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Nearly 20 years ago, transition path sampling (TPS) emerged as an alternative method to free energy
based approaches for the study of rare events such as nucleation, protein folding, chemical reactions,
and phase transitions. TPS effectively performs Monte Carlo simulations with relatively short molec-
ular dynamics trajectories, with the advantage of not having to alter the actual potential energy surface
nor the underlying physical dynamics. Although the TPS approach also introduced a methodology
to compute reaction rates, this approach was for a long time considered theoretically attractive, pro-
viding the exact same results as extensively long molecular dynamics simulations, but still expensive
for most relevant applications. With the increase of computer power and improvements in the algo-
rithmic methodology, quantitative path sampling is finding applications in more and more areas of
research. In particular, the transition interface sampling (TIS) and the replica exchange TIS (RETIS)
algorithms have, in turn, improved the efficiency of quantitative path sampling significantly, while
maintaining the exact nature of the approach. Also, open-source software packages are making these
methods, for which implementation is not straightforward, now available for a wider group of users.
In addition, a blooming development takes place regarding both applications and algorithmic refine-
ments. Therefore, it is timely to explore the wide panorama of the new developments in this field.
This is the aim of this article, which focuses on the most efficient exact path sampling approach,
RETIS, as well as its recent applications, extensions, and variations. Published by AIP Publishing.
https://doi.org/10.1063/1.4989844

I. INTRODUCTION

Rare events encompass many fields of great interest. For
example, many phenomena are dominated by rare events in
geological processes,1 in spreading of diseases,2 in physical-
chemical processes,3 in climate changes,4 in stock market
fluctuations,5 and in human conflicts.6 In physics and chem-
istry, in particular, rare events are widespread. We refer to an
event as rare when occurring very infrequently compared to
other relaxation processes involved in the phenomenon. In sev-
eral reactions, the product forms on a long time scale compared
to the molecular time scale, i.e., molecular vibrations. Indeed,
in such activated events, the crossing of the free energy barrier
dividing the reactant from the product state happens extremely
infrequently. However, once this rare event occurs, the reac-
tion will proceed very rapidly to the product state. In nucleation
phenomena, for example, nuclei of the new phase would form
and dissolve many times before assuming, due to thermal
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fluctuations, a large enough size that will deterministically
grow up to the product state.3,7

Unfortunately, most experiments cannot directly follow
the mechanistic of the rare-event processes at the molecu-
lar level but, on the other hand, are able to indirectly collect
macroscopical evidence of the phenomena to a certain accurate
extent. In principle, equilibrium properties of rare events could
be successfully investigated using Monte Carlo (MC) simula-
tions that, through nonphysical moves, respecting equilibrium
statistical mechanics principles take the system from the reac-
tant state to local minima of the free energy landscape8 and
eventually to the products. However, in order to have a dynam-
ical description of the physical mechanism and kinetic details
of the transition processes, molecular dynamics (MD) based
methods are necessary.

Unfortunately, the disparate length and time scales
involved in those processes make the standard MD approach
ineffective. The time scale of atomistic MD simulations for
realistic dimension (>105 particles) is typically limited to 103

ns and is therefore far below the relevant time range of many
processes dominated by rare events. Furthermore, often, the
lack of a priori knowledge of the physical mechanism makes
the results from MD simulations, carried out using coarse-
grained models, unreliable, and, hence, a detailed description

0021-9606/2017/147(15)/152722/17/$30.00 147, 152722-1 Published by AIP Publishing.

https://doi.org/10.1063/1.4989844
https://doi.org/10.1063/1.4989844
https://doi.org/10.1063/1.4989844
mailto:raffaela.cabriolu@ntnu.no
mailto:kristin.m.skjelbred@ntnu.no
mailto:p.g.bolhuis@uva.nl
mailto:titus.van.erp@ntnu.no
mailto:titus.van.erp@ntnu.no
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4989844&domain=pdf&date_stamp=2017-10-03


152722-2 Cabriolu et al. J. Chem. Phys. 147, 152722 (2017)

at the atomistic scale is the only option. For those reasons, in
the last few decades, tremendous efforts have been dedicated
to the development of new computational statistical mechan-
ical methods that address the challenges inherent to the rare
events. The exploration of new computational methods, which
is still progressing rapidly, has provided a wealth of informa-
tion on rare-event processes but also highlighted the need for
more efficient and versatile approaches.

In this article, we briefly discuss the rare-event compu-
tational techniques in general and then focus on the exact
path sampling approaches such as transition interface sampling
(TIS) and replica exchange TIS (RETIS). In particular, since
the latter method is the most efficient while still being exact,
this approach has been selected as the central theme of this
paper. Our intention is to give an explanation of the new devel-
opments on path sampling techniques without going through
the historical developments nor by going into too much math-
ematical detail. For more complete and broader overviews, we
refer to other books and review articles such as Refs. 3 and
7–11. In particular, the recent book by Peters3 gives a good
introduction to the rare event methodology.

This paper is organized as follows. In Sec. II, we give
a brief introduction on the methods to study rare events. In
particular, we distinguish between free energy based methods,
approximate path sampling methods, and exact path sampling
methods. Section III explains the algorithm and theory behind
the RETIS method, which is the starting point of this article.
In Sec. IV, we give an overview of the computational studies
that have applied RETIS. We have dedicated Sec. V to prac-
tical and technical features of the path sampling techniques,
such as the efficiency of the algorithms related to the place-
ment of the interfaces and to the reaction coordinate (RC). In
Sec. VI, we outline the recent developments of the path sam-
pling techniques describing the new shooting moves, analysis
of paths, QuanTIS, multiple state TIS, and single replica TIS
algorithms. Finally, we end with some concluding remarks in
Sec. VII.

II. METHODS FOR RARE EVENTS

Among the different simulation approaches to study rare
events, a distinction between free energy and path sam-
pling methods can be made. The first class of methods pro-
vides information on the reaction mechanism through sam-
pling the configuration space. Path sampling methods, on
the other hand, are directly focused on the dynamics of the
process.

A. Free energy based methods

In free energy based rare event methods, the projection
of the Helmholtz free energy barrier onto certain collective
variables q1, q2, . . ., or functions of phase space coordinates,
needs to be computed. This is also called the Landau free
energy.3 In case the barriers are sufficiently low, the sam-
pling of configuration space can be done by either MC or MD.
MC naturally samples the canonical distribution at a constant
temperature, while MD needs to be combined with a proper
thermostat as it would otherwise sample the micro-canonical

distribution at a constant energy. The Landau free energy
then follows from F(q1, q2, . . .) = −kBT ln ρ(q1, q2, . . .)/ρo,
where T is the temperature, kb is the Boltzmann constant,
and ρo is a constant to make the argument of the loga-
rithmic function dimensionless (it can be chosen arbitrar-
ily if only free energy differences matter). The distribution
ρ(q1, q2, . . .) follows from the sampling data by simply bin-
ning the relevant order parameter space and keeping track
of how many times each bin is visited during the simulation
run.

However, as in most cases the sampling tends to get
trapped in metastable states, configuration based importance
sampling is needed. While a wide variety of importance sam-
pling methods have been developed for constructing free
energy profiles, almost all approaches can be viewed, in some
respect, as a variation of two well-established methods, which
are thermodynamic integration (TI)8 and umbrella sampling
(US).12 Adaptive biasing force methods13–15 are evolutions of
the TI technique, while metadynamics can be viewed as an
adaptive US approach.

It should be noted, however, that a free energy surface
provides insight that is not necessarily dynamically relevant.
For instance, the heights of free barriers between metastable
states depend on which order parameters have been chosen.
Dynamical information can be obtained if it is combined
with some sort of dynamical approach, which is discussed in
Sec. II B.

B. Approximate and exact dynamical path
sampling methods

There are many different approaches to study the dynam-
ics of rare events. Of course, the most straightforward approach
would be MD. Due to the recent development of special pur-
pose computers, such as the Anton machines, the millisecond
time scale has come into reach16 using brute force MD. How-
ever, many processes take place at a time scale larger than this
and many reactive trajectories are usually necessary to per-
form decent statistics. In addition, special purpose machine
simulations are restricted to a relatively narrow class of force
fields since they must be programmed into the hardware of the
computer chips. Ab initio MD simulations, for instance, can-
not be treated. Instead of increasing the speed of dynamical
exploration via hardware development, one can rely on clever
algorithms. These can rely on approximations, but orders of
magnitude increase is still possible while getting theoretically
the exact same results one would obtain with endlessly long
MD runs.

