be axiomatised by (0,∧, 1)-stable equa-
tions precisely when it can be axiomatised by (0,∧, 1)-stable universal
clauses.
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Lemma 3.14. Let U be a universal class axiomatised by a collection
{q0,∧,1(Ai)}i∈I of (0,∧, 1)-stable universal clauses. Then the variety gener-
ated by the class U is axiomatised by the (0,∧, 1)-stable equations
{ε0,∧,1(Ai)}i∈I .

Proof. Let V be the variety determined by the (0,∧, 1)-stable equations
{ε0,∧,1(Ai)}i∈I . Lemma 3.8 together with item (1) of Lemma 3.13 implies
that U ⊆ V. Furthermore, from item (2) of Lemma 3.13 we may conclude
that any subdirectly irreducible V-algebra belongs to U . Consequently, being
a subclass of the variety V containing all subdirectly irreducible V-algebras,
the class U must necessarily generate the variety V.

Lemma 3.15. Let Σ ⊆ {0,∧,∨, 1} be given. If K is a Σ-stable class then so
is the universal class generated by K.

Proof. By [17, Thm. V.2.20] we know that the universal class generated
by the class K is given by ISPU (K). Therefore, let {Bi}i∈I be a collection of
K-algebras, U an ultrafilter on I and A a finite Heyting algebra. If A �↪→Σ

Bi for all i ∈ I then by Lemma 3.8 we have that Bi |= qΣ(A) for all
i ∈ I and hence by 	Los’ Theorem we obtain that

∏
i∈I Bi/U |= qΣ(A) and

so A �↪→Σ

∏
i∈I Bi/U . Consequently, if A ↪→Σ

∏
i∈I Bi/U then, again by

Lemma 3.8, A ↪→Σ Bi for some i ∈ I. Moreover, if B ∈ ISPU (K) and A
is a finite algebra such that A ↪→Σ B then necessarily A ↪→Σ B′ for some
B′ ∈ PU (K) whence by the above we have that A ∈ K. We have thus shown
that ISPU (K) is a finitely Σ-stable universal class and as such it must be
Σ-stable by Lemma 3.9.

Theorem 3.16. Let L be an intermediate logic. Then the following are
equivalent:

1. The logic L is (0,∧, 1)-stable;

2. The variety V(L) is generated by a (0,∧, 1)-stable class of finite Heyting
algebras;

3. The variety V(L) is generated by a (0,∧, 1)-stable universal class of Heyt-
ing algebras.

Proof. It follows from Lemma 3.15 that item (2) entails item (3). Further-
more, it follows from [7, Lem. 3.6] that if V(L) is generated by a (0,∧, 1)-
stable universal class of Heyting algebras, say U , then V(L) is also generated
by the (0,∧, 1)-stable class of the finite Heyting algebras belonging to U .

We proceed to show that the items (1) and (3) are equivalent.
For that purpose, assume that the logic L is (0,∧, 1)-stable and define

K′ = {A ∈ HA : ∃B ∈ V(L)si(A ↪→0,∧,1 B)},
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and let K be the collection of finite Heyting algebras not belonging to K′.
Then for any subdirectly irreducible Heyting algebra B we may observe the
following: If B ∈ V(L) and A ∈ K then we must have that B |= ε0,∧,1(A),
since otherwise A ↪→0,∧,1 B by Lemma 3.13 entailing that A ∈ K′, in direct
contradiction with the assumption that A ∈ K. Conversely, if B �∈ V(L)
then by [7, Lem. 3.6] we have a finite (0,∧,∨, 1)-subalgebra A of B such
that A �∈ V(L). In particular A is a (0,∧, 1)-subalgebra of B and hence
by Lemma 3.13 B �|= ε0,∧,1(A), as B, being subdirectly irreducible, is well-
connected. Moreover, we must have that A ∈ K since otherwise, as A is
finite, we would have A ∈ K′ and hence A ∈ V(L) by the assumption that
L is (0,∧, 1)-stable. We have thus shown that for any subdirectly irreducible
Heyting algebra B we have

B ∈ V(L) ⇐⇒ B |= {ε0,∧,1(A) : A ∈ K}.

Consequently, the variety V(L) is axiomatised by the collection of (0,∧, 1)-
stable equations {ε0,∧,1(A)}A∈K. From Lemma 3.14 we may then conclude
that V(L) is identical to the variety generated by the universal class of
Heyting algebras determined by the collection of universal (0,∧, 1)-stable
clauses {q0,∧,1(A)}A∈K.

Lastly, assume that V(L) is generated by a (0,∧, 1)-stable universal class
say U . By Lemma 3.9 we have that U is determined by a collection of
(0,∧, 1)-stable universal clauses, say {q0,∧,1(Ai)}i∈I . By Lemma 3.14 it then
follows that V(L) is determined by the collection of (0,∧, 1)-stable equations
{ε0,∧,1(Ai)}i∈I . Consequently, if B is a subdirectly irreducible V(L)-algebra
and A is a (0,∧, 1)-subalgebra of B, then from A �∈ V(L) we can conclude
that A �|= ε0,∧,1(Ai) for some i ∈ I and so by item (1) of Lemma 3.13 it
follows that Ai ↪→0,∧,1 A and hence that Ai ↪→0,∧,1 B whence from item
(2) of Lemma 3.13 we obtain that B �|= ε0,∧,1(Ai) in direct contradiction
with the assumption that B is a V(L)-algebra.

