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Random Permutation Testing Applied to Measurement
Invariance Testing with Ordered-Categorical Indicators

Benjamin A. Kite,' Terrence D. Jorgensen,” and Po-Yi Chen'

YWniversity of Kansas
2University of Amsterdam

We describe and evaluate a random permutation test of measurement invariance with ordered-
categorical data. To calculate a p-value for the observed (A)y®, an empirical reference
distribution is built by repeatedly shuffling the grouping variable, then saving the y* from a
configural model, or the Ay* between configural and scalar-invariance models, fitted to each
permuted dataset. The current gold standard in this context is a robust mean- and variance-
adjusted Ay” test proposed by Satorra (2000), which yields inflated Type I errors, particularly
when thresholds are asymmetric, unless samples sizes are quite large (Bandalos, 2014; Sass
et al., 2014). In a Monte Carlo simulation, we compare permutation to three implementations
of Satorra’s robust y* across a variety of conditions evaluating configural and scalar invar-
iance. Results suggest permutation can better control Type I error rates while providing
comparable power under conditions that the standard robust test yields inflated errors.

Keywords: measurment invariance, permutation testing, categorical indicators

The goal of this article is to propose a permutation test of
the omnibus null hypothesis of measurement equivalence/
invariance in confirmatory factor analysis (CFA) models fit
to discrete indicators, sometimes referred to as item factor
analysis (Wirth & Edwards, 2007). Before we describe the
permutation testing procedure—first introduced by
Jorgensen, Kite, Chen, and Short (2017a) in the context of
multivariate normal indicators—we briefly review the com-
mon-factor model for discrete data, discuss relevant estima-
tion and inference problems and their solutions, and review
evidence from background literature indicating how well
these solutions perform in practice. Based on previous
results, we hypothesize under what conditions we expect
permutation to control Type I error rates better than the
current gold standard. Motivated by these hypotheses, we
describe a simulation study that compares permutation to
the current gold standard. Following an illustrative analysis
of real data, we conclude with advice for applied researchers
and future methodological research.

Correspondence should be addressed to Benjamin A. Kite, University
of Kansas, Lawrence, KS 66045. E-mail: bakite@ku.edu

Color versions of one or more of the figures in the article can be found
online at www.tandfonline.com/hsem.

ESTIMATING AND TESTING CFA MODELS WITH
ORDERED-CATEGORICAL DATA

Maximum likelihood estimation algorithms available in
most structural equation modeling (SEM) software pro-
grams assume that data are multivariate normally distribu-
ted, but social and behavioral scientists frequently utilize
measurement scales consisting of a few ordinal categories,
for example, 0 (never), 1 (seldom), 2 (often), or 3 (always).
Standard errors and test statistics can be adjusted for non-
normality to keep Type I error rates closer to the nominal
level, but point estimates remain attenuated unless scale
items include at least five or seven categories, depending
on the distribution of thresholds (Rhemtulla, Brosseau-
Liard, & Savalei, 2012).

Advances in item factor analysis (Joreskog & Moustaki,
2001; Muthén, 1984; Wirth & Edwards, 2007) have allowed
factor analysis models to be fit to ordinal indicators by
including a threshold model, which is statistically equivalent
to some item-response theory models (Kamata & Bauer,
2008; Wirth & Edwards, 2007). The threshold model is
predicated on the assumption that a normally distributed
latent item-response underlies each observed discrete indi-
cator. Thresholds are values on the scale of that latent item-
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response (e.g., assuming a standard normal distribution,
thresholds are z scores) that delimits adjacent categories of
the observed response scale. Thus, the threshold model
implies that when a respondent’s latent item-response
exceeds a threshold, the respondent’s observed response is
in the higher rather than the lower category. Based on this
simplifying assumption, thresholds are estimated using the
observed proportions in each response category to indicate
which corresponding z scores would yield those cumulative
probabilities in a standard normal distribution, and polycho-
ric correlations' can be estimated among discrete items
based on those thresholds. The common-factor model can
then be fitted to those polychoric correlations.