The most common approach is to use the free energy pro-
file as a starting point and to invoke the transition state theory
(TST) approximation. In this case, no additional simulation
is needed besides the free energy calculation. TST is very
successful in low-dimensional systems, and, for deterministic
dynamics, it is assumed to be correct if the ideal reaction coor-
dinate is used. However, finding this ideal reaction coordinate
for which TST is exact is very difficult and even its existence
is questionable.17 Moreover, for non-deterministic stochas-
tic dynamics, the TST approximation is wrong regardless the
chosen reaction coordinate (RC).3,8
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Other approaches to approximate the dynamics of the rare
event are Partial Path TIS (PPTIS)18 and milestoning.19 The
PPTIS method is a variation of the exact TIS algorithm and
has been developed to study efficiently diffusive processes
that are characterized by relatively flat, rough, and wide free
energy barriers. The trajectories sampled in PPTIS are con-
siderably shorter than those being generated in the TIS or
RETIS algorithm. Based on the Markovian assumption that
a trajectory loses its memory over the distance between two
interfaces, PPTIS is able to compute the same dynamical infor-
mation as TIS or RETIS by generating considerably shorter
paths than those being generated in these exact algorithms.
Milestoning,19 which was developed at the same time indepen-
dently by Faradjian and Elber, is, except for some algorithmic
differences, similar to PPTIS. Still, milestoning’s Markovian
approximation is stronger than the one in PPTIS as it assumes
full memory loss at each interface. On the other hand, by com-
puting time-dependent crossing probability densities, instead
of just crossing probabilities, milestoning does not have to rely
on the separation of time scales. This can be an advantage when
computing other dynamical properties that do not necessarily
rely on this separation, such as diffusion constants. As was
suggested in Ref. 20 and realized in Ref. 21, the inclusion of
spatial memory as in PPTIS and time-dependence as in mile-
stoning can be combined in a single method. It is interesting
to note that milestoning and PPTIS can become exact for the
case of the ideal reaction coordinate.22 However, if the reac-
tion coordinate is not ideal and not enough loss of memory is
allowed by sufficient separation between the interfaces, results
might be quantitatively inaccurate and even qualitatively
misleading.11

Exact path sampling methods, such as transition path sam-
pling (TPS),23–25 do not have this issue since they provide
results that are correct and independent of the RC that has
been chosen. Starting from an initial reactive trajectory of a
certain length, the shooting algorithm generates new trajec-
tories with the same path length. The new trajectories are
accepted according to the Metropolis-Hastings algorithm.8

Further, the rate constant can be determined by computing
a population correlation function via an US approach in which
the umbrella potential is applied to the end point of the poten-
tial. Significant improvement to the rate evaluation approach
was made by the introduction of the TIS algorithm.26 TIS
allows the path length to be flexible, minimizing the number
of MD steps required, and shows faster convergence relative
to the number of paths generated. Moreover, the US approach
is replaced in TIS by path ensembles based on the interface
crossing condition. The approach was further improved via
the RETIS method27,28 which is the main focus of this arti-
cle. Section III is devoted to explain this method in more
detail.

Further, we can mention forward flux sampling (FFS) as a
member of the exact path sampling approaches. FFS is based
on the TIS theoretical framework but uses splitting29,30 instead
of the MC shooting approach. The method emerging from this
very much resembles the RESTART algorithm.31 FFS has the
advantage of being able to simulate non-equilibrium processes,
but, on the other hand, it cannot be used in combination with
a dynamics that is largely deterministic in nature. In addition,

the use of the FFS algorithm comes with a relatively high risk
that it provides reactive trajectories that cross the barrier via
the wrong mechanism.11

Finally, dynamical calculations can also be used in com-
bination with a free energy calculation in order to correct the
TST approximation. This is the so-called reactive flux (RF)
method that in the literature is also referred to as the Wigner-
Keck-Eyring (WKE) method32 or as the Bennett-Chandler
(BC)8 method, giving credit to different generations of scien-
tists who have contributed to the approach.33–37 The approach
corrects the TST expression for fast re-crossings by releas-
ing many trajectories from the top of the free energy bar-
rier and computing a flux weighted average. It is important
to note that although the exact dynamical approaches pro-
vide results that do not depend on the choice of the reaction
coordinate, the efficiency generally will. RF and in particu-
lar FFS are highly sensitive to the choice of the RC, which
implies that the approaches become inefficient if the RC is not
well chosen. This efficiency issue will further be discussed in
Sec. V B.

III. REPLICA EXCHANGE TRANSITION
INTERFACE SAMPLING

RETIS, or replica exchange TIS, is an approach that com-
bines the standard TIS algorithm with a swapping algorithm.
While replica exchange methods improve the sampling effi-
ciency simulating replicas at different temperatures, RETIS
does not require additional simulations, but it just borrows
the idea of exchanging trajectories between different path
ensembles instead of swapping configurations obtained by
simulations at different temperatures.

According to non-equilibrium statistical mechanics, to
study the rate of a reaction between two well-defined stable
states A and B, we could resort to the derivative of a time
correlation function C(t) between the reactant and product
populations.3 In molecular simulation, the correlation func-
tion C(t) can be expressed as ensemble averages of indicator
functions hA and hB, and it measures the probability to find the
system in the state B at time t provided that it was in A at the
initial time 0,

C(t) =
〈hA(0)hB(t)〉
〈hA〉

. (1)

A reaction coordinate (RC) λ(x), that is a function of the
phase space x, is chosen to well distinguish two limited regions
around stable state A and B. If the system is in A or B, λ(x) is
smaller than λA or larger than λB, respectively. According to
TPS, hA is 1 if the system is found in A or zero otherwise. In
the same way, hB is 1 if the system is in B or 0 in all the other
phase points.

Importantly, correlation functions bridge the macroscopic
definition of the rate laws with the microscopic dynamic
information extracted by simulations. In general, according to
kinetic theory, if there is a clear separation of time scales in the
process, there will be a regime where the correlation function
grows linearly with the time, or equivalently, its time derivative
will show a horizontal plateau that equals the forward reaction
rate constant kAB,
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k(t) =
dC(t)

dt
, (2)

kAB = k(t ′) for tmol < t ′ � trxn, (3)

where tmol is the molecular time scale related to temporary
molecular fluctuations and trxn is the exponential relaxation
time within which the reaction occurs (see Fig. 1).

In Eq. (1), the ensemble averages 〈. . .〉 should be taken
over the initial conditions. The time point t = 0 has no abso-
lute meaning since for any generic time correlation function
connecting function values of g and h at different times, the
following holds: 〈g(0)h(t)〉 = 〈g(t ′)h(t + t ′)〉 for any t ′. More-
over, in the limit t → ∞ : 〈g(t ′)h(t + t ′)〉 = 〈g〉 〈h〉, which is
the reason why C(t) converges to 〈hB〉 at t � trxn.

If the transition is not a rare event, the most straightfor-
ward way to compute C(t) is by averaging over different time
slices in an MD simulation, basically shifting the initial time t
= 0,

C(M∆t) =

1
N−M+1

N−M∑
i=0

hA(i∆t)hB((i + M)∆t)

1
N+1

N∑
i=0

hA(i∆t)

, (4)

where ∆t is the MD time step, N is the total number of MD
steps performed in the simulation, and M∆t = t is the time for
which the correlation function is considered.

TPS and TIS/RETIS differ with respect to the charac-
teristic functions used to calculate C(t) from Eq. (1). The
characteristic functions in TPS can be both zero at a given
time (see Fig. 2). In fact, the nominator in Eq. (4), involving the
sum over hA(i∆t)hB((i + M)∆t), is mostly zero. For instance,
for M = 25, the only terms in Fig. 2 that give 1 are i = 0 and
i = 11.

The numerical derivative of C(t) gives

FIG. 1. Correlation function for determining the rate constant [Eq. (2)].
Outer panel shows the long time scale behavior in which the correlation
function converges to a horizontal plateau. Insets show C(t) and its time
derivative k(t) at the shorter time scale. The rate constant is obtained from
the slope of C(t) at a time t′ in the region tmol < t′ � trxn. Dashed green lines
in the insets show the correlation function and its derivative based on overall
states.

FIG. 2. Explanation of the state definitions and the correlation function C(t)
[Eqs. (1)–(4)] based on a hypothetical MD run that visits both state A (green
square) and state B (yellow square). Symbols in the trajectories are configura-
tions at each MD step. The full green and full yellow circles are the trajectory
points included in A (hA = 1) and B (hB = 1). At the cross symbols, both
the TPS characteristic functions are null, while in TIS, there is a switching
between overall state A (green line) and overall state B (light brown line). The
dashed horizontal line represents the transition state dividing surface along y.

k(t) =
dC
dt
=

〈
hA(0) d

dt (hB(t))
〉

〈hA〉
⇒

k(M∆t) =
1

∆t 〈hA〉

1
N −M

N−M−1∑
i=0

[hA(i∆t)

× {hB((i + M + 1)∆t) − hB((i + M)∆t)}] . (5)

Hence, for M = 25, the only non-zero contributions are for
i = 0 and i = 10 where the part within the curly brackets
produces �1 and +1, respectively.

The positive and negative contributions of the characteris-
tic functions to the average in Eq. (5) give rise to the fluctuating
behavior for t < tmol in k(t). Moreover, kAB requires sufficient
data to ensure convergence, and preliminary results might even
be negative. Naturally, TPS does not rely on a plain MD simula-
tion to compute C(t) but uses an important sampling technique.
Still, the slow convergence due to negative terms is also present
in these importance sampling approaches. This effect, in addi-
tion to the fixed path length, makes TPS less efficient than TIS
and RETIS.

In RETIS, as in TIS, the introduction of the overall states
A and B eliminates the fluctuations. Instead, C(t) based on
overall states is linear from the start (see Fig. 1). By definition,
the overall state A includes all phase space points lying inside
the stable state A and all the phase space points that, based
on their history, were more recently in stable state A than in
stable state B. In the same way, the overall state B includes
all phase space points lying inside the stable state B and all
phase points that were more recently part of stable state B than
A. The corresponding characteristic functions hA and hB are
not very sensitive to the stable state definitions. This is clearly
illustrated by the fact that if we would shrink the stable state
boundary of A in Fig. 2 such that only MD point 0 is inside
stable state A, none of the time slices shown in the figure, that
are presently part of A, would actually change to B.



