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We use the Iyer-Wald formalism to derive an extended first law of entanglement that includes variations
in the cosmological constant, Newton’s constant and—in the case of higher-derivative theories—all the
additional couplings of the theory. In Einstein gravity, where the number of degrees of freedom N2 of the
dual field theory is a function of Λ and G, our approach allows us to vary N by keeping the field theory
scale fixed or to vary the field theory scale by keeping N fixed. We also derive an extended first law of
entanglement for Gauss-Bonnet and Lovelock gravity and show that in these cases all the extra variations
reorganize nicely in terms of the central charges of the theory. Finally, we comment on the implications for
renormalization group flows and c-theorems in higher dimensions.
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I. INTRODUCTION

In recent years, the notion of entanglement has played a
crucial role in our understanding of quantum gravity and
the emergence of spacetime. Starting with Jacobson’s
seminal paper [1], there have been several attempts to
obtain gravitational dynamics from an underlying thermo-
dynamical description, with various degrees of success
[2–10]. This was in part motivated by the early work on
black hole thermodynamics [11–13] and strongly sup-
ported by the holographic principle, proposed by
’t Hooft [14] and promoted by Susskind in Ref. [15].
The discovery of the AdS=CFT or gauge/gravity corre-
spondence [16] made it possible to frame some of these
questions in more robust physical grounds and has already
proven to be a powerful arena to uncover deep connections
between entanglement and gravity [17–21].
According to the AdS=CFT dictionary, black hole

solutions in anti-de Sitter (AdS) are dual to strongly
coupled large-N gauge theories at finite temperature.
Hence, in this context, black hole thermodynamics can
be understood in terms of the fundamental degrees of
freedom of a thermal quantum field theory and vice versa.
For instance, the first law of thermodynamics maps to a
bulk equation,

dE ¼ TdS ↔ dM ¼ κ

8πG
dA; ð1Þ

whereM is the black hole mass, A is the area of the horizon
and κ is its surface gravity. Requiring the Euclidean
solution to be regular at the horizon, one can further
identify

T ¼ κ

2π
; S ¼ A

4G
ð2Þ

as the black hole temperature and black hole entropy,
respectively. Remarkably, Ryu and Takayanagi [22] pro-
posed that entanglement entropy SEE, a measure of the
entanglement between two subsystems of a general quan-
tum system, can be computed holographically by

SEE ¼ A
4G

; ð3Þ

where A is the area of a certain extremal surface in the
bulk. In addition to this striking similarity, it was later
realized that entanglement entropy also satisfies a “first
law” relation reminiscent of standard thermodynamical
systems [23],

δSEE ¼ δhHAi: ð4Þ

This equation relates the first-order variation of the entan-
glement entropy for a spatial region A with the first-order
variation of the expectation value of the “modular
Hamiltonian” HA, defined as the logarithm of the unper-
turbed reduced density matrix, ρA ≃ e−HA . Unfortunately,
the modular Hamiltonian cannot always be expressed in
terms of local operators. However, for spherical entangling
regions in the vacuum of a conformal field theory (CFT),
the modular Hamiltonian is given by a simple integral [24],

HA ¼ 2π

Z
A
dd−1x

R2 − jx⃗ − x⃗0j2
2R

T00; ð5Þ

where T00 is the energy density of the CFT, R is the
sphere’s radius and x⃗0 denotes the center of the sphere.
Thus, for arbitrary small perturbations over the CFT
vacuum, the entanglement entropy of a sphere is given by
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δSEE ¼ 2π

Z
A
dd−1x

R2 − jx⃗ − x⃗0j2
2R

δhT00i: ð6Þ

One might wonder if this equation has a dual interpretation
in the gravity side of the correspondence. The answer to
this question is surprising and rather remarkable: for CFTs
with a holographic dual, the first law of entanglement
entropy (6) together with the Ryu-Takayanagi prescription
(3) automatically implies that the bulk geometry satisfies
the Einstein field equations [8,9], linearized above pure
AdS. More generally, for theories in which the entangle-
ment entropy is computed by more general Wald func-
tionals, one obtains the linearized field equations for the
associated higher-derivative gravity dual.
More recently, the effects of including the cosmological

constant as a thermodynamical variable were studied in
Refs. [25–32]. This program of varying the state as well
as the couplings has been dubbed “extended black hole
thermodynamics” or “black hole chemistry” since, in this
context, the cosmological constant is associated with the
pressure of the gravitational system, P ¼ −Λ=8πG, while
its conjugate quantity is identified as the thermodynamical
volume V. We emphasize that, unlike parameters like mass
and charge that define the solution, Λ also appears at the
level of the action, so it is nondynamical. Nonetheless, it is
still natural to ask how the laws of black holes thermody-
namics are modified if we allow for such variations. For
example, the first law is extended to

dE ¼ TdSþ VdP; ð7Þ

which is very simple and intuitive. In simple cases such as
the Schwarzschild-AdS or the Reissner-Nordström-AdS
black hole in (dþ 1) spacetime dimensions, the thermo-
dynamical volume is shown to coincide with a naive
integration over the black hole interior (in the
Schwarzschild slicing),

V ¼ Ωd−1rdþ
d

; ð8Þ

but its physical interpretation is still unclear.1 It is interest-
ing to ask about the significance of this extended frame-
work for gravitational theories with a holographic dual. As
argued in Refs. [33,34], in theories that arise as a consistent
truncation of string/M theory, the value of the AdS radius L
is set by the value of the Planck length lP and the number of
branes N. The world volume theory is described in terms of
a gauge theory with symmetries specified by the specific
brane configuration; typically, N is the rank of the gauge

group, so it determines the number of degrees of freedom
the theory. Newton’s constant G also depends nontrivially
on N, so at the end, one finds that

Ld−1

G
∼ N2: ð9Þ

Thus, in this sense, varying the cosmological constant Λ
(and hence the L), is equivalent to changing the field theory
to which the bulk background is dual. Furthermore, the
conjugate variable associated to variations in N can be
interpreted holographically as a chemical potential for
color [35]. However, a careful application of the holo-
graphic dictionary teaches us that varying Λ also changes
the volume of the field theory by changing the radius of
curvature R of the CFT metric [36].2 In order to distinguish
between these two effects, we observe [36] that for any
function f we have the dictionary3:

∂N2fjR ¼ ∂G−1fjL; ∂RfjN2 ¼ ∂LfjLd−1=G: ð10Þ

In other words, if we want to vary N and keep R fixed, we
have to vary Newton’s constant G in the bulk with the AdS
length fixed; and if we want to vary R and keep N fixed,
then we have to vary L but keep the combination Ld−1=G
fixed.4 Now, these gravity couplings might or might not
arise dynamically from a fundamental theory. For example,
in the standard D3-brane system, we can think of varying
the number of branes N and the Planck length lP, which
are nondynamical. This, in the five-dimensional effective
description, corresponds to varying the cosmological con-
stant and Newton’s constant. But there are also examples in
which field theory parameters arise dynamically from bulk
fields. For example, in Ref. [34], the cosmological constant
arises due to a scalar field that gets frozen to the minimum
of its potential. Finally, we can also think of varying other
couplings in the gravity side, for example, higher-derivative
couplings, and in the boundary theory, all these variations
will also be associated with different field theory param-
eters. Thus, varying such couplings can be thought of as
inducing a particular renormalization group (RG) flow in
the spaces of theories.
One might wonder if there is an equivalent version of

the extended first law of thermodynamics that applies for
entanglement entropy and, if so, what the dual interpreta-
tion might be. If so, this can be particularly useful to probe

1In Ref. [32], it was recently shown that black holes in AdS
satisfy an infinite tower of extended first laws depending on
which power of Λ is varied, each of these with a different
conjugate variable. This suggests that the formula (8) for the
black hole volume might not have any special physical meaning.

2If the field theory is defined on flat space, R still sets the
overall length scale of the theory; i.e. all the volumes scale as
V ∼ Rd−1.

3In Ref. [36], this dictionary was used to derive the generalized
Smarr relation for AdS black holes from the scaling laws of CFT
thermodynamics at large N.

4In contrast, the relevant variation that appears in all other
black hole chemistry literature, ∂LfjG, corresponds to changing
both N and R.
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the structure of RG flows as we explained above; ulti-
mately, we would like to have a better understanding of the
phase transitions previously discovered in this context (e.g.
the van der Waals transition for charged AdS black holes;
see Ref. [37]). The present paper is devoted to answering
this question in the affirmative. In our approach, we make
use of an extension of the Iyer-Wald formalism used in
Ref. [9] to derive the first law of entanglement, but we
include variations of both the cosmological constant Λ and
Newton’s constant G. We perform our computation both in
Einstein gravity and in higher-derivative theories, in which
case we include additional field theory variations corre-
sponding to the extra gravitational couplings. This study
complements the existing approaches [38,39] which rely on
the Hamiltonian formulation of general relativity.5

A. Road map and summary

The Iyer-Wald formalism is a powerful framework that
provides a beautiful proof of the first law of black hole
thermodynamics. The emphasis of the formalism on
boundary terms and Stokes’s theorem makes it well suited
for the holographic context, as it provides a means to
translate between the bulk local language of differential
geometry and the boundary nonlocal language of entangle-
ment (and, more generally, quantum information theory). In
the present work, we make extensive use of this formalism
in a different and more general context than the one
associated with black hole thermodynamic. Thus, we
would like to provide an overview of the present work
to help the reader navigate the next sections.
Consider a diffeomorphism invariant Lagrangian density

L. Let ξ be an arbitrary fixed vector in the (dþ 1)
spacetime under consideration. The variation of the
Lagrangian under a diffeomorphism generated by ξμ is
δξL ¼ dðξ ·LÞ. We can associate to ξ a current

J ¼ ΘðδξϕÞ − ξ ·L ð11Þ

that will be conserved, dJ ¼ 0, when the equations of
motion are satisfied. If J is conserved, we can define the
Noether charge Q such that J ¼ dQ. Now, consider a
variation δJ,

