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The possibility of performing simultaneous measurements in quantum mechanics is investigated in the context
of the Curie-Weiss model for a projective measurement. Concretely, we consider a spin– 1

2 system simultaneously
interacting with two magnets, which act as measuring apparatuses of two different spin components. We work out
the dynamics of this process and determine the final state of the measuring apparatuses, from which we can find
the probabilities of the four possible outcomes of the measurements. The measurement is found to be nonideal,
as (i) the joint statistics do not coincide with the one obtained by separately measuring each spin component,
and (ii) the density matrix of the spin does not collapse in either of the measured observables. However, we
give an operational interpretation of the process as a generalized quantum measurement, and show that it is fully
informative: The expected value of the measured spin components can be found with arbitrary precision for
sufficiently many runs of the experiment.

DOI: 10.1103/PhysRevA.95.052129

I. INTRODUCTION

Projective quantum measurements are usually described as
an instantaneous evolution, where the wave function collapses
to an eigenstate of the measured observable. Yet progress
in the last decades have shown how physical mechanisms,
such as decoherence and dephasing, might be responsible for
this apparent collapse. In this case, the measurement postulate
appears as a consequence of the particular interaction between
system and apparatus, as well as the macroscopic size of the
latter (see [1–5] and references therein). By treating the mea-
surement as a physical evolution, in this work we explore the
possibility of measuring simultaneously two noncommuting
observables. We note that while simultaneous measurements
are usually not covered by the standard postulates of quantum
mechanics, they are attempted experimentally (see, e.g., the
recent experiments [6,7]), and are a subject of high interest for
the foundations of quantum physics [4,8–25].

In this article, we study joint measurements of two
spin components, in which each measurement when treated
individually corresponds to a projective measurement. While
the statistics of joint qubit measurements is by now well
understood (see [26,27] and references therein), here we focus
our attention on the dynamics of such measurements, which
allows us to explicitly show the disturbance that the two
apparatuses induce in each other and in the system.

In order to describe the dynamics of the measurement,
we use the Curie-Weiss model [28–30], which can be used
to describe a projective quantum measurement of a spin- 1

2
system by a magnet [4,31]. In this model, the magnet, which
is in contact with a thermal bath, is initially set in a metastable
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paramagnetic state. The measurement then takes place when
the interaction with the spin- 1

2 system triggers the magnet
towards one of its two stable ferromagnetic states. These
two robust, stable ferromagnetic states are identified with the
pointer states of the apparatus. Following the initial attempts
in [4,13], we study in detail the evolution of a spin- 1

2 system
simultaneously interacting with two such magnets.

We observe a competition between the two apparatuses,
each of them trying to obtain information about a different
component. This results in a nonideal measurement: The
marginal probability distribution for the outcomes obtained
by each apparatus does not correspond to the one given by
the Born rule, and the spin does not collapse in either of the
measured observables. Yet the joint measurement can be well
described as a generalized quantum measurement, defined by a
positive-operator-valued measure (POVM). We also show that
the expectation value of each spin component of the tested
spin can be inferred after many runs of the process.

It is important to stress that the whole measurement process,
from the collapse of the wave function to the amplification of
the microscopic signal, is here treated explicitly as a physical
evolution between the tested system and the two measuring ap-
paratuses. This allows us to describe how the system and both
apparatuses are progressively disturbed by each other, leading
to many features of nonideal measurements. In this way, we
complement previous studies on simultaneous measurements,
which range from theoretic considerations on the possible
statistics [14,16,18–25] to studies of specific measurement
models (see [9,10] and references therein), including the von
Neumann measurement setup [8], continuous measurements
[6,32–34], and weak measurements [7,35].

The paper is structured as follows. In Sec. II we present the
Curie-Weiss model for a quantum projective measurement.
In Sec. III, we explore the possibility of performing a
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FIG. 1. Schematic figure of the measurement, containing the
measured spin system (S), the magnet (M), and the bath (B). The
main idea of the measurement is that the SM interaction brakes
the metastability of the initial state of M, triggering a phase transition
from the initial paramagnetic state to a ferromagnetic state, which is
driven by B. The two ferromagnetic states correspond to the pointer
states of the measurement.

simultaneous measurement. In the main text, we present a
qualitative analysis based on free energy functions, which
allows us to infer the final form of the apparatuses after the
measurement, which is complemented by a detailed calcula-
tion in the appendices of the equations of motion of the process.
Finally, in Sec. IV we provide an operational interpretation
of the measurement using the theory of generalized quantum
measurements. The paper closes with a discussion. Technical
details are deferred to the appendices.

II. THE CURIE-WEISS MODEL
FOR A QUANTUM PROCESS

The Curie-Weiss (CW) model describes a measurement of
the z component, ŝz, of a spin-1/2 system by a magnet. We
refer the reader to [4] for a detailed description of this model;
here we only discuss its main points.

A. The Hamiltonian

The apparatus (A) consists of a magnet (M) in contact with
a thermal bath (B); see Fig. 1. Microscopically, M consists of a
large number N of spins with Pauli operators σ̂ (n)

a (a = x,y,z).
The magnetization of M,

m̂ = 1

N

N∑
n=1

σ̂ (n)
z , (1)

is the pointer variable. For large N , the apparatus has
macroscopic properties and the pointer turns out to take stable
values that can be read off at any suitable moment. The
magnetization is coupled to the measured variable ŝz via

ĤSA = −Ngm̂ŝz, (2)

with ŝz = 1
2 h̄σ (S)

z ; throughout the article we will assume
h̄ = 1. This coupling selects a preferred direction z for the
measurement. On the other hand, the free Hamiltonian of M
is an Ising-like interaction,

ĤM = −J2N
m̂2

2
− J4N

m̂4

4
. (3)

Let us note that this Hamiltonian plays an important role in
the study of phase transitions in statistical mechanics [28–30].

In turn, M is coupled to B, which is a bosonic bath made
up of an infinite number of bosonic degrees of freedom with
an Ohmic spectral density. Each σ̂ (n)

a (a = x,y,z) is coupled
homogeneously to the phonons of B. The full Hamiltonian,
including the coupling between M and B, is presented in
Appendix A.

It will be useful to decompose the magnetization as

m̂ =
∑
{m}

m�̂m, (4)

where {m} = {−1 + 2i/N}i=N
i=0 is the set of eigenvalues of m̂,

and �̂m is a projector on the corresponding subspace. The
degeneracy of each m is given by

G(m) = Tr(�̂m) = N ![
N
2 (1 + m)

]
!
[

N
2 (1 − m)

]
!

≈ 1√
2πN

exp

[
−N

2

(
ln

1 − m2

4
+ m ln

1 + m

1 − m

)]
,

(5)

where in the last step we used Stirling’s approximation,
N ! ≈ √

2πN (N/e)N , and kept only leading terms in N .

B. The state

In order to have an unbiased measurement, it is mandatory
that the density matrix of A not depend on the one of S. The
initial state of the process is taken as a product state between
S, M, and B,

D̂0 = r̂S ⊗ R̂M ⊗ R̂B, (6)

where the state of S is a generic spin state,

r̂S =
∑

i,j={↑,↓}
rij |i〉〈j |, (7)

where |↑〉, |↓〉 are eigenstates of ŝz, and rij = 〈i|r̂S |j 〉 with
i,j = {↑,↓}.

That the density matrix of A starts in the product state is
a choice of the initial state we consider. The state of M is a
paramagnetic state, described as a maximally mixed state with
zero average magnetization,

R̂M = 1

2N

N⊗
n=1

I(n). (8)

This form can be achieved by putting the magnet in a strong
radio frequency field. The distribution of the magnetization in
(8) is given by P0(m) = G(m)/2N , which, in the limit of large
N , can be well approximated by a Gaussian distribution,

P0(m) ≈
√

N

2π
e−Nm2/2. (9)

Finally, B is assumed to start out in a thermal state at
temperature β,

R̂B = e−βĤB

ZB

, (10)
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where HB is the Hamiltonian of a bosonic bath (see
Appendix A for details). This can be achieved by thermalizing
B with a larger bath before the start of the measurement.

When considering the evolution of (6) with the full Hamil-
tonian, the only relevant degrees of freedom are those of SM,
described by the reduced state D̂SM (t) = TrB[D̂(t)]. Without
explicitly solving the dynamics, an important property of the
evolution of D̂SM (t) is that it always admits the decomposition
[4] (see also Appendix B 6),

D̂SM (t) =
∑
m

∑
i,j={↑,↓}

1

G(m)
Pij (m,t)|i〉〈j | ⊗ �̂m. (11)

Here, P↑↑ (P↓↓) represent the conditional probability of the
magnetization being equal to m given that S is pointing
up (down), whereas P↑↓ (P↓↑) bring information about the
coherent terms. The initial conditions are given by Pij (m,t) =
rijP0(m). Given the decomposition (11), the probability
distribution of m at time is simply given by

P (m,t) = Tr[�̂mD̂SM (t)] = P↑↑(m,t) + P↓↓(m,t). (12)

Note that the decomposition (11) allows us to express
the state of SM, for which in principle 2N+1 degrees of
freedom are required, through functions that have only O(N )
degrees of freedom—given by the possible values of m. This
property allows one to perform numerical simulations for
relatively large systems, which will be particularly useful
when considering two apparatuses, and is also essential to
analytically solve the equations of motion.

C. Equilibrium states and free energies

The interaction of M with the thermal bath B tends to
bring M to a stable equilibrium state. Given the Hamiltonian
(3), there are three (locally) stable states for M: two stable
ferromagnetic and a metastable paramagnetic state [4]. In order
to see that, consider the state of M at thermal equilibrium in
the temperature 1/β of the bath,

R̂
(eq)
M = e−βĤM

ZM

, (13)

with a probability distribution given by

Peq(m) = G(m)
e−βHM (m)

ZM

. (14)

One can now construct a free-energy-like function Feq(m) by
inserting (5) into (14) and identifying

Peq(m) ≡ e−βFeq(m)

ZM

, (15)

obtaining

Feq(m) = HM (m) + N

2β

(
ln

1 − m2

4
+ m ln

1 + m

1 − m

)
, (16)

where we assumed N 
 1 and neglected the constant term
− ln 2πN/2. This free-energy-like function arises from the
Hamiltonian ĤM and the degeneracy of m̂ (which brings
the entropic contribution). This function presents a local
minimum at m = 0 (paramagnetic region) and two global
minima at ±mF with mF ≈ 1 (ferromagnetic region) for low

FIG. 2. Free energy functions of M: (i) in the absence of S (Feq),
(ii) in the presence of |↑〉 (F⇑), and (iii) in the presence of |↓〉 (F⇓).
The minimum of F⇑ defines the value of mF ≈ 1. The parameters are
chosen as J2 = 0, J4 = 1, β = 3.3, g = 0.08.

β and J2 < 3J4, which is the regime where the apparatus can
function for a measurement. These (local) minima correspond
to (meta)stable states of M when put in contact with B. As such,
the probability distribution (12) naturally evolves towards them
in the course of time [4].