We may then obtain the following algebraic characterisation of the in-
termediate logics admitting a structural intermediate hypersequent calculus
and therefore by Theorem 2.13 also a cut-free structural intermediate hy-
persequent calculus.

Corollary 3.17. Let L be an intermediate logic. Then the following are
equivalent:

1. The logic L admits a structural intermediate hypersequent calculus;

2. The logic L is (0,∧, 1)-stable.

Proof. This follows directly from Theorem 3.16 and Proposition 3.10.
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Remark 3.18. Note that if L is a finitely axiomatisable (0,∧, 1)-stable inter-
mediate logic then L admits a structural intermediate hypersequent calculus
given by only finitely many structural hypersequent rules. To see this sim-
ply note that being (0,∧, 1)-stable V(L) is axiomatised by a collection of
(0,∧, 1)-equations and and since L is finitely axiomatisable we may con-
clude that only finitely many of the (0,∧, 1)-stable equations are needed
to axiomatise V(L). Hence by Lemma 3.14 V(L) is determined by a finite
number of (0,∧, 1)-stable clauses. Thus from the correspondence between
(0,∧, 1)-stable clauses and structural hypersequent rules we obtain that L
indeed admits a structural intermediate hypersequent calculus given by only
finitely many structural hypersequent rules.

Remark 3.19. We observe that by Theorem 3.16 we have that in order
to check whether or not an intermediate logic is (0,∧, 1)-stable it suffices
to consider the collection of finite subdirectly irreducible V(L)-algebras. In
particular, it is possible to use duality to translate the questions of whether
or not an intermediate logic L is (0,∧, 1)-stable into a question about the
finite rooted intuitionistic Kripke frames for L, see Section 4. Compare this
with the necessary condition for admitting a cut-free structural hypersequent
calculus [25, Thm. 6.8] which requires checking closure under certain type
of completions of algebras. Of course [25, Thm. 6.8] applies in a much more
general setting than Corollary 3.17.

3.2. Applications

We here present some consequences of Corollary 3.17.

Proposition 3.20. Any intermediate logic admitting a structural interme-
diate hypersequent calculus has the finite model property.

Proof. By Corollary 3.17 any intermediate logic admitting a structural in-
termediate hypersequent calculus will be (0,∧, 1)-stable, hence also
(0,∧,∨, 1)-stable, and as such enjoys the finite model property
[7, Thm. 6.8].

Remark 3.21. Note that Proposition 3.20 gives an alternative way of seeing
that every finitely axiomatisable intermediate logic admitting a structural
hypersequent calculus is decidable. This of course also already follows from
the fact that such logics admit a cut-free intermediate hypersequent calculus
given by finitely many rules.

Proposition 3.22. Any (0,∧, 1)-stable logic is canonical. Thus admitting a
structural intermediate hypersequent calculus entails canonicity.
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Proof. By [23, Thm. 4.1] we know that if (r) is a structural hypersequent
rule then the class of Heyting algebras validating (r) is closed under (upper)
MacNeille completion. Thus if L is a (0,∧, 1)-stable logic then by Corol-
lary 3.17 there is a collection of structural hypersequent rules R such that
the variety V(L) is generated by the class K(R) of Heyting algebras validat-
ing all the rules in R. Evidently, K(R) is a universal class and being closed
under (upper) MacNeille completions we may conclude from [34, Thm. 3.6]
that the class K(R) is also closed under (upper) canonical extensions. Fi-
nally, since any variety generated by a universal class of Heyting algebras
closed under canonical extensions must be canonical [33, Thm. 6.8] we may
conclude that V(L) is indeed canonical.

Remark 3.23. As we will see in Section 4 any (0,∧, 1)-stable logic is in fact
elementary from which the canonicity of such logics may also be inferred
by Fine’s Theorem, see, e.g., [18, Thm. 10.22]. Furthermore, every (0,∧, 1)-
stable logic must also be a (locally) cofinal subframe logic. This can be seen
either by considering the frame characterisation presented in Section 4 or by
an argument similar to the one presented in Section 3.1. From this fact it
can also be inferred that (0,∧, 1)-stable logics must be both canonical and
elementary [53].

We conclude this section by drawing attention to some negative conse-
quence of Corollary 3.17.

Proposition 3.24. Let n ≥ 2 be given. The logic BDn, of intuitionistic
Kripke frames of depth at most n, does not admit a structural intermediate
hypersequent calculus.

Proof. We know that for n ≥ 2 the logic BDn is not
(0,∧,∨, 1)-stable [7, Thm. 7.4(2)] and so in particular it cannot be (0,∧, 1)-
stable. Knowing this the proposition is an immediate consequence of
Corollary 3.17.

Remark 3.25. That this was the case had been expected in the literature,
see, e.g., [26,27]. However, we have not been able to find any proof of this
fact before. The logic BD2 does, however, admit an analytic hypersequent
calculus obtained by adding an additional logical hypersequent rule for the
introduction of the implication to the multi-succedent hypersequent calculus
HLJ′ [26]. Furthermore, the logics BDn, for n ≥ 2, do admit analytic display
calculi [27], analytic labelled sequent calculi [30] as well as so-called path-
hypertableau and path-hypersequent calculi [19].
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As a final application of the algebraic characterisation of the intermedi-
ate logics admitting structural intermediate hypersequent calculi we give a
semantic proof of [22, Cor. 7.2].

