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Spread of entanglement for small subsystems in holographic CFTs
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We develop an analytic perturbative expansion to study the propagation of entanglement entropy for
small subsystems after a global quench, in the context of the AdS=CFT correspondence. Opposite to the
large interval limit, in this case the evolution of the system takes place at time scales that are shorter in
comparison to the local equilibration scale and, thus, different physical mechanisms govern the dynamics
and subsequent thermalization. In particular, we show that the heuristic picture in terms of an
“entanglement tsunami” does not apply in this regime. We find two crucial differences: First, that the
instantaneous rate of growth of the entanglement is not constrained by causality, but rather its time average
and, second, that the approach to saturation is always continuous, regardless of the shape of the entangling
surface. Our analytic expansion also enables us to verify some previous numerical results, namely, that the
saturation time is nonmonotonic with respect to the chemical potential. All of our results are pertinent to
CFTs with a classical gravity dual formulation.

DOI: 10.1103/PhysRevD.95.086008

I. INTRODUCTION

Understanding the generation and spread of entanglement
in quantum systems for generic out-of-equilibrium configu-
rations is a topic of great interest andcurrently one of themost
challenging problems connecting quantum information and
statistical physics. If the system is prepared in a pure state, it
will remain forever in a pure state due to unitarity. However,
finite subsystems seem to thermalize as a consequence
of ergodicity.1 A useful order parameter in these situations is
the entanglement entropySA, which is defined as follows.We
can imagine a Cauchy surface that divides the entire system
into two subsystems,A and its complementB, so that the total
Hilbert space factorizes asHtotal ¼ HA ⊗ HB.

2 On the other
hand, the state of the system is completely specified by its
density matrix ρ, a self-adjoint, positive semidefinite, trace
class operator. The entanglement entropy of a region A with
its complement B is then defined as the von Neumann
entropy SA ¼ −tr½ρA log ρA�, where ρA ¼ trB½ρ� is the
reduced density matrix of the subsystem A. Due to its
nonlocal character, entanglement entropy could, in principle,
reveal quantum correlations not accessible to other observ-
ables constructed from any subset of local operators Oi.

The simplest dynamical process in which we could study
the spread of entanglement is a global quench. To describe
this process, we can consider the Hamiltonian (or the
Lagrangian) of the system, denoted by H0 (or L0), and add
a time-dependent perturbation of the form

Hλ ¼ H0 þ λðtÞδHΔ → Lλ ¼ L0 þ λðtÞOΔ: ð1:1Þ

Here λðtÞ corresponds to an external (tunable) parameter
and HΔ (or OΔ) represents a deformation of the theory by
an operator of conformal dimension Δ. Let us now imagine
that the perturbation is sharply peaked, i.e. λðtÞ ∼ δðtÞ, so
that the quench is instantaneous. In this case, the process is
effectively described by the injection of a uniform energy
density at t ¼ 0 and the subsequent dynamics is dictated by
the original Hamiltonian H0. In a remarkable paper [3],
Calabrese and Cardy showed that for (1þ 1)-dimensional
CFTs as well as for some lattice models, entanglement
entropy for a large interval of length l ¼ 2R grows linearly
in time,

ΔSAðtÞ ¼ 2tseq; t ≤ R; ð1:2Þ
and then saturates abruptly at t ¼ tsat ¼ R. Here, ΔSAðtÞ
denotes the difference of the entanglement entropy from
that of the initial state (which is assumed to be the ground
state of H0), and seq is the thermal entropy density of the
final state. As explained in [3], these results can be easily
understood in terms of causality applied to left- and right-
moving EPR pairs of entangled quasiparticles emitted from
the initial state. However, it is not clear if such a simple
interpretation could be valid more generally, in particular,
in systems with strong interactions between the pairs,
which are ubiquitous in real-world many-body systems.

*kundu@cornell.edu
†jpedraza@uva.nl
1If we consider a finite region in a system of infinite size, the

number of degrees of freedom outside the region is much larger
than in the inside. Therefore, in a typical excited pure state, the
reduced density matrix for the finite region is approximately
thermal [1].

2Notice that there can be multiple Cauchy surfaces resulting in
the same partitioning of the Hilbert space. More concretely, this
partition is specified by the (future) Cauchy horizon rather than
the Cauchy surface itself [2].
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The discovery of the AdS=CFT (or holographic) corre-
spondence [4–6] opened the possibility to tackle the
problem of entanglement propagation from a fundamental
point of view. This remarkable correspondence has already
been very useful in addressing problems of strongly
coupled dynamics in various models, ranging from under-
standing aspects of quantum chromodynamics (QCD) to
condensed matter-inspired systems [7,8]. In this context,
global quenches (as the ones described above) are com-
monly modeled by a collapsing shell of matter in an
asymptotically AdS geometry. See [9–11] for early works
on this topic. These gravity solutions have recently been
employed to study the growth of entanglement after a
global quench both in (1þ 1)-dimensional CFTs as well as
in higher-dimensional theories. For large subsystems, it
was found that the evolution of entanglement exhibits a
universal linear regime

ΔSAðtÞ ¼ vEseqAΣt; tsat ≫ t ≫ tloc: ð1:3Þ
In this formula, vE is interpreted as a velocity for entan-
glement propagation, which depends on the number of
spacetime dimensions d according to

vE ¼
ffiffiffiffiffiffiffiffiffiffiffi
d

d − 2

r �
d − 2

2ðd − 1Þ
�d−1

d

≤ 1; ð1:4Þ

and AΣ is the area of the entangling region’s boundary
Σ ¼ ∂A. The linear growth (1.3) was first observed numeri-
cally in [12,13] and analytically in [14–16] and was later
generalized to various holographic setups in [17–41].
Generally speaking, tsat scales like the characteristic size
of the region tsat ∼ l while tloc is a local equilibration scale,
which scales like the inverse of the final temperature
tloc ∼ 1=T. In d ¼ 2, one obtains vE ¼ 1 as in [3], so
entanglement propagates as if it were carried by a free
streaming of particles moving at the speed of light. This
suggests that interactions might not play a crucial role in the
growth of entanglement entropy; however, recent inves-
tigations have shown that this picture fails to reproduce
other holographic and CFT results, e.g. the entanglement
entropy for multiple intervals [42–44]. Further evidence
comes from the results in higher-dimensional theories.
In [45] it was shown that in free streaming models

vfreeE ¼ Γ½d−1
2
�ffiffiffi

π
p

Γ½d
2
� ; ð1:5Þ

which is smaller than the holographic result (1.4) for d ≥ 3.
This implies that the amount of entanglement generated in
these simple models cannot account for the result in
strongly coupled theories, so interactions must play a role.
Given the simplicity and universality of Eq. (1.3), Liu and

Suh proposed a heuristic picture for the spread of entangle-
ment which they called “entanglement tsunami” [15,16]
(see Fig. 1). According to their interpretation, the quench

generates a wave of entanglement that propagates inward
from the boundary of the subsystem A, with the region
covered by the wave becoming entangled with the outside
B. They further conjectured that after local equilibration
is achieved, t≳ 1=T, the instantaneous rate of growth
defined as

RðtÞ≡ 1

seqAΣ

dSA
dt

ð1:6Þ

is always bounded by the tsunami velocity, i.e.
RðtÞ ≤ vE. It is important to emphasize that, in spite
of its name, vE is not actually a physical velocity so
a priori it is not obvious that it must be bounded by
causality. More recent works have shown that for large
subsystems this is indeed the case [45,46]. The authors of
[45] proved it using the positivity of mutual information,
while [46] used inequalities of relative entropy with
respect to a thermal reference state. Thus, if the con-
jecture on the maximum rate of growth is true, we can
conclude that max½RðtÞ� ≤ 1.
For small subsystems, the situation is much less under-

stood. In this case l ≪ 1=T so tsat ≪ tloc. The evolution of
the subsystem and its thermalization take place before local
equilibration is achieved and it is not clear if the growth of
the entanglement should satisfy a simple law like (1.3).
Furthermore, since this linear behavior was one of the main
assumptions of [45,46], the bound on the maximum rate for
the entanglement growth does not apply in this regime.3

Indeed, later in this paper, we will show that this is actually
the case: besides the strict large interval limit, max½RðtÞ� is
not necessarily constrained by causality. We will further
show that for small subsystems, the linear regime (1.3)
is absent and thus, the heuristic picture in terms of a
entanglement tsunami breaks down. This is indeed

FIG. 1. Pictorial representation of the “entanglement tsunami”
for a subsystem A. The entanglement is carried by a wave that
starts from the its boundary Σ (depicted in red) and propagates
inwards at a constant speed vE. The shaded region has been
covered by the tsunami wavefront (depicted in orange) and is now
entangled with the region outside of A. The white region is
currently not entangled but it will become at a later time.

3Another assumption of [45] that is not valid for small
subsystems is the fact that mutual information with the vacuum
part subtracted is not generally positive definite. This can be
easily checked from the analytic result of mutual information for
small regions, e.g. [47,48].
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expected: in this regime, the characteristic wavelength of
the thermal excitations λth ∼ 1=T is much larger than the
size of the system, so a model of local interactions within
the entangling region cannot possibly account for the
growth of entanglement and its thermalization. Finally,
we emphasize that our results for the growth of entangle-
ment in the limit of small subsystems apply only for
instantaneous global quenches in CFTs with holographic
duals. More generally, we expect the precise growth of
entanglement in this regime to be sensitive to the details of
the theory and the quench itself.
This paper is organized as follows. In Sec. II, we study

the spread of entanglement for large and small intervals
based on the analytic result for holographic CFTs in
(1þ 1) dimensions. Along the way, we point out crucial
differences in the corresponding behaviors and motivate a
more systematic study for the propagation of entanglement
for small subsystems in other holographic theories. In
Sec. III, we introduce the holographic models of global
quenches that we employ in the rest of the paper: non-
equilibrium states of CFTs dual to a collapsing AdS-RN-
Vaidya geometries in (dþ 1) dimensions. The motivation
for studying these solutions is twofold: on one hand, it will
allow us to analytically explore theories in higher dimen-
sions, so we will be able to draw more general conclusions.
On the other hand, it will give us the possibility of
explaining the behavior reported in [20,32], namely that
for near-thermal quenches (T ≫ μ) the saturation time
decreases with increasing chemical potential. As men-
tioned in these works, understanding this peculiar behavior
may be of great relevance from a phenomenological
perspective, in particular for the physics of the strongly
coupled QGP. In Sec. IV, we explain the approximation
scheme that we use for small subregions and we perform an
explicit leading-order computation for two representative
boundary regions: the strip and the ball. In Sec. V, we
analyze in detail the different regimes of thermalization and
we compare with the corresponding results for large
subregions. We specialize to three different regimes: an
initial quadratic growth, a quasilinear growth, and the
saturation. In Sec. VI, we discuss some general properties
of the spread of entanglement for entangling surfaces of
arbitrary size, namely, the universality of the initial growth
regime, and a general bound on the average velocity,
vavgE ≡ hRðtÞi, which is obtained from bulk causality.
Finally, in Sec. VII, we give a brief summary of our main
results and close with conclusions.