While (16) captures the equilibrium states of M in absence
of S, we are in fact interested in the joint state of SM. Let us
hence consider the equilibrium state of SM, and expand it as

D̂
(eq)
SM = e−β(ĤSM+ĤM )

Z = |↑〉〈↑| ⊗ R̂
(eq)
⇑ + |↓〉〈↓| ⊗ R̂

(eq)
⇓ ,

(17)

where

R̂
(eq)
i = e−β(siNgm̂+ĤM )

Z , (18)

with si = ±1/2 for i = {⇑ , ⇓}. In other words, R̂
(eq)
⇑ (R̂(eq)

⇓ )
are thermal states of M with an extra positive (negative)
field due to the interaction with S. In analogy with (16),
we can construct free energy functions associated with (the
distribution of m for) those states, obtaining

Fi(m) = −siNgm + Feq(m), si = ±1/2, (19)

with i = {⇑ , ⇓}. Clearly, in absence of interaction with S, F↑
and F↓ coincide with the original Feq. Yet, the presence of g

breaks the symmetry m ↔ −m of Feq(m), so that the positive
(negative) ferromagnetic state becomes the most stable one
for F↑ (F↓). Furthermore, if g is large enough, Fi presents no
longer a local minimum near m = 0; i.e., the interaction with
S breaks the metastability of the paramagnetic state and the
system can be used as a measurement device that will end up in
a magnetized state. These considerations are shown in Fig. 2.

D. Measurement process

The joint evolution of S, M, and B is captured by the
following two processes: (i) a dephasing process due to the
interaction between S and M (named truncation of the initial
state in [4]), and (ii) a decay of M from the paramagnetic
state (8) towards one of the two ferromagnetic states, termed
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registration of the measurement. The former evolution takes
place on a time scale τd ∝ 1/g, whereas the latter one is
characterized by the time scale τr ∝ 1/γ , where

√
γ � 1 is

the dimensionless coupling strength of MB. Because of the
smallness of γ (that is, the weakness of the coupling to the
bath) we have that τd � τr , so that the dephasing process
takes place much faster.

1. Dephasing

Let us first focus on the interaction (2), and neglect the
presence of B, which acts on a much longer time scale. In this
case, from (2) and (11), one obtains

P↑↑(m,t) = r↑↑P0(m),

P↑↓(m,t) = r↑↓P0(m)e−i2Ngmt , (20)

and the other components are solved using P↑↓(m,t) =
P ∗

↑↓(m,t) and r↑↑ + r↓↓ = 1. Hence, in the basis spanned by
ŝz, the off-diagonal elements of SM gain phases whereas the
diagonal elements remained unmodified. At the level of S, this
leads to a decay of the off-diagonal elements,

r↑↓(t) =
∑
m

P↑↓(m,t)

≈ r↑↓
∫

P0(m)e−i2Ngmtdm = r↑↓e−t2/τ 2
d , (21)

where in the second step we took the limit to the continuum
(which holds strictly for N → ∞) and inserted (9). The decay
process takes place on a time scale τd = 1/

√
2Ng. From (20)

and (21) it follows that

〈ŝx(t)〉 = 〈ŝx(0)〉e−t2/τ 2
d ,

〈ŝy(t)〉 = 〈ŝy(0)〉e−t2/τ 2
d , (22)

〈ŝz(t)〉 = 〈ŝz(0)〉.
That is, the dephasing process erases information about the
nonmeasured observables, which is lost in the many degrees
of freedom of M. The form (20) may produce recurrences
[nonsmall values of P↑↓(m,t)] at later times; these can be
suppressed by a spread in the constant g that couples to the
spins of M and/or by the action of the bath. The decay (22)
goes together with a cascade of small correlations between
the transverse components ŝx,y of the tested spin and an
arbitrary, finite number σ̂ (i1)

z · · · σ̂ (ik)
z of the z components of

the of spins of A [4]: in this initial stage, the information
coded in the transverse components is transferred to many
weak multiparticle correlations in M. This is still phase
coherent; at a later time it may get lost by transfer to the
bath (“decoherence”).

2. Registration

In the registration, the information about ŝz is transferred to
the pointer states of M (associated with the two ferromagnetic
states). Without explicitly solving the dynamics, let us here
give an intuition of this process using the free energies derived
in (19). Indeed, the free energy functions Fi(m) also bring
information about the nonequilibrium dynamics, as P↑↑(m,t)
and P↓↓(m,t) in (11) tend to the minima of F⇑ and F⇓,
respectively [4].

At the beginning of the measurement, we have that
P↑↑(m,0) = r↑↑PM (0) and P↓↓(m,0) = r↓↓PM (0), where
PM (0) is a Gaussian distribution centered in m = 0; see (9).
Now, in absence of interactions, these distributions would
eventually decay to an equally weighted distribution of the
two ferromagnetic states (i.e., to a thermal state). This decay
is slow because it has to overcome a free energy barrier, which
demands an exponential time in N . However, for large enough
g, metastability is broken, so that P↑↑(m,t) and P↓↓(m,t)
evolve rapidly towards the minima of F⇑ and F⇓, respectively,
in a relatively short time scale of order (J2 + J4)/γ . The final
states of P↑↑(m,t), P↓↓(m,t) are hence two ferromagnetic
distributions peaked around m = ±mF , with mF ≈ 1. This
intuitive explanation can be confirmed by explicitly solving
the equations of motion of the process [4].

On the other hand, the off-diagonal elements P↓↑(m,t)
and P↑↓(m,t) decay due to a decoherence effect induced
by the bath, which can be anticipated by noting that the
equilibrium state (17) has no off-diagonal terms. Putting
everything together, we have, given the expansion (11), the
following form for the final state of SM,

D̂(tF ) = r↑↑|↑〉〈↑| ⊗ R̂⇑ + r↓↓|↓〉〈↓| ⊗ R̂⇓, (23)

where R̂⇑, R̂⇓ are the two pointer states at ±mF , i.e., R̂⇑ ≈
�̂mF

, R̂⇓ ≈ �̂−mF
[36]. Only on a much longer time scale, the

state of SM will evolve to a thermal equilibrium state, leaving
ample time to read off the measurement outcome at a suitable
moment.

The state (23) is the expected final state of a projective
measurement: With probability r↑↑ (r↓↓) the state of S is
projected onto |↑〉 (|↓〉) and the pointer state is pointing up
(down). The off-diagonal elements of SM disappear, those
of S due to the dephasing effect in (22) and those of M
due to the presence of the bath [note that the equilibrium
state (17) has no off-diagonal elements]. As usual in unitary
dynamics, the off-diagonal terms of the whole system SMB
do not mathematically disappear but become lost at the level
of SM.

Of course, as already mentioned, the justification for (23)
presented here is a heuristic one, based on the free energy
functions (19). Yet, the final form (23) can be rigorously proved
by solving the dynamical equations [4].

As a final remark, we note that from the expression (19),
one can find the minimum coupling hc between S and M for
which the free energy barrier disappears, so that the registration
process becomes possible. For J2 = 0, one finds that

hc = T

2
ln

(
1 + mc

1 − mc

)
, (24)

with 2m2
c = 1 − √

1 − 4T/3J4 [4], where T should satisfy
T < 3J4/4. Only when g > hc, the apparatus will reach
a ferromagnetic state, hence yield an outcome for the
measurement—in a nonexponential time in N .

III. DYNAMICS OF A JOINT MEASUREMENT
OF TWO OBSERVABLES

Let us now explore the possibility of coupling S simul-
taneously to two apparatuses (see Fig. 3). For that purpose
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FIG. 3. Schematic figure of the simultaneous measurement. The system S simultaneously interacts with M and M’ through the z and x spin
components, respectively.

we extend the previous considerations by adding a second
apparatus A′ which attempts to measure ŝx . Analogously to
A, it is made up of magnet M′ and a bath B′, with parameters
J ′

2,J
′
4,g

′,N ′ . . ., which we assume to have the same order as
those of A, and an internal Hamiltonian HM′ analogous to (3).
The initial state of M’ is also a paramagnetic state and it has two
pointer states corresponding to the two ferromagnetic states.
Therefore, there are four possible pointer states, and hence
four outcomes of the measurement {− − , − +, + −, + +}.
We aim to extract information about the expectation value of
the two measured observables, ŝz and ŝx , from such outcomes.

While, for convenience, we assume that each magnet
interacts with its own bath, both baths must have the same
temperature 1/β, so that no heat currents are present. The mag-
nets are expected to eventually equilibrate to the thermal state
(38). In other words, the two magnets share a common thermal
environment, which interacts locally and independently with
each magnet.

In the following we describe the main characteristics of the
dynamics of this process. We always try to keep the analogy
with the considerations for the single-apparatus measurement
as close as possible.

A. The Hamiltonian

Let S interact simultaneously with both apparatuses through

ĤSMM′ = −Ngŝz ⊗ m̂ ⊗ IM ′ − N ′g′ŝx ⊗ IM ⊗ m̂′, (25)

where IM and IM ′ are the identity in the Hilbert space of
M and M′, respectively. In analogy with Eq. (2), note that
A is attempting to measure ŝz and A’ ŝx . By expanding the
magnetizations as

m̂ =
∑
{m}

m�̂m,

m̂′ =
∑
{m′}

m′�̂m′ , (26)

where �̂i (�̂′
j ) is a projector in the subspace spanned by the

eigenvectors with eigenvalue m (m′), we can write ĤSMM′ as

ĤSMM′ = −
∑
m,m′

(Ngmŝz + N ′g′m′ŝx) ⊗ �̂m ⊗ �̂m′

= −
∑
m,m′

w(m,m′)ŝu(m,m′) ⊗ �̂m ⊗ �̂m′ , (27)

where we have defined a modulus w and unit vector u,

w(m,m′) =
√

(Ngm)2 + (N ′g′m′)2, (28)

u(m,m′) = Ngmz + N ′g′m′x
w(m,m′)

, (29)

and the spin projection

ŝu(m,m′) = u(m,m′) · ŝ. (30)

Hence, we see that S effectively acts on both apparatuses as
a global field w(m,m′) in the direction u(m,m′). Note that for
every value of the magnetization of the apparatuses, the field
acts with a different strength and direction.

In what follows, to avoid cumbersome expressions, we will
sometimes not write explicitly the dependence on (m,m′) of
u(m,m′) and w(m,m′). We will also denote u = (ux,0,uz), and
define a direction v in the x-z plane perpendicular to u, that is,
v(m,m′) = (uz,0, − ux), so that the spin projected on it reads
ŝv = uzŝx − uxŝz. It is useful also to introduce the states |↑u〉,
|↓u〉, which are eigenvectors of su,

ŝu|↑u〉 = 1
2 |↑u〉, ŝu|↓u〉 = − 1

2 |↓u〉. (31)

Finally, recall that every magnet has an internal Hamiltonian
given by (3)—where in order to obtain the internal Hamiltonian
of M′ one should replace J2 �→ J ′

2, J4 �→ J ′
4, etc. Further-

more, every magnet interacts with its own bosonic bath at
temperature 1/β; see the appendices for the explicit form
of the interaction and the internal Hamiltonian of the baths.
The strength of the interaction MB, MB′ is given by γ,γ ′,
respectively. It is satisfied that g,g′ 
 γ,γ ′.