δJ ¼ δΘðϕ; £ξϕÞ − ξ · δL; ð12Þ

¼ δΘðϕ; £ξϕÞ − £ξΘðϕ; δϕÞ þ dðξ ·Θðϕ; δϕÞÞ: ð13Þ

If we choose ξ such that it is a symmetry of all the fields,
£ξϕ ¼ 0, we have

δJ − dðξ ·ΘÞ ¼ 0: ð14Þ

If in addition ϕ satisfies the equations of motion, we can
replace δJ by dδQ to obtain

dðδQ − ξ ·ΘÞ ¼ 0: ð15Þ

Integrating over a Cauchy surface of which the boundary
is ∂Σ,

Z
∂Σ
ðδQ − ξ ·Θðϕ; δϕÞÞ ¼ 0: ð16Þ

If we want to make contact with black hole thermody-
namics, we choose ξ to be the timelike Killing vector that
is null at the horizon and Σ the corresponding bifurcating
surface. ∂Σ will have two components, one at infinity and
one at the horizon. The first law then follows from

Z
∂Σ∞

ðδQ − ξ ·ΘÞ ¼
Z
∂Σhorizon

ðδQ − ξ ·ΘÞ: ð17Þ

The integral at infinity is the variation in the canonical
energy, δE, while the integral at the horizon is κ

2π δS.
We can proceed in a similar way to obtain a first law

of entanglement instead of a first law of thermodynamics.
For a spherical boundary region in AdS, the corresponding
Ryu-Takayanagi surface is a bifurcating surface of a Killing
vector field. Thus, we can integrate (17) not over the
boundary of spacetime and the horizon but over the Ryu-
Takayanagi surface and the boundary region. In that case,
the righthand side of (17) will yield the entanglement
entropy. Note that for a black hole it is no longer true that
the Ryu-Takayanagi surface is a bifurcating surface of a
Killing vector field, and how to derive a first law of
entanglement for excited states is still an open question.
Motivated by the possible field theory implications, we

generalize (15) to include variations in the couplings of the
theory and obtain an extended first law of entanglement.
We find

X
i

Z
Σ
ξ ·Eciδci þ

Z
∂Σ
ðδQ − ξ ·Θðϕ; δϕÞÞ ¼ 0; ð18Þ

where ci denotes Λ,G and any other coupling of the theory.
Equation (18) is one of the results of this paper. Section II
contains a derivation of this result.
After having established the framework needed, in

Sec. II A, we apply it to Einstein gravity in (dþ 1)
dimensions and derive a first law of entanglement with
variable cosmological constant Λ (or equivalently variable
L) and variable Newton’s constant G. For the sake of
clarity, we analyze each perturbation (δL, δG and δgμν)
separately, and after having calculated them, we consider
their joint effect to obtain

5While our paper was in the final stage of preparation, the
paper [40] appeared, which contains some overlapping results.
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δE ¼ δSEE − ðd − 1ÞSEE
δL
L

þ SEE
δG
G

: ð19Þ

As usual, E in this case is interpreted as the energy
associated to the time evolution under the modular
Hamiltonian HA. We observe that (19) can be rewritten
in terms of the variation of the central charge c:

δE ¼ δSEE −
SEE
c

δc: ð20Þ

In Sec. III, we consider Gauss-Bonnet gravity and derive
an extended first law of entanglement with variable Λ, G
and variable Gauss-Bonnet coupling α. Our result is

δE ¼ δSEE − SEEðcLδL − cGδG − cαδαÞ; ð21Þ

where the cL, cG and cα are constant coefficients that
involve d, L, G and α. A similar expression is obtained for
Lovelock gravity.
We conclude with Sec. IV where we elaborate on the

field theory interpretation of our results and discuss several
open questions and possible directions of research related
to our work.

II. EXTENDED ENTANGLEMENT
THERMODYNAMICS

The language of thermodynamics provides a natural
framework to describe quantum entanglement: the reduced
density matrix of a sphere in a CFT vacuum is thermal in
nature. This fact was central to an early proof of the
Ryu-Takayanagi formula for spherical regions [24]. While
thermodynamics deals with systems in equilibrium,
quantum entanglement is a powerful tool to probe out-
of-equilibrium systems. Thus, formulating entanglement
physics with thermodynamics may ultimately help us to
understand out-of-equilibrium physics better by bringing it
to a more familiar setting.
As mentioned in the Introduction, the first law of

entanglement (4) makes no reference to a pressure-volume
conjugate pair, and the question naturally arises as to
whether one can identify such quantities in order to capture
the entanglement pattern of the state in a meaningful way.
Several approaches exist in the literature to address this
question. For example, Ref. [41] suggests defining the
entanglement pressure as the expectation value of the (spatial
components of the) stress-energy tensor. In equilibrium, the
entanglement pressure according to this approach would
reduce to the field theory pressure. Another example is
Jacobson’s recent work [10], where a first law is studied with
the variations of both the CFT state and the geometry. This
yields an intriguing notion of pressure of which the micro-
scopic significance deserves further study.
In this work, we suggest taking the viewpoint of the

black hole chemistry program and identifying the pressure

as the cosmological constant in the first law of entangle-
ment. Let us consider the superposition of two perturba-
tions in the bulk: the usual normalizable mode which is
dual to perturbing the CFT state slightly away from the
vacuum and a perturbation of the cosmological constant.
The combined effect of these two perturbations can be
packaged into an extension of the first law,

δhHAi ¼ δSA þ VδP; ð22Þ

where the δhHAi is due entirely to the normalizable mode in
the bulk but δSA is due to both perturbations. It follows that
the volume is given by

V ¼ ∂S
∂P : ð23Þ

If we believe the black hole chemistry program, the
extended first law (22) is quite natural: the Casini-
Huerta-Myers (CHM) trick [24] can be used to map the
first law of entanglement to the first law of black hole
thermodynamics; therefore, any meaningful notion of black
hole volume seems meaningful to the entanglement first
law. On the boundary side, varying the AdS length scale
seems to correspond to some notion of changing the
number of degrees of freedom in the field theory. For
example, in three bulk dimensions, the Brown-Henneaux
says

c ¼ 3L
2G

ð24Þ

Thus, changing L (at fixed Newton’s constant) amounts
to varying the central charge of the CFT. have a RG-like
flow in the space of theories, with potentially interesting
structures.
Let us compute the entanglement volume for a sphere in

a d-dimensional CFT vacuum with radius R. If the bulk is
Einstein gravity, the Ryu-Takayanagi surface is a hemi-
sphere in Poincaré coordinates z2 þ r2 ¼ R2, and its area is
the entanglement entropy

SEE ¼ RLd−1

4G
Ωd−2

Z ffiffiffiffiffiffiffiffiffi
R2−ϵ2

p

0

rd−2

ðR2 − r2Þd=2 dr; ð25Þ

where Ωd−2 is the volume of a unit (d − 2)-sphere, and we
cut off the surface as usual at z ¼ ϵ. In this case, the
pressure dependence (or equivalently L dependence) is
quite trivial: it is simply an overall factor which is a power
of L. We find the volume to be

V ¼ −
�
d − 1

2

�
S
P
: ð26Þ

While this result seems quite trivial, we stress that it is
specific to Einstein gravity and reflects the fact that in
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Einstein gravity the AdS length scale is essentially equiv-
alent to the cosmological constant, which is a coupling in
the theory. This special feature is lost in higher-derivative
theories such as Lovelock theories (which will be consid-
ered later in this paper); in such theories, the AdS length
scale is a complicated function of the couplings appearing
in the gravity action, and varying these couplings yields a
much richer structure.
Like the holographic dictionary (9) mentioned in the

Introduction, the Brown-Henneaux formula (24) implies that
a variation of Newton’s constant at fixed L also results in
varying the central charge of the CFT. In fact, it is argued in
Ref. [36] that this is perhaps the preferred way to vary the
central charge, because a variation of L at fixed G actually
also changes length scales in the CFT. We will come back to
this issue and discuss it in greater detail in the conclusion
(Sec. IV). This observation, however, motivates us to include
in the extended first law the variation of G, as well as any
other couplings appearing in the gravity action. The critical
reader might object that, unlike the cosmological constant
which plays the role of the pressure, there are not really any
thermodynamic interpretations for the other couplings.
There are precedents for this in the black hole literature,
however. For example, the standard first law for Kaluza-
Klein black holes includes the variation of the compactifi-
cation radius, the thermodynamic conjugate of which is
interpreted as a tension [42,43]. An even more critical reader
may also object that there is as of now no microscopic
understanding of the cosmological constant as a pressure
variable, in contrast with the entropy or temperature vari-
ables which can be obtained from the path integral. While
this is true, we emphasize that the nature of the cosmological
constant is far from settled and that it is important to keep an
open mind. At least from the gravity viewpoint, it naturally
plays the role of a pressurelike quantity.
In this paper, we will leave aside the hard questions of

what the nature or structure of this flow in the space of
theories (obtained by varying the gravity couplings) is or
what the microscopic picture behind the pressure as the
cosmological constant might be. Instead, we ask the question
of whether existing techniques in general relativity to derive
the standard first law can be adapted to accommodate
variations the couplings. This certainly is an interesting, if
somewhat technical, question (see Refs. [25,38–40] for a
sample of existing papers along this line). Existing tech-
niques to derive black hole thermodynamics fall under two
broad categories: the Euclidean approach and the Noether
charge approach. In the Euclidean approach, we analytically
continue the time coordinate to obtain a geometry with a
conical defect. The entropy then comes from the gravita-
tional action localized at the tip of the cone. The Euclidean
approach was key to the proof of the Ryu-Takayanagi
formula [44], since it is powerful enough to work even
when the Ryu-Takayanagi surface is not the bifurcation of a
Killing horizon, and therefore cannot be mapped with the

CHM trick to a black hole horizon. On the other hand, the
Noether charge approach (or the Iyer-Wald formalism
[45,46]) is more restrictive; it demands a bifurcate Killing
horizon. On the other hand, it yields deeper insights into the
nature of the entropy (namely, that it is intimately related to
the diffeomorphism invariance of the theory). In the context
of holography, the Iyer-Wald formalism has been instru-
mental in translating bulk geometrical quantities into quan-
tum-information-theoretical quantities on the boundary
[18,19,47]. For these reasons, we will apply the Iyer-Wald
formalism in this paper. We will focus on the entanglement
entropy of a sphere in the vacuum in a variety of gravity
theories. In all the cases considered in this paper, the bulk is
the Poincaré patch, and the entangling surface is the usual
hemisphere. This is indeed the bifurcation surface of a
Killing horizon, so we meet the technical demands of the
Iyer-Wald formalism.