II. PRELIMINARIES: SPREAD OF
ENTANGLEMENT IN (1 + 1)

DIMENSIONS

Remarkably, for holographic CFTs in (1þ 1) dimen-
sions, the result for the evolution of entanglement entropy
after a global quench is known in a closed form [17,18].
This will allow us to explore, as a first example, the

different regimes of the spread of entanglement for both,
large and small subsystems.
Wewill consider the entanglement entropy of a boundary

segment of length l ¼ 2R and introduce dimensionless
variables,

t ¼ 2πTt; l ¼ 2πTR; ð2:1Þ
where T is the final temperature after the quench. In the
final state, entanglement entropy in a (1þ 1)-dimensional
CFT is given by [49]

SA ¼ c
3
log
�
R
ϵ

�
þ c
3
log
�
sinh l
l

�
≡ Svac þ ΔSA; ð2:2Þ

where c is the central charge of the theory and ϵ is a UV
regulator. Notice that we have isolated two contributions:
the entanglement entropy in the vacuum, Svac, and the
difference of entanglement entropy between the thermal
state and the vacuum, ΔSA. It is also useful to study the
large and small interval limit of ΔSA. For l ≫ 1, we obtain

ΔSA ≃ cl
3
¼ seqVA; ð2:3Þ

where seq is the thermal entropy density,

seq ¼
πcT
3

; ð2:4Þ

and VA ¼ l ¼ 2R is the “volume” of the region A. In this
limit, entanglement entropy reduces to thermal entropy
and, thus, satisfies the first law of thermodynamics,

dðΔEAÞ
dðΔSAÞ

����
l
¼ T; ð2:5Þ

whereΔEA ¼ EVA is the energy contained in region A, and

E ¼ πcT2

6
ð2:6Þ

is the energy density of the (1þ 1)-dimensional CFT.
Importantly, in this limit, the entanglement entropy is an
extensive quantity since it scales with the volume of the
system VA. On the other hand, for small intervals, l ≪ 1,
we have

ΔSA ≃ cl2

18
¼ cπ2T2l2

18
: ð2:7Þ

In this limit, the entanglement entropy also satisfies a first
law like the relation for excited states [50,51],4

dðΔEAÞ
dðΔSAÞ

����
l
¼ Tent; ð2:8Þ

4Such a law is not expected to apply for generic time-
dependent configurations, but it is likely to hold if the system
evolves adiabatically.
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where, again, ΔEA ¼ EVA, and Tent is the so-called
“entanglement temperature.” For (1þ 1)-dimensional
theories, Tent is given by

Tent ¼
3

πl
: ð2:9Þ

Since Tent is independent of the temperature, we can
formally write

ΔSA ¼ ΔEA

Tent
¼ EVA

Tent
¼ seqVA: ð2:10Þ

Here, we have defined seq ≡ ΔSA=VA ¼ E=Tent in analogy
to (2.3). However, notice that in the limit of small subregions
seq is not expected to be equal to the thermal entropy density.
In particular, since Tent (and therefore seq) depend on l, the
entanglement entropy is not extensive in this case.
Let us now study the time dependent setup. The

evolution of the entanglement entropy after a global quench
can be written as follows [17,18]

SAðtÞ ¼ Svac þ ΔSAðtÞ; ð2:11Þ

where Svac is the entanglement entropy in the vacuum and

ΔSAðtÞ ¼
c
3
log

�
sinh t
lsðl; tÞ

�
ð2:12Þ

is the change in entanglement entropy following the
quench. The function sðl; tÞ is given implicitly by

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2

p

ρs

þ 1

2
log

�
2ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2

p
Þρ2 þ 2sρ −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2

p

2ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2

p
Þρ2 − 2sρ −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2

p
�
:

ð2:13Þ

with

ρ≡ 1

2
coth tþ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

sinh2 t
þ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2

p

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2

p
s

: ð2:14Þ

Equation (2.12) applies for any given l as long as

t ≤ tsat ¼ l: ð2:15Þ

At t ¼ tsat one finds that s ¼ 1, ρ ¼ coth l, and

ΔSAðtsatÞ ¼ ΔSeq ¼ seqVA: ð2:16Þ

For t > tsat, ΔSA remains ΔSeq. Unfortunately, Eq. (2.13)
cannot be inverted analytically, so in order to extract the
explicit time dependence of ΔSAðtÞ for t < tsat and fixed l,
one must proceed numerically. Before doing so, let us make

some important remarks. For any given l, we can easily
compute the time-averaged entanglement velocity:

vavgE ¼ hRðtÞi ¼ 1

seqAΣ

ΔSA
Δt

¼ 1

seqAΣ

seqVA

tsat
¼ R

tsat
¼ 1:

ð2:17Þ

Since the maximum growth of entanglement is bounded by
its average, max½RðtÞ� ≥ vavgE , one might wonder if this
inequality is strictly saturated so that max½RðtÞ� ¼ 1 for any
value of l or, instead, max½RðtÞ� > 1 exceeding the speed of
light.5 Indeed,wewill argue below that themaximumgrowth
of entanglement generally exceeds the speed of light and it
is only in the limit l → ∞ that one finds max½RðtÞ� → 1.
In order to prove this claim, it suffices to focus on the

early growth regime (for a fixed value of l). In the limit
t ≪ tsat, one finds [16]

ρ ¼ 1

t
þ t
12

þ � � � ; s ¼ t
l

�
1

t
−

t
12

þ � � �
�

ð2:18Þ

and

ΔSAðtÞ ¼
ct2

12
þOðt4Þ ¼ 2πEt2 þ � � � : ð2:19Þ

Therefore, at early times, the instantaneous rate of growth
increases linearly:

RðtÞ ¼ 2πEt
seq

þ � � � : ð2:20Þ

Since, in this regime, RðtÞ < 1, it is clear that the
maximum rate should satisfy max½RðtÞ� > 1 in order to
have an average vavgE ¼ 1. This is true for any finite value of
l. The strict limit l → ∞ is peculiar; in this case, most part
of the evolution is linear and RðtÞ is effectively constant
R≃ 1. We can understand this as follows: as explained in
[15,16], one of the relevant scales that govern the regimes
of thermalization is the local equilibration scale, tloc ∼ 1=T.
For t ≪ tloc the growth of entanglement is quadratic but
for t≳ tloc (once the system has reached local equilibrium)
the evolution is indeed approximately linear. Moreover, in
(1þ 1) dimensions, this linear behavior persists all the way
to the saturation time, where the entanglement equilibrates
discontinuously. Altogether, the nontrivial dynamics of the
system takes place over the time span t ∈ ½0; tsat ¼ R� or,
equivalently, x≡ t=tsat ∈ ½0; 1�. In the strict limit l → ∞,
tsat → ∞ and therefore xloc ≡ tloc=tsat → 0. Thus, in this
limit the entire evolution is effectively linear. For small
intervals, l ≪ 1 and tsat ≪ tloc, so a linear approximation
fails.

5We emphasize that RðtÞ is not actually a velocity, so it is not
obvious that it must obey causality.
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To add further evidence in support of these statements,
we can explore numerically (2.13) and study the evolution
of entanglement entropy in the appropriate regimes. In
Fig. 2, we show the results for ΔSAðtÞ andRðtÞ in the large
interval limit. For the plots we chose TR ¼ 102 so that
xloc ¼ tloc=tsat ¼ 10−2 ≪ 1. As we can observe, the evo-
lution in this case is well approximated by a straight line,
and the instantaneous rate of growth RðtÞ approaches
vavgE ¼ 1. However, RðtÞ marginally exceeds this value for
xloc < x ∈ ½0.015; 0.858� so the conjectured bound on
max½RðtÞ� is violated for large but finite intervals. We
also observe that as we increase the size of the region,RðtÞ
becomes discontinuous both at t ¼ 0 and t ¼ tsat in the
strict limit l → ∞. This agrees with the results of [15,16]
which show that, for large intervals, the approach to
saturation exhibits a critical behavior akin to a first order
phase transition. In Fig. 3, we consider the small interval
limit. Here we chose TR ¼ 10−2 so that tloc=tsat ¼ 102 > 1.
The evolution in this case deviates from a linear behavior,
which suggests that the heuristic picture in terms of a
“entanglement tsunami” fails in this regime. The instanta-
neous rate of growth RðtÞ clearly exceeds the average vavgE
in a good portion of the evolution: it starts off at zero,
reaches a maximum max½RðtÞ� > 1, and goes back to zero

at t ¼ tsat. This indicates that the approach to saturation is
generally a second order transition, rather than a first order
transition, and it is only in the limit l → ∞ that the
discontinuous behavior manifests. Our numerical results
suggest a maximum growth of max½RðtÞ� ¼ 3=2.6

III. HOLOGRAPHIC MODELS OF GLOBAL
QUENCHES IN HIGHER DIMENSIONS

A. Action and equations of motion

Given the previous evidence, it is natural to ask if a
similar behavior is also present in global quenches in higher
dimensions. Here, we will consider specific models in the
context of AdSdþ1=CFTd where CFT evolves from the
vacuum of the theory to a state at finite temperature and/or
chemical potential. The starting point is the (dþ 1)-
dimensional Einstein-Hilbert action with a negative cos-
mological constant coupled to a Maxwell field and an
external source,

0.2 0.4 0.6 0.8 1.0 1.2
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FIG. 3. (a) Evolution of entanglement entropy for TR ¼ 10−2. For this choice of parameters xloc ¼ tloc=tsat ¼ 102 > 1 and the growth
of entanglement deviates from a linear behavior. (b) Instantaneous rate of growth for TR ¼ 10−2. Our numerical results suggest a
maximum rate of max½RðtÞ� ¼ 3=2.
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FIG. 2. (a) Evolution of entanglement entropy for TR ¼ 102. For this choice of parameters xloc ¼ tloc=tsat ¼ 10−2 ≪ 1 and the growth
of entanglement is approximately linear. (b) Instantaneous rate of growth for TR ¼ 102. We observe that RðtÞ > 1 for xloc < x ∈
½0.015; 0.858� which contradicts the conjectured bound on max½RðtÞ�. However, in the strict limit l → ∞, Rð0 ≤ t ≤ tsatÞ → 1 (and
becomes discontinuous at both t ¼ 0 and t ¼ tsat).

6Regrettably, we were not able to extract this value directly
from (2.12)–(2.13). However, we will show in Sec. V B that this
is indeed the exact value for the maximum growth in d ¼ 2
dimensions.
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S ¼ S0 þ κSext; ð3:1Þ

where S0 is given by

S0 ¼
1

8πGðdþ1Þ
N

�
1

2

Z
ddþ1x

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ

−
1

4

Z
ddþ1x

ffiffiffiffiffiffi
−g

p
FμνFμν

�
; ð3:2Þ

and Λ ¼ − dðd−1Þ
2L2 .7 In the above κ is a constant and Sext is

the action of the external source, which we do not specify.
This action leads to the following equations of motion:

Rμν −
1

2
ðR − 2ΛÞgμν − gαρFρμFαν þ

1

4
gμνFαβFαβ

¼ 16πGðdþ1Þ
N κText

μν ; ð3:3Þ

∂ρ½
ffiffiffiffiffiffi
−g

p
gμρgνσFμν� ¼ 8πGðdþ1Þ

N κJσext: ð3:4Þ

We are interested in dynamical solutions that interpolate
between pure AdS and a charged AdS black hole. However,
before presenting these solutions, we will first study the
static black hole solutions that are dual to the final state of
the quench.

B. Static solutions: AdS-RN

In the absence of sources (Text
μν ¼ 0, Jσext ¼ 0) there

is a family of two-parameter black hole solutions to
(3.3)–(3.4) known as the AdS-Reissner-Nordström black
holes [52,53]. For d ≥ 3, the solutions are the following:

ds2 ¼ 1

z2

�
−fðzÞdt2 þ dz2

fðzÞ þ d~x2
�
;

fðzÞ ¼ 1 −Mzd þ ðd − 2ÞQ2

ðd − 1Þ z2ðd−1Þ;

At ¼ Qðzd−2H − zd−2Þ; ð3:5Þ
where M is the mass of the black hole and Q is the charge.
Here, zH denotes the location of the horizon which is given
by the smallest real root of fðzÞ ¼ 0. The dual theory is a
CFT that lives in d spacetime dimensions and is charac-
terized by a thermal density matrix in the grand canonical
ensemble, ρ ¼ e−βðH−μqÞ, where q is the total charge. The
temperature of the dual theory can be identified as the
Hawking temperature of the black hole,

T ¼ −
1

4π

d
dz

fðzÞ
����
zH

¼ d
4πzH

�
1 −

ðd − 2Þ2Q2z2ðd−1ÞH

dðd − 1Þ
�
;

ð3:6Þ

while the chemical potential is given by

μ≡ lim
z→0

AtðzÞ ¼ Qzd−2H : ð3:7Þ

For d ¼ 2, the solution takes the following form:

ds2 ¼ 1

z2

�
−fðzÞdt2 þ dz2

fðzÞ þ dx2
�
;

fðzÞ ¼ 1 −Mz2 þQ2z2 log z; ð3:8Þ

At ¼ Q log ðzH=zÞ: ð3:9Þ
Charged solutions in d ¼ 2 (as the one above) have peculiar
properties: the fall-off of the fields is slower than the
standard case and identification of the source and the VEV
are subtle [54] (see [55] for a different proposal, based on
alternative boundary conditions). To avoid these issues we
will only focus on charged solutions in d ≥ 3 and consider
the neutral case in d ¼ 2.
It is convenient to write down the metric (3.5) in the

following form,8

fðzÞ ¼ 1 − ε

�
z
zH

�
d
þ ðε − 1Þ

�
z
zH

�
2ðd−1Þ

; ð3:10Þ

where zH denotes the position of the horizon and ε is a
constant proportional to the energy density E [48]. In this
parametrization, the temperature and chemical potential are
given by

T ¼ 2ðd − 1Þ − ðd − 2Þε
4πzH

; μ ¼ 1

zH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 1Þ
ðd − 2Þ ðε − 1Þ

s

ð3:11Þ
and can be inverted to obtain

zH ¼ 2d

4πT
h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2

2π2ab ðμ
2

T2Þ
q i ;

ε ¼ a −
2b

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2

2π2ab ðμ
2

T2Þ
q : ð3:12Þ

Here, a and b are constants that depend only on spacetime
dimensions:

a ¼ 2ðd − 1Þ
ðd − 2Þ ; b ¼ d

ðd − 2Þ : ð3:13Þ

We will also define an effective temperature TeffðT; μÞ,
which will play a crucial role:

7From here on, we will set the AdS radius to unity L ¼ 1. It can
be easily restored via dimensional analysis whenever necessary.