B. The state

The initial state is now taken as a product state between all
different elements of the measurement,

D = r̂S ⊗ R̂M ⊗ R̂B ⊗ R̂′
M ⊗ R̂′

B. (32)

The initial state of both R̂M and R̂′
M is the paramagnetic state

(8). The state of SMM’ in the course of time can always be
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decomposed as (see Appendix B 6)

D̂SMM ′ (t) = TrB,B ′D(t)

=
∑

i,j={↑,↓}

∑
m,m′

P
(u)
ij (m′,m′,t)

G(m)G(m′)
|iu〉〈ju|

⊗ �̂m ⊗ �̂m′ . (33)

In this decomposition, P
(u)
↑↑ (P (u)

↓↓ ) represent the conditional
probability of the magnetizations given that S is in state |↑u〉,
|↓u〉, respectively. At any moment in time, the probability
distribution of the magnetizations can be then expressed as

P (m,m′,t) = Tr[�m�m′D̂SMM ′ (t)]

= P
(u)
↑↑ (m,m′,t) + P

(u)
↓↓ (m,m′,t). (34)

We recall that u = u(m,m′) is defined at given values of m and
m′ and that ↑ and ↓ are defined with respect to this direction.

The initial conditions for (33) read

P
(u)
ij (m,m′,0) = P0(m)P ′

0(m′)r (u)
ij , (35)

where r
(u)
ij = 〈iu|r̂S |ju〉 with i,j = {↑ , ↓}, r̂S is the initial state

of S, and P ′
0(m′) is like P0(m) but with modified parameters.

C. Dephasing

Let us now neglect the interaction between M, M’ and B,B’,
as g,g′ 
 γ,γ ′, and focus on the evolution of SMM’ under
(B1). Using the decomposition (33), we find

P
(u)
↑↓ (m,m′,t) = eiω(m,m′)tP (m)P (m′)r (u)

↑↓ ,

P
(u)
↑↑ (m,m′,t) = P (m)P (m′)r (u)

↑↑ , (36)

while the other components can be determined using
P

(u)
↑,↓(m,m′,t) = P

(u)
↑,↓(m,m′,t)∗ and r

(u)
↑↑ + r

(u)
↓↓ = 1. From this

solution we can work out the evolution of S by summing over
{m,m′}, which is done in detail in Appendix B. Assuming
N,N ′ 
 1, we find that

〈ŝy(t)〉 t
τd−−→ 0,

〈ŝx(t)〉 t
τd−−→ 〈ŝx(0)〉
√

N ′g′
√

Ng + √
N ′g′ , (37)

〈ŝz(t)〉 t
τd−−→ 〈ŝz(0)〉
√

Ng√
N ′g′ + √

Ng
.

If the two apparatuses are identical, the decay takes place on
a time scale τd = 1/

√
2Ng; otherwise, the stronger coupling

fixes the time scale.
This partial dephasing can be intuitively understood from

(36). For every value of (m,m′), the diagonal elements,
in the basis spanned by |↑〉u,|↓〉u, remain preserved in
time, whereas the off-diagonal elements gain phases. When
averaged over all values of (m,m′), those phases lead to
dephasing, i.e., disappearance of the off-diagonal elements
of S (see the Appendix B for detailed calculations). Since
the preferred direction u is always a combination of x and
z, ŝu = uxŝx + uzŝz, with u2

x + u2
z = 1, we finally obtain the

partial dephasing in (37).

We also note from expressions (37) that information about
the initial state of the measured components, x and z, is
partly lost. The exact tradeoff is determined by the coupling
strengths of S with each apparatus. The stronger the interaction
to one apparatus, the more information is kept about the
corresponding observable. In particular, if we take g′ → 0,

we obtain that 〈ŝz(t)〉 t→∞−−−→ 〈ŝz(0)〉 and 〈ŝx(t)〉 t→∞−−−→ 0, hence
recovering the results known for the single-apparatus case.
When the apparatuses are identical, 〈ŝx〉 and 〈ŝz〉 will both lose
a factor 2, while 〈ŝy〉 is completely lost. In expressions (37)
we thus observe the first signature of a competition between
the two apparatuses, as well as nonideality of this process.

D. Registration

Consider now the registration process, which involves the
combined effect of S with M, M’ and B, B’. In Appendix B,
we work out the corresponding equations of motion. By
tracing out B and B’, and taking standard approximations in
open quantum systems owing to the weak coupling between
MB and M′B′ [37], we obtain a set of equations for the
evolution of P

(u)
ij (m,m′,t) in (33). The resulting equations of

motion become notably complex and are given in Appendix B.
Here, instead, we describe the main features of the dynamics
and the form of the final state. For that, in analogy with
our considerations for one apparatus, we construct free
energy functions from which the final equilibrium states and
important properties of the dynamics can be inferred. The
discussion is complemented with numerical simulations of the
dynamics, obtained through the equations of motion derived
in Appendix B.

1. Free energy function

In analogy with (17), let us expand the thermal equilibrium
state of SMM’ as

D̂
(eq)
SMM ′ = e−β(ĤSMM′ +ĤM+HM′ )

Z

= 1

Z
∑
m,m′

e−β(−wŝu+HM (m)+HM′ (m′)) ⊗ �̂m ⊗ �̂m′

=
∑
m,m′

(
e−βH

(u)
⇑ (m,m′)|↑u〉〈↑u | + e−βH

(u)
⇓ (m,m′)

× |↓u〉〈↓u |) ⊗ �̂m ⊗ �̂m′ , (38)

where we have introduced H
(u)
i (m,m′) = siw(m,m′) +

HM (m) + HM ′ (m′) with i = {⇑ , ⇓} and si = ∓ 1/2. Now,
proceeding in close analogy with the derivation for (16), we
also construct the free energies,

F
(u)
i (m,m′) = −siw(m,m′) + Feq(m) + F ′

eq(m′), (39)

where i = {⇑ , ⇓}, si = ±1/2, and Feq(m), F ′
eq(m′) can be

obtained from (16). These free energy functions are associated
with the states of MM′ in thermal equilibrium with the baths
under the effect of S when pointing either in the +u or
−u direction. In the absence of interaction with S, the F

(u)
i

coincide and present nine (local) minima corresponding to
(0,0), (0, ± mF), (±mF,0), and (±mF, ± mF) in the space of
(m,m′). As we increase w, the local minimum in (0,0) of F

(u)
⇑
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FIG. 4. Free energy functions of MM’: (i) in the absence of S,Feq + F ′
eq, (ii) in the presence of |↑u〉, F

(u)
⇑ , and (iii) in the presence

of |↓u〉, F
(u)
⇓ .

loses stability whereas all ferromagnetic states become more
stable. The opposite effect occurs for F

(u)
⇓ : its paramagnetic

point becomes more stable. The different free energies are
plotted in Fig. 4.

2. Dynamics of the process

The free energy functions F
(u)
i are also rather useful to

qualitatively describe the evolution of DSMM ′ in (33), as
we can associate F

(u)
⇑ with P

(u)
↑↑ (m,m′,t), and similarly F

(u)
⇓

with P
(u)
↓↓ (m,m′,t). Each distribution evolves to the minimum

of each associated free energy. This is well illustrated in
Fig. 5, where we numerically solve the equations of motion
derived in Appendix B, obtaining P (m,m′,t). Initially both
magnets are set in paramagnetic states, so that P (m,m′,t)
is a two-dimensional Gaussian distribution. Notice then how
P (m,m′,t) splits into two distributions: one, P

(u)
↑↑ , is moving

towards ferromagnetic states and the other, P
(u)
↓↓ , moves

even further towards the center. This nicely agrees with our
considerations, as F

(u)
⇓ has a global minimum in the center

since w(m,m′) ∼ max(m,m′) > 0 there, see (28), whereas the
minima of F

(u)
⇑ are the four ferromagnetic states (see Fig. 4).

On the other hand, we also observe how P
(u)
↓↓ loses its weight

until its complete disappearance, it being transferred to P
(u)
↑↑ .

This cannot be explained from the free energy functions, and
is a consequence of the fact that the equations of motion for
P

(u)
↑↑ and P

(u)
↓↓ are coupled. The dynamical transfer from P

(u)
↓↓

to P
(u)
↑↑ is discussed analytically from a simplified version of

the equations of motion in Appendix B.
Finally, we note that the off-diagonal terms in (33), given by

P
(u)
↑↓ and P

(u)
↓↑ , disappear due to a decoherence effect induced by

the bath. This can be anticipated on the basis of the equilibrium
form (38), which indeed contains no such off-diagonal terms.
Again, these considerations are corroborated by the solution of
the equations of motion derived in Appendix B. Finally, note
that this decoherence process enhances the decay induced by
the degrees of freedom of the magnet in (37).

3. When do both apparatuses register a result?

The free energy (39) also allows us to find the minimal
coupling hd necessary for the joint measurement to yield regis-
tration by both apparatuses—that is to say, the minimum value
of g, g′ such that F

(u)
⇑ presents no free energy barriers (F (u)

⇓
always presents barriers), such that the initial paramagnetic

state centered at (m,m′) = (0,0) can reach one of the four
pointer states at (±mF, ± mF) in a time nonexponential in
N,N ′. In Appendix C we derive the corresponding conditions,
which allows us to find hd . For g = g′, the result simplifies to

hd = 2 max(T − J2,T − J ′
2). (40)

In Fig. 6 we compare hd with hc, the minimal coupling
required for one apparatus to yield a result given in (24).
The figure clearly shows how hd is considerable larger
than hc, the difference becoming especially noticeable for
small temperatures. Hence, we can identify different regimes
depending on the value of the couplings [38], assuming
g = g′,

(1) for g < hc neither of the apparatuses registers a result,
(2) for hc < g < hd , only one apparatus registers a result,
(3) for g > hd , both apparatuses register a result,

in a time nonexponential in N,N ′. The different regimes are
illustrated in Figs. 5 and 7, where we plot P (m,m′,t) for two
different couplings to the apparatuses. In Fig. 5, the interaction
is chosen to satisfy hc < g < hd , together with g′ = g, and
indeed only one apparatus reaches a ferromagnetic state while
the other stays practically at its initial state; after decoupling
the system S from the apparatuses A and A’, it will return to its
parametric state. In Fig. 7, the coupling is larger than hd , and
then both magnets reach ferromagnetic states, so that at the end
of the measurement P (m,m′,t) is peaked at the four possible
ferromagnetic states, associated with the four outcomes of the
measurement.

Also during the registration processes a competition be-
tween the two apparatuses takes place. Indeed, notice that the
action of S on the apparatuses is captured by

HSMM ′ (m,m′) = w(uxŝx + uzŝz), (41)

where the first term couples S to A’ and the second one S to A.
Assume that N = N ′ and g > g′, so that uz > ux and hence
initially S couples more strongly to M than to M’. Therefore,
we expect that the magnetization of M, m, will increase faster
than m′. In this case, uz becomes even more dominant with
respect to ux , thus penalizing the interaction of S with A’.
Hence, as we have anticipated already, one apparatus can
prevent the other one from registering the result. Only when
both apparatuses have a sufficiently comparable interaction
strength and can effectively influence each other through the
measured spin S, each of them can register outcomes for the
measurement, as in Fig. 7.
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FIG. 5. Plot of P (m,m′,t) for three different times: t = 0,6τ,12τ

(from top to bottom) with τ = 1/γ J . We take N = 161,J4 = J,

g = 0.1J,1/β = 0.2,J2 = 0, and the initial condition 〈sz(0)〉 = 1.
The results are obtained by solving numerically the equations of
motion (B36) derived in Appendix B. Notice that at the end of the
measurement only one of the two apparatuses registers a result, to be
expected as the interaction satisfies hc < g < hd .