A. Iyer-Wald with varying the couplings

In this subsection, we describe the (slight) generalization
of the Iyer-Wald formalism needed to handle the variation
of the couplings. In order not to hinder the general
discussion, we will sketch out here the main steps and
relegate the more technical details to Appendix A. Recall
that the usual Iyer-Wald formalism is an algorithm which
yields the first law via the computation of a few differ-
ential forms.
Consider a theory of gravity in (dþ 1) dimensions. We

first compute the symplectic potential current Θ, which is
the boundary term obtained by varying the action under an
arbitrary variation. Next, we consider a variation induced
by an arbitrary vector field ξ (i.e. the variation is the Lie
derivative along ξ). By diffeomorphism invariance, we can
compute the Noether current J and Noether charge Q
associated to the symmetry generated by ξ. After finding
the Noether charge and current, we then consider yet
another kind of perturbation: an arbitrary on-shell one.
We then construct the form χ,

χ ¼ δQ − ξ ·Θ; ð27Þ

where δQ is the variation of the Noether charge under the
on-shell perturbation and Θ is evaluated on this on-shell
perturbation. Finally, we specialize to the case where ξ is a
bifurcate Killing vector field. Then, χ can be shown to be
closed:

dχ ¼ 0: ð28Þ

Integrating over a spatial slice Σ between the bifurcation
surface H and infinity then yields the first law (using
Stokes’s theorem):Z

Σ
χ ¼

Z
∞
χ −

Z
H
χ ¼ 0: ð29Þ
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In the black hole case, the integral over the bifurcation
surface yields the TδS term in the first law, and the integral
at infinity yields the δM term. In the entanglement case, the
integral over the bifurcation surface yields the variation of
entanglement entropy δSEE, and the integral at infinity
yields the variation of the modular Hamiltonian δhHi.
Let us now start by varying a coupling c in the gravity

action. Then, the form χ is no longer closed. Instead of (29),
we now find Z

∂Σ
χ þ δc

Z
Σ

∂L
∂c ξ · ε ¼ 0; ð30Þ

where, in the second term on the left, ∂L
∂c is the partial

derivative of the Lagrangian (both gravity and matter) with
the coupling in question and ε is the volume form.
Equation (30) is the central result of this paper. As we
will see in the examples below, the volume (as well as the
conjugate to any coupling) receives contributions from two
of the terms appearing in (30): the new term proportional to
δc and also the integral of χ at infinity.
To see that the volume indeed arises in this (somewhat

complicated) way, suppose the only perturbation is δL.
Since this does not result in a perturbation of the modular
Hamiltonian, we expect the first law to be

0 ¼ δSþ VδP: ð31Þ

On the other hand, the Iyer-Wald formalism is designed so
that the δS term always arises from the integral of χ at the
bifurcation surface. This is because the restriction of
the Noether charge on the bifurcation surface reduces to
the surface binormal, and its integral yields the area of the
horizon. Therefore, the VδP term must arise from the two
other terms in (30).

B. Application to Einstein gravity

In this subsection, we apply the technique developed
above to derive the extended first law of entanglement
for Einstein gravity. The bulk geometry is the (dþ 1)-
dimensional Poincaré patch,

ds2 ¼ L2

z2
ð−dt2 þ dx⃗2 þ dz2Þ; ð32Þ

where x⃗ ¼ ðx1; x2;…; xd−1Þ. As previously mentioned,
for a spherical boundary region with radius R, the Ryu-
Takayanagi surface z2 þ x⃗2 ¼ R2 is the bifurcation surface
of a Killing vector field ξ given by

ξ ¼ −
2π

R
tðz∂z þ xi∂iÞ þ

π

R
ðR2 − z2 − t2 − x2Þ∂t: ð33Þ

Since we are only considering first-order perturbations, we
can turn them on one after another and in the end add up the

results. First, the ordinary first law of entanglement can be
obtained by turning on a normalizable mode in the bulk,
resulting in a slightly excited state on the boundary. Since
this part of the story is already well known in the literature,
we will not repeat it here, but for the sake of completeness,
we summarize the main steps in Appendix B.
Next, consider a perturbation of L. The perturbed metric

takes the form

ds2 ¼ L2 þ 2LδL
z2

ð−dt2 þ dx⃗2 þ dz2Þ: ð34Þ

The extended first law reads (A13)

dðd − 1Þ δð1=L
2Þ

16πG

Z
Σ
ξ · ε −

Z
∂Σ∞

χ þ
Z
∂Σh

χ ¼ 0: ð35Þ

To compute the resulting perturbation of Q, we can simply
compute the (unperturbed) Noether charge Q and differ-
entiate with respect to L. In Einstein gravity, the formula
for the Noether charge is given in the Appendix [see
Eq. (A16)]. Specializing to the AdS background and the
Killing vector field above, we find the unperturbed Noether
charge (restricted to the surface t ¼ 0, which contains the
bifurcation surface) to be

QjΣ ¼ −
1

16πG

�
4πz2xi

RL2
εti þ

2z2

L2

�
2πz
R

þ ξtðt ¼ 0Þ
z

�
εtz

�
:

ð36Þ

In order to use the Iyer-Wald formalism, we need to calculate
δQ due to the shift in L. To do this, we can go back to the
expression for the unperturbed Noether charge Q (36) and
isolate the L dependence of this expression. Notice that
both the forms εti and εtz contain a factor of

ffiffiffiffiffiffi−gp
, which is

ðL=zÞdþ1. Therefore, the unperturbed Noether charge Q
depends on L only through an overall factor of Ld−1. It
follows that

δQ ¼ d − 1

L
QδL: ð37Þ

As for the symplectic potential current, we find that it
vanishes (see Appendix C for the details):

Θ ¼ 0: ð38Þ

Therefore, the Iyer-Wald form χ coincides with δQ. To
extract the term with δP, we have to compute the integral of
χ at infinity and the new term in the extended first law (as
previously explained, the integral of χ over the horizon
always gives the δS term in the first law).
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The restriction of χ to a cutoff z ¼ ϵ near the boundary is

χj∂Σ∞
¼ −

ðd − 1ÞδL
8GR

Ld−2
�

1

ϵd−2
þ R2 − x⃗2

ϵd

�
dx1

∧ … ∧ dxd−1: ð39Þ

Integrating over the boundary yields the divergent expres-
sion

Z
∂Σ∞

χ ¼ −
ðd − 1ÞδL

8GR
Ld−2Ωd−2

×
Z ffiffiffiffiffiffiffiffiffi

R2−ϵ2
p

0

�
1

ϵd−2
þ R2 − r2

ϵd

�
rd−2dr: ð40Þ

Finally, evaluating the first term in (35), we find

dðd − 1Þ δð1=L
2Þ

16πG

Z
Σ
ξ · ε

¼ dðd − 1ÞδL
8GRL3

Z
Σ
ðR2 − x⃗2 − z2Þ

�
L
z

�
dþ1

dz

∧ dx1 ∧ … ∧ dxd−1: ð41Þ

If we perform the integral over z in the expression above,
we find

dðd− 1Þδð1=L
2Þ

16πG

Z
Σ
ξ · ε

¼ −
ðd− 1ÞδL

8GR
Ld−2Ωd−2

Z ffiffiffiffiffiffiffiffiffi
R2−ϵ2

p

0

�
R2 − r2

ϵd
þ d
2− d

1

ϵd−2

þ 2

ðd− 2Þ
1

ðR2 − r2Þd2−1
�
rd−2dr: ð42Þ

If we add (40) and (42), we find that interestingly the
divergences at order ϵ−d in the integrands cancel, leaving us
with

dðd − 1Þ δð1=L
2Þ

16πG

Z
Σ
ξ · ε −

Z
∂Σ∞

χ

¼ ðd − 1Þ
ðd − 2Þ

δL
4GR

Ld−2Ωd−2

×
Z ffiffiffiffiffiffiffiffiffi

R2−ϵ2
p

0

�
d − 1

ϵd−2
−

1

ðR2 − r2Þd2−1
�
rd−2dr: ð43Þ

It can be shown that6

Z ffiffiffiffiffiffiffiffiffi
R2−ϵ2

p

0

�
d − 1

ϵd−2
−

1

ðR2 − r2Þd2−1
�
rd−2dr

¼ ðd − 2ÞR2

Z ffiffiffiffiffiffiffiffiffi
R2−ϵ2

p

0

rd−2

ðR2 − r2Þd=2 dr: ð44Þ

By comparing the right-hand side above with the integral
(25) for entanglement entropy, one easily recognizes that
the two quantities are proportional to each other, and we
find the first law

δðLÞSE ¼ ΨLδL; ð45Þ

with the conjugate to L given by

ΨL ¼ ðd − 1Þ SEE
L

: ð46Þ

The superscript (L) in δðLÞSE is to emphasize that this is
the contribution to δS coming from a variation of L. Upon a
trivial application of the chain rule, one can of course
convert ΨL to the volume V defined in (23).
Let us next consider a perturbation in G. Since the

AdS metric does not explicitly depend on G, the metric
perturbation vanishes:

δgμν ¼ 0: ð47Þ

The extended first law in this case takes the form

−
δG

16πG2

Z
Σ
ðR − 2ΛÞξ · ε −

Z
∂Σ∞

χ þ
Z
∂Σh

χ ¼ 0: ð48Þ

Consider the variation of the Noether charge Q under this
perturbation. Since the unperturbed Q depends on G only
through an overall factor of G−1, we easily find

δQ ¼ −
δG
G

Q: ð49Þ

Also, since the metric perturbation vanishes, the symplectic
potential current trivially vanishes:

Θ ¼ 0: ð50Þ

Therefore, the Iyer-Wald form χ again coincides with δQ.
Following the same steps as for the δL perturbation, the
restriction of χ to the boundary is

χj∂Σ∞
¼ Ld−1

8G2R
δG

�
1

ϵd−2
þ R2 − x⃗2

ϵd

�
dx1 ∧ … ∧ dxd−1:

ð51Þ

Integrating over the boundary, we find

6This identity can be checked in a straightforward manner by
noting that

R
rd−2

ðR2−r2Þd2−1
dr¼ rd−1

ðR2−r2Þd2−1
− ðd−2Þ

ðd−1Þ
rd−1

Rd−2 2F1ðd−12 ;d
2
;dþ1

2
; r

2

R2Þ
and

R
rd−2

ðR2−r2Þd=2 dr ¼ 1
ðd−1Þ

rd−1

Rd 2F1ðd−12 ; d
2
; dþ1

2
; r

2

R2Þ.
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Z
∂Σ∞

χ ¼ Ld−1δG
8G2R

Ωd−2

Z ffiffiffiffiffiffiffiffiffi
R2−ϵ2

p

0

�
1

ϵd−2
þ R2 − r2

ϵd

�
rd−2dr:

ð52Þ

Finally, we evaluate the first term in (48). Since AdSdþ1 is
maximally symmetric, we have

R − 2Λ ¼ −
2d
L2

: ð53Þ

We then find

−
δG

16πG2

Z
Σ
ðR − 2ΛÞξ · ε

¼ dδG
8G2L2R

Ωd−2

Z
Σ
ðR2 − r2 − z2Þ

�
L
z

�
dþ1

rd−2dzdr:

ð54Þ

As previously, we will explicitly do the integral over z
(from ϵ to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − r2

p
), yielding

−
δG

16πG2

Z
Σ
ðR − 2ΛÞξ · ε

¼ Ld−1δG
8G2R

Ωd−2

Z ffiffiffiffiffiffiffiffiffi
R2−r2

p

0

�
R2 − r2

ϵd
þ d
2 − d

1

ϵd−2

þ 2

d − 2
ðR2 − r2Þ1−d

2

�
rd−2dr: ð55Þ

Adding (52) and (55), we find again that the leading
divergences inside the two integrands cancel each other,
and upon using the identity (44), we finally obtain

−
δG

16πG2

Z
Σ
ðR − 2ΛÞξ · ε −

Z
∂Σ∞

χ ¼ ΨGδG; ð56Þ

with

ΨG ¼ −
SEE
G

: ð57Þ

Finally, the first law with variable G reads

δðGÞSEE ¼ −
SEE
G

δG: ð58Þ

Superposing all the perturbations, we find all in all the
extended first law for Einstein gravity:

δE ¼ δSEE − ðd − 1ÞSEE
δL
L

þ SEE
δG
G

: ð59Þ

In particular, for AdS3, this simplifies to

δE ¼ δSEE − SEE

�
δL
L

−
δG
G

�
: ð60Þ

By the Brown-Henneaux formula, this in turn can be
rewritten in terms of the variation of the central charge c:

δE ¼ δSEE −
SEE
c

δc: ð61Þ

III. ENTANGLEMENT CHEMISTRY IN HIGHER
DERIVATIVE THEORIES

In this section, we move on to the more interesting case
of higher-derivative theories of gravity, starting with Gauss-
Bonnet gravity. In the context of holographic entanglement
entropy, a thoroughly studied theory of this type is Gauss-
Bonnet gravity [48–53]. Gauss-Bonnet gravity has, in
addition to Λ and G, one more coupling: the Gauss-
Bonnet coupling α. We will allow for variations of all
three couplings. After deriving the extended first law for
Gauss-Bonnet gravity, we will discuss generalizations to
Lovelock gravity.
The Lagrangian for Gauss-Bonnet gravity (dþ 1)

dimensions is7

L ¼
�
R − 2Λ
16πG

þ αLð2Þ

�
ε; ð62Þ

with

Lð2Þ ¼ RabcdRabcd − 4RabRab þ R2; ð63Þ

and α is the Gauss-Bonnet coupling. The equation of
motion for the action above reads

Rab −
1

2
gabðR − 2Λþ 16πGαLð2ÞÞ þ 32πGαHð2Þ

ab ¼ 0;

ð64Þ

with

Hð2Þ
ab ¼ RaijkRb

ijk − 2RacRc
b − 2RaibjRij þ RRab: ð65Þ

We will need the symplectic potential current and Noether
charge for this theory. Since these expressions are rather
cumbersome, we list them in Appendix A. Like Einstein
gravity, Gauss-Bonnet gravity above admits AdSdþ1 as a
solution [49]:

7It is well known that when d ¼ 3 the Gauss-Bonnet term in
the action (62) is topological and its integral over spacetime
yields the Euler characteristic of the manifold. Thus, we restrict
ourselves to d ≥ 4.
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ds2 ¼ L2

z2
ðdz2 − dt2 þ dx⃗2Þ: ð66Þ

The AdS length scale is now related to Λ, G and α by8

L2 ¼ −
dðd − 1Þ

4Λ

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðd − 3Þðd − 2Þ

dðd − 1Þ 128πGαΛ

s !
;

ð67Þ

or equivalently

Λ ¼ dðd − 1Þ
2L4

ð16πGαðd − 2Þðd − 3Þ − L2Þ: ð68Þ

For α ¼ 0, we recover Einstein gravity and the usual

relation Λ ¼ − dðd−1Þ
2L2 .

The Ryu-Takayanagi surface Σ is no longer a minimal
area but is computed by the prescription of Ref. [54]
according to which we have to minimize the following
functional,9

S ¼ 1

4G

Z
M
dd−1x

ffiffiffi
h

p
½1þ 32πGαR�; ð69Þ

where R denotes the Ricci scalar of the induced metric
onM.10 It can be checked that the Ryu-Takayanagi remains
the hemisphere as in Einstein gravity, i.e.

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − x⃗2

p
: ð70Þ

In particular, the fact that the Ryu-Takayanagi surface is
still the bifurcation sphere of a Killing vector field means
we can apply the Iyer-Wald formalism. If we regularize
entanglement entropy by a cutoff at z ¼ ϵ (or equivalently
at r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ϵ2

p
), then entanglement entropy in d dimen-

sions is given by the integral:

S ¼ RLd−1

4G

�
1 − ðd − 1Þðd − 2Þ 32πGα

L2

�
Ωd−2

×
Z ffiffiffiffiffiffiffiffiffi

R2−ϵ2
p

0

rd−2

ðR2 − r2Þd=2 dr: ð71Þ

Note that, like in Einstein gravity, the entanglement entropy
is proportional to the area of the same surface as in Einstein
gravity.
To derive the first law, we note again that we can turn on

each perturbation separately, one after another. The usual
first law of entanglement is due to a normalizable mode in
the bulk. Since this part of the story is not the focus of this
paper, we again relegate it to Appendix B.
To deal with the variations of the couplings, we will

first need to evaluate the Noether charge and the symplectic
potential current on the AdSdþ1 background, just like for
Einstein gravity, then differentiate with the coupling of
interest. While the expressions (A17) and (A18) look very
intimidating, we can take advantage of the fact that AdS is
maximally symmetric, and the Riemann and Ricci tensors
simplify considerably:

Rabcd ¼ −
1

L2
ðgacgbd − gadgbcÞ; ð72Þ

Rab ¼ −
d
L2

gab; ð73Þ

R ¼ −
dðdþ 1Þ

L2
: ð74Þ

Substituting the formulas above into (A18) and (A17),
we find

Q ¼
�
−

1

16πG
þ 2α

L2
ðd − 1Þðd − 2Þ

�
∇½aξb�εab; ð75Þ

Θ ¼ εd

�
1

16πG
−
2α

L2
ðd − 1Þðd − 2Þ

�
× ðgdf∇eδgef − gef∇dδgefÞ: ð76Þ

Note the striking similarity with Einstein gravity: despite
the complicated form of the symplectic potential current
and Noether charge, when we evaluate them on a max-
imally symmetric background such as AdS, they become
basically the same tensor as in Einstein gravity except for
an overall factor. The overall factor is sensitive to the
Gauss-Bonnet coupling and reduces to that of Einstein
gravity when we set α ¼ 0.
Let us now further specialize to the particular Killing

vector field under consideration. The Noether charge then
becomes

8There is a second AdSdþ1 solution with a different AdS length
scale. However, it contains ghosts and will be ignored in this
paper.

9One would naively think that entanglement entropy in Ein-
stein-Gauss-Bonnet is computed by the Wald entropy formula.
However, as pointed out in Ref. [49], the Wald entropy does not
correctly reproduce CFT results. However, the Jacobson-Myers
prescription only differs from the Wald entropy by terms
involving the extrinsic curvature. In the case of a Killing horizon,
such as here, such terms vanish, and the two prescriptions agree.

10We have omitted a Gibbons-Hawking term which is needed
to make the variational problem well defined. Technically, the
Gibbons-Hawking term contributions to the entanglement en-
tropy, but it only gives a UV term which drops out anyway when
we consider the variation δS.
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QjΣ ¼
�
−

1

16πG
þ 2α

L2
ðd − 1Þðd − 2Þ

�

×

�
4πz2xi

RL2
ϵti þ

2z2

L2

�
2πz
R

þ ξtðt ¼ 0Þ
z

�
εtz

�
: ð77Þ

A. Variation of L and G

We are now ready to vary the couplings. In the action, we
will think about Λ as a function of L, G and α as given in
Eq. (68),

Λ ¼ ΛðL;G; αÞ; ð78Þ

starting with L (at fixed G and α). The perturbed metric is

ds2 ¼ L2 þ 2LδL
z2

ð−dt2 þ dx⃗2 þ dz2Þ: ð79Þ

The extended first law with δL takes the form

δL
Z
Σ

∂L
∂L ξ · ε −

Z
∂Σ∞

χ þ
Z
∂Σh

χ ¼ 0: ð80Þ

The perturbed Noether charge is easily obtained by differ-
entiation of (77):

δQ ¼ ðd − 1Þ
�
−

1

16πGL3
þ 2α

L5
ðd − 2Þðd − 3Þ

�

×

�
4πz2xi

R
εti þ

2πz
R

ðz2 þ R2 − x⃗2Þεtz
�
δL: ð81Þ

As for the symplectic potential current, it can be seen from
Eq. (76) that it is proportional to the symplectic potential
current of Einstein gravity (obtained by turning off α).
We know from Sec. II A that the symplectic potential
current vanishes in Einstein gravity under the perturbation
L → Lþ δL. Therefore, it must also vanish in Gauss-
Bonnet theory,