152722-5 Cabriolu et al. J. Chem. Phys. 147, 152722 (2017)

In RETIS, as in the TIS algorithm, the phase space
is divided by a set of n interfaces λi ∈ {λ0, . . . , λn}, with
λi < λi−1. Each interface λi is then defined as the multidi-
mensional surface at which the RC assumes exactly the value
λi. In particular, the configuration with a RC value less than
λ0 = λA belongs to the reactant state A, while it belongs to the
product state B if its RC has a value higher than λn = λB.

Using statistical mechanical arguments, the TIS reaction
rate can be written as11

kAB = fAP(λB |λA) = fA
n− 1∏
i=0

PA(λi+1 |λi), (6)

where f A is the flux of trajectories through the initial interface
λA per unit time and P(λB |λA) is a conditional probabil-
ity. Namely, P(λB |λA) = PA(λn |λ0) is the probability that a
path starting from A, after having crossed λA, will cross the
interface λB before returning to A. This overall conditional
probability can be conveniently factorized into the probabili-
ties PA(λi+1 |λi) that have much higher values than the overall
probability, reducing the computational cost. In particular,
PA(λi+1 |λi) is the probability that a trajectory starting from
A crosses the interface λi+1 after having crossed the interface
λi without returning to A first. This is a particular case of the
generic history dependent conditional crossing probabilities
that are being used in all TIS variations (see Fig. 3).

The crossing probability is central to all TIS variations like
RETIS. Using a finer grid of sub-interfaces in the analysis, the
crossing probability can be depicted as a continuous function
PA(λ |λ0). This function is basically the dynamical analog of
the free energy profile, but the shape of this curve depends
explicitly on the dynamics of the system. For instance, if the
equations of motion are governed by the Langevin dynamics,
the curve will, unlike the free energy profile, depend on the
friction coefficient. PA(λ |λ0) is a strictly decreasing function
starting from 1 at λA and ending with a horizontal plateau after
crossing the barrier (see Fig. 7 in Sec. IV).

Using the Monte Carlo (MC) importance sampling
technique, TIS/RETIS generates the ensembles of paths

FIG. 3. Explanation of the generic crossing probability P(k
l |

j
i), which is a

history dependent conditional probability used in all TIS variations. The con-
dition |ji) is indicated by red and implies that interface λj needs to be crossed
in a single MD time step, and, in addition, λi should be more recently crossed
than λj . In other words, it should be a first crossing with λj since crossing
λi. Under this condition, ( k

l | (indicated by blue) refers to the chance that λk
will be crossed before λl . TIS and RETIS crossing probabilities are based on
a special case of this in which k = j + 1 and i = l = 0: PA(λj+1 |λj) = P(j+1

0 |
j
0).

PPTIS on the other hand is based on short memory crossing probabilities:

p±j = P
(

j+1
j−1 |

j
j−1

)
, p∓j = P

(
j−1
j+1 |

j
j+1

)
, p‡ = P

(
j+1
j−1 |

j
j+1

)
, and p= = P

(
j−1
j+1 |

j
j−1

)
.

{[0+], [1+], . . . , [(n − 1)+]} that obey the crossing condition of
the interfaces {λ0, λ1, . . . , λn−1}, respectively. The main dif-
ferences between TIS and RETIS are the swapping move and
the [0�] ensemble that we will discuss now.

In TIS, f A is determined by a plain MD simulation,

fA =
N+

c

T∈A
, (7)

where N+
c is the number of positive crossings with interface

λA = λ0 and T∈A is the time spent in A. Since the transition
to B will be a rare event, T∈A will be in most cases equal to
the total simulation time. However, if a spontaneous crossing
happens, it is best not to wait until the system returns to state
A, but to run another MD simulation initialized from A and
take the average in the end.

RETIS, on the other hand, is only based on path sampling
simulations. For this purpose, it introduces the path ensemble
[0�] which comprises all paths that start at λA, proceed in
the opposite direction of the reaction progress, and end at λA

again. The introduction of the [0�] ensemble in RETIS allows
the calculation of the flux through the average path lengths,〈
t[0+]

〉
and

〈
t[0−]

〉
, of the paths in the [0+] and [0�] ensembles,

fA =
1〈

t[0+]〉 +
〈
t[0−]〉 . (8)

The equivalence between Eqs. (8) and (7) is explained in
Fig. 4.

FIG. 4. Explanation of the path ensembles, the RETIS flux relation Eq. (8),
and the crossing probabilities, based on a hypothetical MD run. The RC ver-
sus simulation time is shown. Path ensembles: The MC scheme in RETIS
aims to get the same statistical path distributions as if they would have been
cut out of an infinitely long MD simulation. For instance, the blue segments
of this MD simulation will give an identical statistical collection of paths
as the [0�] path ensemble obtained by MC moves. The segments that are
(partly) red are the same paths collected in the [0+] ensemble, and the seg-
ments that are partly green and partly yellow belong to the [1+] and [2+] path
ensembles, respectively. The black dashed part originates from state B and is,
therefore, not part of any RETIS ensemble. Flux: The different path lengths

of the blue and (partial) red segments summed up provide T∈A:
∑N+

c
i=1(t[0−]

i

+ t[0+]
i ) = T∈A. Substitution of this in Eq. (7) and using 〈t〉 =

∑n
i=1 ti/n,

we obtain Eq. (8). Crossing probabilities: the overall crossing probability
PA(λn |λ0) equals the fraction of the (partial) red path reaching λn or (#paths
reaching λn/#red paths). Naturally, the following relation holds: (#paths
reaching λn/#red paths) = (#paths reaching λn/#yellow paths) × (#yellow
paths/#green paths) × (#green paths/#red paths). This is equivalent to Eq. (6):
PA(λn |λ0) = PA(λn |λ2)×PA(λ2 |λ1)×PA(λ1 |λ0). Or, in this particular case,
1/9 = 1 × 1/3 × 1/3.
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This figure also shows the essence of the importance sam-
pling in path space. To obtain a single reactive path, MD
generates (in Fig. 4) 9 paths in the [0�] ensemble, 9 paths in the
[0+] ensemble, 3 paths in the [1+] ensemble, and just one path
in the [2+] ensemble. In real rare event cases, this will be worse:
if the overall crossing probability is 10�6, MD needs to sample
at least one million paths in the [0+] and in the [0�] ensemble.
TIS and RETIS typically aim to sample the same number of
paths in each ensemble. For instance, if PA(λB |λA) = 10−6, we
could place 6 interfaces such that PA(λi+1 |λi) ≈ 0.1. In that
case, we could in principle already get an estimate of the overall
crossing probability using just 10 paths (but preferably more)
in the [0+], [1+], [2+], [3+], [4+], and [5+] ensembles, basically
reducing the minimum number of required paths from 106 to
just 60.

Essential to sampling the right path distribution (as if cut
from an infinite MD simulation) is to utilize proper MC moves
that respect detailed balance.8 In path sampling, the most cen-
tral MC move is the shooting move.38 In this move, a time slice
of the last accepted path is taken at random. Then, this point
is modified by another randomization procedure, for instance,
by changing the momenta of this point. Finally, this new point
is used to go forward and backward in time using a MD step
integrator in order to create a new path.

The detailed-balance relation that must be fulfilled can be
written as

Pgen
[
x(o) → x(n)]

Pgen[x(n) → x(o)]

Pacc[x(o) → x(n)]

Pacc[x(n) → x(o)]
=

P[x(n)]

P[x(o)]
, (9)

where x(o) and x(n) denote the old and new paths, respectively,
P[x] is the probability of path x, and Pgen[x → x′] is the
probability to generate path x′ starting from x (to be precise,
these should actually be called probability densities).

Following the Metropolis-Hastings scheme, the accep-
tance rule of the move can be written as

Pacc[x(o) → x(n)]

= ĥ(x(n)) min

1,

P[x(n)]

P[x(o)]

Pgen[x(n) → x(o)]

Pgen[x(o) → x(n)]


,

(10)

where ĥ(x(n)) is 1 if the new path fulfills the path ensemble’s
condition (e.g., crossing λi for the ensemble [i+]), otherwise
it is 0. In the shooting move, the generation probability is
a product of different sub-probabilities. These are the prob-
ability to select the shooting point, the probability to select
new velocities, and the probabilities that path x′ will be cre-
ated by the MD integrator starting from the modified shooting
point. There are many variations possible with respect to the
selection of the shooting point and the way the momenta
are changed. If the dynamics are stochastic, it is also com-
mon to not change the velocities at all and to change only
parts of the path by going only forward or only backward in
time.

As mentioned above, we want to obtain the same sta-
tistical collection of paths as if they were cut out from an
endlessly long MD simulation, and, therefore, P[x] is directly
related by the probability that x can be created by MD.
However, as also the generation procedure is based on MD,

nearly all terms contained by P[. . .] and Pgen[. . .] cancel.3

For instance, if the velocities are not changed or completely
regenerated using a Maxwell-Boltzmann distribution, the only
remaining terms in Eq. (10) are the selection probabilities.
Hence, if each time slice of the path has an equal proba-
bility to be chosen as the shooting point, Eq. (10) reduces
to

Pacc[x(o) → x(n)] = ĥ(x(n)) min

[
1,

L(o)

L(n)

]
, (11)

where L(o) and L(n) are the path lengths of the old and new
paths, respectively. For more general expressions, we refer to
Ref. 3.