4. The final state

If the interaction with both apparatuses is strong enough,
i.e., g,g′ > hd , both apparatuses evolve to ferromagnetic
states R̂⇑, R̂⇓ with a magnetization peaked at ±mF , with
mF ≈ 1; see, e.g., Fig. 7. After this has been achieved, the
couplings g and g′ between S and the apparatuses are cut,

FIG. 6. Ratio hd/hc as a function of β. In the figure we take
J2 = 0 and J4 = 1.

after which the states of A and A’ relax to their g = 0 and
g′ = 0 states, respectively. Let us assume, for simplicity, that
R̂⇑ ≈ �̂mF

/G(mF ) and R̂⇓ ≈ �̂−mF
/G(mF ), which is only

strictly true in the limit N → ∞. Since m,m′ are peaked at
±mF , we have that the direction u can only take four possible
values at the end of the measurement, given by

u(εε′) ≡ (ε′N ′g′,0,εNg)√
(Ng)2 + (N ′g′)2

, ε,ε′ = ±, (42)

which is found by inserting ±mF into (29). Let us also define
the states |↑εε′ 〉, with ε,ε′ = ±, which are states pointing at
the u(εε′) direction, i.e.,(

u(εε′)
z ŝz + u(εε′)

x ŝx

)|↑εε′ 〉 = 1
2 |↑εε′ 〉. (43)

From (33), we notice that these are the possible states of S at
the end of the measurement.

Let us look in detail at (33) for the final state. We have
already argued that the diagonal terms P

(u)
↑↑ tend towards four

peaked distributions corresponding to the four ferromagnetic
states. On the other hand, the off-diagonal terms P

(u)
↑↓ and P

(u)
↓↑

disappear due to the rapid oscillations and the interaction of
the bath, and so does P

(u)
↓↓ through a mechanism discussed

in Appendix B. Putting everything together, and using the
expansion (33), we can write the final state after the registration
as

D̂SMM′(tF ) = p++|↑++〉〈↑++ | ⊗ R̂⇑ ⊗ R̂′
⇑ + p+-

⊗|↑+-〉〈↑+- | ⊗ R̂⇑ ⊗ R̂′
⇓ + p-+|↑-+〉〈↑-+ |

⊗R̂⇓ ⊗ R̂′
⇑ + p–|↑–〉〈↑– | ⊗ R̂⇓ ⊗ R̂′

⇓, (44)

where pεε′ are the weights of each peak, pε,ε′ =
P (εmF ,ε′m′

F ,τf ), where τf is a time where the measurement
has been registered (τf ∝ 1/γ J ).

Expression (44) involves a convex sum of four independent
terms, each of them corresponding to a different outcome of the
experiment {+ + , + −, − +, − −}. The probability of each
outcome is given by pεε′ , with ε,ε′ = ±. In general, those pεε′

depend on the initial state of S and also on the parameters
of the apparatuses, clearly expressing the nonideality of the
measurement. Let us discuss the dependence of such weights
on the initial conditions of S following [4]. The equations
of motion for P (m,m′,t) derived in Appendix B involve
distributions whose initial conditions depend on S through
〈ŝu(0)〉, which is a linear combination of 〈ŝx(0)〉 and 〈ŝz(0)〉.
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FIG. 7. Plot of P (m,m′,t) for three different times: t = 0,6τ,8τ

(from top to bottom) with τ = 1/γ J . We take exactly the same
conditions as in Fig. 5, except for the interaction, which is increased
to g = 0.4J . In this case g � hd , and hence both magnets can register
results from the measurement.

Linearity of the equations of motion then implies that the final
state should also be a linear combination of them. On the other
hand, if 〈ŝx(0)〉 = 〈ŝz(0)〉 = 0, then we have pεε′ = 1/4 due to
the symmetries m ↔ −m and m′ ↔ −m′. These symmetries
also imply that, for 〈sx〉 = 0, then pε+ = pε−; and similarly
for for 〈sz〉 = 0, then p+ε = p−ε . Putting everything together,

FIG. 8. Numerical estimates of λ using the equations of motion
(B36), in the case of two identical apparatuses. The parameters are
J4 = J,J2 = 0,1/β = 0.2J , and λ is evaluated at tf = 10τ with
τ = 1/λ, a time for which the measurement is finalized.

we can write

pεε′ = 1
4 [1 + ελ〈ŝz(0)〉 + ε′λ′〈ŝx(0)〉], (45)

where, due to positivity, λ and λ′ satisfy {λ,λ′} ∈ [0,1]. Notice
that the linearity imposes absence of ε × ε′ terms in (45).
Determining the specific form of λ and λ′ requires in general
solving the dynamics. In Fig. 8, we determine them numeri-
cally for a joint measurement with two identical apparatuses.
Relatively large values of λ = λ′ are experimentally preferable
because they expose less noise.

Finally, let us write the states (43) explicitly, finding

|↑++〉 ∝ u(++)
x |↑〉 + (1 − u(++)

z )|↓〉,
|↑+-〉 ∝ u(++)

x |↑〉 − (1 − u(++)
z )|↓〉,

|↑-+〉 ∝ u(++)
x |↑〉 + (1 + u(++)

z )|↓〉,
|↑--〉 ∝ u(++)

x |↑〉 − (1 + u(++)
z )|↓〉. (46)

Hence, we see that in the final state (44) S is not projected
on either of the measured quantities, but rather on a linear
combination of them. This is yet another signature of the
nonideality of the process. Note also that there are two possible
collapse bases, given by |↑++〉,|↑--〉 and |↑+-〉,|↑-+〉. Those
bases are established by the strength of the interaction with
each magnet, as given by (43).

E. Generalizations and dependence on the initial
state of the magnet

While in our results we have assumed an initial paramag-
netic state for the magnets, given by (8), it is easy to see that
our considerations naturally apply for other initial states. First
of all, notice that the free energies obtained in (39) depend
only on the equilibrium state, and hence are independent of
the initial state. Consequently, the equilibrium points of the
magnets, which are shown in Eq. (39), are also independent of
it. This implies that the form (44) of the final state holds for
any initial state of the magnets. The dependence on the initial
states comes only through the weights p++,p+-,p-+, and p--.
In order to estimate such weights, which are used to obtain
Fig. 8, we have resorted to the equations of motion derived

052129-9



PERARNAU-LLOBET AND NIEUWENHUIZEN PHYSICAL REVIEW A 95, 052129 (2017)

in Appendix B 4. The derivation of such equations of motion
depends strongly on the form (33), which is valid as long
as the initial state can be expressed as D̂0 = D̂0(m̂,m̂′) (see
Appendix B 6). That is, we can solve the dynamics of any
initial distribution of the magnets that can be expressed as a
function of m̂ and m̂′.

The technique developed in Sec. II C (see also Sec. III D 1)
to construct free energy functions conditioned on the initial
state of the spin—from which one obtains (16) (for one
apparatus) and (39) (for two apparatuses)—is general and can
be applied to other situations. Indeed, if the metastability of
a state is broken when it interacts with another system S, our
considerations allow us to construct different free energies
depending on the possible states of S. Those free energies
define the possible final equilibrium states of the metastable
state. This technique may find applications not only in quantum
measurements, but also in the study of dissipative phase
transitions [39] (see also footnote 28 of Ref. [5]).

IV. THE SIMULTANEOUS MEASUREMENT AS
A GENERALIZED QUANTUM MEASUREMENT

In this section we show that this joint measurement process
can be well described at an abstract level by a generalized
quantum measurement, defined by a positive-operator-valued
measure (POVM). This allows us to give a simple operational
interpretation of the process.

Recall that a POVM is a set of positive operators {Fi},
Fi � 0, which satisfy ∑

i

Fi = I. (47)

Our situation will deal with the 2-d case, viz., I = diag(1,1).
The probability of the outcome i is then given by

Pi = Tr(ρFi). (48)

To determine the density matrix after the measurement, the
measurement operators need to be expanded as Fi = M

†
i Mi ,

and then the postmeasurement state for the outcome i takes
the form [40]

ρi = MiρM
†
i

Tr(MiρM
†
i )

. (49)

Given these definitions we can express our joint measure-
ment as a combination of two simple processes at the level of
S. Let S be described by a general spin- 1

2 state,

ρ = 1

2

⎛
⎝I +

∑
i=x,y,z

〈ŝi(0)〉ŝi

⎞
⎠. (50)

First, a noisy channel is applied to S, so that ρ turns into

C(ρ) = 1
2 (I + αx〈ŝx(0)〉ŝx + αz〈ŝz(0)〉ŝz), (51)

where αx,αz ∈ [0,1] and αy = 0 has been assumed already.
This corresponds to the loss of information induced by both
the dephasing effect in (37) and the decoherence induced by
the action of the baths. After this noisy evolution, a generalized
measurement is applied upon S, given by the following four

POVM elements:

Fεε′ = 1
2 |↑εε′ 〉〈↑εε′ |, ε,ε′ = ±. (52)

Each Fεε′ , corresponds to an outcome of the measurement. To
see that the set {Fεε′ } defines a POVM, first notice Fεε′ � 0.
Second, by expanding these elements as

Fεε′ = 1
2

(
I + ε′u(f )

x ŝx + εu(f )
z ŝz

)
, (53)

we immediately notice that,

F++ + F−− = 1
2 (|↑++〉〈↑++ | + |↑–〉〈↑-- |) = 1

2I, (54)

and, similarly,

F+− + F−+ = 1
2 (|↑+-〉〈↑+- | + |↑-+〉〈↑-+ |) = 1

2I. (55)

Hence, condition (47) is satisfied and the set {Fεε′ } represents
a generalized quantum measurement. We can easily compute
the outcome probabilities, (48), using the expansion (53),
obtaining

Pεε′ = Tr[C(ρ)Fεε′]

= 1
4

[
1 + ε′αxu

(f )
x 〈ŝx(0)〉 + εαzu

(f )
z 〈ŝz(0)〉]. (56)

This expression is identical to (45) if we identify αx = λ′/u(f )
x

and αz = λ/u
(f )
z . On the other hand, the postmeasurement state

can be constructed via the operators Mεε′ = √
2Fεε′ , which

satisfy Fi = M
†
i Mi . Then, by using (49), we find that the

postmeasurement states are indeed given by |↑εε′ 〉, as in (44).
The generalized measurement (52) admits a simple inter-

pretation: With probability 1/2, a projective measurement in
the basis spanned by |↑++〉,|↑--〉 is applied, and otherwise we
apply a projective measurement in the basis of |↑+-〉,|↑-+〉.
Hence, from an operational point of view, we can understand
the joint measurement as a combination of two projective
measurements in which we measure either ŝ++ = u(++)

x ŝx +
u(++)

z ŝz, or ŝ+− = u(+−)
x ŝx − u(+−)

z ŝz. Indeed, this combined
measurement has four outcomes, with identical probabilities
(and corresponding final states) to those of the dynamical
process we consider. The observables ŝ++ and ŝ+− are a
combination of the “measured” observables ŝx and ŝz, and the
relative weights u

(f )
x , u

(f )
z are determined by the strength of

the coupling to each apparatus, as given by (42). The stronger
the coupling to the z component, the closer ŝ+− and ŝ−+ are
to ŝz, and vice versa.