This two-step estimation process requires accounting for
the uncertainty about estimated polychoric correlations
when estimating structural parameters that explain those
correlations. A weighted least-squares (WLS) estimation
algorithm has been adapted (Muthén, 1984) specifically for
this scenario, which incorporates the asymptotic covariance
matrix of estimated polychoric correlations in Step 1 as the
weight matrix W in Step 2. Estimates for the CFA para-
meters are obtained by minimizing the discrepancy function
Fwis.

Fys = (s — o)W (s — o)

where s is the vector of estimated polychoric correlations
from Step 1 and o is the vector of polychoric correlations
implied by the hypothesized model fit in Step 2. WLS
estimation becomes computationally intensive in practice
when the number of variables (p) becomes quite large. For
example, fitting a CFA model to only p = 10 indicators
already requires estimating p* = p(p — 1)/2 = 45 polycho-
ric correlations, in which case W would be a 45 x 45 sym-
metric matrix. Inverting large matrices can be prohibitively
intensive with many variables.

Alternatively, estimates can be obtained by using only
the diagonal of W, which is much easier to invert. This is
commonly referred to as diagonally weighted least squares
(DWLS) estimation, which yields asymptotically unbiased
point estimates but biased SEs and test statistics. Our focus
in this article is on the x> model-fit statistic, so we will not
discuss robust SEs. Among the most popular robust correc-
tions to the y*> model-fit statistic when using DWLS is a
mean- and variance-adjusted y? statistic’ ((3,) proposed by

! Throughout the manuscript, we will restrain our discussion to the case
of polychoric correlations for models fit only to ordered-categorical items,
but this WLS estimator can also be applied to a mixture of discrete and
continuous indicators. When continuous indicators are included, their
observed (co)variances are included in the estimated polychoric correlation
matrix, and polyserial correlations are estimated between the discrete and
continuous indicators.

2Mean- and variance-adjusted 4 statistics can also be calculated for
other estimators, such as maximum likelihood.

Satorra (2000), which is widely implemented in SEM soft-
ware, although implementations can differ across packages
(WirthEdward; see below for details). Whereas WLS
requires very large sample sizes (e.g., N > 2000) for the y?
model-fit statistic to yield nominal Type I error rates, with
more moderate sizes (e.g., 200 < N < 1000) the robust y3,,
under DWLS estimation yields Type I error rates closer to
the nominal level than % under full WLS (Flora & Curran,
2004). However, Bandalos (2014) showed that even when
samples are moderately large, 3, under DWLS will return
inflated Type I errors when thresholds are not approximately
symmetric. The less symmetric thresholds are the fewer
cases will be observed in extreme categories that represent
the tails of the distribution of the latent item-response. Thus,
unless the sample size is large enough so that the probabil-
ities in each response category can be reliably estimated,
results based on imprecisely estimated thresholds will be
biased.

When comparing nested models estimated with DWLS,
the Ay? statistic’ also requires a robust correction. The
mean-and-variance adjustment proposed by Satorra (2000),
as implemented in Mplus (Muthén & Muthén, 2015) using
the DIFFTEST procedure, also appears to yield nearly nom-
inal Type I error rates, at least when samples are adequately
large (N = 1100 or 2000; Asparouhov & Muthén, 2006).
However, Sass, Schmitt, and Marsh (2014) found the same
problems with the empirical performance of Ay3, that
Bandalos (2014) found with x3,. Namely, asymmetric
thresholds inflate Type I error rates, and the problem is
exacerbated by small sample size.