8Notice that (3.10) also includes the BTZ black hole, which is
found by setting d ¼ 2 and ε ¼ 1.
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Teff ≡ d
4πzH

¼ T
2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2

2π2ab

�
μ2

T2

�s �
: ð3:14Þ

From the definition, it follows that Teff interpolates between
Teff ∝ T and Teff ∝ μ as one goes from μ=T ≪ 1 to
μ=T ≫ 1, so it effectively serves as a measure of the
dominant scale in the theory. Specifically, for μ=T ≪ 1,
we have that

Teff ¼ T

�
1þ d2

8π2ab

�
μ2

T2

�
þO

�
μ4

T4

��
: ð3:15Þ

In the opposite limit, we find

Teff ¼
μdðd − 2Þ

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dðd − 1Þp �

1þ 2π

d − 2

ffiffiffiffiffiffi
a
2b

r �
T
μ

�
þO

�
T2

μ2

��
:

ð3:16Þ
Finally, we can express the various thermodynamic

quantities solely in terms of Teff and ε. For instance, the
temperature and chemical potential can be now written as

T ¼
�
2ðd − 1Þ − ðd − 2Þε

d

�
Teff ;

μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 1Þ
ðd − 2Þ ðε − 1Þ

s �
4πTeff

d

�
: ð3:17Þ

Similarly, the energy, entropy and charge densities are
given by

E ¼ ðd − 1Þε
16πGðdþ1Þ

N

�
4πTeff

d

�
d
; ð3:18Þ

s ¼ 1

4Gðdþ1Þ
N

�
4πTeff

d

�
d−1

; ð3:19Þ

and

ρ ¼ ðd − 2Þ
8πGðdþ1Þ

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 1Þ
ðd − 2Þ ðε − 1Þ

s �
4πTeff

d

�
d−1

; ð3:20Þ

respectively. Together, they satisfy the first law of thermo-
dynamics dE ¼ Tdsþ μdρ.

C. Collapsing solutions: AdS-RN-Vaidya

Time-dependent solutions to (3.3)–(3.4) describing the
formation of a charged black hole have been studied in a
number of works, e.g. [20,21]. The metric in this case is
given by the AdS-RN-Vaidya solution9

ds2 ¼ 1

z2
ð−fðz; vÞdv2 − 2dvdzþ d~x2Þ; ð3:21Þ

fðz; vÞ ¼ 1 −mðvÞzd þ ðd − 2ÞqðvÞ2
ðd − 1Þ z2ðd−1Þ; for d ≥ 3;

ð3:22Þ

and is sourced by a (dþ 1)-dimensional infalling shell of
charged null dust, Text

μν ∼ kμkν with k2 ¼ 0. The explicit
form of the vector field AμðvÞ will not play any role in our
discussion, so we will not transcribe it here. The metric
(3.21) is written in terms of Eddington-Finkelstein coor-
dinates, so that v labels ingoing null trajectories. This
variable is related to the standard t coordinate through

dv ¼ dt −
dz

fðz; vÞ : ð3:23Þ

The mass mðvÞ and charge qðvÞ are two functions that
capture the information of the black hole formation.
On physical grounds, mðvÞ and qðvÞ should interpolate
between zero in the limit v → −∞ (corresponding to pure
AdS) and a constant value in the limit v → ∞ (correspond-
ing to an RN-AdS black hole). The final values should not
give rise to a naked singularity but, other than that, the mass
and charge functions are in principle arbitrary.10

One might wonder whether such a solution could be
obtained from an actual collapse in asymptotically AdS
space, i.e. for a specific source Sext. Indeed, interesting
steps in this direction were given in [56]. In this paper, the
authors studied a collapse of a massless scalar field in the
so-called “weak field expansion.” For fast quenches, and at
the leading order in the perturbation, the solutions they
found take the form of a Vaidya geometry (3.21), with a
particular form of the metric that depends on the scalar
profile. In the dual field theory, this corresponds to a global
quench by a marginal operator, where the corresponding
coupling is the small parameter in which the perturbation is
carried out. Thus, at least in this approximation, the results
of [56] validate the phenomenological studies based on
Vaidya backgrounds from a first principle computation.
This approach was employed in [32], to the case of scalar
collapse coupled to a Maxwell field.11

Before proceeding further, let us parametrize the solution
in a slightly different way. Instead of using the functions
mðvÞ and qðvÞ we will rewrite fðz; vÞ in terms of the
apparent horizon zHðvÞ and an auxiliary function εðvÞ
according to

9The AdS-RN-Vaidya solution in d ¼ 2 have the same issues
as the static AdS-RN, hence we will only consider charged
solutions in d ≥ 3. The form of (3.22) is valid in d ¼ 2 provided
that qðvÞ ¼ 0.

10However, there are stronger constrains on mðvÞ and qðvÞ
if we want to respect strong subadditivity in the boundary
theory [21].

11It is also worth emphasizing that the thin-shell limit of the
Vaidya solution is in perfect agreement with numerical simu-
lations of scalar collapse [57,58].
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fðz; vÞ ¼ 1 − εðvÞ
�

z
zHðvÞ

�
d
þ ðεðvÞ − 1Þ

�
z

zHðvÞ
�

2ðd−1Þ
:

ð3:24Þ

This expression is the equivalent of (3.10) now in the time
dependent scenario, assuming that we upgrade T → TðvÞ
and μ → μðvÞ. Here we are defining the function TðvÞ as

TðvÞ≡ −
1

4π

d
dz

fðz; vÞ
����
zHðvÞ

¼ 2ðd − 1Þ − ðd − 2ÞεðvÞ
4πzHðvÞ

:

ð3:25Þ

However, strictly speaking, the function TðvÞ can only be
identified with the physical temperature in the limits
v → −∞ and v → ∞, which correspond to the initial
and final states, respectively. Away from these two limits,
the system is out-of-equilibrium and the thermodynamics is
not well defined. Similarly, the function μðvÞ is defined as

μðvÞ≡ 1

zHðvÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 1Þ
ðd − 2Þ ðεðvÞ − 1Þ

s
: ð3:26Þ

We can identify two special cases:
(1) Thermal quench: in this case μðvÞ ¼ 0 which

means εðvÞ ¼ 1.
(2) Extremal quench: in this case TðvÞ ¼ 0, which

implies εðvÞ ¼ 2ðd−1Þ
d−2 .12

It will also prove useful to define the function

TeffðvÞ≡ d
4πzHðvÞ

¼ TðvÞ
2

"
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2

2π2ab

�
μðvÞ2
TðvÞ2

�s #
;

ð3:27Þ

which interpolates between the initial and the final effective
temperature (3.14).

1. Instantaneous quenches: thin shell limit

We will work in the limit where the mass and charge
functions change instantaneously: mðvÞ ¼ MθðvÞ and
qðvÞ ¼ QθðvÞ, respectively. This can be achieved by
considering an infalling shell of null dust with infinitesimal
thickness, which is referred to as the thin shell limit.
Naively, one might think that a thin shell would lead to an
instantaneous thermalization of the field theory observ-
ables, since in this case TðvÞ ¼ TθðvÞ and μðvÞ ¼ μθðvÞ.
This statement is true for one-point functions of local
operators, e.g. one finds that hTμνðtÞi ∼ hTfinal

μν iθðtÞ. On the
other hand, nonlocal observables such as two-point

functions and entanglement entropies actually take finite
time before reaching equilibrium so they provide a more
complete information of the thermalization process.
In the thin-shell limit, the function fðz; vÞ acquires the

general form

fðz; vÞ ¼ 1 − θðvÞgðzÞ;

gðzÞ ¼ ε

�
z
zH

�
d
− ðε − 1Þ

�
z
zH

�
2ðd−1Þ

; ð3:28Þ

where zH and ε are related to the final temperature and
chemical potential according to (3.12). It will be useful to
expand (3.28) and define the following two kind of
quenches:
(1) Near-thermal quenches (T ≫ μ):

gðzÞ ¼
�
1þ ðd − 2Þd2μ2

16π2T2

��
4πTz
d

�
d

−
ðd − 2Þd2μ2

16π2ðd − 1ÞT2

�
4πTz
d

�
2ðd−1Þ

þO
�
μ4

T4

�
: ð3:29Þ

(2) Near-extremal quenches (T ≪ μ):

gðzÞ ¼ 2ðd − 2Þd−1
dd=2ðd − 1Þd=2−1

�
1þ 2πd1=2T

ðd − 1Þ1=2μ
�
ðμzÞd

−
ðd − 2Þ2d−3

dd−2ðd − 1Þd−1
�
1þ 4πðd − 1Þ1=2T

d1=2μ

�

× ðμzÞ2ðd−1Þ þO
�
T2

μ2

�
: ð3:30Þ

In both cases, we have only kept the leading order
corrections to the thermal and extremal quenches, respec-
tively. Physically, the main difference between these two
processes is the nature of the relevant excitations: in the first
case the evolution of the system is dominated by thermal
fluctuations, while in the second case it is driven by
quantum fluctuations.

IV. EVOLUTION OF ENTANGLEMENT ENTROPY

A. General considerations for AdS-RN-Vaidya

We are interested in computing entanglement entropy
in the boundary CFT. In the context of the AdS=CFT
correspondence, entanglement entropy of a region A is
computed by means of the Ryu-Takayanagi prescription
[59], according to which

SA ¼ 1

4Gðdþ1Þ
N

min ½AreaðΓAÞ�; ð4:1Þ
12This case is often referred to as an electromagnetic quench

[13]. For d ¼ 3, due to the electric-magnetic duality, this is
equivalent to turning on a magnetic field in the dual CFT.
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where Gðdþ1Þ
N is the bulk Newton’s constant and ΓA is a

(d − 1)-dimensional surface in the bulk such that
∂ΓA ¼ ∂A ¼ Σ. This proposal has been generalized to
time dependent backgrounds in [60]. In this case,

SA ¼ 1

4Gðdþ1Þ
N

ext½AreaðΓAÞ�; ð4:2Þ

where the condition for minimal surfaces is now replaced
by extremal surfaces.
We will compute the entanglement entropy for two

representative boundary regions:
(i) A (d − 1)-dimensional strip of width l, specified by

x≡ x1 ∈
�
−
l
2
;
l
2

�
;

xi ∈
�
−
l⊥
2
;
l⊥
2

�
; i ¼ 2;…; d − 2 ð4:3Þ

with l⊥ → ∞. The corresponding extremal surface
ΓA is invariant under translations in the transverse
directions, ~x⊥. Therefore, without loss of generality,
we can parameterize it with two functions, xðzÞ and
vðzÞ, satisfying the following boundary conditions:

xð0Þ ¼ �l
2
; vð0Þ ¼ t: ð4:4Þ

The area of this surface is given by the following
functional:

AreaðΓAÞ≡AðtÞ ¼
Z

z�

0

dzL;

L≡ AΣ

zd−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 − fðv; zÞv02 − 2v0

q
; ð4:5Þ

where AΣ ¼ 2ld−2⊥ is area of two (d − 2)-
dimensional hyperplanes. The constant z� here is
defined through xðz�Þ ¼ 0.

(ii) A (d − 1)-dimensional ball of radius R, specified by

r2 ≡X
i

x2i ≤ R: ð4:6Þ

In this case it is convenient to write the d~x2 in (3.21)
in spherical coordinates:

d~x2 ¼ dr2 þ r2dΩ2
d−2: ð4:7Þ

The corresponding extremal surface ΓA is invariant
under rotations. Therefore, without loss of generality,
we can parameterize it with two functions, rðzÞ and
vðzÞ, satisfying the following boundary conditions:

rð0Þ ¼ R; vð0Þ ¼ t: ð4:8Þ

The area of this surface is given by the following
functional:

AðtÞ ¼
Z

z�

0

dzL;

L≡ AΣrd−2

Rd−2zd−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 − fðv; zÞv02 − 2v0

q
; ð4:9Þ

where AΣ ¼ 2π
d−1
2 Rd−2=Γ½d−1

2
� is area of a (d − 2)-

dimensional spherical cap of radiusR. The constant z�
here is defined through rðz�Þ ¼ 0.

We could go on and derive the equations of motion coming
from (4.5) and (4.9). However, these equations are gen-
erally highly nonlinear so in practice one must proceed
numerically. Our goal here will be to develop perturbative
techniques in order to extract the explicit time dependence
in various regimes of interest.
Before doing so, let us discuss the thin shell regime,

where fðv; zÞ is given in terms of a step function as in
(3.28). The shell itself is located at v ¼ 0 and is moving
towards the interior of the bulk. The regions v < 0 and
v > 0 correspond to a pure AdS geometry and an AdS-RN
black hole, respectively. A pictorial representation of the
situation is given in Fig. 4. One way to proceed is to
consider the regions v < 0 and v > 0 independently and
then match the solutions across the shell, see e.g. [15,16].
However, the analytical solution for v > 0 is not known
exactly so in practice one ends up expanding the solutions
and picking up the relevant leading contributions. In
particular, the work of [15,16] focused on the limit of
large subsystems, where the main contribution comes from
the near horizon portion of the geometry. Here, we will
consider a different approximation technique that is valid in
the opposite regime, namely, for small subsystems.