Θ ¼ 0; ð82Þ

and the Iyer-Wald form coincides with δQ. As in Einstein
gravity, the Iyer-Wald formalism is designed so that the
integral of χ over the bifurcation surface yields δS, and we
should evaluate the two other terms in (80) in order to
obtain the conjugate to L. The steps involved are quite
similar to the Einstein gravity case, so we will only show a
few intermediate steps. For example, the restriction of χ to
the boundary is

χj∂Σ∞
¼
�
−

1

16πG
þ 2α

L2
ðd − 2Þðd − 3Þ

�
2πðd − 1ÞLd−2

R

× δL

�
1

ϵd−2
þ R2 − x⃗2

ϵd

�
dx1 ∧ … ∧ dxd−1: ð83Þ

To evaluate the first term in (80), we have to keep in mind
that the L dependence is implicit inside Λ. The chain rule
yields

∂L
∂L ¼ ∂L

∂Λ
∂Λ
∂L ¼ −

dðd − 1Þ
8πGL3

�
1 −

32πGαðd − 2Þðd − 3Þ
L2

�
:

ð84Þ

When we add up the two integrals giving rise to the δL
term in the first law, a few things happen which are also
very similar to the Einstein case: the ϵd divergence cancels
between the two integrands, and using the same identity as
in the Einstein case [Eq. (44)], we finally find

δL
Z
Σ

∂L
∂L ξ · ε −

Z
∂Σ∞

χ ¼ ΨLδL; ð85Þ

with the conjugate of L, denoted by ΨL, given by

ΨL ¼ ðd − 1Þ
L

SEE

�
L2 − 32πGαðd − 2Þðd − 3Þ
L2 − 32πGαðd − 1Þðd − 2Þ

�
: ð86Þ

The extended first law takes the form

δðLÞSEE ¼ ΨLδL: ð87Þ

Next, let us now vary G at fixed L and α. Notice that
the AdS metric does not depend on G or α, but only on L,
which is fixed in this subsection. Therefore, the metric
perturbation vanishes:

δgμν ¼ 0: ð88Þ

The extended first law with δG takes the form

δG
Z
Σ

∂L
∂G ξ · ε −

Z
∂Σ∞

χ þ
Z
∂Σh

χ ¼ 0: ð89Þ

To find the variation of the Noether charge due to δG, we
differentiate the unperturbed Noether charge (77) with
respect to G:

δQjΣ ¼ δG
16πG2

�
4πz2xi

RL2
εti þ

2z2

L2

�
2πz
R

þ ξtðt ¼ 0Þ
z

�
εtz

�
:

ð90Þ
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On the other hand, it follows trivially from the fact that
there is no metric perturbation that the symplectic potential
current vanishes:

Θ ¼ 0: ð91Þ

Therefore, the Iyer-Wald form χ coincides with δQ. The
integral of χ over the horizon gives δS, of course, and
we will compute the other two terms in (89) to derive the
conjugate of G. The restriction of χ to infinity is

χj∂Σ∞
¼ Ld−1δG

8RG2

�
1

ϵd−2
þ R2 − x⃗2

ϵd

�
dx1 ∧ … ∧ dxd−1:

ð92Þ

Finally, in order to compute the first integral in (89),
we differentiate the Lagrangian with respect to G. The
Lagrangian depends on G in two ways: there is an explicit
overall dependence in the Einstein part and an implicit
dependence through Λ (according to our choice of para-
metrization). We obtain

∂L
∂G ¼ −

1

16πG2

�
R − 2Λþ 2G

∂Λ
∂G
�
¼ d

8πG2L2
; ð93Þ

where in the second equality we used (68). By combining
the two integrals giving rise to the δG term in the extended
first law, we find again that the ϵd divergences in the
integrands cancel and [with the help of identity (44)] we are
left with Z

∂Σ∞

χ − δG
Z
Σ

∂L
∂G ξ · ε ¼ −ΨGδG; ð94Þ

with

ΨG ¼ SEE
G

�
L2

L2 − ðd − 1Þðd − 2Þ32πGα
�
; ð95Þ

The extended first law with δG reads

δðGÞSEE ¼ ΨGδG: ð96Þ

B. Varying the Gauss-Bonnet coupling α

Finally, we derive the extended first law for entangle-
ment with varying α and fixed G and L. Since the metric is
not explicitly dependent on α, we have again

δgμν ¼ 0: ð97Þ

The extended first law with δα has the form

δα

Z
Σ

∂L
∂α ξ · ε −

Z
∂Σ∞

χ þ
Z
∂Σh

χ ¼ 0: ð98Þ

Next, δQ is found by differentiating the unperturbed
Noether charge (77) with respect to α:

δQ ¼ 2ðd − 1Þðd − 2Þ
L2

δα

�
4πz2xi

RL2
εti

þ 2z2

L2

�
2πz
R

þ ξtðt ¼ 0Þ
z

�
εtz

�
: ð99Þ

Also, it follows from the fact that δg vanishes that the
symplectic potential current does also:

Θ ¼ 0: ð100Þ

Therefore, the Iyer-Wald form coincides with δQ. As usual,
the integral of χ over the bifurcation surface yields δS, and
we compute the other two integrals in (98) to derive the
conjugate to α. The restriction of χ to the boundary is

χj∂Σ∞
¼ 4π

R
ðd − 1Þðd − 2ÞLd−3δα

�
1

ϵd−2
þ R2 − x⃗2

ϵd

�
dx1

∧ … ∧ dxd−1: ð101Þ

Finally, to evaluate the first integral in (98), we differentiate
the Lagrangian with respect to α (then evaluate on the AdS
background)11:

∂L
∂α ¼ −

1

8πG
∂Λ
∂α þ Lð2Þ ¼

4dðd − 1Þðd − 2Þ
L4

: ð102Þ

In the end, we find the statement

δα

Z
Σ

∂L
∂α ξ · ε −

Z
∂Σ∞

χ ¼ Ψαδα; ð103Þ

where

Ψα ¼ −
32πGðd − 1Þðd − 2Þ

L2 − ðd − 1Þðd − 2Þ32πGα SEE; ð104Þ

and the extended first law with δα reads

δðαÞSEE ¼ Ψαδα: ð105Þ

C. Extended first law of entanglement
for Gauss-Bonnet

We are ready now to write a general first law of
entanglement for Gauss-Bonnet gravity where we allow
for the AdS radius L, Newton’s constant G and the Gauss-
Bonnet coupling α to be variable,

11To evaluate Lð2Þ for AdSdþ1, we used the formulas (72), (73)
and (74). The result is Lð2Þ ¼ ðdþ1Þdðd−1Þðd−2Þ

L4 .
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δE ¼ δSEE −ΨLδL − ΨGδG − Ψαδα: ð106Þ

The conjugate quantities to L, G and α are given in
Eqs. (86), (95) and (104), respectively. Note that ΨL,
ΨG andΨα are all proportional to the entanglement entropy,
so we can write the first law as

δE ¼ δSEE − SEEðcLδL − cGδG − cαδαÞ; ð107Þ

where the cL, cG and cα are constant coefficients that
involve d, L, G and α.
We will elaborate on the implications of this extended

first law for the dual field theory when we discuss the
conclusions of this paper.

D. Extension to Lovelock theories

The Lagrangian density for Lovelock gravity is

L ¼
X½dþ1

2
�

m¼0

λmLm; ð108Þ

where

LmðgÞ ¼
1

2m
ffiffiffiffiffiffi
−g

p
δa1b1…:ambm
c1d1…:cmdm

Ra1b1
c1d1…:Rambm

cmdm; ð109Þ

with L0 ¼ ffiffiffiffiffiffi−gp
and the generalized δ is defined as a

product of Kronecker delta functions or recursively

δα1α1…:αm
β1β2…:βm

¼
Xm
i¼1

ð−1Þiþ1δα1βi δ
α2α3…:αm
β1…β̂i…βm

: ð110Þ

In a (dþ 1)-dimensional space, the maximum order of a
Lovelock theory ismmax ¼ ½ðdþ 1Þ=2�, where the brackets
indicate the integer part of dþ1

2
. Note that L1 and L2 yield

the Einstein and Gauss-Bonnet Lagrangians, respectively.
The first three couplings, in terms of Λ, G and the Gauss-
Bonnet coupling α, are given by

λ0 ¼ −
Λ

8πG
; ð111Þ

λ1 ¼
1

16πG
; ð112Þ

λ2 ¼ α: ð113Þ

The holographic entanglement entropy for a general
higher-derivative theory is given by [51,52]

SEE ¼ 2π

Z
dd−1y

ffiffiffi
g

p �
−

∂L
∂Rμρνσ

ϵμρϵνσ þ
X
α

� ∂2L
∂Rμ1ρ1ν1σ1∂Rμ2ρ2ν2σ2

�
α

2Kλ1ρ1σ1Kλ2ρ2σ2

qα þ 1

× ½ðnμ1μ2nν1ν2 − ϵμ1μ2ϵν1ν2Þnλ1λ2 þ ðnμ1μ2ϵν1ν2 þ ϵμ1μ2nν1ν2Þϵλ1λ2 �
�
; ð114Þ

where Kλρσ is the extrinsic curvature of the codimension-2
surface and ϵμν and nμν are appropriately defined tensors.
Things simplify considerably if we consider Lovelock
gravity. In this case, the functional to minimize, Eq. (114),
becomes [51]

SEE ¼ −4π
X½dþ1

2
�

m

mλm

Z
dd−1x

ffiffiffi
h

p
Lm−1ðhÞ; ð115Þ

where h is the induced metric on the codimension-2
surface. A simple solution of a Lovelock theory is AdS
space,12

ds2 ¼ L2

z2

�
dz2 − dt2 þ

Xd−1
i¼1

dx2i

�
; ð116Þ

whereL is in general a function of all the Lovelock couplings
λm and is the dimension d:

L ¼ LðG;Λ; λ2; λ3;…; dÞ: ð117Þ

If we take the boundary region to be a sphere,
P

idx
2
i ¼

dr2 þ r2dΩ2
d−2, the induced metric is

habdxadxb ¼
L2

z2
½ð_r2 þ _z2Þdv2 þ r2dΩd−2�; ð118Þ

where v parametrizes the minimal surface in the ðz; rÞ plane.
In was shown in Ref. [49] that in this case the surface that
minimizes (115) is a hemisphere,

rðvÞ ¼ R cos

�
v
R

�
; zðvÞ ¼ R sin

�
v
R

�
: ð119Þ

Using (119) to evaluate (115), we find that, even in Lovelock
theory, the entanglement entropy is proportional to the area of

12For AdS to be a solution, we need at least one of the
Lovelock couplings λm to be real and negative [38].
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the horizon (for a spherical entangling region on the
boundary),

SEE ¼
�

1

4G
þ

X½ðdþ1Þ=2�

i¼2

fiλi

�Z
dd−1x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
det hab

p
; ð120Þ

¼
�
Ld−1

4G
þ Ld−1

X½ðdþ1Þ=2�

i¼2

fiλi

�
~A; ð121Þ

where ~A is a dimensionless area which does not depend on
any of the couplings and fi is a collection of functions of all
the couplings λj as well as the dimension d:

fi ¼ fiðL;G; λ2; λ3;…; dÞ: ð122Þ

In Ref. [49], it was shown that the prefactor in (120) is
proportional to the central charge ∝ a�d, so it is easy to check
that the first law extends to arbitrary Lovelock theories. In the
Iyer-Wald formalism, let us describe schematically how such
a simplification arises. To extract the boundary term Θ, we
start by varying the Lovelock action

δLp ¼
X½dþ1

2
�

m¼0

½λmδLm þ ðδλmÞLm�; ð123Þ

with

δLmðgÞ ¼
m
2m

ffiffiffiffiffiffi
−g

p
Ra1b1

c1d1…:

× Rambm
cmdmδaba2b2…:ambm

cdc1d1…cmdm
δRab

cd þ…; ð124Þ

where the ellipsis on the right-hand side is for the term with
δð ffiffiffiffiffiffi−gp Þ; this term contributes to the equation of motion
exclusively and not the boundary term, so we did not write it
down. We can now evaluate each of the Rcd

ab factors on the
AdSbackground.Once again, the symmetries ofAdScome to
our rescue, since

Rab
cd ¼ −

1

L2
ðδcaδdb − δdaδ

c
bÞ: ð125Þ

Therefore, evaluating (124) on the AdS background sim-
plifies to a matter of contracting Kronecker deltas. Therefore,
for a spherical region and empty AdS, the calculation in
Lovelock gravity proceeds very similarly to the one in
previous sections, and the extended first law of entanglement
entropy takes the general form

δE ¼ δSEE − SEE

�
cLδL − cGδG −

X½ðdþ1Þ=2�

i¼2

cλiδλi

�
; ð126Þ

for some functions cL, cG and cλi , each of which depends in
general on all the couplings as well as the dimension d. In
terms of the central charge a�d, these are given by

cL ¼
1

a�d

∂a�d
∂L ; cG ¼ 1

a�d

∂a�d
∂G ; cλi ¼

1

a�d

∂a�d
∂λi : ð127Þ

IV. FINAL REMARKS AND
FUTURE DIRECTIONS

In this paper, we have presented an application of the
extended black hole thermodynamics program to the area
of entanglement entropy for CFTs with a gravity dual. The
main result of the present work is an extended first law of
entanglement that can be written schematically as follows:

δSEE ¼ δEþ SEE
X
i

ciδαi: ð128Þ

The first part of this equation, δSEE ¼ δE, is the standard
first law of entanglement that arises by considering small
variations of the quantum state around the vacuum of a CFT.
As shown in Refs. [8,9], this piece encodes the gravity
equations of motion linearized aroundAdS. The second part
of (128) represents variations of field theory parameters dual
to couplings in the gravity side of the correspondence. Here,
we are denoting collectively the variations in L, G, and all
higher -derivative couplings as δαi. These new terms contain
information about the gravity theory, which might not be
encoded in the equations of motion. Consider, for example,
Gauss-Bonnet in d ¼ 3 dimensions. In this case, Lð2Þ is
topological, so the equations of motion are exactly the same
as in Einstein gravity. In contrast, varying the coupling α
gives a nontrivial effect in the extended first law, since the
corresponding cα does not vanish. Thus, the extension of the
first law gives off-shell information about the dual gravity
theory. In particular, given a collection of functions ci, it is in
principle possible to retrieve the value of all gravity
couplings in the bulk action, by considering the appropriate
variations in the dual CFT.
It is important to emphasize the different interpretations

of the first and second pieces in (128) from the CFT
perspective: the first part refers to the change of the
entanglement entropy due to an infinitesimal change in
the quantum state of a theory, while the second part gives
the change of entanglement entropy due to a change of the
theory itself, staying always in their corresponding ground
states. Incidentally, the formula (128) can be intimately
related to the extended first law of thermodynamics for AdS
black holes, where one considers variations of the black
hole horizon due to variations of the cosmological constant
and other gravity couplings. To see this, recall that
Minkowski space Rd−1;1 can be conformally mapped to
the hyperboloid Hd−1 ×R, where the vacuum of the CFT is
now interpreted as a thermal state. In the gravity side, this
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map is equivalent to a bulk diffemorphism that transforms
AdS space into a topological black hole. In particular, the
Ryu-Takayanagi (RT) surface corresponding to a spherical
region is mapped to the horizon of the topological black
hole [24], so the entanglement entropy is reinterpreted as
thermal entropy. The extended first law (128) can then be
recovered by considering the black hole chemistry of the
topological black hole.
Let us focus for a moment on the extended first law in

Einstein gravity, with arbitrary variations of L and G. To
interpret the new terms, let us recall a basic formula in the
holographic dictionary, namely

α
Ld−1

16πG
¼ Np: ð129Þ

Here, the coefficient α and the power p are theory
dependent. For a gauge theory, such as N ¼ 4 super-
Yang-Mills (SYM), the power is p ¼ 2. From the equation
above, it follows that a variation of L at fixed G (or G at
fixed L) is equivalent to a variation in N on the field theory
side. This is what is usually done in the black hole
chemistry literature. However, varying L comes with an
undesired side effect: that of varying the scale R of the
boundary metric. In general, variations of L and G can be
translated to variations of N and R according to (10). With
these observations in mind, we now take another look at the
extended first law for Einstein gravity given in (59),

δSEE ¼ δEþ ðd − 1ÞSEE
δL
L

− SEE
δG
G

: ð130Þ

If we now keep L fixed, then we can trade δG for δðN2Þ,

δG
G

¼ −
δðN2Þ
N2

; ð131Þ

and the extended first law takes the form

δSEE ¼ δE − μδðN2Þ; ð132Þ

with the chemical potential corresponding to N2 given by

μ ¼ −
SEE
N2

: ð133Þ

By contrast, recent works in the area of the extended
thermodynamics typically interpret the coefficient of the δL
term as the chemical potential for color [39], which
coincidentally gives the same result as (133) above.
In holographic CFTs with a higher-derivative gravity

dual is perhaps better to express the result in terms of the
central charges, instead of N. In (1þ 1) dimensions, all
CFTs are characterized by only one central charge c. As we
have shown, in this case, the extended first law can be
conveniently written as

δSEE ¼ δEþ SEE
c

δc: ð134Þ

Similarly, in Sec. III, we showed that for the class of
theories we considered (Lovelock), the variations with
respect to all gravity couplings can be collected in just
one term,

δSEE ¼ δEþ SEE
a�d

δa�d; ð135Þ

so that the functions ci in (128) can all be written as

ci ¼
1

a�d

∂a�d
∂αi : ð136Þ

The constant a�d is a central charge that exists in an arbitrary
number of dimensions and reduces to the coefficient of the
A-type trace anomaly in even dimensions [55,56]. It also
satisfies a version of the c-theorem: it is monotonous under
RG flows and ða�dÞUV ≥ ða�dÞIR. Thus, Eq. (128) encodes
different ways in which we can change the central charge
a�d (varying different field theory parameters) and their
corresponding changes in entanglement entropy. A
straightforward observation is that, if we stay in the ground
state,

δSEE
SEE

¼ δa�d
a�d

: ð137Þ

Therefore, the entanglement entropy is also monotonous
under changes of a�d. Specific variations with respect to
individual couplings αi do not need to be monotonous: they
depend on the monotonicity properties of a�d with respect to
αi (in the range of parameters allowed for each αi). It would
be very interesting to arrive at a similar result for excited
states and interpret the known PV phase transitions (e.g. the
van der Waals transition for charged AdS black holes
[34,37]) in terms of a c-like theorem.
There are some open questions related to our work that

are worth exploring:
(i) Shape dependence.—From the field theory perspec-

tive, it is not clear if one can obtain a simple
expression for the first law for general entangling
surfaces. The reason is that the modular Hamiltonian
cannot be expressed in terms of an integral over one-
point functions as in (5), but it generally depends on
nonlocal data. From the bulk perspective, the com-
plication arises because in this case the RT surface is
not generally the bifurcation surface of a Killing
vector field. In addition, even for the class of higher-
derivative theories we consider in this paper (i.e.
Gauss-Bonnet and Lovelock), the functional for
computing entanglement entropy (120) picks up
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extra anomalous corrections coming from the sec-
ond term of (114).

(ii) General higher-derivative theories.—It would be
interesting to consider other examples of higher-
derivative theories that might lead to simple func-
tionals for entanglement entropy and try to derive
the equivalent to the extended first law of entangle-
ment. Some examples one can consider are fðRÞ
theories, quasitopological gravity and conformal
gravity. The question to ask here is whether varying
those extra couplings beyond Lovelock will encode
extra information in the gravity side, which may be
potentially rewarding. It would also be interesting to
test if in these situations the variation of all gravity
couplings could be reorganized in terms of some
central charge of the boundary theory as in (135) or
if the functions ci can be independent of each other.

