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Random Permutation Tests
of Nonuniform Differential Item
Functioning in Multigroup Item Factor
Analysis

Benjamin A. Kite, Terrence D. Jorgensen and Po-Yi Chen

Abstract The purpose of the present research was to introduce and evaluate ran-
dom permutation testing applied to measurement invariance testing with
ordered-categorical data. The random permutation test builds a reference distribu-
tion from the observed data that is used to calculate a p value for the observed (Δ)χ2

statistic. The reference distribution is built by repeatedly shuffling the grouping
variable and then saving the Δχ2 statistic between the two models fitted to the
resulting data. The present research consisted of two Monte Carlo simulations. The
first simulation was designed to evaluate random permutation testing across a
variety of conditions with scalar invariance testing in comparison to an existing
analytical solution: the robust mean- and variance-adjusted Δχ2 test. The second
simulation was designed to evaluate the random permutation test applied to testing
configural invariance by evaluating overall model fit (the χ2 fit statistic). Simulation
results and suggestions for the use of the random permutation test are provided.
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1 Introduction

Behavioral researchers often use multiple-group confirmatory analysis (MG-CFA)
to test measurement invariance (MI) with indicator variables on a Likert-type scale.
The procedure of testing MI can be seen as a procedure of finding items with
differential item functioning (DIF). In a MG-CFA framework, testing MI with
ordinal data usually involves comparing nested invariance models. To test
hypotheses about different levels of invariance, researchers could first use the
ordinal estimators based on polychoric correlations from software such as Mplus
and lavaan, which employ diagonally weighted least squares (DWLS) estimation.
A robust a mean- and variance-adjusted test statistic can be requested in Mplus
using the command “ESTIMATOR = WLSMV” or from lavaan using the
argument estimator = “WLSMV”, where the “MV” stands for the mean and
variance adjustment to the chi-squared test statistic. MI testing can be conducted by
comparing the global fit indices such as chi-squared statistic (χ2) or alternative fit
indices (AFI) between invariance models. Among different criteria developed for
MI testing, researchers have found that the chi-squared difference (Δχ2) test sub-
stantially outperforms other fixed cutoffs based on change in AFI (e.g., change in
CFI) by showing greater power and a better ability to control Type I error rate
across different scenarios (Sass et al. 2014).

The Δχ2 tests of ordinal estimators in MG-CFA usually require researchers to
apply robust corrections during the testing procedures to mitigate the influences of
not using consistent estimators for the weight matrix in fit function (Savalei 2014).
Software such as Mplus (Muthén and Muthén 2015) and lavaan (Rosseel 2012)
both provide robust Δχ2 tests for researchers to compare invariance models esti-
mated by DWLS. Unfortunately, even though robust Δχ2 tests are considered best
practice for testing MI with ordinal data in MG-CFA, there are some important
issues that warrant further attention.

Most simulation research of the mean- and variance-adjusted Δχ2 test utilizes the
implementation provided by Mplus with the DIFFTEST command when using
ESTIMATOR = WLSMV. Researchers have found contradictory conclusions
during simulations about its ability to control Type I error rate (see the following
sections for details). The mean- and variance-adjusted Δχ2 test is also implemented
in lavaan via the lavTestLRT function, but it has not been examined in a
published Monte Carlo simulation. Furthermore, the corrected χ2 statistic obtained
through WLSMV also has been shown to be inappropriate to test the configural
invariance assumption (whether the item-factor configurations are identical across
groups) when the model is only an approximation of the true population model
(Jorgensen et al. 2017), but evidence of inflated Type I error rates under certain
conditions (Bandalos 2014) suggests that a test of overall model fit could yield
inflated Type I errors even when models fit perfectly.

To address these issues, in the current study, we propose a nonparametric
method for testing MI based on the permutation test. We compare the robust (Δ)χ2
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tests provided by Mplus and lavaan with two simulation studies. Through these
simulations, we provide researchers (a) explanations about contradictory conclu-
sions in previous studies about the robust Δχ2 test in Mplus, (b) systematic eval-
uations of the robust Δχ2 test provided by lavaan, and (c) a new solution that can
outperform robust Δχ2 test under conditions when it fails to yield nominal error
rates. The rest of this article is organized as follows. We first briefly introduce the
robust (Δ)χ2 tests provided by Mplus and lavaan, then explain their problems in
MI testing. After that, we illustrate the rationale of the permutation test we propose
and explain its theoretical advantages. Lastly, we investigate the relative perfor-
mances between methods through our simulations and provide recommendations
for researchers.