Proposition 3.26. Let (r) be a structural sequent rule. Then either the
calculus LJ + (r) is inconsistent or the rule (r) is derivable in LJ.

Proof. Let (r) be a structural sequent rule, i.e., a structural hypersequent
rule the premises and conclusion of which only consists of single component
hypersequents. Let K(r) be the class of Heyting algebras validating (r).
If LJ + (r) is consistent then the class K(r) is non-trivial. In particular
the two element Boolean algebra 2 will belong to K(r), as K(r) is closed
under subalgebras and 2 is a subalgebra of every non-trivial Heyting algebra.
Because (r) is a sequent rule the class K(r) will not only be a universal
class but in fact a quasi-variety and as such closed under the formation of
direct products. Since any bounded distributive lattice can be realised as
a subdirect product of the lattice 2 [5, Thm. II.10.1] it follows that any
Heyting algebra A will be a (0,∧,∨, 1)-subalgebra of some member of K(r).
Therefore, since (r) is structural and so the class K(r) is (0,∧, 1)-stable, we
may conclude that A ∈ K(r), showing that every Heyting algebra validates
the rule (r). Given this the proposition then follows from Theorem 2.7.

Remark 3.27. Note that the proof of Proposition 3.26 shows the stronger
claim that any structural multi-succedent sequent rule is either derivable
in LJ′ or derives every formula in LJ′, where LJ′ is the multi-succedent
version of LJ.

4. Frame Based Characterisation

In this section we identify the first-order frame conditions which determine
(0,∧, 1)-stable logics. This is done using the duality theory for (0,∧, 1)-
homomorphism between Heyting algebras developed in [11].

Given a Heyting algebra A we let A+ denote the underlying intuitionistic
Kripke frame of the Esakia space A∗ dual to A, i.e., the Kripke frames
consisting of the set of prime filters of A ordered by set-theoretic inclusion.
Similarly, given an intuitionistic Kripke frame F (Esakia space X) we let
F+ (X∗) denote the Heyting algebra of (clopen) upsets of F (X∗). In the
following we will use that A ∼= (A+)+ for every finite Heyting algebra A,
see, e.g., [12, Thm. 2.2.21].

Definition 4.1. (cf. [11, Def. 6.2]) Let X and Y be Priestley spaces. We
say that a relation R ⊆ X × Y is a generalised Priestley morphism iff
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1. If ¬(xRy) then there exists U ∈ ClpUp(Y) with y �∈ U and R[x] ⊆ U ;

2. If U ∈ ClpUp(Y) then �R(U) ∈ ClpUp(X),

where ClpUp(X) denotes the clopen upset of X and �R(U) := {x ∈ X :
R[x] ⊆ U}.

Moreover if R−1[Y ] = X we say that R is total and if for every y ∈ Y
there is x ∈ X such that R[x] = ↑y then we say that R is onto.

Remark 4.2. Finite intuitionistic Kripke frames may be identified with
finite Priestley spaces and so, forgetting the topology, we will also speak
about generalised Priestley morphisms between finite intuitionistic Kripke
frames.

Remark 4.3. Note that if R ⊆ X × Y is a generalised Priestley mor-
phism between Priestley spaces X := (X, ≤X , τX) and Y := (Y,≤Y , τY )
then it is straightforward to verify that R[x′] ⊆ R[x] for all x, x′ ∈ X such
x ≤X x′. This observation will be useful when proving Proposition 4.8 and
Lemmas 5.5 and 5.6 below.

We are interested in total generalised Priestley morphisms because they
are the duals of (0,∧, 1)-homomorphisms. To be precise we have the following
theorem.

Theorem 4.4 ([11]). The category of Heyting algebras and (0,∧, 1)-homo-
morphisms is dually equivalent to the category of Esakia spaces and to-
tal generalised Priestley morphisms. Moreover, under this duality (0,∧, 1)-
embeddings corresponds to total onto generalised Priestley morphisms.

This allows us to translate questions about (0,∧, 1)-homomorphisms be-
tween Heyting algebras into questions about total generalised Priestley mor-
phism between their dual spaces.

Recall [46] that a geometric axiom is a first-order sentence of the form

∀�w (ϕ(�w) =⇒ ∃v ORm
j=1ψj(�w, v)),

with ϕ,ψ1, . . . , ψm conjunctions of atomic formulas and the variable v not
occurring free in ϕ. A geometric implication is then taken to be a finite
conjunction of geometric axioms.

Definition 4.5. (cf. [42]) We say that a geometric axiom ∀�w (ϕ(�w) =⇒
∃v ORm

j=1ψj(�w, v)) is simple if

1. There exists w0 ∈ �w such that ϕ(�w) is the conjunction of the atomic
formulas {w0 ≤ w}w∈�w;
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2. Every atomic subformula of ψj(�w, v) is of the form w ≤ w′ or w ≤ v for
w,w′ ∈ �w.

A simple geometric implication is then a conjunction of simple geometric
axioms.