B. Perturbative expansion for small subsystems

Besides the theoretical motivation presented in Sec. II,
understanding the different analytical corners of the ther-
malization process is also interesting from a phenomeno-
logical point of view. One practical motivation is to shed
light on the fast equilibration of the quark gluon plasma
(QGP), produced at ultrarelativistic heavy-ion collision
experiments such as RHIC and LHC. In [20,32], it was
noticed that in the limit of small subsystems, for near-
thermal quenches (T ≫ μ) the saturation time decreases
with increasing chemical potential and thus the systems
thermalizes faster. On the other hand, as we increase the
size of the entangling region (in comparison to 1=T) this
behavior becomes less pronounced and eventually the
saturation time starts increasing with the increase of
chemical potential indicating that different physics take
place at the two regimes of thermalization. Of course, these
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conclusions were based entirely on numerical calculations.
We would like to understand this behavior better, using an
appropriate approximation scheme.
In order to compute the leading behavior of the entan-

glement entropy we proceed in the following way. Consider
the functional L½ϕðzÞ; λ� for the extremal surfaces, where
ϕðzÞ denote collectively the set of embedding functions,
fxðzÞ; vðzÞg for the strip or frðzÞ; vðzÞg for the ball, and λ
is a dimensionless parameter in which the perturbation will
be carried out, i.e. λ ≪ 1. We can expand both L and ϕðzÞ
as follows:

L½ϕðzÞ; λ� ¼ Lð0Þ½ϕðzÞ� þ λLð1Þ½ϕðzÞ� þOðλ2Þ;
ϕðzÞ ¼ ϕð0ÞðzÞ þ λϕð1ÞðzÞ þOðλ2Þ: ð4:10Þ

In principle, the functions ϕðnÞðzÞ could be obtained by
solving the equations of motion order by order in λ.
However, these equations are, in general, highly nonlinear
so in practice it is very difficult (and in most cases
impossible) to obtain analytic results. The key observation
is that at first order in λ,13

Aon-shell½ϕðzÞ� ¼
Z

dzLð0Þ½ϕð0ÞðzÞ� þ λ

Z
dzLð1Þ½ϕð0ÞðzÞ�

þ λ

Z
dzϕð1Þ

i ðzÞ
�
d
dz

∂Lð0Þ

∂ϕi
0ðzÞ −

∂Lð0Þ

∂ϕiðzÞ
�
ϕð0Þ

þ � � � ð4:11Þ

Therefore, we only need ϕð0ÞðzÞ to obtain the first correc-
tion to the area. In our particular case, the expansion
parameter is taken to be λ ∼ ðTefflÞn (for some n > 1),
where l is the characteristic length of the entangling region.
Now, according to the UV/IR connection [62–64], the bulk
coordinate z maps into a length scale in the boundary
theory. In particular, since the extremal surface reach a
maximum depth of z�, then it is natural to assume that
l ∼ z�. On the other hand, the effective temperature is
related to the inverse of the apparent horizon Teff ∼ 1=zH

so, from the bulk perspective, having Teffl ≪ 1 is equiv-
alent to z�=zH ≪ 1. Fortunately, in order to study this limit
we just need the near boundary region, which is nothing but
AdS plus small corrections. In the exact limit λ → 0 we
expect to recover the embedding in pure AdS, which is
known analytically.

C. Explicit computation at leading order

1. The strip

Let us now make the above derivation more explicit.
Since z� is actually the upper limit of integration
in (4.11), we can first change to a new radial coordinate
y ¼ z=z� ∈ ½0; 1�. The combination z�=zH appears only in
fðv; zÞ, which can now be expanded as

fðv; yÞ ¼ 1 − θðvÞεyd
�
z�
zH

�
d
þO

�
z�
zH

�
2ðd−1Þ

: ð4:12Þ

At zeroth order in z�=zH, we get fðv; zÞ ¼ 1 and the
spacetime is pure AdS, as expected. The leading correction
is of order ðz�=zHÞd so in the field theory we expect
corrections in λ ∼ ðTefflÞd. Expanding the area functional
for the strip (4.5), and going back to the original z variable,
it follows that

Lð0Þ ¼ AΣ

zd−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 − v02 − 2v0

p
;

Lð1Þ ¼ εAΣ

2zdH

zv02θðvÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 − v02 − 2v0

p : ð4:13Þ

We also need the embedding functions at zeroth order
fxðzÞ; vðzÞg. For fðv; zÞ ¼ 1 the spacetime is static so all
extremal surfaces lie on a constant-t slice, tðzÞ ¼ t.
Equation (3.23) then yields

vðzÞ ¼ t − z: ð4:14Þ

Plugging (4.14) back into Lð0Þ, we obtain the standard
area functional in empty AdS, which has the known
solution [65]

(a) (b)

FIG. 4. Extremal area surfaces in a thin shell Vaidya geometry for two different geometries: (a) the strip and (b) the ball. The shell
(depicted in red) moves at the speed of light and eventually collapses into a black hole. The entanglement entropy of region A grows as
time evolves until the corresponding extremal surface ΓA grazes the shell at v ¼ 0. From this point on the whole surface lies entirely in
the AdS-RN portion of the geometry so the entanglement entropy saturates to its final value.

13To our knowledge, this observation was first made in [61].
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xðzÞ ¼ l
2
−
z�
d

�
z
z�

�
d

× 2F1

�
1

2
;

d
2ðd − 1Þ ;

3d − 2

2ðd − 1Þ ;
�
z
z�

�
2ðd−1Þ�

;

ð4:15Þ

with

l ¼
2
ffiffiffi
π

p
Γ½ d

2ðd−1Þ�z�
Γ½ 1

2ðd−1Þ�
: ð4:16Þ

The zeroth-order contribution to the area is time-indepen-
dent and includes all UV divergences. Here we are
interested in the time-dependent part only, so we will focus
on the quantity

ΔSAðtÞ ¼
ΔAðtÞ
4Gðdþ1Þ

N

¼ 1

4Gðdþ1Þ
N

Z
dzLð1Þ½ϕð0ÞðzÞ� þ � � � ;

ð4:17Þ
where ΔAðtÞ≡AðtÞ −AAdS and the dots denote higher-
order terms in λ.14 Note that with this subtraction ΔSAðtÞ
naturally starts from zero in the infinite past. Evaluating the
leading-order term of (4.17) on shell leads to

ΔSAðtÞ ¼
εAΣ

8Gðdþ1Þ
N zdH

Z
z�

0

dzθðt − zÞz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðz=z�Þ2ðd−1Þ

q
:

ð4:18Þ
In order to evaluate this integral, it is convenient to define a
new variable ξ ¼ t − z. With this substitution, the integral
in (4.18) becomes

I ¼
Z

t

t−z�
dξθðξÞðt − ξÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ½ðt − ξÞ=z��2ðd−1Þ

q
: ð4:19Þ

Let us consider the following three cases, (i) t < 0,
(ii) 0 < t < z� and (iii) z� < t:

(i) Since both limits are negative and θðξ < 0Þ ¼ 0,
then

I ¼ 0: ð4:20Þ

(ii) The lower limit is negative so we can replace it by
zero:

I ¼
Z

t

0

dξðt − ζÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ½ðt − ξÞ=z��2ðd−1Þ

q

¼
Z

t

0

dzz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðz=z�Þ2ðd−1Þ

q
; ð4:21Þ

¼ t2

dþ 1

( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
t
z�

�
2ðd−1Þ

s

þ d − 1

2 2F1

�
1

2
;

1

d − 1
;

d
d − 1

;

�
t
z�

�
2ðd−1Þ�)

:

ð4:22Þ

(iii) Since both limits are positive and θðξ > 0Þ ¼ 1,
we get:

I ¼
Z

z�

0

dzz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðz=z�Þ2ðd−1Þ

q
¼

ffiffiffi
π

p
Γ½ 1

d−1�z2�
2ðdþ 1ÞΓ½ dþ1

2ðd−1Þ�
:

ð4:23Þ

Notice that this last expression is independent of time, so
in this approximation the saturation time is given by

tsat ¼ z� ¼
Γ½ 1

2ðd−1Þ�l
2
ffiffiffi
π

p
Γ½ d

2ðd−1Þ�
: ð4:24Þ

Altogether, the leading correction to the entanglement
entropy can be expressed as

ΔSAðtÞ ¼ ΔSeqf½θðtÞ − θðt − tsatÞ�F ðt=tsatÞ þ θðt − tsatÞg;
ð4:25Þ

where ΔSeq is the final value of the entropy,

ΔSeq ¼
ffiffiffi
π

p
Γ½ 1

d−1�z2�AΣε

16ðdþ 1ÞΓ½ dþ1
2ðd−1Þ�zdHGðdþ1Þ

N

; ð4:26Þ

and F is given by:

F ðxÞ ¼
2Γ½ dþ1

2ðd−1Þ�x2ffiffiffi
π

p
Γ½ 1

d−1�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2ðd−1Þ
p

þ d − 1

2 2F1

�
1

2
;

1

d − 1
;

d
d − 1

; x2ðd−1Þ
��

: ð4:27Þ

By definition the function F satisfies that F ð0Þ ¼ 0 and
F ð1Þ ¼ 1, so in this range its average rate of change is
hdF ðxÞ=dxi ¼ 1. With this result, we can now compute the
instantaneous rate of entanglement growth,15

14In Appendix Awe compute the first sub-leading term in this
expansion.

15A comment on the normalization of (4.28) is in order: similar
to (2.10), here seq ¼ ΔSeq=VA refers to the equilibrium entan-
glement entropy (rather than thermal entropy) after the quench in
a volume VA. For small subsystems, the entanglement entropy of
excited states obeys a first-law like relation ΔEA ¼ TentΔSA,
where Tent is the so-called entanglement temperature [50,51].
Therefore, in this limit seq ¼ Seq=VA ¼ T−1

entE, where E is the
energy density of the final state.
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RðtÞ ¼ 1

seqAΣ

dðΔSAÞ
dt

¼ VA

AΣtsat

dF
dx

¼
2ðdþ 1ÞΓ½ d

2ðd−1Þ�Γ½ dþ1
2ðd−1Þ�

Γ½ 1
d−1�Γ½ 1

2ðd−1Þ�
x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2ðd−1Þ

p
: ð4:28Þ

where x ¼ t=tsat and the time-averaged entanglement
velocity:

vavgE ¼ hRðtÞi ¼ VA

AΣtsat
¼

ffiffiffi
π

p
Γ½ d

2ðd−1Þ�
Γ½ 1

2ðd−1Þ�

¼

8>>><
>>>:

1; d ¼ 2;

0.5991; d ¼ 3;

0.4312; d ¼ 4;

0; d → ∞:

ð4:29Þ

In the above, we have used the expressions for the strip,
VA ¼ ld−2⊥ l and AΣ ¼ 2ld−2⊥ .
Before analyzing in detail the different regimes of (4.25),

let us first briefly comment on some generalities. In
Fig. 5(a), we plot the evolution of entanglement entropy
for some sample parameters. In general, we observe a
qualitatively similar behavior for the entanglement entropy
as the numerical results of [20,32]. However, at this level of
approximation tsat ∼ l so it is clear that our result does not
capture the nonmonotonic behavior with respect to μ=T
obtained in these references. In particular, for our plots we
have chosen to keep lTeff ¼ fixed so it is clear that the
change in saturation time is entirely due to the variation of
Teff as we increase μ=T, which is always monotonic.
We will come back to this point in Sec. V C, where we
explicitly compute the leading corrections to the tsat. In
particular, wewill show that the first correction is enough to
observe the expected behavior reported in [20,32]. In (b)
we plot the instantaneous rate of growth (4.28) as a function
of x ¼ t=tsat. For d ¼ 2 we get exactly the same curve as in
Fig. 3, with a maximum of max½RðtÞ� ¼ 3=2, so we can
view it as a consistency check of our perturbative method.
For d ≥ 3 the maximum rate is always below the speed of
light and decreases monotonically as we increase the
number of dimensions. We will discuss this point in more
detail in Sec. V B.