Equation (11) shows that if the new path becomes rela-
tively too long compared to the previous path, it will be likely
rejected. The rejection/acceptance procedure could be carried
out analogously to the standard Metropolis procedure: after
the new trial path is completed, one takes a random number
α ∈ [0 : 1] and then accepts the new path if α < L(o)/L(n).
However, the efficiency can be improved26 by drawing the
random number α at the start of the MC move and deter-
mine a maximum allowed path length before creating the new
path

Lmax = int[L(o)/α]. (12)

Then, the trial move can directly be terminated and rejected
whenever it exceeds this maximum, saving a lot of unnecessary
MD steps.

To summarize, the shooting move randomly picks a time
slice from the old path and makes a slight modification to the
phase point, usually randomizing the velocities. From the new
phase point, the trajectory is propagated through MD back-
ward and forward in time until crossing λA or λB. The path
(in ensemble [i+]) can be accepted if it starts at λA and crosses
λi at least once while the path length remains within the max-
imum path length determined at the start of each shooting
move. If these conditions are not met, the old path is kept
and used again to repeat this procedure. If it is accepted, the
old path is replaced by the new one before the procedure
continues.

Figure 5 shows the shooting move and all the other dif-
ferent MC moves that are used in RETIS. The time-reversal
move does not require any integration because it consists only
of changing the time direction of an existing path. Finally,
RETIS performs swapping moves (replica exchange) between
ensembles. [i+] ↔ [(i + 1)+] is accepted if the [i+]-path hap-
pened to cross λi+1. The [0+]↔ [0−] swap is always accepted
and implies exchanging the end- and starting-points of the [0�]
and [0+] paths. This is sometimes dubbed39 the minus move.
After this exchange, new paths will be generated by going for-
ward and backward in time, respectively (see Fig. 5). Although
more expensive than the other swapping moves, this move in
particular helps increase the ergodicity of the sampling. Over-
all crossing probabilities constructed from RETIS typically
provide much smoother curves that the ones obtained via TIS.
In a study on DNA denaturation, using a mesoscopic model,40

the RETIS approach was found to be a factor 20 more efficient
than TIS.27
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FIG. 5. Schematic picture showing the shooting, time-reversal, and swapping
moves. The ensembles are pictured before and after the move, respectively,
on the left and right sides. The green interface is the one defining the crossing
condition. The blue arrowed lines represent the original paths, while the red
ones represent the new paths. Only the shooting and the swapping [0−] ↔
[0+] moves require the generation of MD steps, while the other moves are
essentially cost-free.

Although these MC moves formerly obey detailed bal-
ance, the numerical trajectories actually might not. In high-
dimensional complex systems, the chaotic behavior of the
dynamics due to the Lyapunov instability of the dynamics will
ensure that any two deterministic MD trajectories with nearly
identical starting conditions will ultimately diverge exponen-
tially and might end up at different states A or B. Due to
round-off errors, it might be practically impossible to regen-
erate the old path from the new path. Hence Pgen[x(n) → x(o)]
is, strictly speaking, zero in computer generated trajectories
if the system is deterministic. Vlugt examined this issue41 by
comparing TPS results using a standard integrator and a bit-
wise time-reversible integrator and found no difference. The
common assumption, even if (to the best of our knowledge)
not rigorously proven, is that theorems based on the shadow
Hamiltonian8 derived for simplectic MD integrators also apply
for a TPS type of sampling. Hence, the detailed balance rela-
tions only have to be satisfied formally as long as the MD
integrator is simplectic.

A prerequisite to start the MC sampling is to have an
initial path in each ensemble, which needs to be established
with some kind of initialization procedure. In some cases, this
procedure is not trivial; however, it should be noted that the first
path in each ensemble does not have to be a very good one and
can even be unphysical. As in any MC method, the first number

of MC cycles is essentially used to equilibrate and is removed
from the analysis to compute crossing probabilities and other
important quantities. Initial paths could be obtained from high
temperature runs or non-dynamical approaches such as nudged
elastic band,42 or by using a shooting algorithm in which the
path making less progress than the old one is automatically
rejected.

IV. APPLICATIONS OF RETIS

Although RETIS is more efficient than TPS or TIS, the
number of studies using the RETIS method is yet some-
what lagging behind due to its non-trivial implementation
and the lack of user-friendly pluggable software packages
which could provide this technique to scientific users. Recent
open-source software projects such as PyRETIS43,44 and open-
path-sampling45 are presently under development and will
hopefully remove this blockade. Also, the naming is not fully
standardized or commonly used in the literature as the method
was originally referred to as parallel path swapping27 and the
name RETIS was coined in the follow-up paper.28 In this short
overview, we define a RETIS application as a study that uses
TIS including the replica exchange moves between the path
ensembles.

The RETIS applications published today range from
nucleation, chemical reactions, to biological transitions, while
the type of dynamics range from Langevin and Brownian
motion to classical and even ab initio MD. For instance, Lech-
ner et al.46 applied RETIS to study the crystal nucleation
of colloidal suspensions, while in another nucleation study
by Menzl et al.47 on cavitation in water under tension, the
authors compared RETIS to the Bennett-Chandler approach
and found that the calculated cavitation rates are in good
agreement with classical nucleation theory where the curvature
dependence of surface tension is taken into account. Their cal-
culations are also in excellent agreement with inclusion exper-
iments, suggesting that homogeneous nucleation is observed
in inclusion, while impurities are the source of heterogeneous
nucleation.

There are several examples illustrating the applicability of
RETIS on biological systems including isomerization of bio-
logical molecules48 and protein (un)folding49,50(these studies
employed the multiple state and single replica methodologies
discussed in Secs. VI D and VI E). A study of the 35-residue-
fragment (HP-35) villin headpiece in implicit water demon-
strates that this method can be used to study high (un)folding
barriers.49 Further the (un)folding network of the Trp-cage
mini-protein in explicit water resulted in a kinetic rate matrix
in excellent agreement with IR experiments.50

Saroukhani et al. applied a range of methods from har-
monic transition state theory (HTST) to RETIS in their study
on dislocation dynamics in Al-4 wt. %Cu.51 Their results show
that while HTST is not able to predict the rate due to entropic
effects, both TIS and RETIS predicted rates in agreement with
the MD simulations. Snapshots of the dislocation transition
are shown in Fig. 6. The study also shows how the RETIS
method is more effective in sampling the different possible
reaction mechanisms than TIS, which has a higher tendency
to get stuck in a single reaction tube.
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FIG. 6. Snapshots of dislocations in Al-4 wt. %Cu overcoming two obstacles
at 200 MPa and 300 K. The left image shows the first partial dislocation in the
initial configuration, and the right image shows the second partial dislocation
in the final configuration as the respective obstacles are overcome. The middle
image is a snapshot at the center of the intermediate cells. Reprinted with
permission from S. Saroukhani et al., J. Mech. Phys. Solids 90, 203 (2016).
Copyright 2016 Elsevier.

The first realization of a RETIS study using ab initio
MD was given in Ref. 52, which reports on the water auto-
ionization in water clusters. This publication also introduced

FIG. 7. Top: Snapshots of various dissociation mechanisms of the silicate
complex in aqueous phase. Hydrogen atoms marked in green and purple are
possible candidates for participation in the dissociation process. Na+ ions are
colored in blue, and orange oxygen ions belong to the water molecules with
a bridging hydrogen bond. Snapshots [(a) and (b)] show mechanisms with
hydrogen transfer, while (c) shows a mechanism without hydrogen transfer.
Bottom: Crossing probability of the dissociation reaction as a function of the
reaction coordinate (Si–O distance). The curve is shown together with the
Gibbs free energy curve of Ref. 54 obtained via thermodynamic integration.
Reprinted with permission from M. Moqadam et al., Phys. Chem. Chem. Phys.
19, 13361 (2017). Copyright 2017 Royal Society of Chemistry.

an analysis method for identifying the subtleties of the reaction
mechanism that is further discussed in Sec. VI B.

The first real ab initio chemical reaction study in aque-
ous solutions was performed by Moqadam et al.53 This paper
analyzes the mechanism and computes the rate of the silicate
dimerization reactions in aqueous solutions using a simulation
box containing 64 water molecules. The study collected dur-
ing several months around one hundred thousand trajectories
of which several thousands were reactive (20 000 for the dis-
sociation reaction study). Regarding the number of MD steps,
this study would correspond to a MD simulation with a total of
1000-1400 ps simulation time. The expected time to observe
a single reactive event is however as high as 50 000 ps. In
other words, the RETIS study gathers the statistical informa-
tion which would be equivalent to a 20 000 × 50 000 ps = 100
µs plain MD run, far below the reach of ab initio molecular
dynamics.

As RETIS actually uses the real dynamics of the sys-
tem without biasing potential energy surfaces or applying
constraints, it revealed information on the mechanism that con-
tradicted earlier hypotheses based on free energy studies. For
instance, as shown in Fig. 7, the RETIS simulations revealed
two possible reaction routes for the dissociation of the silicate
ion complex, which is mediated by a proton transfer or not. In
this case, the mechanism including proton transfer is highly
predominant with a probability of 80%. The fact that RETIS
produces reactive trajectories for both mechanisms supports
the ergodicity of the method.