2 The Robust Δv2 Test in Mplus for Testing MI
with Ordinal Data

The robust Δχ2 test provided by Mplus is a widely used implementation for MI
testing with ordinal data in MG-CFA recommended by popular structural equation
modeling textbooks (e.g., Kline 2016; Little 2013). Muthén and Muthén (2015)
suggested that researchers use the DIFFTEST command in Mplus in order to
correctly scale Δχ2. The DIFFTEST command in Mplus applies the mean and
variance adjustment to the Δχ2 statistic between nested models, as discussed by
Asparouhov and Muthén (2006; see also Satorra 2000). The parent model (e.g., a
configural model) is fitted to the data, and matrices containing information about the
model are saved in a separate output file. When the nested model (e.g., a scalar
invariance model) is fitted and the text file containing matrices from the parent
model is provided, DIFFTEST uses information from both models to compute a
“scaled and shifted” Δχ2 statistic that asymptotically yields nominal Type I error
rates. A more detailed explanation of the computation involved with the DIFFTEST
command can be found in Asparouhov and Muthén (2006).

3 The Robust Δv2 Test in lavaan for Testing MI
with Ordinal Data

Besides Mplus, empirical researchers could also use the “lavTestLRT” function
provided by lavaan for MI testing (Rosseel 2012). When two nested models are
supplied to the lavTestLRT function, the correction outlined by (Satorra 2000) is
applied to produce a mean- and variance-adjusted Δχ2 statistic. Within the lav-
TestLRT function in lavaan, there are two options for how to compute the
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Jacobian of the constraint function. The first option (method = “exact”) is to
calculate an exact solution from a constraint function applied to the full parameter
vector, which requires that the two models are nested in the parameter sense, not the
more flexible sense of nested covariance structures (Bentler and Satorra 2010). The
second option (method = “delta”) provides an approximation to the Jacobian
and only requires models to be nested in covariance sense, such that the set of
predictions that could possibly be made by the parent model include all possible
predictions made by the nested model. In the present research, we used the second
option, which is lavaan’s default method beginning with version 0.6-1.1109.

4 Problems with Currently Available Methods

Asparouhov and Muthén (2006) conducted a small simulation to show that their
robust Δχ2 test effectively controls the Type I error rate when the total sample sizes
are asymptotically large: 1100 and 2200. A follow-up study conducted by Sass
et al. (2014) found contradicting results when sample sizes were more realistically
small or moderate. Specifically, Sass et al. found that the Type I error rate of the
robust Δχ2 test provided by Mplus was always substantially inflated in all of their
conditions with symmetrically distributed thresholds (range from 7–9%), and 6–9%
in asymmetric conditions. One explanation to these contradicting results could be
that the sample sizes that Sass et al. examined are in general smaller than the sample
sizes in Asparouhov and Muthén (2006), and small samples are inconsistent with
the derivation of the robust test statistic, which relies on asymptotic theory.
However, if the Δχ2 statistic obtained from WLSMV requires more than 1000
observations, then its applicability will be severely limited, considering most of MI
studies in psychology won’t have this large of sample size (Putnick and Bornstein
2016).

After thoroughly examining the results in Sass et al. (2014), we found another
possible explanation. That is, in their simulations the scalar invariance model was
different from the ordinary settings by unnecessarily constraining two additional
parameters. Specifically, to make sure the configural model was identified, Sass
et al. fixed the mean and variance of latent factor to 0 and 1 in both groups. When
estimating the scalar invariance model, Sass et al. did not release these two con-
straints in the second group as suggested in literature, which resulted in an overly
stringent scalar invariance model (Kline 2016; Little 2013). We believe this could
be another reason that caused their inflated Type I error rates.