By expressing the simultaneous measurement as a combi-
nation of two (noncommuting) projective measurements in
the x-z plane, it easily follows that we can estimate both
〈ŝz(0)〉 and 〈ŝx(0)〉 after many runs of the experiment. Hence
the simultaneous measurement is nonideal but informative:
It gives us the average of both “measured” variables. It is
important to notice, however, that in order to employ this
POVM approach in practice, it is still necessary to determine
λ and λ′ that enter Eq. (45), which follow from solving the
dynamics of the whole measurement, the central theme of
the present paper. In the absence of this knowledge, it is not
possible to determine 〈ŝx(0)〉 and 〈ŝz(0)〉 from the measurement
outcomes. To conclude this section, let us mention an example
of a POVM that has been experimentally measured for state
discrimination [17].
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V. CONCLUSION

We have studied the possibility of simultaneously mea-
suring two noncommuting spin components using the Curie-
Weiss model for a quantum measurement, developed in [4,26].
This model describes a projective measurement of a spin-1/2
system as a physical interaction between a system and a
magnet, taking the role of the (macroscopic) apparatus. We
have worked out the evolution of a spin system simultaneously
interacting with two such apparatuses, each of them attempting
to measure a different spin component. In order to study
the dynamics of this process, we have followed a twofold
approach: In the main text, we have derived free energy
functions that allow us to infer the form of the final state
of the system and the apparatuses, and the main qualitative
features of the dynamics involved; and in the appendices we
have derived rigorously the equations of motion. Combining
both methods allows us to gain a qualitative and quantitative
understanding of the process.

We observe an ongoing competition between the two
apparatuses, each of them trying to obtain information about
a different component. This competition appears at different
levels, (i) at the beginning of the measurement, when a
dephasing effect leads to a partial loss of information of each
measured spin component, as shown in (37), and (ii) during
the registration of the measurement, when the evolution of
the pointer state of one apparatus weakens the interaction
of the system with the other apparatus [see (41)]—this can
even prevent the apparatus with the weaker coupling from
achieving a registration at all. We have also characterized the
minimal interaction system-apparatuses needed for both ap-
paratuses to register results for their respective measurements
[see (40) and Fig. 6].

Even if both apparatuses register a result, the corresponding
statistics are imperfect, in the sense that they do not coincide
with the ones obtained by separately measuring ŝx and ŝz—the
two “measured” observables. In other words, one apparatus
perturbs the other’s measurement via their coupling to the same
tested spin, and the resulting joint measurement is not ideal
and cannot be described as a simple projective measurement.
In order to give an operational interpretation of the obtained
statistics, we have constructed in Sec. IV a generalized quan-
tum measurement which provides the same statistics (albeit by
possibly different measurement processes). This generalized
measurement turns out to be very simple, as it corresponds to a
combination of two projective spin measurements in directions
that are specific linear combinations of ŝx and ŝz. It then follows
that the resulting information allows us to infer both 〈ŝx〉 and
〈ŝz〉 with arbitrary precision for sufficiently many runs of the
joint experiment. That is, the measurement is nonideal but
fully informative.

While our results are obtained for a specific initial (param-
agnetic) state for the magnets, the techniques used here can be
directly applied to other initial distributions. On the one hand,
the equations of motion derived in Appendix B 4 can be used
for any initial state of the magnets that can be expressed as a
function of the magnetizations, m̂, m̂′. On the other hand, the
free energy families (39) are independent of the initial state
and allow one to find the different equilibrium states of the
magnets. Hence, the final form (44) is expected to be generic,

depending only on the initial state through the relative weight
of each peak.

A natural extension of the results presented here involves
simultaneous measurements involving three apparatuses, in
which case a tomographically complete spin measurement
is to be expected. It is also interesting to compare our
considerations with recent theoretical and experimental re-
sults regarding simultaneous measurements [6,7,34]. In such
works, the “apparatus” is a small quantum system which
interacts with the tested system, and is later measured via
the standard measurement postulates. In our approach, the
full measurement process, including the amplification of the
microscopic signal, is treated in a fully quantum mechanical
way (the collapse takes place as an effective process due to
the many degrees of freedom involved in the apparatuses).
Building connections between both approaches, including
studies of quantum features of the process [34], would
be desirable.
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APPENDIX A: THE HAMILTONIAN

The Hamiltonian of the full system S+A for the single-
apparatus case can be split into

ĤT = ĤS + ĤA + ĤSA. (A1)

The internal Hamiltonian of S is neglected, ĤS = 0, relying
on the fact that the measurement happens fast. On the other
hand, ĤSA is given by

ĤSA = −gŝz

N∑
n=1

σ̂ (n)
z = −Ngŝzm̂, (A2)

where g > 0 is the strength of the coupling and m̂ is the
magnetization. The Hamiltonian of the apparatus, ĤA, can
be decomposed into

ĤA = ĤM + ĤB + ĤMB, (A3)

where ĤM (ĤB) is the Hamiltonian of the magnet (bath) and
ĤMB is the coupling between them. ĤM, following the Ising
model with quartic interactions, is given by

HM = −J2N
m̂2

2
− J4N

m̂4

4
. (A4)
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Thus the interaction between spins is ferromagnetic (J > 0),
anisotropic (only acts on the z direction), and couples all
the spins σ̂ (i)

z symmetrically. The quartic interaction ensures
metastability.

Each of the N spins σ̂ (n)
a of the magnet is coupled to the

bath of phonons independently as

ĤMB = √
γ

N∑
n=1

∑
a=x,y,z

σ̂ (n)
a B̂(n)

a , (A5)

where B̂(n)
a are phonon operators given by

B̂(n)
a =

∑
k

√
c(ωk)

(
b̂

(n)
k,a + b̂

†(n)
k,a

)
. (A6)

Then, the diagonalized Hamiltonian of the bath of phonons
ĤMB is

ĤB =
N∑

n=1

∑
a=x,y,z

∑
k

h̄ωkb̂
†(n)
k,a b̂

(n)
k,a, (A7)

where b̂
†(n)
k,a are Debye phonon modes with eigenfrequencies

ωk (acting on σ̂ (n)
a ).

The action of B in the dynamics of the S+M is compressed
into its autocorrelation function K(t − t ′). It is useful to

introduce the Fourier transform and its inverse

K̃(ω) =
∫ +∞

−∞
dt e−iωtK(t),

K(t) = 1

2π

∫ +∞

−∞
dω eiωt K̃(ω), (A8)

so that K̃ is chosen to have the quasi-Ohmic form [37],

K̃(ω) = h̄2

4

ωe−|ω|/

eβh̄ω − 1
, (A9)

where the Debye cutoff  is the largest frequency of the bath,
and it is assumed to be larger than all other frequencies entering
the problem.

APPENDIX B: DYNAMICS OF A MEASUREMENT
OF TWO OBSERVABLES

1. The Hamiltonian

The second apparatus A′ is built in close analogy with A,
in such a way that A′ is made up of magnet M′ and a bath B′,
with parameters J ′

2,J
′
4,g

′,N ′, . . ., which we assume to have
the same order as those of A, and internal Hamiltonian HM′

analogous to (A3). As discussed in the main text, the coupling
Hamiltonian between SAA′ reads

ĤSMM′ = −Ngŝz ⊗ m̂ ⊗ IM ′ − N ′g′ŝx ⊗ IM ⊗ m̂′. (B1)

2. Characterization of the state

When solving the Liouville equation of motion, we use that the state D̂ of S+M+M′ is a function of m̂, m̂′, because of the
symmetric properties of the initial paramagnetic state and the Hamiltonian (see [4]). Besides the characterization given in the
main text, a useful characterization for D̂ reads

D̂SMM ′ (m,m′,t) =
∑
m,m′

1

G(m)G(m′)

[
P (m,m′,t)

I

2
+ C(m,m′,t) · ŝ

]
⊗ �m ⊗ �m′ , (B2)

where G is the degeneracy of the magnetization. In order to interpret this description, notice that

P (m,m′,t) = tr[�̂m ⊗ �̂m′D̂SMM ′ (m,m′,t)],

Ci(m,m′,t) = trS[ŝi ⊗ �̂m ⊗ �̂m′D̂SMM ′ (m,m′,t)]. (B3)

Therefore, P (m,m′,t) is the joint probability distribution of the magnetization of the apparatuses, and Ci(m,m′,t), with i = x,y,z

or i = x,u,v, brings information about the correlations between ŝi and the apparatuses.
Recall that the initial conditions are given by

P (m,m′,0) = P0(m)P ′
0(m′), Ci(m,m′,0) = 〈si〉P0(m)P ′

0(m′), (B4)

where 〈si〉 = Tr(ρSŜi). Similarly, PM (m) is the distribution of the initial paramagnetic state, which, for large N , is well
approximated by a Gaussian distribution,

P0(m) =
√

N

2π
e−Nm2/2, (B5)

and P ′
0(m′) is obtained by replacing N ↔ N ′.

This characterization is explicitly related to the one used in the main text by

P
(u)
↑↑ = P + Cu

2
, P

(u)
↓↓ = P − Cu

2
,

P
(u)
↑↓ = Ĉv − iĈy

2
, P

(u)
↓↑ = Ĉy + iĈv

2
, (B6)

where the dependence of the functions over (m,m′,t) is implicit, and so will remain for the next computations.
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3. Dephasing

Let us describe the dephasing process for the two-apparatus
case. This takes place on a short time scale, where the effect
of the baths can be neglected due to γ � 1. The relevant
Hamiltonian is then

Ĥ = − h̄

2
w(m̂,m̂′)ŝu + ĤM (m̂) + ĤM ′ (m̂′) (B7)

with ĤM , ĤM ′ being the internal Hamiltonians of the magnets.
Under the Hamiltonian (B7), the dynamics can be readily

solved and, as shown in the main text, we obtain

P
(u)
↑↓ (m,m′,t) = eiω(m,m′)tP (m)P (m′)r (u)

↑↓ ,

P
(u)
↑↑ (m,m′,t) = P (m)P (m′)r (u)

↑↑ , (B8)

or, equivalently in the decomposition (B3),

P (t) = P (0),

Cu(t) = Cu(0),

Cv(t) = Cv(0) cos(wt),

Cy(t) = Cy(0) sin(wt). (B9)

The expected values of ŝi can be now computed as

〈ŝi(t)〉 =
∑
m,m′

Ci(t). (B10)

In the limit, N,N ′ → ∞, we can substitute the sum for an
integral with the Gaussian distribution (B5) for the initial
distribution. Then, for Ng = N ′g′, we can analytically solve
the different integrals. On the one hand, we obtain

〈ŝv(t)〉 = 〈ŝv(0)〉
∫∫

dmdm′PM(m)PM (m′) cos (wt)

= 〈ŝv(0)〉
√

πt

2τd

e
−( t

2τd
)2

, (B11)

〈ŝy(t)〉 = 〈ŝy(0)〉
∫∫

dmdm′PM(m)PM (m′) sin (wt)

= 〈ŝy(0)〉
[

1 + e
−( t

τd
)2

i
√

π
|t |
τd

erf

(
i
|t |
τd

)]
, (B12)

where erf is the error function and we recall that τd =
1/

√
2Ng. Both functions decay on a time scale τd . Therefore,

we obtain an effective decay due to the rapid oscillating terms
in (B9). For Ng �= N ′g′, it can be numerically checked that
the same mechanism takes place: The oscillatory terms induce
a decay of 〈ŝv(t)〉 and 〈ŝy(t)〉. Let us now turn our attention to
the measured components, x and z. For the x direction,

〈ŝx(t)〉 =
∫

dmdm′[uxCu(0) + uzCv(0) sin(wt)]. (B13)

The time-dependent part was argued before to tend to zero on
a time scale τd . Then,

〈ŝx(t)〉 t
τd−−→
∫

dmdm′[〈ŝx(0)〉u2
x + 〈ŝz(0)〉uzux

]
PMPM ′

= 〈ŝx(0)〉
√

N ′g′
√

Ng + √
N ′g′ . (B14)

Proceeding similarly for the z component,

〈ŝz(t)〉 t
τd−−→ 〈ŝz(0)〉
√

Ng√
Ng + √

N ′g′ . (B15)

Hence we obtain the results (37) announced in the main text.
Finally, let us briefly discuss the effect of the bath B on

the off-diagonal terms. The equilibrium state of SMM’ at
temperature 1/β reads

D̂eq = 1

Z
(
e−β( h̄

2 wŝu+ĤM+ĤM′ )), (B16)

which contains no off-diagonal terms in the ŝu basis. Therefore,
if we start in a state out of equilibrium, the bath tends to
eliminate the correlators Cv , Cy , thus increasing the dephasing
effect.