Also in another reaction, in which a water group is sub-
tracted from the silicate ion complex, showed two possible
mechanisms, where a proton is transferred directly via the sil-
icate complex or via a hydrogen bond network in the solvent.
While previous studies have reached contradictory conclu-
sions on which of the two mechanisms prevail, the RETIS
simulation generated about two thousand unbiased trajecto-
ries showing that the direct proton transfer is only slightly
favorable.

V. EFFICIENCY

One way to measure the efficiency of a simulation method
is to determine the CPU time needed to obtain the prefixed
error. However, CPU time is not a well-defined property as
it depends on the hardware, the frequency at which the out-
put is written to the hard disks, and the technical details of
the implementation. Yet, as in large-scale classical MD sim-
ulations and ab initio MD simulations, the calculation of the
forces is the most expensive operation, the effective CPU time
is generally expressed as the number of force evaluations or,
equivalently, the number of MD steps. In this way, algorithms
can be compared irrespective of the hardware or technicalities
of the implementation. In some studies, such as those dealing
with nucleation processes, the calculation of the order parame-
ter is actually more expensive, but this is still fine as the number
of evaluations of the order parameter is also proportional to the
number of MD steps.

In Ref. 55, the effective CPU time for a relative error of
1 was denoted as τeff. In practice, this property is computed
from a simulation via the following equation:
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τeff = number of MD steps × relative error2, (13)

where the relative error can be obtained from block averaging
or the bootstrap method. The lower the value of τeff, the more
efficient a method is. The efficiency is sometimes defined as
the inverse of this property.

A. Placement of interfaces

The CPU efficiency time for one of the TIS sub-
simulations for computing the crossing probabilities, pi

= PA(λi+1 |λi), equals55

τeff
i =

1 − pi

pi
ξiτ

path
i Ni, (14)

where τpath
i is the average path length in path ensemble i, and

ξi is the ratio between the average length of the trial paths in
ensemble i and the physical average path length τ

path
i . Gen-

erally ξi is somewhat lower than 1 as sometimes a path can
be rejected after only a few MD steps, e.g., if the backward
integration ends in state B. Finally, Ni is the statistical ineffi-
ciency of the sampling. Often, it is assumed that both ξi and
Ni are more or less constant for each path ensemble but that
the average path length increases for increasing i as the min-
imal distance, λi − λA, that needs to be covered in order to
fulfill the crossing condition increases as a function of i. If
the barrier is steadily increasing at a constant slope, we can
assume that placing the interfaces at equidistant separation
∆λ gives equal crossing probabilities pi = p for each sub-
simulation. We assume further that the average path length
increases according to a power law τ

path
i ∝ (λi−λA)g = (i∆λ)g

[more generic: ξiτ
path
i Ni ∝ (i∆λ)g], where experience shows

that g is typically around 1 for steep barriers while it is around
2 for diffusive flat barriers. Based on the error propagation
rules ε2

tot =
∑
ε2

i , one can determine the CPU efficiency of
the overall simulation, which is shown55 to be proportional
to

τeff ∝
1 − p

p| ln p|2
. (15)

The number of interfaces n follows from the overall crossing
probability as pn = PA(λB |λA), and the interface separation is,
hence, ∆λ = (λB − λA)/n. The overall efficiency as a func-
tion of p is shown in Fig. 8, normalized to one at its minimum
p = 0.2. The minimum p = 0.2 is a trade-off between two effects.
If the separation of interfaces is very large, p will be small and it
takes a lot of MD steps to obtain a decent error due to the∝ 1/p
dependence in Eq. (14). However, since only few simulations
need to be combined, the overall error and, hence, the overall
CPU efficiency will not be so much different than the indi-
vidual errors or CPU efficiencies. On the other hand, if many
interfaces are used, it takes a few MD steps per sub-simulation
to get low relative errors, but since the total computational cost
and the overall error implies summing over the n individual
simulations, the overall efficiency will be low. Still, as shown
in Fig. 8, there is a wide range of acceptable p values rang-
ing from 0.05 to 0.5 where the overall efficiency is still within
40% of the theoretical optimum. In practice, TIS simulations
with relatively few steps could be performed sequentially for
i = 0, 1, . . ., and after each simulation, the next interface could

FIG. 8. The overall CPU efficiency time as a function of p [Eq. (15)] for the
model system of a continuous increasing barrier with constant slope. Here,
p = PA(λi+1 |λi) equals the crossing probabilities that are being computed
in each simulation i, which are assumed to be equal for each i. The CPU
efficiency time τeff is proportional to the number of MD steps required to
obtain a predetermined relative error and is here normalized to its minimum
at p = 0.2.

be defined at the point where the local crossing probability has
dropped to 0.2, until the state B is reached. After that, a long TIS
or RETIS run can be launched. These runs will probably reveal
that some simulations, based on the longer runs, have crossing
probabilities significantly different than 0.2. However, as long
as these are still within the acceptable range or if there are
only a few outside this range, it is probably not worth adapting
the interface positions another time at the expense of longer
initializations.

Note that the optimal pi = 0.2 is merely a rule of thumb
rather than an absolute truth as it is based on several assump-
tions. Also, it should be noted that RETIS might actually have
a different optimum. Due to the swapping moves, the different
sub-simulations are no longer independent, which implies that
the error propagation is more complex depending on covariant
terms.55 In addition, as the RETIS scheme gives trajectories
for two ensembles each time the path ensembles [i+] and [(i
+ 1)+] can be swapped, i.e., if the trajectory of the ith simu-
lation crosses λi+1, it might well be more effective to aim for
somewhat higher pi values.

B. Importance of reaction coordinate

The concepts of reaction coordinate (RC), order parame-
ter (OP), or collective variable (CV) have been given slightly
different meanings in different communities, which has been
a cause of confusion. Some authors would simply use these
concepts as synonyms while others would say that there is
basically only one RC, which is the ultimate descriptor of the
reaction. Generally, this ultimate RC is defined as the com-
mittor function though different opinions exist whether this
function should be defined in full phase space or configuration
space. Basically, the committor defines for each configuration
point/phase point a value between zero and one, which corre-
sponds to the chance that a dynamical trajectory starting from
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this point ends up in the product state rather than the reactant
state.

In other studies, the RC is just the main parameter chosen
by the scientist to perform the actual importance sampling,
to define the US windows, the constraint planes in TI, or the
TIS interfaces, while the order parameter or collective vari-
able could be any other parameter that is used in the post
analysis.

Early studies23–25 have described the TPS method as an
approach that does not require a RC but only an order param-
eter. The interpretation of this statement might be valid or not
dependent on which definition one uses for the RC and which
type of TPS simulation is meant. If the sole aim of TPS is to
gain a statistical collection of reactive pathways, the statement
is certainly valid. The order parameter then just defines the sta-
ble state regions without quantifying any progress if the system
is at the barrier region. In such a simulation, path sampling can
be truly viewed as a blind search in the dark.56 If, however,
the full reaction rate computation is performed by means of
path sampling (TPS, TIS, RETIS, or FFS), the statement is
debatable.

In contrast to TST or approximate path sampling
approaches, it is true that exact path sampling approaches
should give the correct result independent of the choice of the
RC. In that sense, one could argue that it does not require an
ultimate RC. The same is, however, true for the RF method
where it is not common to distinguish between the order
parameter and the RC. There is, however, a difference in how
the efficiency of the method depends on the chosen reaction
coordinate as was shown in Ref. 55.

The main difficulty of finding a proper RC is illustrated
in Fig. 9 for the case of NaCl dissociation. Whereas the RC
is obvious in the gas phase, simply the distance between the
two ions, this is not obvious in aqueous solutions. As shown in
Fig. 9, the solvent structure needs to undergo a change during
the dissociation process. An ideal RC should therefore include
some solvent degrees of freedom. The distance alone is not
a good descriptor of the reaction since the solvent structure
might promote association or dissociation even if the ions are
relatively far or close, respectively.57,58

We can also refer to Fig. 2 assuming that the y-coordinate
in this figure is the distance between ions and the x-coordinate
is some unknown coordinate describing accurately the sol-
vent structure. If the dynamics is only viewed along the

y-coordinate, it shows that there is a high probability to return
to the associated state even if the maximum of the free energy
barrier seems to be crossed (MD step 5 in Fig. 2). Reversely, if
the transition state surface is crossed from the side of the disso-
ciated state (B), there is again a high probability that the system
returns to state B (MD step 29 in Fig. 2). Hence, the projec-
tion along y introduces a memory effect (non-Markovianity),
which seems to enhance the likeliness of returning to the state
where it comes from.

In free energy based methods, this effect will cause trou-
blesome hysteresis. As all free energy methods provide some
kind of force to push the system over the barrier, the system
tends to explore a different pathway when pushed forward
from the reactant to product state than when pushed from the
product state back to the reactant state. This is due to a barrier
orthogonal to the chosen RC and each side of this orthogo-
nal barrier should, in principle, be sampled. Even if the TI or
US simulation is sufficiently long to sample properly across
the orthogonal barriers, the RF approach will still fail since
the transmission coefficient becomes negligibly small. These
problems would likely disappear when using an ideal RC,
which for NaCl should not only depend on the ionic distance
but also on the solvent structure.