(iii) Nonlinear corrections.—Obtaining the full nonlin-
ear Einstein equations from entanglement entropy is
still an important problem in the context of
AdS=CFT. In general, the positivity of relative
entropy constrains the sign of higher-order pertur-
bations [23] but is not enough to derive the correc-
tions to the equations of motion. Some recent
progress was achieved recently in Refs. [47,57].
For holographic CFT states near the vacuum, en-
tanglement entropy can be expressed perturbatively
as an expansion in the one-point functions of local
operators dual to light bulk fields. Using the con-
nection between quantum Fisher information and
canonical energy, the authors derived a general
formula for such an expansion up to second-order
in the one-point functions, extending the first-order
result given by the entanglement first law. Following
the same spirit but applied to our context, it would be
interesting to extend our results by considering
nonlinear corrections to the gravity couplings and
to explore their implications.

(iv) Extended first law in field theory.—The derivation of
the extended first law of entanglement entropy
presented in this paper relies completely on
AdS=CFT methods. It would be interesting to come
up with a simple field theory example where, starting
with a family of CFTs labeled by central charges a
and c, one can compute the entanglement entropy
SEEða; cÞ and obtain the associated extended first
law. A natural question here is to ask about the
universality of (135). Does it work for general
theories, or is it a property of holographic CFTs?

(v) String-/M-theory realizations.—There are a number
ofworks that explore the extended thermodynamics of
systems of branes in string and M theory [35,58,59].
Theseworks treat the number of branes as a dynamical
variable and study the associated phase space. Itwould
be interesting two extend these results in two ways:

(i) consider variations in the string coupling gs, which
would be the equivalent of varying the Newton’s
constant G in the low-energy effective theory, and
(ii) consider the computation of entanglement entropy
and the extended first law in these setups.

(vi) 1=N corrections.—In the context of holography, the
leading loop corrections to entanglement entropy are
given by the bulk entanglement entropy between the
two bulk regions separated by the RT surface [60]. In
general, such corrections introduce new divergences
that depend on the bulk UV cutoff Λbulk but are
expected to cancel by the renormalization of New-
ton’s constant G (see e.g. Ref. [61] and the refer-
ences therein). It would be interesting to study the
interplay of these corrections with the classical
variation we consider in this paper δG.

(vii) Extended first law for excited states.13—It would be
desirable to derive a version of the extended first law
of entanglement for variations of the quantum state
around an arbitrary excited state (not necessarily
the CFT vacuum), for example, around a thermal
state (previous work on excited states includes
Refs. [41,62,63]). In the context of holography,
such study may shed light on the results of Ref. [34],
which showed that entanglement entropy can be
used as an efficient order parameter to uncover the
thermodynamic phase transitions associated to the
extended PV space. It would be interesting to
understand the connection of such transitions with
holographic RG flows and c-theorems.

(viii) Relation with holographic complexity.—Another
quantity that generalizes the concept of thermody-
namical volume to the context of entanglement
entropy is the recently proposed holographic com-
plexity, computed by the volume associated to the
entanglement wedge [64]. Very recently, it was
argued that this quantity also captures the behavior
of the extended PV space [65]. It would be interest-
ing to investigate if there is a more direct connection
between complexity and the extended first law of
entanglement.

(ix) Black hole chemistry from Iyer-Wald.—The extended
Iyer-Wald formalism provides an alternative method
for computing the thermodynamical volume of black
holes in general diffeomorphism invariant theories of
gravity, as an integral of the black hole exterior rather
than its interior. Therefore, the method might be very
useful for studying black hole chemistry in problem-
atic cases such as in Taub-NUT-AdS/Taub-Bolt-AdS
[66–68] and Lifshitz spacetimes [69,70].

We hope to come back to some of these problems in the
near future.

13We thank Ted Jacobson for discussion and suggestions on
how to approach this issue.
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APPENDIX A: IYER-WALD WITH VARYING
THE COUPLINGS: A CLOSER LOOK

In this section, we will review and extend the Iyer-Wald
formalism [45,46] to include variations in all the couplings
of the theory. A similar treatment can be found in Ref. [71]
for variations with respect to the cosmological constant
only.14 Since our main interest is the holographic impli-
cations of these variations and field theory quantities
typically involve combinations of the gravity coupling
constants, we will develop a framework to include varia-
tions with respect to all the couplings appearing in the
gravity theory.
Consider a theory of gravity with diffeomorphism

invariance coupled to matter. The Lagrangian can be
written as a (dþ 1)-form,

Lðg;ϕ; ciÞ ¼ Lε ¼ Lgðg; ciÞεþ Lmðϕ; g; ciÞε; ðA1Þ

where Lg is the gravitational Lagrangian, Lm is the matter
Lagrangian, ϕ stands for any matter, ε is the volume
element15 and ci are the couplings of the gravitational
theory. The variation of the Lagrangian takes the form

δL ¼ Egδgþ Eϕδϕþ dΘgðg; δgÞ
þ dΘmðg;ϕ; δg; δϕÞ þ

X
i

Eciδci; ðA2Þ

where Eg is the Einstein field equation, Eϕ is the Euler-
Lagrange equation for the matter and Eci is given by

Eci ¼ ∂L
∂ci ε; ðA3Þ

where and Θg and Θm are the boundary terms obtained
when the gravitational action and the matter action are
varied. We will use Θ for the sum of the two boundary
terms and refer to Θ as the symplectic potential current.
The Iyer-Wald formalism derives the first law of black

hole thermodynamics by considering two different kinds of
variations: (1) first, consider a variation generated by a
vector field and then (2) an arbitrary variation induced by
bulk fields. First, let ξμ be an arbitrary vector field, and
consider the field variation generated by ξμ: δξ ¼ Lξ. The
Noether current associated with the coordinate transforma-
tion generated by ξ is

J ¼ Θðg;ϕ; δξg; δξϕÞ − ξ ·L: ðA4Þ

The “dot product” in the second term on the right-hand side
means the contraction of the vector field with the first index
of the form.16 This Noether current is a d-form. Naturally, J
splits into a gravity current Jg and a matter current Jm. We
will now check that this current is conserved on shell, even
with varying couplings ci. To do this, we compute the
exterior derivative of J:

dJ ¼ dΘðg;ϕ; δξg; δξϕÞ − dðξ ·LÞ: ðA5Þ

After some manipulation, this can be cast as17

dJ ¼ −EgLξg −EϕLξϕ −
X
i

EciLξci: ðA6Þ

The first two terms on the right-hand side vanish on shell.
And the last term trivially vanishes since the couplings ci
have no spacetime dependence. Therefore, we conclude
that dJ ¼ 0 on shell, and J is (locally) the exterior
derivative of a (d − 2)-form Q:

J ¼ dQ: ðA7Þ

Q is the Noether charge associated with the symmetry
generated by ξ. Next, consider a variation of J under an
arbitrary variation (not induced by a vector field). We have

δJ ¼ δΘðg;ϕ; δξg; δξϕÞ − ξ · δL: ðA8Þ

Note that in the above equation we do not vary ξ (i.e.
δξ ¼ 0) since we do not consider ξ a dynamical variable in
this formalism. After some manipulations, we find14The paper [71] applies the formalism to study physics in de

Sitter space.
15The volume element is given by ε ¼ ffiffiffiffiffiffi−gp

dt ∧ dx1 ∧ …
∧ dxd. For later convenience, we will also define the d-form
εa ¼ 1

d! ϵab2…bdþ1
dxb2 ∧ … ∧ dxbdþ1 and the (d − 1)-form εab ¼

1
ðd−1Þ! εabc3…cdþ1

dxc3 ∧ … ∧ dxcdþ1 where ϵ is the Levi-Cività
tensor, with the sign convention ϵtzx1…xd−1 ¼ þ ffiffiffiffiffiffi−gp

.

16For example, for an n-form F¼ 1
n!Fa1a2…andx

a1 ∧ dxa2 ∧…
∧ dxn, we have ξ · F ¼ 1

ðn−1Þ! ξ
bFba2…andx

a2 ∧ … ∧ dxan .
17We use Cartan’s magic formula: LξL ¼ ξ · dLþ dðξ ·LÞ.

We also used the fact that dL ¼ 0, since L is a top-dimensional
form, and Eq. (A2).
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δJ ¼ δΘðg;ϕ; δξg; δξϕÞ − LξΘðg;ϕ; δg; δϕÞ
þ dðξ ·ΘÞ −

X
i

ξ ·Eciδci: ðA9Þ

At this stage, it is convenient to introduce the symplectic
current Ω, defined by

Ωðψ ; δ1ψ ; δ2ψÞ ¼ δ1½Θðψ ; δ2ψÞ� − δ2½Θðψ ; δ1ψÞ�; ðA10Þ

where ψ stands for all the dynamical variables including the
metric and δ1 and δ2 are two arbitrary variations. We can
then rewrite Eq. (A9) as

δJ ¼ Ωðg; δg; δξgÞ þ dðξ ·ΘÞ −
X
i

ξ ·Eciδci: ðA11Þ

Up to now, we have considered an arbitrary vector ξ. Let
us now specialize to a Killing vector field, £ξg ¼ 0. In this
case, the symplectic current vanishes. Using Eq. (A7), we
then find18

dðδQ − ξ ·ΘÞ þ
X
i

ξ ·Eciδci ¼ 0: ðA12Þ

We now integrate the equation above over a codimension-1
hypersurface Σ and use Stokes’s theorem

X
i

Z
Σ
ξ · Eciδci þ

Z
∂Σ

χ ¼ 0; ðA13Þ

with χ defined to be the form

χ ¼ δQ − ξ ·Θ: ðA14Þ

Equation (A13) is one of the results of this paper. In the
following sections, we will make use of it to derive an
extended first law of entanglement entropy.
Let us now give the explicit expressions for the sym-

plectic potential current Θg and Noether charge Q for
Einstein gravity and Gauss-Bonnet gravity. For Einstein
gravity, we have

Θg ¼
1

16πGN
gacgbdð∇bδgcd −∇cδgbdÞεa; ðA15Þ

Q ¼ −
1

16πG
∇aξbεab: ðA16Þ

For Gauss-Bonnet gravity, the symplectic potential
current d-form was given in [46]

Θ ¼ εd

��
1

16πG
þ 2αR

�
gdegfhð∇fδgeh −∇eδgfhÞ

þ αð−2ð∇eRÞgdfδgef þ 4Rdeð∇eδgfhÞgfh
þ 4Refð∇dδgefÞ − 8Refð∇eδgfhÞgdh − 4ð∇eRdfÞδgef
þ 4Rdefh∇hδgefÞ