4. Dynamical equations for the registration

We now proceed to solve the dynamics of the registration,
where the bath plays an essential role; for a very detailed
derivation we refer the reader to [41]. Consider thus the
quantum state D̂(t) of the whole system SMM′BB′. We
are interested in D̂(t) = trB,B′D̂(t), which can always be
decomposed as (B3) with i = x,y,z. Tracing out B and B′ from
the equation of motion of D̂(t) yields the formal expression

ih̄
dD̂

dt
= [ĤSM + ĤSM ′ ,D̂] + trB[ĤMB,trB ′D̂]

+ trB ′[ĤMB ′ ,trBD̂]. (B17)

The second term can be reduced to

trB[ĤMB,trB ′D̂] = iγ
∑

a=x,y,z

∑
n

∫ t

0
du

{[
σ̂ (n)

a (u)D̂,σ̂ (n)
a

]
K(u)

+ [
σ̂ (n)

a ,D̂σ̂ (n)
a (u)

]
K(−u)

}
, (B18)

with

σ̂ (n)
a (t) = U0σ̂

(n)
a U

†
0 , U0 = exp

{
−i

t

h̄
Ĥ0

}
, (B19)

with Ĥ0 = ĤSA + ĤSA′ + ĤM + ĤM ′ . Only terms with σ̂ (n)
x

and σ̂ (n)
y contribute to (B18), and it is useful to rewrite them in

terms of lowering and raising operators:

trB[ĤMB,trB ′D̂] =
∑

n

∫ t

0
du{([σ̂ (n)

+ (u)D̂,σ̂
(n)
− ]

+[σ̂ (n)
− (u)D̂,σ̂

(n)
+ ])K(u) + H.c.}. (B20)

The computation of σ̂
(n)
+ (t), σ̂

(n)
− (t) is hindered by the

noncommuting terms of ˆ̂H0. Using σ+f (m̂) = f (m̂ + δm)
with δm = 2/N , we obtain

σ̂
(n)
+ (t) = σ̂

(n)
+ e−i t

h̄
Ĥ0(m̂+δm)ei t

h̄
Ĥ0(m̂), (B21)

which can be simplified by using exp iaŝ = cos a + i(a ·
ŝ/a) sin a and expanding the phase a in powers of 1/N ,
yielding the leading term

σ̂
(n)
+ (t) = σ̂

(n)
+ exp

{
i
2t

h̄
(J m̂3 + guzu · ŝ)

}
. (B22)
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We can then find σ̂
(n)
− (t) by using σ− = σ

†
+. In a similar way

we can find the leading term of the evolution of the operators
σ̂ ′(n)

+ (t) belonging to B′:

σ̂ ′(n)
+ (t) = exp

{
i
2t

h̄
(J ′m̂′3 + g′uxu · ŝ)

}
. (B23)

Now we can insert (B22) and (B70) into (B21) to drop the
time dependence of the operators σ̂

(n)
+ (u). The time dependence

can then be found in integrals of the form

K̃t>(ω) =
∫ t

0
due−iωuK(u)

= 1

2πi

∫ +∞

−∞
dω′K̃(ω′)

ei(ω′−ω)t − 1

ω′ − ω
, (B24)

and K̃t<(ω) = [K̃t>(ω)]
∗
. It is useful to define

K̃t (w) = K̃t>(w) + K̃t<(w), (B25)

K̃ ′
t (w) = i[K̃t>(w) − K̃t<(w)]. (B26)

We can then insert (B3) into (B21) and make use of the
functionality dependence on m,m′ in order to get scalar
equations for P , Cx , Cy , and Cz (this dependence is justified
in Sec. B 6). Defining

�+f (m) = f (m + δm) − f (m),

�−f (m) = f (m − δm) − f (m), (B27)

we obtain the following equations of motion,

∂P

∂t
= γN

2h̄2 [�+{α+P + β+uiCi} + �−{α−P + β−uiCi}] + B′terms,

∂Cx

∂t
− wuzCy = γN

2h̄2 [�+{β+uxP + α+Cx + κ+Cyuz} + �−{β−uxP + α−Cx + κ−Cyuz}] + B′terms,

∂Cy

∂t
+ w(uzCx − uxCz) = γN

2h̄2 [�+{α+Cy − κ+(Czux + uzCx)} + �−{α−Cy − κ−(Czux + uzCx)}] + B′terms,

∂Cz

∂t
+ wuxCy = γN

2h̄2 [�+{β+uzP + α+Cz + κ+Cyux} + �−{β−uzP + α−Cz + κ−Cyux}] + B′terms, (B28)

where we defined

α+ = (1 + m)[K̃t (2ω+) + K̃t (2ω−)],

α− = (1 − m)[K̃t (−2ω+) + K̃t (−2ω−)],

β+ = (1 + m)[K̃t (2ω+) − K̃t (2ω−)],

β− = (1 − m)[K̃t (−2ω+) − K̃t (−2ω−)],

κ+ = (1 + m)[K̃ ′
t (2ω−) − K̃ ′

t (2ω+)],

κ− = (1 − m)[K̃ ′
t (−2ω−) − K̃ ′

t (−2ω+)], (B29)

and

h̄ω± = J2m + J4m
3 ± guz. (B30)

The B ′ terms, which are the terms arising from the second bath,
have the same form as the terms arising from the first bath but
replacing N → N ′ and γ → γ ′ in the terms of the equations of
motion, taking the differences �± over m′, and replacing J →
J ′, m → m′, g → g′, and N → N ′ in the definitions (B29) and
(B31). In particular,

h̄ω± = J ′
2m

′ + J ′
4m

′3 ± g′ux. (B31)

Notice from expression (B31) that the original strength
of the coupling g,g′ of S to the apparatuses is effectively
weakened to guz,g

′ux . Recall that ux,uz are given by

ux = N ′g′m′√
(Ngm)2 + (N ′g′m′)2

,

uz = Ngm√
(Ngm)2 + (N ′g′m′)2

, (B32)

where we note that one measurement hinders the other. For
example, a measurement in the apparatus A, which implies an
increment of |m|, will increase guz while decreasing g′ux .

a. Markovian regime

In the registration process, the bath drives the magnet
to a stable state. Such a process takes place on a time
scale τγ = h̄/γ J , τγ ′ = h̄/γ ′J ′ for A and A’, respectively.
Since the interaction with the baths is weak, γ,γ ′ � 1, the
Markovian condition (τγ 
 h̄/2πT ) is satisfied. In such a
regime the integrals K̃t (w) → K̃(w) and K̃ ′

t (w) lose their time
dependence, becoming

K̃(w) = h̄2

4

we− |w|


eβh̄w − 1
(B33)

and K̃ ′
t (w) → K̃ ′(w) with

K̃ ′(w) = − h̄2

2

[
1

βh̄

∞∑
n=1

e− �n


�n

w2 + �2
n

+ ̃

4

]
, (B34)

where �n = 2πn
h̄β

. Notice that the second term of K̃ ′(w) is a

constant and it depends linearly on ̃, so that it is bigger than
any other term encountered so far. Nevertheless, since K̃ ′(w)
appears in the equations of motion in the form K̃ ′(a) − K̃ ′(b),
as we can see from (B29), this constant term drops out.

The equations of motion (B28) involve two different
time scales, τg = h̄/g and τγ = h̄/γ J corresponding to the
couplings SM and MB, respectively; we could also have
chosen the time scales corresponding to the second apparatus
A′, but those are assumed to be of the same order. In the studied
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model it is satisfied that γ � g/J , so that τg � τγ . Let us now
consider the equations of motion for P,Cu,Cv , and Cy , which
are obtained by taking appropriate linear combinations of the
equations of motion (B28). From such equations, one can see
that P and Cu evolve slowly, only under the effect of the
baths, whereas Cy and Cv evolve fast under the effect of the
coupling SMM′. Hence, effectively the slow variables P,Cu

only depend on the average of the fast variables Cy and Cv

over the short time scale.
Disregarding the effect of the bath, the evolution in time of

Cv and Cy was found in (B9). The solution has an oscillatory
nature with frequency w(m,m′). For typical values of m and m′

of order 1/
√

N , 1/
√

N ′, we have that w ∼ O(1/
√

N,1/
√

N ′).
Then averaging the solutions over the short time scale τg yields

〈Cy(t)〉τg
= Cy(0)

sin wτg

wτg

∼ O

(
1√
N

,
1√
N ′

)
,

〈Cv(t)〉τg
= Cv(0)

cos wτg

wτg

∼ O

(
1√
N

,
1√
N ′

)
. (B35)

Since N,N ′ 
 1, the evolution of the slow variables P and
Cu is independent of the fast variables. Therefore in the
Markovian regime P and Cu evolve according to the much
simpler dynamics

∂P

∂t
= γN

2h̄2 [�+{α+P + β+Cu} + �−{α−P + β−Cu}] + B′ terms,

∂Cu

∂t
= γN

2h̄2 [ux�+{ux(α+Cu + β+P )} + uz�+{uz(α+Cu + β+P )}

+ux�−{ux(α−Cu + β−P )} + uz�−{uz(α−Cu + β−P )}] + B′ terms. (B36)

These coupled equations can be easily solved by numerical methods for large N and N ′; in Figs. 5 and 7, N = N ′ = 161. The
figures and numerical estimates of the main text are based on the equations (B36).

b. A Fokker-Plank equation for the process

In this section we apply some further simplifications to the equations of motion in order to get a Fokker-Plank-like equation
of motion. This allows us, in a simplified scenario, to solve analytically the equations of motion. We also discuss limitations of
this derivation.