The open-source statistical environment R (R Core Team,
2017) affords an opportunity for users to directly investigate
different implementations of the (A)y3,, solution in the R
package lavaan (Rosseel, 2012). When comparing nested
models fitted with DWLS estimation in lavaan, Ay3,, can be
requested using the lavTestLRT function. There are two
alternative calculations available via the method argument,
which specifies how the Jacobian of the constraint function
is to be computed (Satorra, 2000, p. 239) before it is used in
their Equations 22 (p. 241) and 23 (p. 242). The first option
(method = “exact”) requests an exact solution, which
requires finding a function that can be imposed on the
parameter vector of the less restricted model that reflects
the (additional) constraints imposed in the more restricted
model. If all constraints were satisfied, this function would
return a matrix of zeroes. The exact solution therefore
requires that the two models have nested parameter vectors,
in that the parameters of the more restricted model are a
subset of the parameters of the less restricted model. The
second option (method = “delta”) approximates the Jacobian

3 Note that it is not appropriate to calculate the difference between two Vi
statistics because they will not be approximately ? distributed. Instead, the
difference between unadjusted y? statistics must be calculated, then adjusted.
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as the orthogonal complement to the following function of
the derivatives of model parameters from the restricted (D)
and unrestricted (D;) models:

(D'Dy)"'DID,

This approximation does not necessarily result in a con-
straint matrix of zeroes, but it is more flexible because it
merely requires nested covariance structures rather than
strict parameter nesting (Bentler & Satorra, 2010), such
that the set of all predictions that could possibly be made
by the parent model include all possible predictions made
by the nested model. The exact option was the default in
lavaan versions 0.5 (the first to include DWLS estimation
for categorical indicators), but since version 0.6—1.1109 the
new default method is the approximate delta method. To the
best of our knowledge, these methods have not been com-
pared empirically.

Other open-source SEM software packages have also
implemented Ay3,,, such as the R package OpenMx (Neale
et al.,, 2016). Proprietary SEM software, however, is not
always transparent about how solutions like this are imple-
mented. For example, the DIFFTEST* command in Mplus
(Muthén & Muthén, 1998-2015) implements the Satorra
(2000) correction, but it is unclear how Mplus calculates
the Jacobian of the constraint function (Asparouhov &
Muthén, 2006, eq. 6). A comparison with the open-source
solutions in lavaan could provide insight about which
approach Mplus appears to use (if either), which might be
of practical interest if the methods yield substantially different
frequency properties (e.g., Type I error rates, power) under
different realistic conditions (e.g., when sample size is not
large enough to rely on asymptotic assumptions).

TESTING MEASUREMENT INVARIANCE WITH
ORDERED-CATEGORICAL DATA

Measurement invariance in a CFA framework is tradition-
ally tested beginning with a baseline multi group model that
assumes equivalent model configurations across groups (i.e.,
same specification of fixed and free parameters) but places
no restrictions on the estimated values of those parameters
across groups (Vandenberg & Lance, 2000). The fit of this
configural baseline model is evaluated using a y> test of
exact fit, where a rejection of the null hypothesis® implies

“ Details about how to use the DIFFTEST command can be found with
Web Note 4 at http://www.statmodel.com/ .

3 Jorgensen et al. (2017a) showed that the y> test of overall model fit
tests an overly restrictive null hypothesis because model configurations
could be equivalent across populations even if the hypothesized model is
not a perfectly accurate representation of it. This issue is discussed else-
where in greater detail (Jorgensen, 2017; Jorgensen et al., 2017), but it is
beyond the focus of the current study, which focuses on situations in which

that the configural model does not exactly represent the true
data-generating process (i.e., population). In practice,
researchers frequently rely on alternative fit indices
(Putnick & Bornstein, 2016) because they are willing to
accept models that are imperfect but useful approximations
of a population (MacCallum, 2003). Our current investiga-
tion focuses only on the 3, test statistic.®

If configural invariance appears tenable, then additional
restrictions on model parameters can be tested. Metric (or
“weak™) invariance can be evaluated by constraining factor
loadings to equality across groups and testing those con-
straints with the Ay3,, statistic. If metric invariance holds,
then scalar (or “strong”) invariance can be tested by addi-
tionally constraining intercepts (of continuous indicators) to
equality across groups, and/or strict invariance can be tested
by additionally constraining residual variances to equality
across groups; again, those additional constraints can be
tested with the Ay3, statistic. With ordered-categorical
indicators, testing metric, scalar, and strict invariance is
not as straight-forward, due to additional identification
requirements described next.