�
; ðA17Þ

and the Noether charge (d − 1)-form is [46]

Q ¼ −εde
�

1

16πG
∇dξe þ 2αðR∇dξe

þ 4∇½fξd�Re
f þ Rdefh∇fξhÞ

�
: ðA18Þ

A note here is in order about the expressions above for
Gauss-Bonnet theory. Technically, the results of Ref. [46]
assume zero cosmological constant. However, for both
Einstein and Gauss-Bonnet gravity, the introduction of a
cosmological constant does not modify the boundary term
Θ when we vary the action, so Θ remains the same in AdS
as in flat space. As for the Noether current J and Noether
charge Q, the reader can check that their off-shell defi-
nitions will be modified by the presence of the cosmo-
logical constant, but on-shell they are also the same.19

APPENDIX B: ENTANGLEMENT FIRST LAW
AND LINEARIZED BULK EQUATIONS OF

MOTION: A REVIEW

In this Appendix, we review the equivalence between the
(unextended) first law of entanglement and the linearized
equation of motion in the bulk, both in Einstein gravity and
Gauss-Bonnet gravity. The Einstein gravity case has been
treated in Refs. [9,23], which we follow closely. Consider a
generic perturbation of AdS,

ds2 ¼ L2

z2
ð−dt2 þ dx⃗2 þ dz2 þ zdHμνðz; x; tÞdxμdxνÞ;

ðB1Þ
where μ and ν are the boundary coordinates t and xi. We
work in the radial gauge where Hzt ¼ Hzx ¼ Hzz ¼ 0. In
order for the perturbation to solve the linearized Einstein
equation, Hμν has to be traceless (Hμ

μ ¼ 0) and divergence
free (∂μHμν ¼ 0) and satisfies

1

z4
∂zðz4∂zHμνÞ þ ∂2Hμν ¼ 0: ðB2Þ

Substituting the perturbed metric (B1) into the formula for
χ in Einstein gravity and working to first order in Hμν, we
find

18We replace δJ by dδQ. This is only allowed when the
perturbations δg and δϕ are on shell in the sense that they satisfy
the linearized equation of motion. Since we are varying the
couplings, the linearized equation of motion must include addi-
tional terms containing the variation of these couplings. 19We thank Robert Wald for explaining this point.
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χjΣ ¼ zd

16πG

�
εtz

��
2πz
R

þ d
z
ξt þ ξt∂z

�
Hi

i

�
;

þ εti

��
2πxi

R
þ ξt∂i

�
Hj

j −
�
2πxj

R
þ ξt∂j

�
Hi

j

��
:

ðB3Þ

The restrictions to the boundary at infinity and to the
bifurcating surface are

χj∂Σ∞
¼ −

Ld−1d
16GR

ðR2 − x⃗2ÞHi
iðz ¼ 0Þdx1 ∧ … ∧ dxd−1;

ðB4Þ

χj∂Σh
¼ −

Ld−1

8GR
ðR2Hi

i − xixjHijÞdx1 ∧ … ∧ dxd−1: ðB5Þ

The Iyer-Wald formalism states that

Z
Σ∞

χ ¼
Z
Σh

χ: ðB6Þ

The equality between the two quantities above can be
verified directly by integrating (B4) over the boundary and
bifurcation surface. As argued in the main body of the
paper, the integral over the horizon necessarily gives δS.
One can also directly check that the integral over the
boundary gives δE. Recall that the energy associated to a
Killing vector field ξ is given by

E ¼
Z

dΣμξνTμν; ðB7Þ

from which we easily find

δE ¼ 2π

Z
A
dd−1x

�
R2 − x⃗2

2R

�
δhT00i: ðB8Þ

On the other hand, δhTμνi can be related to the metric
perturbation Hμν by holographic renormalization:

Tμνðx; tÞ ¼
d

16πG
Hμνðz ¼ 0; x; tÞ: ðB9Þ

Plugging back into (B8), we readily see that, indeed,
δE≡ R∂Σ∞

χ.
Next, we move on to discuss the Gauss-Bonnet case.

Intriguingly enough, the linearized equation of motion in
AdS is exactly the same as in Einstein gravity [72]. In
particular, we still want the perturbation Hμν to be traceless
and divergence free. To keep the algebra manageable, we
work in d ¼ 4 and consider a particular perturbation of the
form

ds2 ¼ L2

z2

�
dz2 þ ð−1þHz4Þdt2

þ
�
1þHz4

3

�
ðdx21 þ dx22 þ dx23Þ

�
; ðB10Þ

where H is a constant. Next, we compute the form χ, but
first we need δQ and Θ under the above perturbation. We
find for the variation of the Noether charge

δQjΣ ¼
X
i<j

δQzijdz ∧ dxi ∧ dxj þ δQ123dx1 ∧ dx2 ∧ dx3;

ðB11Þ

with

δQzij ¼
HLz
12GR

ϵijkxkðL2 − 448GπαÞ ðB12Þ

and

δQ123 ¼ −
HL
8GR

½L2ð2R2 − 2x⃗2 − z2Þ
− 64πGαð2R2 − 2x⃗2 − 7z2Þ�; ðB13Þ

while the boundary term vanishes (see Appendix C):

Θ ¼ 0: ðB14Þ

Therefore, the form χ coincides with the variation
of Q. As usual, the integral of χ over the bifurcation
surface yields δS. In this example, it might be worthwhile to
see this explicitly. The restriction of χ to the bifurcation
surface is

χj∂Σh
¼ −

HL
24GR

½L2ð3R2 − x⃗2Þ
þ 64Gπαð15R2 − 29x⃗2Þ�dx1 ∧ dx2 ∧ dx3: ðB15Þ

Integrating χ over the bifurcation surface then gives

Z
∂Σh

χ ¼ −
2πHLR4ðL2 − 64παGÞ

15G
: ðB16Þ

On the other hand, let us compute the change in the area of
the Ryu-Takayanagi surface due to H. From the modified
area functional (69), the shift in the entanglement entropy is
given by

δS ¼ 1

4G

Z
M
d3x½δð

ffiffiffi
h

p
Þ þ 32πGαδð

ffiffiffi
h

p
RÞ�; ðB17Þ

with
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δð
ffiffiffi
h

p
Þ ¼ H

L3

6R
ð3R2 − x⃗2Þ; ðB18Þ

and

δð
ffiffiffi
h

p
RÞ ¼ HL

3R
ð15R2 − 29x⃗2Þ: ðB19Þ

If we plug the two equations above into Eq. (B17) and
integrate to obtain the variation of entanglement entropy,
we then find

δSEE ¼ 2πHLR4ðL2 − 64παGÞ
15G

: ðB20Þ

Comparing with the integral of χ over the bifurcation
surface given in (B16), we find agreement:Z

∂Σh

χ ¼ −δSEE: ðB21Þ

Finally, the restriction of χ to the boundary is

χj∂Σ∞
¼ −

HL
4GR

ðL2 − 64GπαÞðR2 − x⃗2Þdx1 ∧ dx2 ∧ dx3:

ðB22Þ

Integrating this over the boundary yields

δE ¼ 2πHLR4ðL2 − 64παGÞ
15G

: ðB23Þ

Comparing with the integral over the horizon, we find
agreement. Of course, the result for δE obtained here is
consistentwith the holographic stress-energy tensor computed
from holographic renormalization in Gauss-Bonnet theory.

APPENDIX C: PROOF OF EQS. (38) AND (B14)

First, we show that the symplectic potential current
vanishes under a perturbation of L in Einstein gravity. A
variation of L changes the metric in the following way:

δgtt ¼ −δgzz ¼ −
2LδL
z2

; ðC1Þ

δgij ¼
2LδL
z2

δij: ðC2Þ

The nonzero Christoffel symbols of the (dþ 1)-dimen-
sional Poincaré patch are

Γt
tz ¼ Γz

tt ¼ Γz
zz ¼ −

1

z
; ðC3Þ

Γi
zj ¼ −δij

1

z
; ðC4Þ

Γz
ij ¼ δij

1

z
: ðC5Þ

In order to show that the symplectic potential current vanishes,
we will show that the following two quantities vanish:

Θa
ð1Þ ¼ gacgbd∇bδgcd; ðC6Þ

Θa
ð2Þ ¼ gacgbd∇cδgbd: ðC7Þ

Consider first the second quantity. We can recast it as

Θa
ð2Þ ¼ gac∂cðgbdδgbdÞ: ðC8Þ

But the quantity in parentheses is can be found to be

gbdδgbd ¼
2δL
L

ðdþ 1Þ: ðC9Þ

In particular, this quantity has no spacetime dependence, and
therefore any partial derivative of this quantity vanishes, and
we find

Θa
ð2Þ ¼ 0: ðC10Þ

Next, consider thequantityΘa
ð1Þ.A lengthybut straightforward

calculation using the Christoffel symbols listed above reveals
that this quantity also vanishes for each choice of a (a ¼ t, z,
xi). Thus, we find that the symplectic potential current
vanishes under variations of L,

Θ ¼ 0: ðC11Þ
This proves Eq. (38). Next, we show that the symplectic
potential current also vanishes under ametric perturbationHμν

in the Einstein-Gauss-Bonnet theory. Recall that the general
expression for Einstein-Gauss-Bonnet, given in (A17), is not
proportional to the sum of Θð1Þ and Θð2Þ. However, when
evaluated on the AdS background, the result is proportional to
this sum[seeEq. (76)].Thus,wewill showagain that bothΘð1Þ
andΘð2Þ vanish. Themetric changes in the following way due
to Hμν:

δgμν ¼ L2zd−2HμνðxλÞ: ðC12Þ

In this case, we find

Θa
ð2Þ ¼ gac∂cðzdημνHμνÞ; ðC13Þ

Θt
ð1Þ ¼

zdþ2

L2
ð∂tHtt − ∂iHtiÞ; ðC14Þ

Θz
ð1Þ ¼ 0; ðC15Þ

Θi
ð1Þ ¼

zdþ2

L2
∂kHi

k: ðC16Þ

In particular, for the perturbation in Sec. IV.2, all three
equations above vanish. This proves Eq. (B14).
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