The quantitative assessment of efficiency versus the qual-
ity of the RC was discussed in Ref. 55. Analytic expressions
of the CPU efficiency time τeff can only be obtained in highly
simplified models. However, to describe the above issues,
the model should have at least some minimal complexity in
order to make the RC non-trivial. In Ref. 55, such a model
was examined, which consists of a single particle in a two-
dimensional box. For simplicity, the particle is only allowed
to move along the x-coordinate. But when colliding against
the walls, the particle will obtain randomized velocities from
a Maxwell distribution pointing away from the wall and a new
random y-coordinate (here coined as the “sjoelbak” model).
Further, between collisions the particle moves completely adi-
abatic. Between the two walls, there is a slanted symmetric
barrier where the angle θ of the tilt now reflects the qual-
ity of x as the RC. The model, even if somewhat unphysical,
has a dynamics that perfectly obeys the Boltzmann distribu-
tion ρ(x, y) ∝ e−βV (x,y) (with β = 1/kBT ), has just enough
complexity to the innate hysteresis problem, and allows ana-
lytic treatment of the overall efficiency using MD, RF, or
TIS/RETIS.

FIG. 9. Schematic cartoon illustration of NaCl dissociation. (a) shows the associated state in which the NaCl complex has no net charge and the water molecules
in the first solvation shell mainly form hydrogen bonds between themselves. (b) shows the barrier crossing event, which requires the breakage of many hydrogen
bonds. Finally, (c) shows the dissociated case where the negatively charged Cl� and the positively charged Na+ are mainly closely surrounded by the hydrogen
atoms and oxygen atoms, respectively.
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As a point of reference, the CPU efficiency time of plain
MD is exponentially dependent on the height of the barrier and
inverse temperature,

τeff
MD ∝ e β∆E , (16)

and it is due to this exponential dependence that MD is
unfeasible for most relevant processes.

Rare event sampling techniques can improve the scaling,
but how good they achieve this depends on the RC. It is infor-
mative to compare the cases where the RC is very good and
very bad. The parameter to distinguish these two cases is the
following:

α = 2β∆E sin θLy/W , (17)

where the width W and length segment Ly are indicated in
Fig. 10(b).

In the case that the RC is orthogonal to the rim of the
barrier (θ = 0⇒ α = 0), the system becomes effectively one-
dimensional and the TST approximation becomes exact. The
computational cost is dominated by the free energy calcula-
tion. In Ref. 55, the efficiency time was, hence, calculated for
US using rectangular windows. Even if θ is slightly different
from zero, then α might become very large. In this case, the
hysteresis effect will aggravate the free energy calculation, but
the transmission calculation is affected even more. Therefore,
we make the following assumption:

τeff
RF =




τeff
USif α � 1,

τeff
κ if α � 1.

(18)

FIG. 10. Illustration of the shuffleboard model. (a) The particle (blue disk)
can only move along the x-coordinate and it moves frictionless. At each col-
lision with the walls, it will obtain random velocities pointing away from the
wall. In addition, it will obtain a new random y-coordinate (via the hands who
shuffle the disks like in the Dutch shuffleboard “sjoelbak” game). If the initial
kinetic energy is larger than the height of the barrier, it will cross the barrier.
Otherwise it will return with the same speed it started with. (b) Top view
indicating the parameters θ, W, and Ly. At the top of the free energy along
x, the configuration points indicated by the red crosses have the same energy
and are, therefore, equally likely. Still, their potential energy is lower than the
actual barrier ∆E. The two trajectories (blue lines with arrows) starting from
the left wall are not equally likely. The bottom one crosses the barrier implying
a higher kinetic energy at the start larger than ∆E. (c) Due to the non-local
nature of the paths, one can imagine an effective potential energy surface that
is felt by the end point of the paths, which does not have the typical hysteresis
shape.

For US using rectangular windows and α � 1, the following
scaling behavior can be found:

τeff
US(α � 1) ∝ (β∆E)2, (19)

which is not exponential but only quadratically dependent on
β∆E. This makes US orders of magnitude faster if barriers are
high. However, for a transmission coefficient with α � 1, the
scaling becomes exponential again,

τeff
κ (α � 1) ∝

eα
√
α
=

e2β∆E sin θLy/W√
2β∆E sin θLy/W

. (20)

The reason for this is that there are basically two relatively high
probability regions on each side of the orthogonal barrier [see
Fig. 10(b)]. Not only does this give rise to hysteresis but it also
means that trajectories released from the most likely regions
at the top of the free energy barrier (projected along x) will
almost always result in either A→ A or B→ B trajectory, i.e.,
if the equations of motion are followed backward and forward
in time starting from the configuration points indicated by the
red crosses with randomized velocities. Hence, the transmis-
sion coefficient becomes extremely small implying that there
is an astronomical number of trajectories needed to obtain
an A → B trajectory and to estimate the small transmission
coefficient.

In trajectory space, the non-local nature of a path elim-
inates the hysteresis. The lower path in Fig. 10(b) is not as
likely as the upper trajectory. Since the trajectory starts from
the left wall and crosses the top of the barrier, the initial kinetic
energy has to be very high in order to produce this trajectory.
Therefore, this trajectory is less likely than the upper one. As a
result, one can say that the global identity of the path starting at
A implies that the end point of the trajectory sees an effective
potential that looks like Fig. 10(c). The effective potential does
not have two low energy regions at each side of an orthogonal
barrier, which eliminates the hysteresis issue. One can show
that the scaling of the CPU efficiency time remains quadratic
at all values of θ,

τeff
TIS/RETIS ≤ τ̂

eff
TIS/RETIS ∝ (β∆E ′)2,

∆E ′ = ∆E(1 + 2α/β∆E). (21)

Naturally, with this dynamics in which the system can only
move along x, the shooting move should imply small position
changes in addition to velocity changes.

One should, however, realize that the above analysis does
not imply that choosing a reasonable reaction coordinate is
not important at all for TIS/RETIS simulations. The effi-
ciency analysis does not include the fact that the acceptance
of the MC moves might be lower or show slower decor-
relation for an improper reaction coordinate. Still, the rel-
ative efficiency compared to RF is expected to increase if
the reaction coordinate is not well chosen (using the same
reaction coordinate for both methods). The essence of this
relative scaling is due to the fact that RF applies an impor-
tance sampling to accurately determine the small probability
to be at the transition state dividing surface, but no impor-
tance sampling scheme is used to compute the transmission
coefficient, which can also be very small. TIS/RETIS directly
computes the dynamical factor using an importance sam-
pling scheme and since the overall crossing probability is
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rather reaction coordinate independent, there is no term that
suddenly drops to zero when another reaction coordinate is
used. It is, however, possible to use path sampling for com-
puting transmission coefficients instead of crossing proba-
bilities. Examples of such approaches are given in Refs. 59
and 60.

The efficiency scaling for FFS cannot be made for this
system as the dynamics is deterministic apart from the wall col-
lisions. However, Ref. 11 shows for a non-deterministic one-
dimensional study (corresponding to θ = 0) using Langevin
dynamics that FFS can still give misleading results. This is
because the system is still effectively two-dimensional in phase
space. As shown in Ref. 11, the FFS simulations erroneously
suggest that the dynamics is not symmetric with the parti-
cle moving up the barrier very slowly and going down very
fast.

VI. RECENT DEVELOPMENTS

The TIS/RETIS methodology is versatile, which is not
only shown by its applications but also by its spin-off algo-
rithms. In this section, we will describe those recent develop-
ments. These are new shooting moves, stone skipping and web
throwing, the predictive power method as an alternative to the
committor function approach for the analysis of the generated
paths, and QMMM (quantum mechanic molecular mechanics)
in the time domain to combine effectively two different lev-
els of force evaluations (e.g., classical force fields and DFT).
Finally, we will discuss in a bit more detail the multiple state
TIS (MSTIS) and single replica TIS (SRTIS) that are already
well established approaches.