Example 4.6. The intermediate logics BTWn,BWn,BCn, for n ≥ 1, are
all complete with respect to an elementary class of intuitionistic Kripke
frames determined by simple geometric implications. Furthermore the log-
ics BDn, for n ≥ 2, are all complete with respect to an elementary class of
intuitionistic Kripke frames determined by geometric implications, namely
∀w1 . . . wn+1(ANDn

i=1(wi ≤ wi+1) =⇒ ORi �=j(wi = wj)), which are osten-
sibly not simple.

Remark 4.7. Intermediate (and modal) logics determined by a class of
Kripke frame defined by geometric implications have been shown to ad-
mit so-called labelled sequent calculi [30,46,49]. Thus as a consequence of
Proposition 4.13 below we obtain that any (0,∧, 1)-stable logic admits a
cut-free labelled sequent calculus. This is consistent with the existence of
a translation of hypersequents into labelled sequents, see, e.g., [48] for an
overview.

Finally, a variant of the simple geometric implications appears in the
work of Lahav [42] where these are used to construct analytic hypersequent
calculi for modal logics which are sound and complete with respect to a class
of Kripke frames determined by such simple geometric implications.

Proposition 4.8. Let θ be a simple geometric implication. Then for any
pair of Priestley spaces X := (X, ≤X , τX) and Y := (Y,≤Y , τY ), with X

rooted, and any total and onto generalised Priestley morphism R ⊆ X × Y
we have that

(X, ≤X) |= θ =⇒ (Y,≤Y ) |= θ. (†)
Proof. It suffices to show that (†) holds for an arbitrary simple geometric
axiom θ, say, ∀�w (ϕ(�w) =⇒ ∃�v ORm

j=1ψj(�w,�v)).
Therefore, assume that (X, ≤X) |= θ. Suppose that y0, . . . , yk−1 ∈ Y are

such that ϕ(y0, . . . , yk−1) holds in (Y,≤Y ), then by the assumption that R
is an onto generalised Priestley morphism there are x0, . . . , xk−1 ∈ X such
that R[xi] = ↑yi for each i ∈ {1, . . . , k − 1}. Because (X, ≤X) is rooted
there is x0 ∈ X such that ϕ(x0, x1, . . . , xk−1) and so since (X, ≤X) |= θ
there is z ∈ X such that ψl(�x, z) holds in (X, ≤X) for some l ∈ {1, . . . , m}.
Furthermore, since R is total we have z′ ∈ Y such that zRz′. We claim
that ψl(�y, z′) holds in (Y,≤Y ). If xt ≤X xt′ in (X, ≤X) for some t, t′ ∈
{0, . . . , k − 1} then we have that ↑yt′ = R[xt′ ] ⊆ R[xt] = ↑yt and thus
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yt ≤Y yt′ . Similarly if xt ≤X z for some t ∈ {0, . . . , k − 1}, then we have
that z′ ∈ R[z] ⊆ R[xt] = ↑yt and hence that yt ≤ z′. This shows that
(Y,≤Y ) satisfies θ.

Definition 4.9. Recall that a variety V of Heyting algebras is elementarily
determined if there exists an elementary class of intuitionistic Kripke frames
F such that the variety is generated by the class of complex algebras F+ :=
{F+ : F ∈ F}, with F+ denoting the Heyting algebra of upsets of F.

Remark 4.10. Note that for a given intermediate logic L the corresponding
variety V(L) is elementarily determined iff the logic L is elementary, i.e.,
sound and complete with respect to an elementary class of intuitionistic
Kripke frames.

Corollary 4.11. Any intermediate logic characterised by a class of intu-
itionistic Kripke frames defined by simple geometric implications is (0,∧, 1)-
stable.

Proof. Let L be an intermediate logic characterised by a class of intuition-
istic Kripke frames, say F , defined by simple geometric implications. Note
that if ϕ is a formula in the language of propositional intuitionistic logic such
that F+ �|= ϕ then there exists some point-generated subframe G of F such
that G+ �|= ϕ. Therefore, since simple geometric implications are evidently
preserved by taking generated subframes, we obtain that V(L) is in fact
determined by the class of rooted intuitionistic Kripke frames belonging to
F . Furthermore, any filtration F′ of an intuitionistic Kripke frame F induces
an order preserving surjection f : F � F′. Therefore, since on rooted frames
any (simple) geometric implication is equivalent to a positive first-order for-
mulas and such formulas are preserved by order-preserving surjections we
see that simple geometric implications will be preserved under taking filtra-
tions of rooted intuitionistic Kripke frames. Consequently, we obtain that
V(L) is in fact determined by the finite rooted members of F . In partic-
ular V(L) will be generated by the class of complex algebras obtain from
the set G := {F ∈ F : |F| < ℵ0,F rooted}. Finally, letting K := {A : ∃B ∈
G+(A ↪→0,∧,1 B)} it follows from Proposition 4.8 together with Theorem
4.4 that K is a (0,∧, 1)-stable class of Heyting algebras generating V(L) and
therefore by Theorem 3.16 that the logic L is (0,∧, 1)-stable.

To establish the converse of Corollary 4.11 we need the following lemma.

Lemma 4.12. For any universal (0,∧, 1)-clause q there exists a simple geo-
metric implication θq such that

F |= θq ⇐⇒ F+ |= q,



Structural Hypersequent Calculus 271

for every rooted intuitionistic Kripke frame F.