According to our knowledge, there is still no study evaluating the performance
of the lavTestLRT function in lavaan, despite its use by empirical researchers
(e.g., Antoniadou et al. 2016). Note that Satorra (2000) originally proposed the
adjustment for the Δχ2 statistic to correct for continuous non-normal data, not
categorical data. The utility of this Δχ2 correction with ordinal estimators like
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WLSMV seems to rest quite heavily on the asymptotic assumption. We therefore
think it is worthwhile to conduct a simulation to compare different implementations
of the correction that might not be equivalent in small to moderate samples, such as
the DIFFTEST procedure in Mplus and the lavTestLRT procedure in lavaan.

Finally, besides the unsolved issues we mentioned for the robust Δχ2 test in
Mplus and lavaan, we believed there is also a common limitation shared by the
robust χ2 obtained from the WLSMV estimator in both software packages.
Specifically, we believe the χ2 obtained from WLSMV estimator might not be a
valid statistic for evaluating the configural invariance in small to moderate samples
because it is derived from asymptotic theory. Bandalos (2014) found inflated Type I
error rates for the robust χ2 statistic when the sample size is small, especially when
thresholds are asymmetrically distributed.

5 Permutation Tests of MI with Ordinal Data

To solve the problem of (Δ)χ2 test statistics mentioned above, we proposed a
permutation test of MI with ordinal data, which would be free from asymptotic
theory and should be able to control the Type I error rate reasonably well regardless
of the sample size and distribution of the thresholds. Specifically, we propose to
apply the random permutation testing to (Δ)χ2 with ordered-categorical data to
overcome the issue of the difference statistic not following a central χ2 distribution.
The focus of the present research is demonstrating how this approach works and
evaluating its performance. The proposed random permutation test is a nonpara-
metric method based on the idea of building an empirical reference distribution
reflecting the null hypothesis that groups have the same model configuration and
measurement parameters. In other words, the reference distribution is built under
the assumption of a true null hypothesis that there is no effect of group membership
on measurement properties (e.g., configuration, parameter values). This reference
distribution is used to calculate a p value when testing the null hypothesis of
invariance. The benefit of permutation testing is that building a nonparametric
reference distribution alleviates many of the assumptions of standard parametric
hypothesis tests. When testing for the effect of group membership on a test statistic,
a null distribution can be built by randomly shuffling the grouping variable and
saving the resulting test statistic after each shuffle. If there is no difference in
measurement-model configurations or parameters between groups, the observed test
statistic (calculated from the original data) should be consistent with the values
created by randomly shuffling the grouping variable; that is, the observed value
would only exceed the upper 95th percentile of the permuted values 5% of the time.
This should keep the Type I error rate of the test procedure nominal (i.e., at 5%
when using α = 0.05). Building a null distribution this way is especially useful
when the distribution of the test statistic is unknown.
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6 Method

To address the issues of the currently available two methods mentioned in the
introduction, we conducted two Monte Carlo studies. Study 1 is designed to
compare the relative performances between the robust Δχ2 test provided by Mplus,
the robust Δχ2 test provided by lavaan, and our new proposed permutation
method on detecting DIF. In Study 1, based on the assumption that researchers have
confirmed configural invariance hypothesis, we conducted the Δχ2 tests between
scalar and configural invariance model with the three methods above. The relative
performances between methods were evaluated in terms of Type I error rate and
power across 1000 replications within each condition. In simulation Study 2 we
focused on the performance of the Type I error rate the χ2 obtained from the three
methods. In Study 2 we examined whether the corrected χ2 provided in Mplus and
lavaan would reject the configural invariance model too often in comparison to
the permutation method we proposed. In both simulations, we follow Sass et al.
(2014) and used (0.036, 0.064) as the acceptable range for observed Type I error
rates, In both simulations, data were generated in R using the simulateData
function in lavaan. A two-group, single-factor, model with eight indicator vari-
ables was used as the population model. The factor loadings were fixed at 0.6
except in conditions when loadings were not invariant (i.e., when the loadings of
first two items in Group 2 were different from Group 1). Residual variances for
indicator variables were always set at 1 – λ2 so that latent item responses would
have unit variance. The number of shuffling with each permutation test was set to be
500. The design factors we manipulated in the two simulations (i.e., sample size,
distribution of thresholds, the number of categories per item, and the presence of
measurement non-invariance) are illustrated as follows.