2. The ball

The computation for the ball is very similar to the case
of the strip, so we will only sketch the main few steps.
Expanding the area functional (4.9) it follows that

Lð0Þ ¼ AΣrd−2

Rd−2zd−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 − v02 − 2v0

p
;

Lð1Þ ¼ εAΣ

2Rd−2zdH

zrd−2v02θðvÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 − v02 − 2v0

p : ð4:30Þ

We also need the embedding functions frðzÞ; vðzÞg in pure
AdS. For the case of the ball vðzÞ is still given by (4.14) but
rðzÞ now takes the form of a spherical cap [65]

rðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2� − z2

q
; R ¼ z�: ð4:31Þ

Again, we are interested in the difference of entanglement
with respect to pure AdS, so we focus on the Lð1Þ piece
only. Evaluating this term on shell leads to:

ΔSAðtÞ ¼
εAΣzd−2�

8Gðdþ1Þ
N Rd−2zdH

Z
z�

0

dzθðt − zÞz½1 − ðz=z�Þ2�d−12 ;

ð4:32Þ

which resembles (4.18) and can be evaluated in a similar
way. The upshot of the calculation is

ΔSAðtÞ ¼ ΔSeqf½θðtÞ − θðt − tsatÞ�Gðt=tsatÞ þ θðt − tsatÞg;
ð4:33Þ

where

tsat ¼ z� ¼ R; ð4:34Þ

ΔSeq ¼
R2AΣε

8ðdþ 1ÞzdHGðdþ1Þ
N

; ð4:35Þ

and G is given by:

GðxÞ ¼ 1 − ð1 − x2Þdþ1
2 : ð4:36Þ

We can also compute the instantaneous rate of change of
the entanglement growth,

RðtÞ ¼ VA

AΣtsat

dF
dx

¼ ðdþ 1Þ
ðd − 1Þ xð1 − x2Þd−12 : ð4:37Þ

where x ¼ t=tsat and the time-averaged entanglement
velocity:

vavgE ¼ VA

AΣtsat
¼ 1

d − 1
¼

8>>><
>>>:

1; d ¼ 2;
1
2
; d ¼ 3;

1
3
; d ¼ 4;

0; d → ∞:

ð4:38Þ

In the above, we have used the expressions for the ball,
VA ¼ 2π

d−1
2 Rd−1=Γ½d−1

2
�ðd − 1Þ and AΣ ¼ 2π

d−1
2 Rd−2=Γ½d−1

2
�.

The behavior of these observables is qualitatively similar
to the case of the strip. In Fig. 6, we plot the entanglement
growth and the instantaneous rate of change for some sample
parameters. For the entanglement growth curves in (a) we
have keep RTeff fixed so the saturation time is monotonic in
μ=T. We will compute the first correction to tsat in Sec. V C.
From the curves in (b) we observe that: (i) the instantaneous
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rate of growth does not exceed the speed of light for d ≥ 3
and (ii) R → 0 as x → 1 so the approach to saturation is
continuous. All these behaviors are likely to hold for more
general entangling surfaces.

V. REGIMES OF THERMALIZATION

Let us now analyze in more detail our results for the strip
(4.25) and the ball (4.33) specializing to the different
regimes of thermalization. Specifically, we will focus on
three distinct regimes: the initial quadratic growth, an
intermediate quasilinear growth and the saturation.

A. Initial quadratic growth

The initial growth regime is dominated by the behavior
of F ðxÞ or GðxÞ for x ≪ 1. Expanding these functions
we get

F ðxÞ ¼
ðdþ 1ÞΓ½ dþ1

2ðd−1Þ�ffiffiffi
π

p
Γ½ 1

d−1�
x2 þOðx2dÞ; ð5:1Þ

and

GðxÞ ¼ 1

2
ðdþ 1Þx2 þOðx4Þ; ð5:2Þ

respectively. In both cases, the early time growth of the
entanglement is given by

ΔSAðtÞ ¼
AΣε

16zdHG
ðdþ1Þ
N

t2 þ � � � : ð5:3Þ

The fact that Eq. (5.3) applies for both, the strip and the
ball, suggests a universal behavior at early times; we will
comment more on this below. We can also express this
result in terms of the physical data T and μ. The general
expression is a little cumbersome so, for the sake of
simplicity, we will only consider the following two limits:
(1) Near-thermal quenches (T ≫ μ):

ΔSAðtÞ ¼
AΣ

16Gðdþ1Þ
N

�
4πT
d

�
d

×

�
1þ d2ðd − 2Þ

16π2

�
μ

T

�
2

þ � � �
�
t2 þ � � � :

ð5:4Þ
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FIG. 5. (a) Evolution of entanglement entropy for a strip in d ¼ 3 and μ=T ¼ f0; 2; 5; 10g from bottom to top, respectively. For the

plots we have fixed lTeff ¼ 10−1 so that the approximation is valid and we have set the overall factor AΣ=4G
ðdþ1Þ
N ¼ 1. According to

(4.24), the saturation time scales as tsat ∼ l which, for our particular choice of parameters, translates into tsat ∼ 1=Teff . Both, the
differences in final entropies and saturation times become more pronounced as we increase the number of dimensions, but the behavior
is qualitatively similar. In (b) we plot the instantaneous rate of growth forRðxÞ for d ¼ f2; 3; 4; 5g from top to bottom, respectively. We
observe that the maximum rate growth only exceed the speed of light for d ¼ 2, and decreases as we increase the number of dimensions.
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FIG. 6. (a) Evolution of entanglement entropy for a ball in d ¼ 3 and μ=T ¼ f0; 2; 5; 10g from bottom to top, respectively. For the

plots we have set RTeff ¼ 10−1 and AΣ=4G
ðdþ1Þ
N ¼ 1. In (b) we plot the instantaneous rate of growth forRðxÞ for d ¼ f2; 3; 4; 5g from

top to bottom, respectively. Again, the maximum rate growth only exceed the speed of light for d ¼ 2.
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(2) Near-extremal quenches (T ≪ μ):

ΔSAðtÞ ¼
AΣ

16Gðdþ1Þ
N

2ðd − 2Þd−1μd
dd=2ðd − 1Þd=2−1

×

�
1þ 2πd1=2

ðd − 1Þ1=2
T
μ
þ � � �

�
t2 þ � � � :

ð5:5Þ

This last result includes the extremal case, for
which T ¼ 0.

We can also verify that our results agree with the ones
presented in [15,16] for large subsystems. This is another
clear indication that in the early growth regime the
evolution of entanglement is independent of the size
and shape of the entangling region as long as t ≪ tsat.
Furthermore, the absence of additional geometric quantities
such as l or R in the expression (5.3) (besides AΣ itself)
implies that the quadratic growth behaviorΔSAðtÞ ∼ t2 may
be entirely fixed by symmetries (more specifically, con-
formal symmetry). We will confirm these claims explicitly
in Sec. VI A.

B. Quasilinear growth

For large regions, entanglement entropy exhibits a
universal intermediate regime [15,16]

ΔSAðtÞ ¼ vEseqAΣt; tsat ≫ t ≫ tloc; ð5:6Þ

where seq is the entropy density of the final state,
seq ¼ ΔSeq=VA, and vE is the so-called “tsunami velocity.”
The local equilibrium scale tloc is given by the position
of the horizon tloc ∼ zH, which can be rewritten as
tloc ∼ 1=Teff . Of course, in this limit, the physics differs
drastically from the regime we are focusing on: entangle-
ment entropy approaches the thermodynamic entropy and
the main contribution to the extremal surfaces comes from
the interior of the bulk geometry. Another crucial difference
is that for small subsystems we cannot really talk about
“local equilibrium” before the entanglement entropy
reaches saturation. We will, nevertheless, attempt to make
a comparison between the two regimes and point out the
main similarities and differences.
Let us begin by reviewing more explicitly the results of

[15,16] for the charged case. In these papers the authors
found that for large subsystems

vE ¼
ffiffiffiffiffiffiffiffiffiffiffi
d

d − 2

r ��
1 −

du
2ðd − 1Þ

�2ðd−1Þ
d

− ð1 − uÞ
�1

2

;

u≡ 4πzHT
d

¼ T
Teff

: ð5:7Þ

The parameter u lies in the range 0 ≤ u ≤ 1 and decreases
monotonically from its Schwarzschild value u ¼ 1 to

u ¼ 0, as the μ=T is increased from zero to infinity.
Given the dependence of (5.7) on u this implies that
turning on a nonzero chemical potential always slows
down the evolution. Let us study more closely the
small-μ=T and large-μ=T limits of (5.7). For small μ=T
we get that, at leading order

vE ¼
ffiffiffiffiffiffiffiffiffiffiffi
d

d − 2

r �
d − 2

2ðd − 1Þ
�d−1

d ¼

8>>><
>>>:

1; d ¼ 2;

0.6874; d ¼ 3;

0.6204; d ¼ 4;

1=2; d → ∞;

ð5:8Þ

while for large μ=T (and d ≥ 3) we get

vE ¼ 2π

d − 2

�
T
μ

�
→ 0: ð5:9Þ

The fact that vE → 0 when the quench approaches
extremality implies that the linear growth regime no longer
exists. This was indeed observed numerically in [13]. In
this case, the linear growth regime is replaced by a
logarithmic growth regime.
Let us now go back to the case of small subsystems. Our

results for the strip (4.25) and the ball (4.33) indicate that in
this case the evolution is nonuniversal. More precisely,
since the normalized rate of change RðtÞ is different in
these two cases, we can conclude that the equilibration
process for small subsystems strongly depends on the shape
of the entangling region. Moreover, since the growth of
entanglement is not strictly linear in either case so we
cannot define a velocity in the sense of (5.6). Instead, we
will define a quasilinear regime based on the maximum rate
of growth of the entanglement entropy:

vmax
E ≡max½RðtÞ� ¼ 1

seqAΣ

dðΔSAÞ
dt

����
t¼tmax

: ð5:10Þ

A few comments are in order. First note that this would be
natural way to define an analogue of the tsunami velocity
vE since at t ¼ tmax

ΔSAðtÞ − ΔSAðtmaxÞ ¼ vmax
E seqAΣðt − tmaxÞ þOðt − tmaxÞ3;

ð5:11Þ

so the quadratic corrections to the rate of change of the
entanglement entropy vanish. However, since this linear
behavior is instantaneous we argue that the heuristic
picture for the entanglement growth in terms of a wave
propagating inwards from the boundary Σ does not hold in
this regime. This is indeed expected, since for small
subsystems the spread of entanglement takes place at
timescales that are shorter in comparison to the local
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equilibration scale tloc. Second, the value of vmax
E generally

depends on the shape of the entangling region, so the
Eq. (5.11) is nonuniversal. For the strip, and at leading
order in lTeff , we find that

vmax
E ¼ l

2tsat

dF
dx

����
x¼xmax

; ð5:12Þ

where F ðxÞ is given in (4.27). The first derivative of F is
given by

dF
dx

¼
2ðdþ 1ÞΓ½ dþ1

2ðd−1Þ�ffiffiffi
π

p
Γ½ 1

d−1�
x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2ðd−1Þ

p
: ð5:13Þ

It first increases linearly, reach a maximum at some xmax
and then decreases all the way to zero, at x ¼ 1.
The maximum is attained at:

d2F
dx2

¼ 0 → xmax ¼
1

d
1

2ðd−1Þ
; ð5:14Þ

and is given by

dF
dx

����
x¼xmax

¼
4ðd − 1Þ3=2Γ½ 3d−1

2ðd−1Þ�ffiffiffi
π

p
d

d
2ðd−1ÞΓ½ 1

d−1�
: ð5:15Þ

The expression for tsat is given in (4.24). Putting all
together we find that for the strip

vmax
E ¼

4ðd − 1Þ3=2Γ½ 3d−1
2ðd−1Þ�Γ½ d

2ðd−1Þ�
d

d
2ðd−1ÞΓ½ 1

2ðd−1Þ�Γ½ 1
d−1�

¼

8>>><
>>>:

3
2
; d ¼ 2;

0.9464; d ¼ 3;

0.7046; d ¼ 4;

π=d → 0; d → ∞:

ð5:16Þ

We can follow similar same steps for the case of the ball. At
the end of the computation, we find that in this case

vmax
E ¼ ð1þ dÞðd − 1Þd−32

dd=2

¼

8>>><
>>>:

3
2
; d ¼ 2;

0.7698; d ¼ 3;

0.5413; d ¼ 4;

1=
ffiffiffiffiffi
ed

p
→ 0; d → ∞;

ð5:17Þ

giving a lower maximum rate in comparison to the strip.
On the other hand, it is interesting that for small subsystems
the maximum velocity vmax

E (and more generally, the
instantaneous rate RðtÞ) is independent of T and μ,

contrary to the large interval result (5.7). Thus, we can
say that vmax

E is independent of the state, whereas vE is
independent of the entangling region. Comparing the two
quantities, we can also observe that the maximum rate of
change of entanglement entropy can be faster in the UV for
d ≤ 4 (d ≤ 3 for the ball) as long as μ=T ≪ 1, but it is
generally slower in higher dimensions. For μ=T ≫ 1, the
maximum rate is always faster in the UV.
It is remarkable that vmax

E can in some cases exceed the
value of the tsunami velocity vE, which had been previously
proposed as an upper bound for the rate of change of the
entanglement entropy [15,16]. However, we should bear in
mind that the physics in these two scenarios is completely
different. Specifically, the bound proposed in [15,16] seems
to apply specifically to the growth of entanglement after
local equilibration has been achieved, in the strict limit of
large subsystems. More recently, the authors of [45,46]
showed that vE is actually bounded by the speed of light,
i.e. vE ≤ 1, even though vE is not actually a physical
velocity. Here, we argue that vmax

E (and more generally
RðtÞ) is not constrained by this bound, even though for
holographic models the violation only appears for (1þ 1)-
dimensional theories. On the other hand, it seems reason-
able to assume that for general d, the total equilibration
time tsat must be at least the light-crossing time of region A,
so the average entanglement velocity vavgE must be bounded
by the speed of light, vavgE ≤ 1. For the case of small
subsystems this bound holds for both, the strip (4.29) and
the ball (4.38). For large subsystems it is valid in general,
given that in this limit vE ≤ vavgE ≤ 1 (e.g. for a strip
vE ¼ vavgE and the inequality is saturated, but for a ball
vE < vavgE ). We believe that vavgE represents a more honest
comparison between entangling regions of different sizes.
Indeed, if we compare the results of vavgE for small
subsystems (4.29), (4.38) with those for large subsystems
(5.8), (5.9) we can reach a more universal conclusion for
the process of thermalization: in average the UV degrees of
freedom equilibrate at a slower rate than the IR degrees of
freedom when the evolution is governed by thermal
fluctuations (μ=T ≪ 1) but at a faster rate if the evolution
is driven by quantum fluctuations (μ=T ≫ 1). This con-
clusion is more robust than the one reached for vmax

E
because it is independent of the number of dimensions
and the shape of the entangling region A.