Because a latent variable is not directly observed, it has
no scale of measurement. The common factors in CFA
models are assumed to be normally distributed random
variables, but the mean and variance of that distribution is
not identified without additional constraints on estimated
model parameters. Choices between identification con-
straints are essentially arbitrary in a single-group cross-sec-
tional context, but they could limit the comparisons one
could make across groups or occasions in multi-group or
longitudinal models (Millsap & Yun-Tein, 2004; Muthén &
Asparouhov, 2002). Incorporating a threshold model in IFA
models further complicates the matter because the same
identification issue holds for each ordered-categorical indi-
cator’s latent item-response. Each latent item-response is
also assumed to be a normally distributed random variable
whose mean and variance are not identified without addi-
tional constraints on estimated model parameters.

A simple identification method is to fix the common
factor mean and variance to zero and one, respectively, so
that common factors are assumed standard normally dis-
tributed. Alternative identification constraints include fixing
a single factor loading per factor to one, or constraining the
average of all loadings per factor to be one (Little, Slegers,
& Card, 2006). Latent item-response distributions can be
identified the same way, but they are endogenous, so the
mean of the distribution is conditional on the common
factor (i.e., it is an intercept). The intercepts are typically
fixed to zero, and the variances are identified either by

the %2, test fails even in the ideal circumstance that the hypothesized
model is a perfect representation of the population(s).

6 Jorgensen et al. (2017a) showed that permuting alternative fit indices
also provides valid tests of hypotheses about measurement invariance.
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fixing each total variance to one (consistent with the so-
called delta method in Mplus and lavaan; see Muthén &
Asparouhov, 2002, for details) or by fixing each residual
variance to one (as it would be in a probit regression model,
called the theta method in Mplus and lavaan). Because
intercepts are typically fixed to zero for identification, their
equality across groups is assumed rather than tested. In
practice, invariance of thresholds is often substituted for
invariance of intercepts when assessing scalar invariance
(Putnick & Bornstein, 2016; see Millsap & Yun-Tein,
2004; for differences between Mplus and LISREL, the latter
of which assumes invariance of all thresholds and instead
tests equality of intercepts), although it is worth noting that
mean and covariance structures are not identified indepen-
dent of each other in IFA as they are in CFA (Millsap &
Yun-Tein, 2004; Muthén & Asparouhov, 2002; Wu &
Estabrook, 2016). After applying equality constraints on
factor loadings and thresholds, the theta identification
method allows residual variances to be freely estimated in
all but one group, leading Millsap and Yun-Tein (2004) to
recommend theta over delta parameterization so that strict
invariance could be explicitly tested. However, because
strict invariance is not required to draw inferences about
common-factor distributions (e.g., to compare latent means,
variances, or correlations between groups), strict invariance
is not tested as often as metric or scalar invariance (Putnick
& Bornstein, 2016). For brevity, our investigation does not
focus on strict invariance, and we use the delta method of
identification employed by Sass et al. (2014).

It is important to note when identifying the common-factor
means and variances by fixing them to zero and one, respec-
tively, in the configural model (as described above), some
identification constraints can be relaxed when equality con-
straints are placed upon measurement parameters (Kline, 2016;
Little, 2013). For instance, when factor loadings are con-
strained to equality across groups in the metric model, the
factor variance only needs to be constrained to one for a single
group. Likewise, only one group’s factor mean(s) need to be
fixed to zero in the scalar model. If the common-factor means
and variances are not freed when they are no longer required
for identification, then the A3, test would not only test the
null hypothesis of equal measurement parameters, but rather
would simultaneously test null hypotheses of equal measure-
ment parameters and common-factor distributions.