Proof. Let a universal (0,∧, 1)-clause q be given. As before q is equivalent
to a finite conjunction of universal clauses of the form

t1(�x) ≤ u1(�y) and . . . and tm(�x) ≤ um(�y) (q′)

=⇒ tm+1(�x) ≤ um+1(�y) or . . . or tn(�x) ≤ un(�y),

such that every term tk is a {∧, 1}-term and every term uk is either 0 or a
single variable. Thus, by [25, Thm. 4.15] we may without loss of generality
assume that (i) �x and �y are disjoint, (ii) every variable in q′ occurs exactly
once on the right-hand side of q′.

First we will show that for every such clause q′ there exists a simple
geometric axiom θq′ such that for every rooted intuitionistic Kripke frame
F = (W, ≤) we have that F |= θq′ iff F+ |= q′. From which we obtain
a simple geometric implication θq such that for every rooted intuitionistic
Kripke frame F we have that F |= θq iff F+ |= q.

In the following we write P (�x, �y) for the left-hand side of the clause q′,
and for k ∈ {1, . . . , n} we let xk1 , . . . , xkmk

denote the variables occurring
in term tk(�x), if any, and let yk0 denote the variable occurring in the term
uk(�y), if any. Thus we then have that

F+ �|= q′ ⇐⇒ ∃�U, �V ∈ Up(F) (P (�U, �V ) and ANDn
j=m+1(tj(�U) �⊆ uj(�V )))

⇐⇒ ∃�U, �V ∈ Up(F) ∃�w ∈ W (P (�U, �V ) and ANDn
j=m+1(wj ∈ tj(�U))

and wj �∈ uj(�V ))

⇐⇒ ∃�U, �V ∈ Up(F) ∃�w ∈ W (P (�U, �V ) and ANDn
j=m+1(↑wj ⊆ tj(�U))

and uj(�V ) ⊆ (↓wj)
c)

⇐⇒ ∃�U, �V ∈ Up(F) ∃�w ∈ W (P (�U, �V ) and ANDn
j=m+1(AND

mj

k=1(↑wj ⊆ Ujk)

and Vj0 ⊆ (↓wj)
c).

The special syntactic shape of the clause q′ ensures that that the second-
order variables among �U only occur negatively in P (�U, �V ) and that the
second-order variables among �V only occur positively in P (�U, �V ). Moreover,
every second-order variable among �U, �V occurs exactly once somewhere on
the right-hand side. This allows us to eliminate all the second-order variables
via a standard and straightforward application of the Ackermann Lemma [1],
see, e.g., [28, Lem. 0.1], to obtain that

F+ �|= q′ ⇐⇒ F |= ∃�w ANDm
i=1

(
mi⋂

k=1

↑wik ⊆ (↓wi0)
c

)

,
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for some collection �w of first-order variables. Thus we see that

F+ |= q′ ⇐⇒ F |= ∀�w∃v ORm
i=1(AND

mi

k=1(wik ≤ v) and (v ≤ wi0)).

This shows that q′ is equivalent to a formula in the first-order language of
intuitionistic Kripke frames.

To see that q′ is equivalent to a simple geometric implication on rooted
intuitionistic Kripke frames simply note that if for some i ≤ m we have
that the variable wi0 occurs as one of the variables wik , say wik′ , then it
must be the case that ANDmi

k=1(wik ≤ v) and (v ≤ wi0) is equivalent to
ANDmi

k=1(wik ≤ wi0) and (wi0 ≤ wik′ ). On the other hand if for some i ≤ m
we have that the variable wi0 does not occur as one of the variables wik

then we must have that ANDmi

k=1(wik ≤ v) and (v ≤ wi0) is equivalent to
ANDmi

k=1(wik ≤ v and wik ≤ wi0). Thus we obtain a formula ψ(�w, v), which
is a disjunction of conjunctions of atomic formulas of the form w ≤ w′ and
w ≤ v, such that

F+ |= q′ ⇐⇒ F |= ∀�w∃vψ(�w, v).

Finally, letting θq′ be the formula ∀w0∀�w(ANDw∈�w(w0 ≤w)=⇒∃vψ(�w, v)),
for w0 some fresh first-order variable, we obtain a simple geometric axiom
such that θq′ is equivalent to q′ on rooted intuitionistic Kripke
frames.

Proposition 4.13. Any variety of Heyting algebras generated by a (0,∧, 1)-
stable universal class of Heyting algebras is elementarily determined by a
class of intuitionistic Kripke frames defined by simple geometric implica-
tions.

Proof. Given a variety V of Heyting algebras generated by a (0,∧, 1)-stable
universal class, say U , axiomatised by (0,∧, 1)-stable clauses, say {qi}i∈I ,
we see, by an argument completely similar to the one found in the proof
of Corollary 4.11, that V will be generated by the class F+ := {F+ : ∀i ∈
I (F |= θqi)}, where θi is the simply geometric implication corresponding to
qi obtain from Lemma 4.12.

We summarise our findings by amending Theorem 2.13 with two addi-
tional items.