Study 1 evaluated the random permutation Δχ2 against analytically derived
robust Δχ2 test statistics. The simulation design was a fully crossed 2 (response
categories) × 2 (threshold symmetry) × 2 (sample size) × 2 (factor loading
invariance) design resulting in 16 between-replication conditions used to generate
data, each having 1000 replications. In each replication, four different Δχ2 tests
were conducted: robust Δχ2 tests in Mplus and lavaan, our permutation test for
Δχ2, and an unadjusted Δχ2 test as a reference.

In Study 1, we set the sample size as 300 (150 per group) or 600 (300 per group).
These settings are similar to the small and medium sample sizes Sass et al. (2014)
used. The number of categories per item was set to be 2 or 5 to represent the
dichotomous and ordinal scales that researchers frequently used in practice. In
addition, we also simulated either symmetrically or asymmetrically distributed
thresholds, given that previous studies have found that he distribution of thresholds
could affect the results of Δχ2 related tests (e.g., Sass et al. 2014). Specifically,
in conditions with ordinal items, the symmetric and asymmetric thresholds are
set to be (−1.30, −0.47, 0.47, 1.30) and (−0.25, 0.38, 0.84, 1.28) as used by
Sass et al. (2014). Threshold values for symmetrically and asymmetrically
dichotomous items are set to be 0 and 0.7 respectively, as the average of the
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conditions manipulated in previous research (Beauducel and Herzberg 2006;
Rhemtulla et al. 2012). The non-invariance we manipulated in the current study is
limited to factor loadings. Specifically, in Study 1 we created non-invariance by
subtracting 0.25 (Sass et al. 2014) from the factor loadings for Items 1 and 2 in the
population model in the focal group. Specifically, in non-invariant conditions, the
factor loadings of Items 1 and 2 in the model will be 0.60 in the reference group but
were 0.6 − 0.25 = 0.35 in the focal group. In contrast, Items 3–8 in both groups
always had factor loadings of 0.60 in all conditions.

There were two models compared in each replication: a configural invariance
model and a scalar invariance model. The configural model had the factor loadings
and thresholds freely estimated for both groups, whereas the latent variable in each
group had its estimated mean and variance fixed to be 0 and 1, respectively. Further,
in the configural model, the variances of the latent response variables (i.e., scales of
normally distributed responses assumed to underlie observed discrete item
responses) were fixed to 1 in both groups (i.e., we used the so-called “delta” method
of identification available in Mplus and lavaan). The scalar invariance model had
the factor loadings and thresholds constrained to equality across groups. Con-
straining the measurement parameters across groups allowed the latent variable
mean and variance to be estimated in the focal group rather than fixed to 0 and 1.

The simulation conditions of Study 2 are almost identical to those of Study 1
except we removed the non-invariant conditions and the estimation of scalar
invariance, given the exclusive focus on Type I error rates of the χ2 statistic for the
configural invariance model. Additionally, in order to increase the magnitude of
asymmetry in our data to better match the work of Bandalos (2014), we changed the
distribution of asymmetric thresholds to (1.198) and (0.85, 1.10, 1.45, and 2.00).

7 Results

Type I error rates for tests of scalar invariance are shown in Table 1. Results
showed that random permutation testing and lavTestLRT had reasonable Type I
error control. The random permutation test had Type I errors within the nominal
range of 0.036–0.064 in all eight equal measurement parameter conditions, whereas
the Mplus DIFFTEST procedure had inflated error rates in the two conditions where
there were two response options with asymmetric thresholds, even though the
inflation is not as severe as Sass et al. (2014) found with ordinal data.

Power for scalar invariance tests are shown in Table 2. The Mplus DIFFTEST
procedure consistently showed the highest power, with lavTestLRT showing
power equal to or greater than the random permutation test (see Table 2). All testing
procedures showed higher power in conditions higher group sizes, more response
categories, and symmetric thresholds.