Similarly, when using the delta method to identify
latent item-response scales, all latent item-response var-
iances are constrained to equal one in the configural
model by fixing the residual variances to one minus the
variance explained by the common factor(s). When load-
ings and thresholds are constrained to equality across
groups, latent item-response scales only need to be con-
strained to one in a single group, so they can be freely
estimated in other groups (Wu & Estabrook, 2016). Thus,
constraining a binary item’s loading and single threshold
to equality across groups only results in gaining one

degree of freedom because its residual variance must be
freed. This means metric and scalar invariance cannot be
tested separately for binary items’ (Millsap & Yun-Tein,
2004). Thus, like Sass et al. (2014), we focus only on a
simultaneous test of the omnibus null hypothesis that both
loadings and thresholds are equivalent across groups. This
is a common method in applied research, as well (e.g.,
Garnaat & Norton, 2010; Randall & Engelhard, 2010).

PERMUTATION TEST OF MEASUREMENT
INVARIANCE

The focus of the present research is to evaluate random permuta-
tion, a nonparametric method, when applied to tests of measure-
ment invariance in IFA models. Interested readers can consult
Hayes (1996), who provided an excellent introduction to permu-
tation tests in general, and Rodgers (1999), who placed permuta-
tion in a taxonomy of other resampling procedures (e.g.,
bootstrapping). Jorgensen et al. (2017a) first proposed a permu-
tation test of measurement invariance in CFA models with multi-
variate normally distributed indicators, and the same steps can be
applied in the case of ordered-categorical indicators. The proce-
dure involves the steps enumerated below.

When testing configural invariance, these steps are applied
only to the configural model, and the ¥ test statistic is saved in
Steps 1 and 4. When testing scalar invariance, both the con-
figural and scalar models are fitted in Steps 1 and 4, and the
Ay? test statistic is saved. It is not necessary to calculate a
robust (A)y3,, test statistic, but results would be equivalent
(within reasonable Monte Carlo error; Jorgensen et al., 2017a)
because the p value for either statistic would be based on the
empirical permutation distribution of that statistic.

1. Fit the hypothesized multi-group model(s) to the ori-
ginal data, and save (A)y>.

2. Sample N values without replacement from the
observed grouping-variable vector G. The new vector
Gperm(i) contains the same values as G, but in a new
randomly determined order (i.e., Gpemm(;) is the ith
permutation of G).

3. Assign the nth row of the original data to the nth value
from the new group vector G (;). On average, group
differences are removed from this ith permuted data set.

4. Fit the same multi-group model from Step 1 to the

permuted data, and save (A)y>.

"Wu and Estabrook (2016) recently showed that it is not possible to test
equality of thresholds independently of any other type of measurement para-
meter. It is only possible to test equality of thresholds on the condition of at
least one other type of measurement parameter (for items with four or more
categories), at least two other types (for items with three categories), or at least
three other types (for binary items). This finding has implications for how
measurement invariance should be tested with ordered-categorical indicators,
but such a paradigm shift is beyond the scope of the current article.
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5. Repeat Steps 2—4 [ times, resulting in a vector of
length [ for each fit measure.

6. Make an inference about (A)y? by comparing it to the
vector of permuted (A)y? statistics.

The number of times / that the grouping variable is
randomly shuffled should be large enough to approximate
the true sampling distribution. We used a preliminary study
(see Appendix A®) to determine that 7 = 500 random shuf-
fles is sufficient to minimize Monte Carlo error when esti-
mating the p value in Step 6. Step 6 can be accomplished in
either of two ways, yielding the same decision about the
null hypothesis:

e Calculate the proportion of the vector of (A)y? statis-
tics that is more extreme (i.e., indicates worse fit or a
greater decrement in fit) than the observed (A)y?. This
is an approximate one-tailed p value that approximates
the probability of obtaining a (A)y? at least as poor as
the observed one, if the null hypothesis of invariance
across all groups holds true. Reject the null hypothesis
if p<a.

o Sort the vector of permuted (A)y? statistics in ascend-
ing order. Use the (100 x (1 — a))th percentile as a
critical value, and reject HO if (A)y? is more extreme
than the critical value.