Theorem 4.14. Let L be an intermediate logic. Then the following are equiv-
alent

1. The logic L admits a structural intermediate hypersequent calculus;

2. The logic L admits a cut-free structural intermediate hypersequent cal-
culus;
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3. The logic L is axiomatisable by P3-formulas;

4. The logic L is (0,∧, 1)-stable;

5. The logic L is characterised by a class of intuitionistic Kripke frames
defined by simple geometric implications.

5. Comparison with (0,∧,∨, 1)-Stable Logics

The class of (0,∧,∨, 1)-stable intermediate logics was first introduced and
studied in [7] under the name of stable logics. In [10] a characterisation
of (0,∧,∨, 1)-stable intermediate logics were given of which Theorem 3.16
may be seen as an analogue. We here compare the class of (0,∧, 1)-stable
intermediate logics to the class of (0,∧,∨, 1)-stable intermediate logics.

Proposition 5.1. The set of (0,∧, 1)-stable logics is a proper subset of the
set of (0,∧,∨, 1)-stable logics.

Proof. Evidently each (0,∧, 1)-stable logic is also a (0,∧,∨, 1)-stable logic.
To show that there exists (0,∧,∨, 1)-stable logics which are not (0,∧, 1)-
stable, consider the following pair of Heyting algebras:

A B

We easily see that A is a (0,∧, 1)-subalgebra of B but not a (0,∧,∨, 1)-
subalgebra of B. Let V be the variety axiomatised by the (0,∧,∨, 1)-stable
equation ε0,∧,∨,1(A) associated with A. Then the intermediate logic L cor-
responding to this variety is (0,∧,∨, 1)-stable [10, Prop. 5.3]. Since B is
well-connected and A �↪→0,∧,∨,1 B, we may conclude that B belongs to V

[10, Prop. 5.1]. Consequently, assuming that L is (0,∧, 1)-stable A must also
belong to V. But then A |= ε0,∧,∨,1(A) which, since any finite well-connected
Heyting algebra refutes its own (0,∧,∨, 1)-stable equation [10, Prop. 5.1], is
absurd.
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Despite the fact that there are (0,∧,∨, 1)-stable logics which are not
(0,∧, 1)-stable all the examples of (0,∧,∨, 1)-stable logics considered so far
[7, Sec. 7] are in fact (0,∧, 1)-stable. The following theorem may be seen as
explaining why this indeed the case. Furthermore, this also provide us with
examples of (0,∧,∨, 1)-stable logics which are not (0,∧, 1)-stable.

Theorem 5.2. For A a finite well-connected Heyting algebra the following
are equivalent:

1. The (0,∧,∨, 1)-stable clause q0,∧,∨,1(A) associated with A is equivalent
to a collection of universal (0,∧, 1)-clauses;

2. The (0,∧,∨, 1)-stable clause q0,∧,∨,1(A) associated with A is equivalent
to the (0,∧, 1)-stable clause q0,∧,1(A) associated with A;

3. The Heyting algebra A is weakly projective as an object in the category
DL of distributive lattices and lattice homomorphism.

Proof. Evidently item 2 entails item 1. Conversely, to see that item 1
entails item 2, it suffices, due to Lemma 3.8, to show for any Heyting algebra
B that

A ↪→0,∧,1 B ⇐⇒ A ↪→0,∧,∨,1 B.

Since {0,∧, 1} ⊆ {0,∧,∨, 1} the implication A ↪→0,∧,∨,1 B =⇒ A ↪→0,∧,1

B evidently obtains. To establish the converse let B be given and suppose
that A ↪→0,∧,1 B, say via h : A ↪→ B. If A �↪→0,∧,∨,1 B then B |= q0,∧,∨,1(A)
and so since, by assumption, q0,∧,∨,1(A) is equivalent to collection of univer-
sal (0,∧, 1)-clauses and such clauses are preserved by (0,∧, 1)-embeddings
we must have that A |= q0,∧,∨,1(A) which is absurd as every Heyting algebra
refutes all of the stable clauses associated with it.

To see that item 3 entails item 2 suppose that A is weakly projective as
an object in the category DL. We claim that the (0,∧,∨, 1)-stable clause
q0,∧,∨,1(A) associated with A is equivalent to the (0,∧, 1)-stable clause
q0,∧,1(A) associated with A. As before it suffices to show that
A ↪→0,∧,1 B =⇒ A ↪→0,∧,∨,1 B. Therefore, suppose that A ↪→0,∧,1 B,
say via h : A ↪→ B. Since A is assumed to be weakly projective as an ob-
ject in the category DL it follows from a well-known result [6] that the
poset J0(A) of join-irreducibles7 of A including the element 0 is a (0,∧)-
subalgebra of A. Moreover, by the assumption that A is well-connected
J0(A) will in fact be a (0,∧, 1)-subalgebra of A. Consequently, restricting

7That is, non-zero elements a ∈ A such that a = b ∨ c entails a = b or a = c, for all
b, c ∈ A.



Structural Hypersequent Calculus 275

h to J0(A) we obtain a (0,∧, 1)-homomorphism h0 : J0(A) ↪→0,∧,1 B. Be-
cause A is weakly projective we have by [6, Thm. 4] that h0 has a unique
extension to a (0,∧,∨)-homomorphism ĥ0 : A →0,∧,∨ B. In fact, since ĥ0 is
an extension of h0 and 1 ∈ J0(A) we obtain that ĥ0(1) = h0(1) = h(1) = 1.
Thus, ĥ0 : A →0,∧,∨,1 B leaving us with the task of proving that ĥ0 is in-
jective. By direct inspection of the construction of the map ĥ0 it may easily
be verified that ĥ0(a) ≤ h(a) for all a ∈ A. As a consequence of this we see
that if ĥ0(a1) = ĥ0(a2) for some a1, a2 ∈ A then for each a1

′ ∈ J0(A) ∩ ↓a1

we must have

h(a1
′) = h0(a1

′) = ĥ0(a1
′) ≤ ĥ0(a1) = ĥ0(a2) ≤ h(a2).