C. Approach to saturation

For large subsystems, the authors of [15,16] found that
the equilibration of the entanglement entropy depends
quite generally on the shape of the entangling region,
the spacetime dimension d, and the final state. For the strip,
in particular, it was found that for general d ≥ 3 the
transition is quite abrupt: the first derivative of ΔSAðtÞ is
generally discontinuous at t ¼ tsat, in analogy to a first-
order phase transition. For small subregions, this stage can
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be studied by expanding F ðxÞ or GðxÞ around x ¼ 1. For
the strip we find that the saturation resembles that of a
continuous (second-order) phase transition with

ΔSAðtÞ − Seq ∝ ðtsat − tÞγ; γ ¼ 3

2
: ð5:18Þ

However, it differs from the mean-field behavior γ ¼ 2 of
standard thermodynamic transitions. It is worth emphasiz-
ing that the phase transition observed for large subregions is
due to an abrupt exchange of dominance of extremal
surfaces at t ¼ tsat. The origin of this feature is well
understood since the earlier numerical studies of [17,18]:
it is due to the multi-valuedness of z�ðlÞ near the saturation
time, which in turn leads to a swallow-tail behavior of the
entanglement entropy. For small regions, however, the
leading contributions come from the pure AdS embedding,
which has a unique value of z�ðlÞ, regardless of the
temporal evolution. We expect this multivaluedness to
appear at some point once we include higher-order cor-
rections in lTeff .
The case of the ball is a little more subtle. In [15,16] it

was found that, for RTeff ≫ 1, the same discontinuous
behavior also appears for d ¼ 3 as long as μ=T ≫ 1. On the
other hand, for general d ≥ 4 the approach to saturation is
continuous, and is characterized by a nontrivial scaling
exponent

ΔSAðtÞ − Seq ∝ ðtsat − tÞγ; γ ¼ dþ 1

2
: ð5:19Þ

The same exponent applies for d ¼ 2, while for d ¼ 3 and
μ=T ≪ 1 it was found that ΔSAðtÞ − Seq ∝ ðtsat − tÞ2
logðtsat − tÞ, marginally avoiding the mean-field exponent
γ ¼ 2.16 Surprisingly, for RTeff ≪ 1 we find that the
formula (5.19) applies for all values of d and μ=T!
Similar to the case of the strip, the fact that the saturation
is continuous is just a consequence of the fact that for
RTeff ≪ 1, z� is uniquely determined from the AdS
embedding, and this is true regardless of the shape of
the entangling surface. The curious feature here is the
increasing value of γ with respect to the number of
dimensions d, e.g. the second derivative ofΔSAðtÞ becomes
continuous for d ≥ 4 and so on. This behavior can already
be observed from the plots in Fig. 6(b).
Another feature of our result concerns to the saturation

time tsat itself. At the leading order of approximation, we
find that tsat ¼ z� is independent of the temperature T and
chemical potential μ. This is indeed expected because
these results have been derived with the zeroth-order
embedding, which does not contain information about
the state. However, as we will show below, the first

correction to the saturation time is enough to verify the
numerical behavior observed in [20,32].
Before doing so, let us comment on the case of large

subsystems. For the case of the strip the saturation is
discontinuous and the linear growth behavior (5.6) persists
all the way to tsat. In this case one finds that

vE ≃ VΣ

AΣtsat
¼ l

2tsat
þOðl0Þ: ð5:20Þ

Inverting Eq. (5.20) gives the following expression for the
saturation time at leading order:

tsat ¼
l
2vE

þOðl0Þ: ð5:21Þ

The fact that vE decreases monotonically in μ=T leads
always to an increase in tsat. In order to study its explicit
dependence with respect to χ ¼ μ=T, it is convenient to
define

tð0Þsat ¼ lim
χ→0

tsatðχÞ; ð5:22Þ

and normalize the result for tsat in units of tð0Þsat [20,32]. Let
us consider the small μ=T limit. In this case, we find that

tsat

tð0Þsat

¼ 1þ σðdÞ
�
μ

T

�
2

þO
�
μ

T

�
4

; ð5:23Þ

where

σðdÞ ¼ dðd − 2Þ
16π2

��
d − 2

2ðd − 1Þ
�2

d−1
− 1

�
> 0: ð5:24Þ

So, the saturation time increases with increasing μ=T, as
expected. For the case of the ball (whenever the saturation
is continuous) it is found that [15,16]

tsat ¼
R
cE

−
d − 2

4πT
logRþOðR0Þ; cE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πzHT
d − 1

r
:

ð5:25Þ

At leading order, we find a similar expression as in (5.23)
(with a subleading term of order OðlogR=RÞ → 0), where
in this case

σðdÞ ¼ dðd − 2Þ2
32ðd − 1Þπ2 > 0: ð5:26Þ

Again, the saturation time is found to increase with
increasing chemical potential.
Let us now go back to the case of small subsystems.

In the thin shell approximation, the saturation time tsat is
given by the time at which the vacuum extremal surface

16For the cases in which the saturation is continuous, the
authors of [15,16] referred to the stage prior to saturation as the
“memory loss” regime.
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grazes the shell at v ¼ 0 (see Fig. 4). This observation is
intuitive: for t > tsat the whole extremal surface lies entirely
in the portion of the geometry described by an AdS-RN
black hole and, therefore, the entanglement entropy has
reached equilibrium. At the leading order in lTeff (or
RTeff ), we have that v ¼ t − z so v ¼ 0 implies t ¼ z.
This is the origin of the θðt − zÞ function appearing in
(4.18) and (4.32). The integrals are then evaluated from 0 to
z� so at the end of the computation one naturally obtains
tsat ¼ z�, independent of T or μ. There are two corrections
that have to be taken into account at the next order. One one
hand, the translation between the Eddington-Finkelstein
coordinate v, the boundary time t and z receives corrections

of order Oðzdþ1Þ. These corrections can be directly
computed from (3.23). On the other hand, z� as a function
of l (or R) is modified as one consider corrections to the
embedding above pure AdS. The full computation is
explicitly carried out in Appendix B. For the strip, the
final result reads17:

tsat

tð0Þsat

¼ 1 − ðκðdÞðTlÞd þOðTlÞ2ðd−1ÞÞ
�
μ

T

�
2

þO
�
μ

T

�
4

;

ð5:27Þ

where

κðdÞ ¼
ðd − 2Þ2d−5πðd−4Þ=2Γ½ 1

2ðd−1Þ�dðΓ½ 1
2ðd−1Þ�Γ½ d

d−1� − 2Γ½ dþ1
2ðd−1Þ�Γ½ d

2ðd−1Þ�Þ
ðdþ 1Þdd−2Γ½ d

2ðd−1Þ�dþ1Γ½ dþ1
2ðd−1Þ�

> 0: ð5:28Þ

Together with Eq. (5.23), this result confirms the numerical
findings of [20,32], namely that for small regions and small
values of μ=T the saturation time decreases as we increase
μ=T while, for large intervals, the saturation is delayed as
we increase μ=T.

VI. OBSERVATIONS FOR ENTANGLING
SURFACES OF ARBITRARY SIZE

A. Universality of the quadratic growth regime

The fact that the initial growth regime (5.3) shows no
dependence with the size or shape of the entangling region
suggests that this behavior may be universal. Via dimen-
sional analysis, we can infer that in a quadratic growth
regime, the coefficient of the t2 must be given by the area of
Σ, AΣ, times a dimensionless coefficient that may depend
on the shape of Σ. It is easy to see that this coefficient is
indeed independent of Σ. For t ≪ tsat the shell is very close
to the boundary so the relevant contribution comes from the
near boundary portion of the geometry. Since, all extremal
surfaces intersect the boundary of AdS at right angle
(regardless of the shape of Σ), the leading contribution
at early times for the change in ΔAðtÞ is simply AΣ × zcðtÞ
(where zcðtÞ is the position of the shell at time t) times a
conformal factor that may only depend on zcðtÞ. This
proves that AΣ is the only dependence of Σ in the early time
regime. In addition, since the leading correction from AdS
near the boundary has a factor of z−dH ∼ Teff

d ∼ E then, by
dimensional analysis, it follows that the time dependence in
this regime must be t2 (see Fig. 7).
A direct calculation of the early-time growth for a

general Σ was done in [16] and the final formula can be
written in terms of the energy density as follows:

ΔSAðtÞ ¼
π

d − 1
EAΣt2 þ � � � : ð6:1Þ

Indeed, we can verify that with our formula for the energy
density (3.18) and the high and low effective temperature
expansions (3.15)–(3.16) we can recover the appropriate
early time growth for near-thermal and near-extremal
quenches (5.4)–(5.5).

B. Bound on the saturation time

In this section, we will provide a bound on tsat in
different corners of the space of parameters, specializing
to the case of the strip. In order to obtain the bound, we
compute the time t�sat at which there is a solution which lies
fully in the back hole region. If the saturation is continuous
then t�sat ¼ tsat but for discontinuous saturation one finds
that t�sat ≤ tsat [15,16], so it provides a lower bound. From
Eq. (3.23), it follows that

t�sat ¼
Z

z�

0

dz
fðzÞ : ð6:2Þ

We also need the function z�ðlÞ. Fortunately, at t ¼ t�sat the
entire surface lies entirely in a static AdS-RN background,
so the problem is time-independent. In order to obtain
z�ðlÞ, we use the fact that for the strip we have a
conservation equation (since the area functional does not
depend explicitly on x):

x0ðzÞ ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞ½ðz�=zÞ2ðd−1Þ − 1�

q : ð6:3Þ

Therefore, from the boundary condition (4.4) it follows
that18

17In Appendix B we discuss some subtleties in the computa-
tion for case of the ball.

18For the ball we do not have a conservation equation, so we
cannot use the same methodology.
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l ¼ 2

Z
z�

0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞ½ðz�=zÞ2ðd−1Þ − 1�

q : ð6:4Þ

This last equation must be solved and inverted to obtain
z�ðlÞ. Now, following [66], we can formally write (6.2) as
double sum:

t�sat ¼ z�
X∞
n¼0

Xn
k¼0

ð−1Þkεn−kðε − 1ÞkΓ½nþ 1�
ð1þ ndþ ðd − 2ÞkÞΓ½kþ 1�Γ½n − kþ 1�

×

�
z�
zH

�
ndþkðd−2Þ

: ð6:5Þ

Similarly from [48], we can write (6.4) as

l ¼ z�
d − 1

X∞
n¼0

Xn
k¼0

εn−kðε − 1ÞkΓ½2nþ1
2
�Γ½dðnþkþ1Þ−2k

2ðd−1Þ �
Γ½1þ n − k�Γ½kþ 1�Γ½dðnþkþ2Þ−2k−1

2ðd−1Þ �

×

�
z�
zH

�
ndþkðd−2Þ

: ð6:6Þ

In the following we will use these expansion to compute the
saturation time in various regimes.