Consider the equation of motion for Cu, given in (B36). First notice that the differences �± satisfy the relation

�±[f (m)g(m)] = [�±f (m)]g(m) + f (m)[�±g(m)] + [�±f (m)][�±g(m)]. (B37)

Let us then apply (B37) repeatedly to the right-hand side of (B36). The terms containing �+ yield

ux�+{ux(α+Cu + β+P )} + uz�+{uz(α+Cu + β+P )}
= �+{βP + αCu} − (α+Cu + β+P + �+{α+Cu + β+P })[ux�+ux + uz�+uz + (�+ux)2 + (�+uz)

2], (B38)

and similarly for the other terms. If we expand �+ui in powers of δm = 2/N ,

�+uz = u2
xuz

m

2

N
− 6u2

xu
3
z

m2

1

N2
+ O(1/N3),

�+ux = −u2
zux

m

2

N
+ 4

m2

(
uxu

4
z − u3

xu
2
z

) 1

N2
+ O(1/N3), (B39)

expression (B38) becomes

γN

2h̄2

[
�+{β+P + α+Cu} − (α+Cu + β+P + �+{α+Cu + β+P })2u2

xu
2
z

m2

1

N2

]
. (B40)

If we assume that P and Cu are exponential distributions of the type e−NA [recall the initial conditions (B5)], then �+P is of the
same order in N as P . For typical values of m,m′ ∼ O(1/

√
N,1/

√
N ′), the second term of the previous expression can thus be

neglected for large N. (The validity of this simplification will be discussed in detail later.) Proceeding in the same way as for the
other terms in the equations of motion (B36), we reach

∂P

∂t
= γN

2h̄2 [�+{α+P + β+Cu} + �−{α−P + β−Cu}] + B′ terms + O

(
1

m2N2
,

1

m′2N ′2

)
,

∂Cu

∂t
= γN

2h̄2 [�+{α+Cu + β+P } + �−{α−Cu + β−P }] + B′ terms + O

(
1

m2N2
,

1

m′2N ′2

)
. (B41)
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Recalling the definitions

P
(u)
↑↑ = P + Cu

2
, P

(u)
↓↓ = P − Cu

2
, (B42)

we obtain two decoupled equations of motion [as we will discuss later, the corrections O(1/m2N2,1/m′2N ′2) couple P
(u)
↑↑

and P
(u)
↓↓ ]:

∂P
(u)
↑↑

∂t
= γN

h̄2 [�+{P (u)
↑↑ (1 + m)Kt (2w+)} + �−{P (u)

↑↑ (1 − m)Kt (−2w+)}] + B′ terms + O

(
1

m2N2
,

1

m′2N ′2

)
,

∂P
(u)
↓↓

∂t
= γN

h̄2 [�+{P (u)
↓↓ (1 + m)Kt (2w−)} + �−{P (u)

↓↓ (1 − m)Kt (−2w−)}] + B′ terms + O

(
1

m2N2
,

1

m′2N ′2

)
. (B43)

Now we bring these equations to the continuum limit following [4], where such a derivation is made in detail for the case of
one apparatus. First, we note that, in the continuum limit, the differences �± are related to derivatives by

�±f (m) = f (m ± δm) − f (m) =
∞∑

k=−∞

δmk

k!

∂f (m)

∂m
; (B44)

then, using N 
 1 and recalling δm = 2
N

, we can keep only the first terms of the expansion. By carefully keeping only the

dominant terms in N , and assuming that P
(u)
↑↑ and P

(u)
↓↓ have a Gaussian-like shape during the dynamics, we finally find (see [4]

and [41] for a detailed discussion)

∂P
(u)
ii

∂t
= ∂

∂m

[−viP
(u)
ii

] + 1

N

∂2

∂m2

[
wiP

(u)
ii

] + ∂

∂m′
[−v

′
iP

(u)
ii

] + 1

N ′
∂2

∂m
′2

[
w

′
iP

(u)
ii

] + O

(
1

N
,

1

N ′

)
+ O

(
1

m2N2
,

1

m′2N ′2

)
,

(B45)

with i = {↑ , ↓} and

vi = γωi(1 − m coth βh̄ωi), wi = γωi(coth βh̄ωi − m),

v
′
i = γω

′
i(1 − m

′
coth βh̄ω

′
i), w

′
i = γω

′
i(coth βh̄ω

′
i − m

′
), (B46)

which involve the frequencies

h̄ω↑ = Jm3 + guz, h̄ω↓ = Jm3 − guz,

h̄ω
′
↑ = Jm

′3 + gux, h̄ω
′
↓ = Jm

′3 − gux. (B47)

c. Interpretation of the equations of motion

The Fokker-Planck equations of motion (B45) allow for
a simple interpretation: the functions vi = (vi,v

′
i) correspond

to a vector velocity of the distribution P
(u)
i (m,m′,t) in the

vector space (m,m′), whereas the functions wi = (wi,w
′
i) are

dispersion terms [4,41]. We can see v↑ and v↓ plotted in
Fig. 9. Observe how they have completely opposite behaviors:
Whereas v↑ tends to move the distribution to the corners
(±1, ± 1), v↑ tends to move the distribution to the center.
This is in good agreement with the dynamics observed by
numerically solving Eqs. (B36); see in particular Figs. 5 and
7. Indeed, we first observe how P (m,m′,t) splits into two
distributions, P

(u)
↑↑ and P

(u)
↓↓ . The P

(u)
↑↑ , which is driven by

v↑, moves to the corners of (m,m′) whereas the other P
(u)
↓↓

moves to the center, to disappear late. In the next sections we
discuss such a disappearance, which cannot be described by
Eq. (B45), as more terms need to be taken into account in the
approximation.

As a final remark, however, let us also note the strong
parallelism between the field velocities vi and the free energy
functions F±(m,m′) used in the main text. Indeed, both of them

predict the same equilibrium points for the distributions P
(u)
↑↑

and P
(u)
↓↓ .

FIG. 9. Plot of the field velocity of the Fokker-Plank equation
associated with P

(u)
↑↑ (left) and P

(u)
↓↓ (right). The parameters are chosen

as T = 0.2J,g = T , and we take the two apparatuses to be identical.
The plots clearly show how P

(u)
↑↑ tends towards the corners whereas

P
(u)
↓↓ tends towards the center.
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d. Discussing a simplified scenario

In this subsection we discuss the equations of motion in
a simplified scenario, in order to describe the disappearance
of P

(u)
↓↓ . First of all, we assume that the two apparatuses are

identical: N ′ = N,γ ′ = γ,J ′ = J,g′ = g. In this case, ux and
uz simplify to

uz = m√
m2 + m′2 ,

ux = m′
√

m2 + m′2 . (B48)

It is useful to make the change of variables:

m = r cos θ,

m′ = r sin θ, (B49)

so that ux = sin θ and uz = cos θ . Furthermore, let us work in
polar coordinates,

v
(r)
i = vi cos θ + v

′
i sin θ,

v
(θ)
i = v

′
i cos θ − vi sin θ, (B50)

with i = {↑ , ↓}, and where vr and vθ are the radial and the
angular velocity, respectively.

Second, we assume that the field velocity has radial
symmetry

vi = v
(r)
i (r) cos θ,

v′
i = v

(r)
i (r) sin θ. (B51)

This condition is satisfied for small times, when (m,m′) are
close to zero. Indeed, if m,m′ → 0, only the interaction with
g contributes so that

vi → ±γ

h̄
g cos θ,

v
′
i → ±γ

h̄
g sin θ, (B52)

which has a radial symmetry. Third, we shall assume constant
dispersion functions wi and w′

i . This is motivated by noting
that w,w′ only change slowly with m,m′ and thus, for small
times, it suffices to assume them to be constant for the present
discussion. Then, for small times and β 
 1, we can take

wi,w
′
i → w = γ

βh̄
. (B53)

Since the two apparatuses are identical, we have that w =
w′. Summarizing, the present discussion approximately holds
for small times and two identical apparatuses. Using such
approximations and

∂

∂m
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
,

∂

∂m′ = sin θ
∂

∂r
+ cos θ

r

∂

∂θ
, (B54)

∇2 = 1

r

∂

∂r
+ ∂2

∂r2
+ 1

r2

∂2

∂θ2
,

the Fokker-Plank equation (B45) becomes

∂P
(u)
ii

∂t
= −1

r

∂

∂r

(
v

(r)
i rP

(u)
ii

)
+w

N

[
1

r

∂

∂r
+ ∂2

∂r2
+ 1

r2

∂2

∂θ2

]
P

(u)
ii , (B55)

with i = {↑,↓}.
The initial conditions of P

(u)
ii are given by

P
(u)
↑↑ = 1

2
[1 + 〈ŝz(0)〉 cos θ + 〈ŝx(0) sin θ〉] 1

2π
P0(r),

P
(u)
↓↓ = 1

2
[1 − 〈ŝz(0)〉 cos θ − 〈ŝx(0) sin θ〉] 1

2π
P0(r),

(B56)

with

P0(r) = N exp

{
−N

2
r2

}
. (B57)

This suggests the ansatz

P
(u)
↑↑ (r,θ ) = R↑↑(r) + X↑↑(r) sin θ + Z↑↑(r) cos θ,

P
(u)
↓↓ (r,θ ) = R↓↓(r) − X↓↓(r) sin θ − Z↓↓(r) cos θ, (B58)

which leads to the independent equations

∂Rii

∂t
= −1

r

∂

∂r

(
v

(r)
i rRii

) + w

N

[
1

r

∂

∂r
+ ∂2

∂r2

]
Rii,

∂Xii

∂t
= −1

r

∂

∂r

(
v

(r)
i rXii

) + w

N

[
1

r

∂

∂r
+ ∂2

∂r2
− 1

r2

]
Xii,

∂Zii

∂t
= −1

r

∂

∂r

(
v

(r)
i rZii

) + w

N

[
1

r

∂

∂r
+ ∂2

∂r2
− 1

r2

]
Zii,

(B59)

with i = {↑ , ↓}. On the other hand, the weight of a radial
distribution P (r) is found by∫ ∞

0
rP (r) dr, (B60)

and notice that at t = 0,∫ ∞

0
rP

(u)
ii dr =

∫ ∞

0
rRii dr =

∫ ∞

0
rXii dr

=
∫ ∞

0
rZii dr = 1, i = x,z. (B61)

From the equations of motion we find that the evolution of
such weights in time are given by

∂

∂t

∫ ∞

0
rRii dr = 0,

∂

∂t

∫ ∞

0
rXii dr = −w

N

∫ ∞

0

1

r
Xii dr, (B62)

∂

∂t

∫ ∞

0
rZii dr = −w

N

∫ ∞

0

1

r
Zii dr.

Strictly speaking the limits of the integral range from 2/N up
to 1; therefore the right-hand side does not diverge. This result
shows that Xii,Zii decrease and therefore the distributions
P± tend to become symmetric (their dependence on θ is
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progressively lost). Therefore the distributions progressively
lose memory of the initial conditions 〈ŝ(0)〉. Such loss happens
at different rates for P

(u)
↑↑ and P

(u)
↓↓ . Indeed, P

(u)
↑↑ rapidly flows

out from the center and therefore the rate (B62) decreases.
Furthermore, w tends to zero as m → 1, so that the rate tends
to zero. On the other hand, P (u)

↓↓ tends to be more peaked at the

center, and therefore the rate (B62) increases and P
(u)
↓↓ rapidly

becomes symmetric.
Numerical simulations agree with the found results. They

show how P
(u)
↓↓ rapidly becomes symmetric whereas the final

distribution of P
(u)
↑↑ is not. Indeed, Figs. 5 and 7 of P = P

(u)
↑↑ +

P
(u)
↓↓ show that the final distribution keeps memory only of the

initial conditions of P
(u)
↑↑ .