From this and the fact that h is a (0,∧, 1)-embedding we may conclude that
a1

′ ≤ a2 for all a1
′ ∈ J0(A) ∩ ↓a1. By a completely analogous argument we

may deduce that a2
′ ≤ a1 for all a2

′ ∈ J0(A) ∩ ↓a2. Since A is finite every
element is uniquely determined by the set of join-irreducible elements below
it and so we must have that a1 = a2 and therefore that h : A ↪→0,∧,∨,1 B,
as desired.

Conversely, to see that item 2 entails item 3 suppose that A is not weakly
projective as an object in the category DL. We exhibit a (finite) Heyting
algebra B such that A ↪→0,∧,1 B but A �↪→0,∧,∨,1 B, showing that the
universal clauses q0,∧,1(A) and q0,∧,∨,1(A) are not equivalent. To this effect
let P := J(A)∂ , be the order dual of J(A). Note that the Heyting algebra
Up(P ) of upsets of P is isomorphic to A, as A is finite. Again, by the
characterisation of finite weakly projective distributive lattices [6], A not
being weakly projective entails the existence of a1, a2 ∈ J(A) such that
a1∧a2 �∈ J0(A), in particular a1 and a2 must be incomparable. Let b1, . . . , bn

be the set of join-irreducibles which are below a1∧a2 in A. Necessarily, n ≥ 2.
Given this, let P ′ be the poset obtained from P by adding a new element
a0 covering a1, a2 and covered by b1, . . . , bn. Thus |P ′| = |P | + 1. Evidently
there can be no order-preserving surjection from P ′ onto P , since this would
entail that a1 and a2 are comparable. Consequently, letting B denote the
dual Heyting algebra Up(P ′) of P ′, this shows that A �↪→0,∧,∨,1 B. We claim,
however, that A ↪→0,∧,1 B. To establish this it suffice by Theorem 4.4 to
exhibit a total and onto generalised Priestley morphism R ⊆ P ′ × P . We
claim that letting R ⊆ P ′ × P be given by

R[a] :=
{↑a if a �= a0

↑{a1, a2} if a = a0,
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is such a generalised Priestley morphism. It may readily be verified that R
is a generalised Priestley morphisms. Moreover, that R is total and onto is
evident from the definition.

Remark 5.3. We note that the use of generalised Priestley morphisms in the
proof of Theorem 5.2 can be avoided. To see this observe, with the notation
of the proof of Theorem 5.2, that P is, in fact, a subposet of P ′, whence by
Priestley duality we have a surjective map h : B �0,∧,∨,1 A. Moreover, we
may easily verify that h−1(0) = {0} and h−1(1) = {1}. From [37, Cor. 5.4]
we know that A, being a finite distributive lattice, is projective as a meet-
semilattice and therefore we obtain a map h : A →∧ B such that h ◦ h is
the identity on A. In particular, h must be injective and as h(h(0)) = 0
and h(h(1)) = 1 it follows that h(0) = 0 and h(1) = 1. Thus we have
h : A ↪→0,∧,1 B.

Remark 5.4. Theorem 5.2 can be seen as explaining why all of the examples
of (0,∧,∨, 1)-stable logics considered in [7, Sec. 7] are in fact (0,∧, 1)-stable
logics, as all of these logics are axiomatised by (0,∧,∨, 1)-stable equations
associated with finite well-connected Heyting algebras which are weakly pro-
jective as objects in the category DL.

We conclude this section by showing that the (0,∧, 1)-stable logics are
precisely the intermediate logics which are both cofinal subframe logics and
(0,∧,∨, 1)-stable. Recall [18, Chap. 11.3] that an intermediate logic is a co-
final subframe logic if it can be axiomatised by cofinal subframe formulas
or alternatively if it is sound and complete with respect to a class of Kripke
frames closed under taking cofinal subframes [18, Thm. 11.25].

For this we need two simple lemmas.

Lemma 5.5. Let S ⊆ W1 × W2 be a generalised Priestley morphism between
finite intuitionistic Kripke frames F1 := (W1,≤1) and F2 := (W2,≤2). Then
F2 is the image under an order-preserving map of a cofinal subframe of F1.

Proof. Let W1
′ = {w1 ∈ W1 : ∃w2 ∈ W2 S[w1] = ↑w2}. Then we see that

mapping each w1 ∈ W1
′ to the necessarily unique element w2 ∈ W2 such

that S[w1] = ↑w2 determines a map f : W1
′ → W2 which must be surjective

as S is onto. Furthermore, because S is a generalised Priestley morphism
we have that w1 ≤1 v1 implies S[v1] ⊆ S[w1] and consequently that f is
order-preserving when considering W1

′ as a subframe of W1.
We then note that for any w1 ∈ max(W1) since S is total we have w2 ∈ W2

such that w1Sw2. Moreover, if for some v1 ∈ W1
′ we have v1 ≤1 w1 then

S[w1] ⊆ S[v1] = ↑f(v1) as S is a generalised Priestley morphism. Thus we
may define g : W1

′ ∪ max(W1) → W2 by letting g(w1) = f(w1) if w1 ∈ W1
′
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and letting g(w1) be some element of S[w1] if w1 ∈ max(W1)\W1
′. Since S is

total this is a well-defined order-preserving map. Evidently W1
′ ∪ max(W1)

is a cofinal subframe of W1 and so F2 is the image of a cofinal subframe of
F1 under an order-preserving map.