The results of simulation Study 2 in Table 3 showed that the random permu-
tation test of configural invariance had acceptable Type I error control in all eight
study conditions. The mean- and variance-adjusted χ2 tests provided by Mplus and
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lavaan performed nearly identically and showed inflated Type I errors in con-
ditions with asymmetric thresholds with five response options. The error rates were
especially inflated with five response options when the group sizes were 150 (20.2%
and 19.9%), and improved but still inflated when the group sizes were 300 (10%
and 10.1%). Lastly, the unadjusted χ2 test provided by lavaan showed error rates
well below the nominal value of 0.05 in all conditions.

Table 1 Type I error rates for Δχ2 tests

N # Categories Thresholds Permutation Mplus lavaan Unadjusted

150 2 Symmetric 0.050 0.060 0.056 0.143
300 0.043 0.052 0.050 0.128
150 5 0.053 0.062 0.054 0.131
300 0.053 0.057 0.053 0.098
150 2 Asymmetric 0.053 0.065 0.054 0.135
300 0.056 0.078 0.065 0.139
150 5 0.050 0.053 0.047 0.131
300 0.054 0.062 0.056 0.128

Table 2 Power for Δχ2 tests

N # Categories Thresholds Permutation Mplus lavaan Unadjusted

150 2 Symmetric 0.279 0.319 0.292 0.452
300 0.543 0.568 0.543 0.703
150 5 0.460 0.504 0.464 0.618
300 0.786 0.811 0.794 0.890
150 2 Asymmetric 0.214 0.258 0.225 0.361
300 0.406 0.457 0.427 0.588
150 5 0.342 0.370 0.335 0.519
300 0.707 0.733 0.712 0.831

Table 3 Type I error rates of χ2 test in the configural invariance model

N # Categories Thresholds Permutation Mplus lavaan Unadjusted

150 2 Symmetric 0.051 0.049 0.049 0.001
300 0.048 0.052 0.052 0.001
150 5 0.054 0.066 0.066 0.000
300 0.057 0.059 0.059 0.000
150 2 Asymmetric 0.047 0.049 0.049 0.006
300 0.039 0.051 0.052 0.004
150 5 0.049 0.202 0.199 0.014
300 0.035 0.100 0.101 0.002
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8 Discussion

The purpose of the present research was to evaluate the use of random permutation
testing applied to Δχ2 tests with ordered-categorical indicator variables. The
research was focused on models estimated with the popular WLSMV estimator.
When models with ordered-categorical data are estimated with WLSMV, the Δχ2

related tests require a mean and variance adjustment (Asparouhov and Muthén
2006; Satorra 2000). The random permutation test was introduced as an alternative
that is easily implemented in any statistical software, and as a method that should
control Type I errors as well or better than existing methods. Study 1 evaluated the
random permutation Δχ2 test for measurement invariance in comparison to existing
analytical robust solutions, and served as a follow-up to Sass et al. (2014). Study 2
expanded on the work of Jorgensen et al. (2017) and served as a follow-up to
Bandalos (2014).

Overall, the random permutation test performed well in both simulations. In
Study 1 the random permutation test was the only method that consistently showed
Type I errors within the previously defined nominal range of 0.036 and 0.064.
Further, the power of the random permutation test was increased in conditions with
higher group sizes, more response categories, and symmetric response distributions.
As would be expected based on the better error control, the random permutation test
showed slightly less power than Mplus DIFFTEST and lavTestLRT. The
modification to the design of Sass et al. (2014) in simulation one did result in a
better performance of the Mplus DIFFTEST procedure. When the latent variable
mean and variance were freely estimated in the focal group in the scalar invariance
model, Type I error rates for the DIFFTEST procedure were closer to α = 0.05 than
what was reported by Sass and colleagues.

Study 2 replicated the poor Type I error control, previously reported by Ban-
dalos (2014), of the mean- and variance-adjusted χ2 when data were extremely
asymmetric. The random permutation test showed no performance issues with
Type I error control. These results show that random permutation testing should be
considered an appropriate option for researchers to test DIF using item factor
analysis models.

The present research suggests the random permutation testing procedure could
be preferable over the parametric approaches in nonideal conditions (small to
moderate samples with asymmetric thresholds) because permutation provides better
control of the Type I error rate for both χ2 and Δχ2 than the Mplus DIFFTEST
procedure or lavaan’s lavTestLRT.
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