A. New shooting moves

Despite the considerable development from TPS to TIS
and RETIS, the principle MC move, shooting, has not changed
much during the years. Most suggested variations rely on
the velocity modification step and/or on the shooting point
selection step.62–66 However, this has as a result that two con-
secutive accepted paths always share some almost identical
time slices. An approach to decorrelate the paths much faster
was suggested in Ref. 61 via the so-called stone skipping and
web-throwing moves (Fig. 11). In both the MC moves, each
step consists in generating N sub paths that are much shorter
in length than the actual paths. After this generation, the final
subpath is completed and accepted if it obeys the path ensem-
ble’s requirement. Stone skipping is the most efficient move
for the increasing part of the potential, while web throwing
moves are preferred if both the up-going and down-going parts
of the potential are sampled (the hysteresis region). The com-
pleted MC move obeys super-detailed balance, which ensures
that the sampling is correct. These moves are more expen-
sive than the standard shooting move, but if the final path is
accepted, it will be considerably more decorrelated from the
previous path than with a shooting move. However, if the final
path is not accepted, a lot of MD steps are wasted without
any progress. The last point is countered by changing the path
weights such that basically all paths can be accepted. The only

FIG. 11. Stone skipping and web throwing moves. Top: illustration of the
stone skipping move within the [i+] ensemble. Subpaths are launched by
shooting from the λi interface. Subpaths are followed until reaching state
B or recrossing λi again. In the last case, the end point serves as the initia-
tion point for the next subpath generation. After the completion of a number
of subpaths (Ns = 4 in this case), the last subpath is completed to become a
full path. Bottom: illustration of the web throwing move in the [ j+] ensemble.
The subpaths are now being initiated from either λj or λsour . The last interface
(surface of unlikely return) ensures that backward integration from the sub-
paths almost certainly ends up in state A. Like stone skipping, several subpaths
are being generated. If they connect λj and λsour , they are used for the next
generation. In the end, the last subpath is completed to become a full path. For
a detailed description of the moves and the proof of the super-detailed balance
relation, we refer to Ref. 61.

possibility of rejection is when the completion of the sub-path
produces a full path that ends in state B along both time direc-
tions. By minimizing the need to generate full trajectories,
the exact RETIS method can become nearly as efficient as the
approximate path sampling method such as PPTIS or mileston-
ing. The new shooting moves showed a factor 12 improve-
ment compared to standard shooting in a study for DNA
denaturation.61

B. Analysis of paths

Systematic approaches to analyze reaction mechanisms
in terms of descriptive order parameters have been focused on
committor analysis.56,57,67–71 As mentioned above, the com-
mittor is a function of either configuration space or phase space
and provides for each configuration/phase point the chance
that a MD trajectory starting from this point would end up in
state B rather than A. The committor is, by many researchers,
considered as the ultimate RC. However, the determination of
the committor surfaces is computationally intensive. Gener-
ally it is more costly than a rate calculation (an exception is the
computation of the average committor, which can directly fol-
low from reweighting of trajectories sampling in RETIS72). In
addition, it is generally not providing direct applicable physical
insight to develop, e.g., new catalysts.

Moreover, in all practical analyses of the committor, only
the configuration space is considered, which might lead to
missing important dynamical effects. An alternative approach
to get that kind of insight was developed in Ref. 52, which
does not require any extra simulations besides those already
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performed in standard TIS/RETIS. Moreover, it is easier to
include velocity dependent parameters in the analysis. The
approach views the RC as a simple measure of progress, but
then the analysis is focused on the other order parameters by
evaluating their usefulness for predicting such progress at early
stages in the reaction.

The main function that can be computed based on the data
of a RETIS simulation is the predictive power functional T [q].
T [q] is a functional that, as the order parameter q itself, can
in principle depend on all coordinates and velocities of the
particles in the system. For instance, q could be a function that
describes the solvent structure (Fig. 9),

The predictive power is given by

Tλ
c ,λr

A [q] = 1 − Sλ
c ,λr

A [q], (22)

Sλ
c ,λr

A [q] =
1

PA(λr |λc)

∫ (
rλ

c ,λr
(q)uλ

c ,λr
(q)

rλc ,λr (q) + uλc ,λr (q)

)
dq,

where λc and λr > λc are two values for the RC; the first one
is used for analyzing the first crossing points for trajectories
crossing λc and the second one is used to split these trajectories
into two groups: the ones reaching λr (called partially reactive)
and the ones that do not make sufficient progress (unreactive).
The first crossing points with λc can then be used to construct
distributions where r(q) and u(q) give the probabilities that
a trajectory crossing through λc is crossing this surface at a
point q and, respectively, crossing (r) and not crossing (u) λr .
If there is very little overlap between the r(q) and u(q) distri-
butions, then S ≈ 0 and T ≈ 1, implying that the q parameter
is very discriminative between partial reactive and unreactive
trajectories. The value of q at an early stage (crossing λc)
can then be used to predict whether the crossing will result in
a trajectory reaching λr or not. In addition, it can also pro-
vide clues on how to enhance the reaction by modifying the
external conditions such that crossings with λc will preferably
occur in the right domain of the q order parameter. Finally,
it is worthwhile to note that within the RETIS approach, it is
possible to re-weight the trajectories themselves73,74 in order
to obtain the reweighted path ensemble. These trajectories can
then be projected on any OP or CV of interest and further
analyzed.

C. QuanTIS

The RETIS path ensembles provide a natural approach
to split a chemical reaction into different processes that can
be treated with different levels of theory. A natural division
would be to treat all [i+] with i = 0, 1, . . . , n − 1 ensembles
at the quantum mechanical level (mostly density functional
theory) and the [0�] path ensemble on the level of classical
MD. The concept is illustrated in Fig. 12.

The approach QuanTIS resembles QMMM75 except
that QM and MM are now knitted together in the time
domain instead of space. Without the replica exchange
moves, the approach would, in principle, give the exact
crossing probability at the QM description. However, swaps
between the [0�] and [0+] ensembles are quite essential to
speed up the ergodicity of the sampling. A way to keep
the crossing probability exact at the QM description is to

FIG. 12. Artist impression of hypothetical reaction pathways on a free energy
surface. The free energy landscape is metaphorically depicted as a Norwegian
fjord landscape where the mountain needs to be crossed to reach the product
state. Crossing the barrier implies the making and breaking of chemical bonds,
and classical force fields are generally not accurate enough to treat these
processes. The QuanTIS approach, therefore, treats all [i+] path ensembles at
the QM level. However, if solute molecules drift away and towards each other
in the solvent, there is no real chemistry taking place and classical force fields
are the ideal tool to speed up the simulations. The figure shows a hypothetical
reaction. At the right-hand side, the two solute molecules are close but do not
have the right mutual orientation to react. The blue path is returning to the
reactant state where it is swapped to the [0�] ensemble and continues with
fast classical MD. Once the solutes meet again, their mutual orientation is
much more favorable for the reaction to take place. A swap back to the [0+]
ensemble even leads to a full reaction in this hypothetical case.

change the acceptance rule for this swap by the following
equation:

Pacc(rMM, rQM) = min
[
1, exp

(
−

1
kBT

[
VQM(rMM)

−VMM(rMM) + VMM(rQM) − VQM(rQM)
] )]

,

(23)

where VQM is the potential at the QM level used in the
[0+] ensemble (i.e., the potential energy is obtained from
a QM calculation), and VMM is the classical potential
based on a force field used in the [0�] ensemble. rQM

and rMM are the configuration parts of the phase points in
the [0+] and [0�] ensembles, respectively, which are being
swapped.

In the normal RETIS, [0−] ↔ [0+] is always accepted.
The acceptance rule, Eq. (23), ensures that PA(λB |λA) will
converge to the same value as with RETIS using QM in all
ensembles. Only the flux will be slightly different. However,
for systems with many atoms, the acceptance of the swap
will be very low since it depends on an exponent of abso-
lute energy differences. Hence, this acceptance drops with
system size. However, since systems used for ab initio MD
are relatively small, this issue might be problematic but not
insurmountable. For large systems, the approach could effec-
tively be combined with spatial QMMM so that the potential
energy difference is only due to a relatively small group of
atoms.

Reference 76 discusses several tactics to keep the accep-
tance high in realistic systems. One solution is to mix the
classical and QM potentials close to the λ0 interface or to
optimize the classical potential on-the-fly by adjusting the
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force field parameters. Another practical approach is to break
slightly the detailed balance and basically accept the move
using a less stringent criterion. The results of Ref. 76 show
that an accept all only affected slightly the initial crossing
probabilities PA(λ1 |λ0) and PA(λ2 |λ1). Hence, the speed up
in sampling and reduction in the statistical error outweighed
the negative aspect of introducing a marginal systematic
error.

D. Multiple state TIS

The original transition path sampling technique was
designed to sample pathways connecting only two distinct
stable states. In complex systems, multiple meta-stable min-
ima can exist, even if the overall kinetics is two-state. For
instance, a protein folding/unfolding transition is likely to
encounter intermediate metastable states that are long lived
on the molecular scale, while still short-lived with respect
to the overall relaxation time. Direct path sampling between
the unfolded and folded states can then become very inef-
ficient as trial trajectories will get stuck in an intermediate
state from which the escape itself is a rare event. While
one can wait until such escapes from the intermediate state
occur, even with reasonable acceptance using the stochastic
one-way shooting moves65 or the more recent spring shoot-
ing,66 this might result in extremely long MD trajectories,
thus lowering the overall path sampling efficiency dramati-
cally. A simple solution to this problem is to conduct individual
path sampling simulations for each sub-reaction.77 While such
a solution might work for a few well-defined intermediate
states, the number of transitions scales as N(N � 1) for N
states, and moreover the acceptance of pathways suffers due
to the rejection of trajectories that do not connect the selected
states. Multiple state TPS (MSTPS) and multiple state TIS
(MSTIS) solve this problem by allowing the sampling of path-
ways that connect any two stable or intermediate states within
one single path sampling simulation.78 This approach there-
fore views the rare event process as a Markov State Model
(MSM)79–82 with transitions between each pair of states and
a loss of memory in-between jumps. Different to PPTIS is
that the intermediate states can be defined in a multidimen-
sional collective variable space. On the other hand, PPTIS does
not require well-defined intermediates as memory is included
via the history dependence of the crossing probabilities (see
Fig. 3). Both methods, strictly speaking, are not exact path
sampling methods, unless the memory loss assumption is fully
justified.

MSTPS/MSTIS (see Fig. 13) is a method to sample all
transitions in such a MSM. The difference between MSTPS
and MSTIS is the same as that between TPS and TIS: MSTPS
is used to collect reactive pathways only, while MSTIS aims
at performing an entire rate computation.