Lemma 5.6. Let S ⊆ W1 × W2 be a generalised Priestley morphism between
finite intuitionistic Kripke frames F1 := (W1,≤1) and F2 := (W2,≤2), with
F1 rooted. Then F2 is a cofinal subframe of an image of a rooted cofinal
subframe of F1 under an order-preserving map.

Proof. From Lemma 5.5 we know that F2 is the image of a cofinal subframe
F1

′ := (W1
′,≤1

′) of F1, under an order-preserving map, say f : W1
′ → W2.

Let w0 be the root of F1. If w0 ∈ W1
′ then there is nothing to show. If w0

is not in W1
′ then letting W1

′′ := W1
′ ∪ {w0} we obtain a rooted cofinal

subframe F1
′′ of F1. Similarly, by adjoining a new root w0

′ to W2 we obtain
a rooted frame F2

′ of which F2 is a cofinal subframe. Finally, the map f
extends to a surjective order-preserving map from F1

′′ to F1
′ by mapping

w0 to w0
′.

Proposition 5.7. Let L be an intermediate logic. Then the following are
equivalent.

1. L is (0,∧, 1)-stable;

2. L is a (0,∧,∨, 1)-stable, cofinal subframe logic.

Proof. Every (0,∧, 1)-stable logic is evidently (0,∧,∨, 1)-stable. Further-
more, by Proposition 4.13 every (0,∧, 1)-stable logic is sound and complete
with respect to a class of intuitionistic Kripke frames determined by simple
geometric implications. It is straightforward to verify that such first-order
formulas are preserved by taking cofinal subframes. Consequently, being gen-
erated by a class of Kripke frames closed under cofinal subframes it follows
that any (0,∧, 1)-stable logic is indeed a cofinal subframe logic.

Conversely, suppose that L is a cofinal subframe logic which is (0,∧,∨, 1)-
stable. We show that if A and B are finite Heyting algebras with B sub-
directly irreducible such that B ∈ V(L) and A ↪→0,∧,1 B then A ∈ V(L).
Therefore, let F = (W, ≤) be the dual intuitionistic Kripke frame of B and
let F′ = (W ′,≤′) be the dual intuitionistic Kripke frame of A. By the as-
sumption that A ↪→0,∧,1 B we have a total and onto generalised Priestley
morphism S ⊆ W × W ′. Moreover, since B is subdirectly irreducible we
have that F is rooted and hence by Lemma 5.6 that F′ is a cofinal subframe
of an image G′ under an order-preserving map of a rooted cofinal subframe
G of F. Since by assumption L is a cofinal subframe logic we must have that
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G is also an L-frame. Moreover, since G is rooted and L is (0,∧,∨, 1)-stable
we obtain that G′ is an L-frame [7, Thm. 6.7], and so, again using the fact
that L is a cofinal subframe logic, we see that F′ is an L-frame. We may
therefore conclude that A ∈ V(L) as desired. It follows that V(L) is gener-
ated by a (0,∧, 1)-stable class of Heyting algebras and therefore that L is
(0,∧, 1)-stable.

Remark 5.8. It is known that there are continuum-many (0,∧,∨, 1)-stable
logics [7, Thm. 6.13] just as it is known that there are continuum-many
cofinal subframe logics [18, Thm. 11.19]; however, we have not been able to
determine how many (0,∧, 1)-stable logics there are. The problem is that,
using duality, we cannot work with order-preserving surjections which are
the duals of (0,∧,∨, 1)-embeddings, but we must work with total and onto
generalised Priestley morphism which are more complicated. In this context
it is no longer clear if an argument similar to the one presented in [7] will
work.

6. Future Work

We conclude by mentioning a number of open questions arising in the context
of the present work.

It is not clear if the property of being (0,∧, 1)-stable can be effectively
verified for finitely axiomatisable intermediate logics. Thus it is left open
whether or not it is decidable if a finitely axiomatisable intermediate logic
admits a (cut-free) structural intermediate hypersequent calculus.8

Much of the original work on algebraic proof theory has been done in the
context of substructural logic. Consequently, we find it worth investigating
if a similar characterisation of substructural logics admitting structural hy-
persequent calculi can be given. However, since the subdirectly irreducible
residuated lattices are more complicated than their Heyting algebra coun-
terparts it is not immediately clear if all the necessary results transfer to the
setting of substructural logic. Here the work of Bezhanishvili et al. [14], in-
vestigating canonical formulas in the context of certain substructural logics
might be helpful.

Finally, it is our hope that the findings in Section 4 will help to bridge
the gap between the different approaches to systematic proof theory regard-
ing substructural, intermediate and modal logics. Some of these approaches

8This question was first proposed by Prof. Dr. G. Metcalfe of Bern University.
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are primarily based on the algebraic semantics [22,24,25,35], while others
primarily make use of the relational semantics [30,42,43].
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