C. Small subsystems

For lTeff ≪ 1 we expect continuous saturation. In this
case

t�sat ¼ tsat ¼ z�

�
1þ ε

dþ 1

�
z�
zH

�
d
þO

�
z�
zH

�
2ðd−1Þ�

;

ð6:7Þ
while

l ¼
2
ffiffiffi
π

p
Γ½ d

2ðd−1Þ�z�
Γ½ 1

2ðd−1Þ�
�
1þ

εΓ½ d
d−1�Γ½ 1

2ðd−1Þ�
2ðdþ 1ÞΓ½ dþ1

2ðd−1Þ�Γ½ d
2ðd−1Þ�

×

�
z�
zH

�
d
þO

�
z�
zH

�
2ðd−1Þ�

: ð6:8Þ

This last equation can be inverted perturbatively to
obtain

z� ¼
Γ½ 1

2ðd−1Þ�l
2
ffiffiffi
π

p
Γ½ d

2ðd−1Þ�

×

�
1 −

εΓ½ d
d−1�Γ½ 1

2ðd−1Þ�dþ1

2dþ1ðdþ 1Þπd=2Γ½ dþ1
2ðd−1Þ�Γ½ d

2ðd−1Þ�dþ1

�
l
zH

�
d

þO
�
l
zH

�
2ðd−1Þ�

: ð6:9Þ

Therefore, at the leading order, we obtain

tsat ¼
lΓ½ 1

2ðd−1Þ�
2
ffiffiffi
π

p
Γ½ d

2ðd−1Þ�
½1þ ετ1ðdÞðlTeffÞd þOðlTeffÞ2ðd−1Þ�;

ð6:10Þ
where, τ1ðdÞ is the following numerical factor:

τ1ðdÞ ¼
2dπd=2Γ½ 1

2ðd−1Þ�d
ddðdþ 1ÞΓ½ d

2ðd−1Þ�d

×

�
1 −

2
1

d−1−1Γ½ 1
2ðd−1Þ�Γ½ 2d−12ðd−1Þ�ffiffiffi
π

p
Γ½ dþ1

2ðd−1Þ�
�

< 0: ð6:11Þ

Let us now consider different regimes of the above
saturation time. In the limit μ=T ≪ 1 we obtain

tsat ¼
lΓ½ 1

2ðd−1Þ�
2
ffiffiffi
π

p
Γ½ d

2ðd−1Þ�
�
1þ τ1ðdÞðlTÞd

×

�
1þ d2ðd − 2Þ

16π2

�
μ

T

�
2
�
þ � � �

�
; ð6:12Þ

which can be rewritten as

tsat ¼ tð0Þsat

�
1 − κðdÞðlTÞd

�
μ

T

�
2

þ � � �
�
;

tð0Þsat ≡
lΓ½ 1

2ðd−1Þ�
2
ffiffiffi
π

p
Γ½ d

2ðd−1Þ�
; ð6:13Þ

The constant κðdÞ is given in (5.28) and is positive.
Therefore, the saturation time decreases with the increase
of chemical potential.

FIG. 7. Computation of the entanglement entropy growth at early times. All extremal surfaces intersect the boundary of AdS at right
angle (regardless of the size or shape of Σ), so the leading contribution is simply AΣ × zcðtÞ (where zcðtÞ is the position of the shell at
time t) times a conformal factor that may only depend on zcðtÞ. The leading correction to the geometry near the boundary comes with a
factor of z−dH ∼ Teff

d ∼ E. Via dimensional analysis, this fixes the initial time dependence to be t2.
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A similar result can also be obtained in the limit
μ=T ≫ 1. From (6.10) it follows that, for T ¼ 0:

~tð0Þsat ¼
lΓ½ 1

2ðd−1Þ�
2
ffiffiffi
π

p
Γ½ d

2ðd−1Þ�

×

�
1þ 2ðd − 1Þτ1ðdÞ

ðd − 2Þ
�
d1=2ðd − 2Þ
4πðd − 1Þ1=2

�d

ðμlÞd
�
:

ð6:14Þ

Now, for μ=T ≫ 1 we obtain

tsat ¼ ~tð0Þsat

�
1 −

τ1ðdÞ
2ðd − 1Þ

�
d1=2ðd − 2Þ
4πðd − 1Þ1=2

�d−1

× ðμlÞd
�
T
μ

�
þ � � �

�
: ð6:15Þ

Since τ1ðdÞ is negative, the saturation time increases with
the increase of temperature.

D. Large subsystems

The limit lTeff ≫ 1 corresponds to z� → zH. In this case
the saturation can be discontinuous in some cases so t�sat
provides a lower bound for the actual saturation time tsat
[15,16]. It is easy to check that in this limit both l and
t�sat diverge. However, we can define a combination of l
and t�sat which is finite as we let z� → zH:

t�sat − l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 1Þ
2ðd − 2Þδ

s

¼
Z

z�

0

dz

"
1

fðzÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd − 1Þ
ðd − 2Þδ

s
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðzÞ½ðz�=zÞ2ðd−1Þ − 1�
q

#
;

ð6:16Þ

where

δ ¼ 2ðd − 1Þ
ðd − 2Þ − ε: ð6:17Þ

Before we proceed, a few comments are in order: the right-
hand side of (6.16) is finite in the limit z� → zH and hence
we can write

t�sat ¼ l

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 1Þ
2ðd − 2Þδ

s
þ τ2ðd; δÞd

4πTeffl

!
; ð6:18Þ

where,

τ2ðd; δÞ ¼
Z

1

0

dx

"
1

fðxzHÞ

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd − 1Þ
ðd − 2Þδ

s
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðxzHÞ½ð1=xÞ2ðd−1Þ − 1�
q

#
:

ð6:19Þ

Secondly, the limit δ → 0 (or T ¼ 0) appears to be singular.
Indeed, in this case t�sat is no longer linear in l and is
expected to grow at a faster rate [13]; we will consider this
case separately. Before doing so, let us consider the case
μ=T ≪ 1. For μ ¼ 0 we have

t�ð0Þsat ¼
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

2d

r
l
�
1þO

�
1

lT

��
: ð6:20Þ

Now, for μ=T ≪ 1 we obtain

t�sat ¼ t�ð0Þsat

�
1þ dðd − 2Þ2

32π2ðd − 1Þ
�
μ

T

�
2

þO
�

1

lT

�
þO

�
μ

T

�
4
�
;

ð6:21Þ

which increases with the chemical potential. Notice that
(6.21) is the result that we obtained for the case of the ball
(5.26). This suggests that (6.21) gives the actual saturation
time for all shapes, provided that the saturation is continu-
ous.19 Also note that Eq. (6.21) is different from the actual
saturation time (5.23), which tells us that the saturation is
discontinuous for strips of length l ≫ 1=Teff .
Finally, let us consider the T ¼ 0 case. Assuming that

z� ¼ zHð1 − ϵÞ with ϵ ≪ 1, it is easy to show that in this
case

t�sat ¼
d

4πTeff

�
1

dðd − 1Þϵþ
ð3d − 5Þ log ϵþ 3

3ð1 − dÞd þ τ3ðdÞ
�
;

ð6:22Þ

where τ3ðdÞ is the finite integral

τ3ðdÞ ¼
Z

1

0

dx

�
1

fðxzHÞ
þ 3dðx − 1Þ − 5xþ 2

3ðd − 1Þdðx − 1Þ2
�
δ¼0

:

ð6:23Þ

Similarly, in this limit one can also show

19Let us assume that t�ð0Þsat is known for a specific shape. Since
the first correction in μ=T is independent of l, the result at this
order should be independent of the precise definition of l, i.e. it
can be taken as a characteristic length scale of the subsystem.
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l ¼ 2d
4πTeff

� ffiffiffi
2

p

ðd − 1Þ ffiffiffi
d

p ffiffiffi
ϵ

p þ
ffiffiffi
2

p

ð1 − dÞ ffiffiffi
d

p þ τ4ðdÞ
�
;

ð6:24Þ

where τ4ðdÞ is another finite integral

τ4ðdÞ ¼
Z

1

0

dx

"
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðxzHÞ½ð1=xÞ2ðd−1Þ − 1�
q

−
1ffiffiffiffiffiffi

2d
p ðd − 1Þð1 − xÞ3=2

#
δ¼0

: ð6:25Þ

Therefore, at the leading order,

ϵ ¼ d
2π2ðd − 1Þ2l2Teff

2
ð6:26Þ

and hence

t�sat ¼
πðd − 1ÞTeffl2

2d
¼ ðd − 2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πðd − 1Þdp
μl2

8d
: ð6:27Þ

Therefore, in this limit t�sat increases with the chemical
potential. Our result (6.27) is also consistent with the
numerical results of [13] regarding the fast growth of the
saturation time with respect to the length l.

E. Bound on the average velocity from
bulk causality

Let us now discuss the average velocity in more general-
ity. In Sec. V B, we showed that vavgE is a better quantity
to consider when comparing results between entangling
regions of different sizes. We further conjectured that, even
though vmax

E can exceed the speed of light, vavgE should be
constrained by causality. In the limit of large regions vE ¼
vavgE so the bound derived in [45,46] is directly applicable.
For small regions the bound seems to be satisfied at least for
the strip and the ball so it is very likely that

vavgE ≤ 1 ð6:28Þ

holds more generally. Here, we argue that such a bound is a
direct consequence of bulk causality. To see this, consider
the formula for the average velocity:

vavgE ¼ VA

AΣtsat
: ð6:29Þ

For the case of the strip, the ratio VA=AΣ ¼ l=2 ¼ tlight is
equal to the light-crossing time from Σ to the interior of the
region A. So, in order to decide if (6.28) is satisfied or not we
have to compute tsat and compare it with tlight. Quite
generally, we find that

tsat ≥ t�sat ¼
Z

z�

0

dz
fðzÞ ≥

Z
z�

0

dz ¼ z� ≥ tlight: ð6:30Þ

The first part of this equation comes from the definition of
t�sat (6.2) which gives us a bound on the saturation time tsat.
At t ¼ t�sat there is an extremal surface which lies fully in the
back hole region, for which v ≥ 0. The shell is located at
v ¼ 0 and is moving at the speed of light; however, due to
the redshift factor fðzÞ ≤ 1, we obtain that t�sat ≥ z�. The last
part of Eq. (6.30) comes from a comparison of the extremal
surface ΓA and the causal wedge ΞA associated to A [67].
In this paper it was found that the causal wedge ΞA always
lies closer to the boundary than the extremal surface ΓA,
so z� ≥ zΞ� ≥ tlight. Putting everything together, then, we
conclude that for the strip vavgE ≤ 1. For other geometries
(6.30) is still true but the ratio VA=AΣ may vary. For finite
subsystem, the volume-to-area ratio is maximized for
the case of the ball, for which VA=AΣ ¼ R=ðd − 1Þ ¼
tlight=ðd − 1Þ.20 Therefore, vavgE ≤ 1 still holds. For convex
strips the volume-to-area ratio is maximized for the case
of the rectangular strip, which we already consider. Finally,
for concave strips the ratio can be higher but these
are considered as large subsystems so, again, vavgE ≤ 1.
This conclude our proof of (6.28).

VII. CONCLUSIONS

In this paper we developed new analytical tools to study
the thermalization of entanglement entropy after a global
quench in the context of the AdS=CFT correspondence. We
focused on the limit of small subsystems, for which no
previous technique was available in the literature, and
found some surprising results.
In Sec. II, we began our investigation by exploring the

known analytical results for (1þ 1)-dimensional holo-
graphic CFTs, focusing on the different regimes of interest.
We pointed out that the conjectured bound on the maxi-
mum rate of growth for the entanglement entropy only
holds in the strict limit of large intervals, but is violated
otherwise. In particular, we found that max½RðtÞ� → 1 as
we let l → ∞ but it generally exceeds the speed of light for
intervals of finite size. We also observed that the linear
growth regime is smoothed out as we reduce the size of the
system, suggesting that the interpretation in terms of a
“entanglement tsunami” is no longer valid. In Sec. III, we
introduced holographic models of global quenches in
higher dimensions: CFT states dual to a collapsing
AdS-RN-Vaidya geometry. We specialized to the thin shell
regime, which is valid for instantaneous quenches. In
Sec. IV, we computed perturbatively the evolution of
entanglement entropy after the quench focusing on two
different entangling surfaces: the strip and the ball. At this

20This is a consequence of the isoperimetric inequality,
see e.g. [68].
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point, it became clear that (i) the violation of the inequality
max½RðtÞ� ≤ 1 is only present in (1þ 1) dimensions,
(ii) the initial and final stages of the evolution are always
smooth, and (iii) the evolution in the intermediate regime
depends on the shape of the entangling region but is
insensitive to the final state of the quench.
In Sec. V, we studied more in detail our results for the

strip and the ball in different regimes of the thermalization
process. For the early time regime, the evolution turned out
to be independent of the entangling region and in agree-
ment with the results for large subsystems. This observation
led us to conjecture that the evolution in this regime is
universal and completely fixed by symmetries. In the
intermediate regime, we found a nonuniversal quasilinear
growth regime with a maximum rate of growth vmax

E that
depends on the shape of the entangling region. The
maximum rate is found to be higher for small intervals
in d ≤ 4 (strip) or d ≤ 3 (ball) as long as μ=T ≪ 1, but is
lower in higher dimensions. For μ=T ≫ 1 the maximum
rate is always higher for small intervals. We pointed out that
the average velocity vavgE is a better parameter if we are to
compare results for entangling regions of different sizes.
We found that, in average, the UV degrees of freedom
equilibrate at a slower rate when the evolution is governed
by thermal fluctuations (μ=T ≪ 1) but at a faster rate if the
evolution is driven by quantum fluctuations (μ=T ≫ 1).
This conclusion is more robust than the one for vmax

