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Chapter 14

Discussion and Future Directions

In this dissertation we advocate the use of Bayes factors in empirical research to
replace or complement standard null hypothesis tests based on p-values. These
Bayes factors were specifically designed to quantify the evidence for or against the
existence of an e↵ect. This was done by comparing two models with the same
distributional assumptions, where the alternative model is an extension of the null
model by incorporating one extra parameter. Furthermore, instead of returning a
decision to “reject” or “not reject”, a Bayes factor BF

10

(d) returns a non-negative
number that represents the evidence within the observed data for the model that
includes the e↵ect. The returned number can be seen as a refinement of the binary
decision with BF

10

(d) = 1 and BF
10

(d) = 0 corresponding to definite rejection
and acceptance of the null, respectively. Moreover, the Bayes factor allows its users
to forgo the binary decision and acknowledge uncertainty, so that the evidence
can be updated continually in light of new data, directly and easily. For empirical
scientists to be able to use these Bayes factors we implemented them in Je↵reys’s
Amazing Statistics Program, JASP, which is freely available and open-source (url:
https://jasp-stats.org).

In Chapter 8 we showed how easy it is do a Bayesian reanalysis of published
results in JASP. Most of the discussion centred on how Bayes factors quantify
evidence from data already observed, but future research should also focus on
how the already observed data can be used for follow-up experiments. This idea
of generalising past observations to future data underlies the replication Bayes
factor discussed in Chapter 9. Comprehensive knowledge updating requires that
the data come from the same population, which is why we emphasised the role
of openness and transparency in Chapter 7. By making research materials and
data available, future researchers can then conduct a direct replication and build
upon previous work. In some cases, however, a replication on the same population
is not possible. For correlation and t-test Bayes factors we can nonetheless do
meaningful inference by relocating the data, while for more complicated settings
such as ANOVAs and contingency tables this is still work in progress.

When no previous data are available we recommend the use of default Je↵reys’s
Bayes factors that are constructed from priors that adhere to the general criteria
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14. Discussion and Future Directions

for Bayesian model choice (Bayarri et al., 2012). One goal of this dissertation
was to explain, apply, and extend these general criteria to scenarios common to
empirical scientists. The first extension was to Pearson’s correlation, Chapter 2,
resulting in an analytic Bayes factor, which was further extended to Kendall’s ⌧
in Chapter 4. By modelling the test statistic, more specifically, approximating
the sampling distribution of the test statistic with its asymptotic normal equiv-
alent, a Bayes factor was derived that leads to interpretable results and is fast
to compute. In future research we plan to apply the general procedure based on
the asymptotic normal approximation and parametric yoking to other scenarios.
The use of the normal approximation to the true sampling distribution, however,
is not as principled as we wanted it to be and led to Bayes factors that provide
less evidence for the alternative, whenever ⌧ is far from zero. This motivated us
to consider di↵erent approaches and the latent normal approach in van Doorn
et al. (2017) in particular. Future research should further explore the relationship
between Kendall’s ⌧ and certain copula families as this will provide insights in
statistical research on dependency.

The calculations used for the analytic posteriors for Pearson’s ⇢ also led to the
informed t-test in Chapter 5. This work can easily be adapted to linear regression
and is worth exploring further.

The first analytic result of Chapter 11 was used to construct a limit-consistent
Bayes factor for the two-sample Poisson problem in Chapter 6. In future research
we will use the posterior for the odds ratio to formulate a Bayesian test for two
proportions, the homogeneity of the odds ratio and the test for independence in
multiple 2-by-2 tables. Chapter 6 also described our attempt to extend Je↵reys’s
principles of testing to problems that deal with discrete random variables based
on the desideratum of limit-consistency. Further research should also focus on
the relationship between predictive matching and limit-consistency, as the latter
criterion might provide a fruitful technique to generalise Je↵reys’s ideas on testing
to other settings.

Je↵reys’s principles to construct Bayes factors, however, requires one of the pa-
rameters to be perceived as the test-relevant one and the others as nuisance. This
might be di�cult for high-dimensional problems, but can be done for location-scale
problems and the variable selection problem in particular. The multiplicity intro-
duced can then be tackled by the method discussed by Scott and Berger (2006,
2010), which have yet to be incorporated in JASP. Furthermore, Je↵reys’s con-
struction also requires that we choose the distribution form of the models, which
increases the hazard of model misspecification. Model misspecification can have
dramatic e↵ects on Bayesian methods as was shown by Grünwald and van Ommen
(2014). Fortunately, Grünwald (2017) and colleagues also developed a framework
for safe Bayesian inference and methods to detect model misspecification. Further
research in this area is necessary and on the way. One goal, therefore, is to extend
Je↵reys’s principled Bayes factors to nonparametric models, which in itself comes
with additional challenges of tractability and once again multiplicity.

To control for multiplicity with the Bayes factors described here, we recom-
mended that researchers preregister their hypotheses and the tests they perform.
The reason for this is that testing is a confirmatory tool of inference concerned
with model uncertainty and that this di↵ers from an estimation problem. Esti-
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mation and exploration, however, should not be undervalued as they allow for the
construction of theories and models, which can subsequently be tested. Models
are always simplified description of reality and can always be improved upon.

Bayesian methods can help discover and improve models. For instance, by
Bayesian model averaging, or by exploring the posterior of fitted models using
so-called plausible values to give insights to how a hierarchical model should be
formulated (e.g., Ly et al., 2017a; Marsman, 2014; Marsman et al., 2016b). For
instance, in Ly et al. (2017a) we used plausible values to generalise the finding
of Forstmann et al. (2008) based on n = 19 participants to the general popula-
tion. Key to this generalisation was the acknowledgement of uncertainty via the
posteriors and the mixing of the analytical posteriors developed in Chapter 10.
When the posterior is not analytic, one can use the bridge sampler instead, see
Chapter 12. The mixing of posteriors in Ly et al. (2017a), however, implies that
the posterior, and the marginal likelihood in particular, can be evaluated quickly.
Hence, to further make Bayesian methods accessible to empirical scientist, we
need to make these sampling methods more e�cient. Lastly, Chapter 13 provides
some insights in the nature of statistical models and provides the empirical scien-
tists with regularity conditions that allow them to formulate models in which the
standard methods are (asymptotically) valid.

We hope to have made a convincing case for the use of Bayesian methods in
the empirical sciences, and the Bayes factor in particular when it comes to testing.
Our advocacy for Bayesian methods in psychology is, in essence, a call to adopt
a principled method of learning. This call is neither new nor controversial, as
Bayesian methods have been adopted in fields such as econometrics, statistics and
computer science with great success.
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