Analogous to TIS, the rate constant for a transition from
a state I to a state J is

kIJ =

fI

m−1∏
s=0

PI(λ(s+1)I |λsI)


PI(λ0J |λmI) (24)

with PI(λ0J |λmI) being the conditional probability that when
the outermost interface λmI is crossed λ0J will also be crossed,

FIG. 13. Cartoon of multiple state transition path (interface) sampling. Each
stable state has a set of λ-interfaces with λm being the outermost interface
(shown here as red dashed lines and the other interfaces are suppressed).
Trajectories starting from one of the stable states, crossing the corresponding
λm-interface, and ending in any of the other stable states contribute to the
path ensemble (blue solid trajectories). Paths that return to their initial state
without crossing the λm-interface will be rejected during the sampling (green
dotted trajectory). Reprinted with permission from J. Rogal and P. G. Bolhuis,
J. Chem. Phys. 129, 224107 (2008). Copyright 2008 American Institute of
Physics.

that is, state J is reached before the system returns to I. The
factor between square brackets denotes the flux through λmI,
which follows from a “regular” TIS simulation using the set
of λ-interfaces for state I and needs to be evaluated only once
for each stable state. The crossing probability PI(λ0J |λmI) is
computed in a single MSTIS run, from the number of paths,
nIJ, starting from I, crossing λmI, and ending in J, and divid-
ing by the sum of all pathways starting from I and crossing
λmI,

PI(λ0J |λmI) ≈
nIJ∑
J nIJ

. (25)

As a transition I → K → J is described as two indepen-
dent transitions I → K and K → J, it is important that the
defined states are really metastable so that the system spends
sufficient time in these states to lose memory and guaran-
tee Markovianity. As long as all stable states are long-lived
with respect to the molecular time scale, this should not be a
problem.

MSTPS/MSTIS requires only one path simulation to sam-
ple all possible transitions, instead of one path sampling sim-
ulation for each transition between each stable state pair.
Moreover, acceptance ratios are higher because all trajecto-
ries connecting any two states contribute to the ensemble. In
addition, decorrelation of subsequent pathways is faster due to
switching between different types of pathways. This switch-
ing is essential. If the switching fails to occur, the original
2-state sampling is recovered. It follows that multiple state
TPS should be employed in cases where the switching actu-
ally poses a problem to the 2-state sampling, i.e., systems with
a low acceptance ratio due to trajectories that do not return to
one of the two stable states.

MSTPS samples trajectories with their correct weights,
i.e., transitions out of the same stable state; the ratio of path-
ways is equal to the ratio of the transition probabilities. When
the transition probabilities are significantly different, e.g., if
one transition is orders of magnitude more probable than
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FIG. 14. Cartoon of the general principle of the single replica TIS for a simple 4-state system, where each state has two interfaces. Starting from the left top
corner, the initial path crosses not only the current (black) interface but also the outermost interface, thus allowing an exchange between these interface ensembles.
Subsequently, a shooting move happens to create a trajectory that reaches another stable state, enabling a state swap. After this swap, the outermost interface
of the new state becomes the current interface. An interface exchange followed by a shooting move then leads to the red path depicted in the lower left corner
cartoon. Continuing random combinations of such moves employing the Wang-Landau approach allows equal sampling of all states and interfaces. Reprinted
with permission from W.-N. Du and P. G. Bolhuis, J. Chem. Phys. 139, 044105 (2013). Copyright 2013 American Institute of Physics.

others, a biasing scheme based on the Wang-Landau sampling
approach73,83,84 can help enhance rare transitions. Alterna-
tively, fast transitions can be excluded from the sampling.85

When the TIS part of the MSTIS is suffering form sampling
problems, MSTIS can be combined with RETIS, as was done
in Ref. 39.

An additional challenge with the multiple state formal-
ism is the choice of the order parameter λ. What is a good
order parameter for one transition might not be a good order
parameter for another transition, even for the same initial state.
Within the MSTIS/RETIS approach, it is possible to combine
multiple sets of interfaces based on different order parameters
for each transition.39

E. Single replica TIS

While the combination of MSTIS and RETIS is very pow-
erful, a practical implementation is not easy for large systems
due to the multiple states and the large number of interfaces
to be treated simultaneously. Moreover, the disparity in the
length of the pathways makes a parallel implementation non-
trivial. A software package to easily set up and conduct MSTIS
with RETIS is currently under construction.45 Another solu-
tion to this problem is to abandon the simultaneous simulation
of all interfaces and only consider a single replica. Apply-
ing concepts from simulated tempering,86,87 single replica
transition interface sampling (SRTIS) can sample all inter-
faces in the MSTIS framework. SRTIS, instead of exchang-
ing paths between replicas, exchanges the interfaces. Starting
with an initial path in an initial interface, regular TIS shoot-
ing moves sample new paths. Occasionally, an interface swap
move tries to switch to a neighboring interface and accepts this
move when the path obeys the interface criteria (see Fig. 14).
Straightforward application of such a scheme would strongly
favor the interface near stable states and probably fail to sample
barrier crossings. A Wang-Landau biasing scheme can create
a flat sampling of interfaces via construction of the density of

paths (DOP) at each interface. This approach allows an adap-
tive scheme in which stable states are added as the sampling of
path space progresses. As the trajectory dynamics is unbiased,
it can be combined via a reweighting scheme to yield the rate,
free energy, and mechanism (see, e.g., Refs. 46, 73, and 74).
Convergence of the Wang-Landau algorithm can be slow. It
turns out that the optimal DOP is equal to the crossing proba-
bility. Indeed, a fixed bias based on the crossing probabilities
tremendously speeds up convergence.48

The interface swap move only applies to an interface set
belonging to a single initial state, where the paths all are
required to start from the same state. A state swap move
attempts to change the current initial state to a different state
requiring a path-reversal of paths that connect two different
states. After the state swap, the set of interfaces belonging to
the new initial state is used. The acceptance probability for
such a state swap again involves the DOPs of the two inter-
faces. While it is easiest to only allow state swaps between
the outermost interfaces, it is also possible to swap interfaces
with identical index or even allow for all-interface state swap.
The latter is particularly advantageous when states are nested
within interfaces (see Sec. VI F).

Similar to RETIS, it is useful to randomize within the
stable states using the additional interface ensemble [0�],27

by exchanging paths with the interface ensemble [0+] (minus
move). In summary, SRTIS requires a set of five different
path moves: shooting, interface swap, state swap, reversal, and
minus moves (see Fig. 14). The method has been used to sam-
ple protein folding50 and complex formation in patchy particle
systems.88,89

F. Rate constant calculation for nested states

Straightforward application of Eq. (24) becomes invalid
for complex systems with some states nested in-between inter-
faces of other states, as Eq. (24) assumes that transitions occur
beyond the outermost interface λmI. One way of avoiding this
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problem is via the path-type numbers introduced in Ref. 50. A
path-type number ni

IJ(λkI) is the number of paths in replica
i joining states I and J that have crossed at maximum inter-
face λkI (and thus by definition also all interfaces below k),
where the superscript i indicates that the paths should obey
the condition of replica i in the ensemble. Having set the
maximum interface, we are allowed to reweight these num-
bers using the WHAM (weighted histogram analysis method)
weights obtained from reweighting of the crossing probabil-
ity and sum them over all interfaces k to yield the reweighted
number of paths coming from state I and ending in state J,

ñIJ =
m∑

k=1

w̄k
I

m∑
i=1

ni
IJ(λkI), (26)

where w̄k
I = (

∑k
l 1/w l

I)−1, with w l
I being the optimized

WHAM weights for paths that have crossed interface λkI at
maximum (note that these should be the same as the weights
w l
I obtained via the crossing probability).

Using the Wang-Landau scheme requires a reweighting of
the states as well. While this is possible using correction factors
based on the relative stability of the states, another approach
makes use of the fact that in an unbiased ensemble each IJ
path is as probable as the reversed JI path. Therefore we split
the path-type matrix, ñIJ, into N separate matrices (one for
each state) and symmetrize the Ith matrix: ñJI = ñIJ. Setting
all other entries of the Ith matrix to zero results in N matrices
with only a nonzeroIth row and a nonzeroJth column. Joining
these matrices with WHAM yields the individual weights for
each state and to a N × N transition path type number matrix,
ñIJ. Normalization of this with the total number of paths going
out of a state

∑
J ñIJ gives the transition probability matrix

P(λ0J |λ1I) = ñIJ/
∑

J ñIJ, which can be directly used in Eq.
(24), and takes into account all nested states.

VII. CONCLUSIONS

We outlined rare event sampling techniques with a focus
on exact path sampling approaches and in particular the RETIS
method and its developments. In the first part of the article, we
described the basics of the theoretical foundations of RETIS
and gave an overview on some of its recent applications. The
second part is dedicated to the new developments that increase
the applicability of the path sampling techniques to a broader
range of problems. In addition, we discussed efficiency scaling
issues and some recent algorithmic developments of the path
sampling methods. This shows that exact path sampling, by
means of RETIS, is getting more and more efficient and also
the versatility of the approach has grown in the last few years.
Thanks to the freely available open-source software pack-
ages like PyRETIS44 and OPenPathSampling,45 the RETIS
approach will become accessible to non-developers. A fur-
ther expansion of the popularity of the approach is, therefore,
expected.
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