E
because it is independent of the number of dimensions and
the shape of the entangling region. Moreover, as we proved
in the last section, vavgE is actually constrained by causality.
The approach to saturation is found to be always continu-
ous and is characterized by a nontrivial scaling exponent
that depends on the number of dimensions and the shape of
the entangling region. We explain this by arguing that, at
the leading order, z� is uniquely determined by the
embedding pure AdS. However, for large subsystems z�
may be multi-valued near the saturation time, leading to a
discontinuous behavior. We also computed the leading
correction to tsat and confirmed the nonmonotonicity with
respect to μ=T observed numerically in [20,32].
In Sec. VI, we made some general remarks about

entangling surfaces of arbitrary size. We started by giving
a simple argument to explain the universality of the initial
quadratic growth regime. The physical picture is the
following: all extremal surfaces intersect the boundary of
AdS at right angle (regardless of the size or shape of the
entangling region), so the leading contribution at early
times is simply AΣ × zcðtÞ (where zcðtÞ is the position of
the shell at time t) times a conformal factor that may only
depend on zcðtÞ. The leading correction to the geometry
near the boundary comes with a factor of zdH ∼ E, which in
turn fixes the initial time dependence to be t2. Later in the
same section, we gave a simple recipe for computing a
bound on the saturation time in different regimes of interest.
Using this method, we were able to study the saturation

time in various limits and to corroborate its nontrivial
dependence with respect to the chemical potential. At the
end of the section, we provided a proof for a bound on vavgE
based on bulk causality. We believe that this bound should
hold more generally, as long as the theory is relativistically
invariant.
There are various open questions and a number of

possibilities for the extension of this work. The most
urgent one is to investigate possible bounds on vmax

E and
vavgE from the field theory perspective, i.e. generalize the
analysis of [45,46] for entangling regions of arbitrary size.
In particular, the interacting models of [45] seem a good
staring point for this investigation. Another interesting
possibility is to consider the case of (1þ 1)-dimensional
CFTs at large central charge, where the conformal block
expansion has proved to be an efficient tool [44]. Moving to
the realm of holography, we can consider gravity duals of
theories with different symmetries. Of particular interest are
the nonrelativistic theories with Lifshitz scaling and/or
hyperscaling violation [27,28], which have recently gained
attention in the context of AdS/CMT. We can also consider
CFTs on a sphere; interestingly, charged solutions in global
AdS have been shown to exhibit a very rich entanglement
phase structure [69,70]. Finally, we can use the techniques
developed here to study the thermalization of other field
theory observables after a global quench, e.g. two-point
functions [71], Wilson loops [18], and other entanglement
related quantities such as mutual information [72–74],
causal holographic information [22] and holographic com-
plexity [75]. We hope to return to some of these problems in
the near future [76].
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APPENDIX A: PERURBATIVE COMPUTATION
AT NEXT-TO-LEADING ORDER

Based on the expansion given in (4.11), we expect that
the first correction due to the corrected embedding will
appear at order Oðλ2Þ; this is indeed expected since this
correction arises from the combination of both ϕð1Þ and
Lð1Þ, which are of order OðλÞ. However, due to the
particular form of the metric (4.12), we can see that the
second correction to the functional L is actually of order
Oðλ2−2=dÞ ≫ Oðλ2Þ for any finite d. Therefore, at this order
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of approximation, the correction to the embedding is still
negligible and we can still use the solution for pure AdS!
The computations are very similar to the ones presented

in Sec. IV C, so we will only sketch the main few steps,
specializing to the two geometries in consideration, the
strip and the ball.

1. The strip

Expanding the area functional (4.5) to the next-to-
leading order, we get

Lð2−2=dÞ ¼ −
ðε − 1ÞAΣ

2z2ðd−1ÞH

zd−1v02θðvÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 − v02 − 2v0

p : ðA1Þ

Evaluating it on shell, this yields the following contribution
to the entanglement entropy:

ΔSð2−2=dÞA ðtÞ ¼ −
ðε − 1ÞAΣ

8Gðdþ1Þ
N z2ðd−1ÞH

×
Z

z�

0

dzθðt − zÞzd−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðz=z�Þ2ðd−1Þ

q
:

ðA2Þ

The integral in (A7) is reminiscent of the one appearing in
(4.18) and can be evaluated in a similar way. The final
result can be written as follows:

ΔSð2−2=dÞA ðtÞ ¼ ΔSð2−2=dÞeq f½θðtÞ − θðt − tsatÞ�
× ~F ðt=tsatÞ þ θðt − tsatÞg; ðA3Þ

where ΔSð2−2=dÞeq is given by

ΔSð2−2=dÞeq ¼ −
ðd − 1Þ ffiffiffi

π
p

Γ½ 3d−2
2ðd−1Þ�zd�AΣðε − 1Þ

8dð2d − 1ÞΓ½ 2d−1
2ðd−1Þ�z2ðd−1ÞH Gðdþ1Þ

N

; ðA4Þ

and

~F ðxÞ ¼
dΓ½ 2d−1

2ðd−1Þ�xd
ðd − 1Þ ffiffiffi

π
p

Γ½ 3d−2
2ðd−1Þ�

×

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2ðd−1Þ

p
þ d − 1

d 2F1

×

�
1

2
;

d
2ðd − 1Þ ;

3d − 2

2ðd − 1Þ ; x
2ðd−1Þ

��
: ðA5Þ

2. The ball

Expanding the area functional (4.9) for the ball, we get

Lð2−2=dÞ ¼ −
ðε − 1ÞAΣ

2Rd−2z2ðd−1ÞH

zd−1rd−2v02θðvÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 − v02 − 2v0

p : ðA6Þ

Evaluating it on shell leads to the following contribution to
the entanglement entropy:

ΔSð2−2=dÞA ðtÞ ¼ −
ðε − 1ÞAΣzd−2�

8Gðdþ1Þ
N Rd−2z2ðd−1ÞH

×
Z

z�

0

dzθðt − zÞzd−1½1 − ðz=z�Þ2�d−12 :

ðA7Þ
Finally, performing the integration, we obtain

ΔSð2−2=dÞA ðtÞ ¼ ΔSð2−2=dÞeq

×f½θðtÞ − θðt − tsatÞ� ~Gðt=tsatÞ þ θðt − tsatÞg;
ðA8Þ

where in this case

ΔSð2−2=dÞeq ¼ −
ffiffiffi
π

p
Γ½d�RdAΣðε − 1Þ

2dþ3Γ½2dþ1
2
�z2ðd−1ÞH Gðdþ1Þ

N

; ðA9Þ

and

~GðxÞ ¼ 2dxdΓ½2dþ1
2
�ffiffiffi

π
p

dΓ½d� 2F1

�
−
d − 1

2
;
d
2
;
dþ 2

2
; x2
�
: ðA10Þ

APPENDIX B: FIRST CORRECTION
TO THE SATURATION TIME

Let us start by considering Eq. (3.23). In the black hole
portion of the geometry,

v ¼ t −
Z

z

0

dz0

fðz0Þ

¼ t −
Z

z

0

dz0
�
1þ ε

�
z0

zH

�
d
þO

�
z0

zH

�
2ðd−1Þ�

;

v ¼ t − z

�
1þ ε

ðdþ 1Þ
�

z
zH

�
d
þO

�
z
zH

�
2ðd−1Þ�

: ðB1Þ

Thus, evaluating at v ¼ 0 and z ¼ z�, we get

tsat ¼ z�

�
1þ ε

ðdþ 1Þ
�
z�
zH

�
d
þO

�
z�
zH

�
2ðd−1Þ�

: ðB2Þ

Let us now compute the corrections to z�. In the following,
wewill specialize to the two cases in consideration, namely,
the strip and the ball.

1. The strip

In order to find the corrections to z�ðlÞ we have to solve
the equations of motion that come from (4.5) at next-to-
leading order. Fortunately, since at t ¼ tsat the entire surface

SANDIPAN KUNDU and JUAN F. PEDRAZA PHYSICAL REVIEW D 95, 086008 (2017)

086008-22



lies entirely in the black hole portion of the geometry, we
can consider solving the problem in a static AdS-RN
geometry. For the strip, we have a conservation equation
since the lagrangian does not depend explicitly on x:

x0ðzÞ ¼ � ðz=z�Þd−1ffiffiffiffiffiffiffiffiffi
fðzÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðz=z�Þ2ðd−1Þ
q : ðB3Þ

The embedding is even with respect to x → −x so without
loss of generality, we will consider the (−) sign in (B3) (this
corresponds to the x > 0 portion of the embedding).
Evidently, all the corrections over AdS come from the
fðzÞ term so we can expand all terms as in (4.12). More
specifically, we consider

fðzÞ ¼ 1 − ε

�
z
zH

�
d
ζd þOðζ2ðd−1ÞÞ; ðB4Þ

and

xðzÞ ¼ x0ðzÞ þ xdðzÞζd þOðζ2ðd−1ÞÞ; ðB5Þ

and at the end we set ζ → 1. Plugging (B4) and (B5) back
into (B3), we get the following equations at leading and
next-to-leading order:

x00ðzÞ ¼ −
ðz=z�Þd−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðz=z�Þ2ðd−1Þ
q ; ðB6Þ

and

x0dðzÞ ¼ −
ε

2

�
z
zH

�
d ðz=z�Þd−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðz=z�Þ2ðd−1Þ
q ; ðB7Þ

respectively. The solution for x0ðzÞ part is given in (B8),
namely

x0ðzÞ ¼
l
2
−
z�
d

�
z
z�

�
d

2F1

×

�
1

2
;

d
2ðd − 1Þ ;

3d − 2

2ðd − 1Þ ;
�
z
z�

�
2ðd−1Þ�

: ðB8Þ

For now we do not assume any relation between l and z�.
Since x0ðzÞ already satisfy the boundary condition (4.4),
we have to solve (B7) subject to the constraint xdð0Þ ¼ 0.
The solution is the following:

xdðzÞ ¼
εzd−1� z2

2ðdþ 1ÞzdH

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
z
z�

�
2ðd−1Þ

s

− 2F1

�
1

2
;

1

d − 1
;

d
d − 1

;

�
z
z�

�
2ðd−1Þ�#

: ðB9Þ

Next, imposing that xðz�Þ ¼ 0, we get the following
relation between l and z�:

l ¼
2
ffiffiffi
π

p
Γ½ d

2ðd−1Þ�z�
Γ½ 1

2ðd−1Þ�
�
1þ

εΓ½ d
d−1�Γ½ 1

2ðd−1Þ�
2ðdþ 1ÞΓ½ dþ1

2ðd−1Þ�Γ½ d
2ðd−1Þ�

�
z�
zH

�
d

þO
�
z�
zH

�
2ðd−1Þ�

: ðB10Þ

This equation can be inverted perturbatively to obtain

z� ¼
Γ½ 1

2ðd−1Þ�l
2
ffiffiffi
π

p
Γ½ d

2ðd−1Þ�

×

�
1 −

εΓ½ d
d−1�Γ½ 1

2ðd−1Þ�dþ1

2dþ1ðdþ 1Þπd=2Γ½ dþ1
2ðd−1Þ�Γ½ d

2ðd−1Þ�dþ1

�
l
zH

�
d

þO
�
l
zH

�
2ðd−1Þ�

: ðB11Þ

Plugging (B11) into (B2), we can easily get the first
correction to tsat. After some algebra, we finally arrive
at (5.27).

2. The ball

We can repeat the same steps for the case of the ball in
order to get the corrections to z�ðRÞ. However, in this case,
we do not have a conservation law so we have to solve a
second order differential equation. Again, we use (B4) and
expand the embedding as

rðzÞ ¼ r0ðzÞ þ rdðzÞζd þOðζ2ðd−1ÞÞ: ðB12Þ
At the end, we restore ζ → 1. At the leading order, the
equation of motion is

r000ðzÞ −
ðd − 1Þ

z
r00ðzÞ3 −

ðd − 2Þ
r0ðzÞ

r00ðzÞ2

−
2ðd − 1Þ

2z
r00ðzÞ −

ðd − 2Þ
r0ðzÞ

¼ 0; ðB13Þ

and the solution is the standard spherical cap (4.31),

r0ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2� − z2

q
: ðB14Þ

This solution satisfies the IR boundary condition,
r0ðz�Þ ¼ 0. For now we do not assume any relation
between z� and R. The equation of motion for the second
term is

r00dðzÞ −
ðd − 1ÞR2 þ 2z2

zðR2 − z2Þ r0dðzÞ þ
ðd − 2ÞR2

ðR2 − z2Þ2 rdðzÞ

¼ εzdððd − 4ÞR2 þ ðdþ 2Þz2Þ
2zdHðR2 − z2Þ3=2 ; ðB15Þ
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which has to be solved subject to the constraint rdðz�Þ ¼ 0.
The solution is the following:

rdðzÞ ¼
ε

zdH

�
2zdþ2� − zdðz2� þ z2Þ
2ðdþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2� − z2

p �
: ðB16Þ

Finally, imposing that rð0Þ ¼ R, we arrive at

R ¼ z�

�
1þ ε

dþ 1

�
z�
zH

�
d
þO

�
z�
zH

�
2ðd−1Þ�

; ðB17Þ

which can be inverted to obtain

z� ¼ R

�
1 −

ε

dþ 1

�
R
zH

�
d
þO

�
R
zH

�
2ðd−1Þ�

: ðB18Þ

Unfortunately, if we plug (B18) into (B2), we find that the
leading correction to tsat cancels out, so we have to go even
higher order. At the next level, we could not find an analytic
solution for r2ðd−1ÞðzÞ.
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