Regarding P
(u)
↓↓ , we can find the equilibrium distribution by

setting ∂P −
o

∂t
= 0. This leads to

P
(u)
↓↓ (t → ∞) = (Ngβ)2

2π
e−Ngβr . (B63)

Notice that for such a distribution

〈r〉 = 2

Ngβ
. (B64)

Therefore, m,m′ take typical values of order O(1/N,1/N ′).
In such a case, the corrections in (B45) can no longer
be neglected. In the following section we discuss such
corrections.

e. Limitations of and corrections to the Fokker-Plank equation

In the considered Fokker-Planck equation, P
(u)
↑↑ and P

(u)
↓↓

are decoupled and thus they both preserve their weight
[
∑

m,m′ P
(u)
↑↑ (t) = ∑

m,m′ P
(u)
↓↓ (t) = 1

2 ]. However, numerical re-
sults using the exact equation (B36) (see for example Figs. 5
and 7) show that the narrow peak at m = m′ = 0, identified
with P

(u)
↓↓ , decreases until it disappears. The reason for such

an effect turns out to be the corrections in (B45) of order
O(1/m2N2,1/m′2N ′2). These terms can be neglected for the
initial conditions, in which m,m′ ∼ ′(1/

√
N,

√
N ′), and for

large m. Thus it holds for the evolution of P
(u)
↑↑ . However, P (u)

↓↓
tends to concentrate around m = m′ = 0, reaching a stability
given by (B63), in which m,m′ ∼ O(1/N,1/N ′). Then, the
corrections of order O(1/m2N2,1/m′2N ′2) become relevant
and they couple P

(u)
↑↑ and P

(u)
↓↓ .

If we account for the corrections, which are given explicitly
in (B41), the Fokker-Plank equation becomes

∂P
(u)
ii

∂t
=

(
∂

∂m

[−viP
(u)
ii

] + 1

N

∂2

∂m2

[
wiP

(u)
ii

])(
1 ∓ 2u2

xu
2
z

m2N2

)

+2u2
xu

2
z

m2N2

(
wjPjj − wiPii ± ∂

∂m
[−vjPjj ]

± 1

N

∂2

∂m2
[wjPjj ]

)
+ B′ terms, (B65)

with i,j = {↑ , ↓}. From these corrections, the term
2u2

xu
2
z

m2N2 (wjPjj − wiPii) is particularly important, because it

shows how P
(u)
↓↓ is transferred to P

(u)
↑↑ and vice versa. In the case

of two identical apparatuses with the simplification (B53), we

have that

2u2
xu

2
z

m2N2
(w∓P∓ − w±P±) + 2u2

xu
2
z

m
′2N2

(w
′
∓P∓ − w

′
±P±)

= 2w

r2N2
(P∓ − P±),

2u2
xu

2
z

m2N2

(
wjP

(u)
jj − wiP

(u)
ii

) + 2u2
xu

2
z

m
′2N2

(
w

′
jP

(u)
jj − w

′
iP

(u)
ii

)
= 2w

r2N2

(
P

(u)
jj − P

(u)
ii

)
, (B66)

with i,j = {↑ , ↓}. Then multiplying and integrating over r

the equation of motion

∂

∂t

∫ ∞

0
rP

(u)
ii ∼ 2w

N2

∫ ∞

0

1

r

(
P

(u)
jj − P

(u)
ii

)
, (B67)

with i,j = {↑ , ↓}. On the right-hand side the term that
contains P

(u)
↓↓ is much bigger than the one with P

(u)
↑↑ , because

P
(u)
↓↓ is centered at r = 0 whereas P

(u)
↑↑ moves away from the

center. Therefore, the transfer between P
(u)
↑↑ and P

(u)
↓↓ goes

basically in one way: from P
(u)
↓↓ to P

(u)
↑↑ . This allows us to

describe the disappearance of the peak at (m = 0,m′ = 0)
which was observed in the numerical simulations.

The velocity with which P
(u)
↓↓ is transferred to P

(u)
↑↑ looks

very similar to the expression obtained for the velocity with
which P

(u)
↓↓ loses memory of its initial conditions, found in

(B62). Indeed, they are just the same except for a factor
1/N . Therefore, for sufficiently long N , we see that first P

(u)
↓↓

becomes symmetric and then it is transferred to P
(u)
↑↑ .

5. Summary of the dynamics

In conclusion, we have derived a Fokker-Plank equation
for P (m,m′,t), the probability for the magnets to have
magnetizations m and m′, respectively, which allows us to
describe the time evolution. The Fokker-Plank equation is
characterized by a (two-dimensional) field velocity (v,v′)
and a dispersion (w,w′). The dynamics of the probability
distribution P (m,m′,t) has the following main features:

(1) P , whose initial distribution is a Gaussian centered at
(0,0), splits into two distributions: P

(u)
↑↑ and P

(u)
↓↓ .

(2) The field velocity of the Fokker-Plank equation shows
how P

(u)
↓↓ tends to the center whereas P

(u)
↑↑ tends to the corners

(±mF , ± mF ). These considerations are in perfect agreement
with the ones regarding the free energies F

(u)
↑↑ , F

(u)
↓↓ .

(3) The dispersion (w,w′) tends to symmetrize the distri-
butions P

(u)
↑↑ and P

(u)
↓↓ (they lose their angular dependence).

This has been shown for a simplified scenario, where (v,v′) is
radial and w = w′ is a constant, leading to the result (B62).
Such a symmetrization is much stronger for P

(u)
↓↓ than for P

(u)
↑↑ .

(4) P
(u)
↓↓ is transferred to P

(u)
↑↑ and vice versa, which is

quantified in (B67). This transfer happens mainly in one
direction, namely from P

(u)
↓↓ to P

(u)
↑↑ , so that at the end of

the process P
(u)
↓↓ has disappeared. The time scale where this

process takes place is on the order of 1/N of the time scale of
the process of symmetrization.
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(5) Since at the end of the process P
(u)
↓↓ has disappeared,

all the probability distribution P is peaked in the corners. The
weight of such peaks is an interplay between the field velocity,
which tends to send the P

(u)
↑↑ towards one of the corners

(without losing its angular dependence), and the dispersion,
which tends to symmetrize the distribution.

6. Form of the state in time

Here we justify expression (33), i.e., that the state remains
in time a function of m̂ and m̂′. The idea behind is to note that
(i) the initial state is a symmetric function of the operators σ (n)

z

and σ (n)′
z , and can be written as a function of m̂, m̂′, and that

(ii) this symmetry is not broken, neither by the Hamiltonian
of M and M’, nor by the coupling MB and M’B’, as the bath
couples homogeneously to all degrees of freedom of M and
M’. Let us here provide a more explicit justification.

First, let us note that the analogous version for one
apparatus, Eq. (33), has been justified in Appendix B of [4].
Here we use similar reasoning. Let us take as a starting point
the equation of motion (B21), given by

ih̄
dD̂

dt
= [ĤSM + ĤSM ′ ,D̂] + trB[ĤMB,trB ′D̂]

+ trB ′ [ĤMB ′ ,trBD̂], (B68)

which holds for arbitrary initial states. In it we find terms of
the form

trB[ĤMB,trB ′D̂] =
∑

n

∫ t

0
du{([σ̂ (n)

+ (u)D̂,σ̂
(n)
− ]

+[σ̂ (n)
− (u)D̂,σ̂

(n)
+ ])K(u) + H.c.}, (B69)

with

σ̂
(n)
+ (t) = σ̂

(n)
+ g(m̂,t), (B70)

where

g(m̂,t) = exp

{
i
2t

h̄
(J m̂3 + guzu · ŝ)

}
. (B71)

Similarly, we can find σ̂
(n)
− (t) by using σ− = σ

†
+. With identical

arguments we can compute σ̂
(n)′
+ (t), σ̂

(n)′
− (t), arising from the

second magnet. Now, note that

σ
(n)
+ m̂ =

(
m̂ − 2

N
I

)
σ

(n)
+ , (B72)

from which it follows that

σ
(n)
± f (m̂,m̂′) = f (m̂ ∓ δm,m̂′), (B73)

where δm = 2/N , and similarly for m̂′. Using this property
and (B70), and assuming that D̂ = D̂(m̂,m̂′), we notice that
σ̂

(n)′
+ (t), σ̂

(n)′
− (t) only enter into the right-hand side of (B68)

through combinations of the form σ̂
(n)
+ σ̂

(n)
− . Summing over all

n as in (B70), we find∑
n

σ
(n)
+ σ

(n)
− = N

2
[I + m̂]. (B74)

This shows that the right-hand side of (B68) only depends on
m̂ if D̂ = D̂(m̂,m̂′). Identical arguments lead to the conclusion

that it also depends only on m̂′. Hence we conclude that the
evolution of D̂ can be expressed as D̂(m̂,m̂′,t) as long as the
initial state can be expressed as a function of m̂ and m̂′.

APPENDIX C: DETERMINING THE MINIMAL COUPLING
FOR BOTH APPARATUSES TO REGISTER RESULTS

In this section we aim to find the minimal coupling hd for
which F

(u)
⇑ contains no free energy barriers. This is equivalent

to demanding

∂F
(u)
⇑

∂m
� 0, ∀m ∈ (0,mF ),

∂F
(u)
⇑

∂m′ � 0, ∀m′ ∈ (0,mF ),

∂F
(u)
⇑

∂m
� 0, ∀m ∈ (0, − mF ),

∂F
(u)
⇑

∂m′ � 0, ∀m′ ∈ (0, − mF ), (C1)

where mF ≈ 1 is the value where the ferromagnetic distribu-
tion peaks. For the first condition we obtain

1

N

∂F
(u)
⇑

∂m
= −

(
Ng2m

2
√

(Ngm)2 + (N ′g′m′)2
+ J2m + J4m

3

)

+ 1

2β
ln

(
m + 1

1 − m

)
. (C2)

This function is an odd function of m—and similarly for
∂F

(u)
⇑ /∂m′. Hence the previous conditions reduce to

∂F
(u)
⇑

∂m
� 0, ∀m ∈ (0,mF ),

∂F
(u)
⇑

∂m′ � 0, ∀m′ ∈ (0,mF ). (C3)

Going back to (C2), negativity of this function as a function of
g becomes most demanding for m′ = 1. Therefore, to satisfy
the previous conditions it is enough to demand

A(m) ≡ 1

N

∂F
(u)
⇑

∂m

∣∣∣∣
m′=1

< 0, ∀m ∈ (0,mF ),

B(m) ≡ 1

N ′
∂F

(u)
⇑

∂m′

∣∣∣∣
m=1

< 0, ∀m′ ∈ (0,mF ). (C4)

In the interval m ∈ (0,mF ), the function A(m) can only become
positive if T � J2 and for small values of m. Negativity of the
function can then be ensured by imposing ∂A(m)/∂m|m=0 < 0
which leads to the following simple solution for g′ = g:

hd = 2 max(T − J2,T − J ′
2). (C5)
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