Jorgensen et al. (2017a) showed that permutation pro-
vided nominal Type I error rates and sufficient power to
detect substantial violations of invariance, regardless of
the fit measure used as criterion (i.e., (A)x> or an alter-
native fit index). This provides an additional potential
advantage of permutation for researchers who prefer to
assess invariance using (change in) indices of approxi-
mate fit, given that Sass et al. (2014) found the guidelines
based on past simulations studies yield inflated Type I
errors with ordered-categorical indicators. According to
Putnick and Bornstein (2016), the most frequently con-
sulted statistic to assess invariance in CFA is a ACFI
cutoff (effectively, a critical value) of .01 (Cheung &
Rensvold, 2002), although others are also frequently
referenced, such as a ARMSEA cutoff of .01 (Chen,
2007). Jorgensen et al. (2017a) showed that Type I error
inflation of fit indices is more likely with small samples,
when their sampling distributions have greater variance,
making it more likely that samples produce estimates
below these proposed cutoffs. Thus, although our inves-
tigation focuses on the (A)y3,, statistic, readers should be
aware that the results herein generalize to other measures
of model fit.

8 Appendix A also discusses the issue of sparse data, when not all levels
of a variable are observed in each group.

TABLE 1
Fit Metrics from Empirical Example
Mplus and lavaan and
Software: DIFFTEST lavTestLRT Permutation
Model: Configural Scalar  Configural Scalar Configural Scalar
¥ 55925 64348 33560 56.642 25913 44.518
df 18 40 18 40 18 40
(&%) <.001 .008 .014 .042 .340 522
Ax? 21.590 12.478 18.604
Adf 22 22 22
p(Ay?) 485 254 354
RMSEA 0.103 0.055 0.066 0.046
CFI 0.974 0.984 0.989 0.989
TLI 0.957 0.988 0.982 0.991

Note. The test statistics for the permutation tests are the unadjusted chi-
squared values provided by lavaan, however the p-values were computed
via permutation testing.

Empirical example

To compare the procedure of invariance testing in Mplus
and lavaan, we used the quality of life data analyzed by
Chen and Yao (2015) through World Health Organization
Quality-of-Life Scale (WHOQOL-BREF) as an illustrative
example. For simplicity, in the current research, we only
used the complete’ cases (male: 158, female: 238) to test
measurement invariance across gender of the psychological
domain in WHOQOL-BREF (i.e., a single-factor model
with six indicators measured on a 5-point Likert-type
scale). The fit measures of configural and scalar invariance
models are presented in Table 1. In our analysis the y3,,
statistics for the configural invariance model provided by
Mplus and lavaan were statistically significant; in practice,
however, applied researchers using guidelines proposed by
Hu and Bentler (1999) might consider the model fit indices
to be sufficient for acceptance of the hypothesized model:
CFI and TLI > 0.95 for both models in both software
packages, although the configural model’s RMSEA > 0.06
in both packages.

Regardless of the absolute fit of the model, the permutation
test of configural invariance (p = .340) provided no evidence
against the null hypothesis that men and women share equiva-
lent population model configurations, whatever that true con-
figuration might be.'® Furthermore, the Ay3,, statistics
provided by Mplus and lavaan when testing for scalar invar-
iance were not statistically significant, nor was the permutation
test of scalar invariance significant, indicating no evidence
against the null hypothesis of scalar invariance.

°The application of the permutation method to incomplete data is a
topic for future research that is beyond the scope of the current
investigation.

19 Jorgensen (2017) discussed modifying configurally invariant models
with inadequate fit.
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Hypotheses

The primary goal of our investigation is to compare the
permutation test of invariance to the robust (A)y3, test,
which is the current gold standard, under conditions when
(A)y3,, fails to adequately control the Type I error rate.
Regarding tests of scalar invariance, Sass et al. (2014)
found inflated error rates for five-category indicators when
sample sizes were small to moderate (n = 150 or 300 per
group). Such data represent a common situation in which
researchers employ Likert-type response scales ranging, for
example, from 1 (Strongly Disagree) to 5 (Strongly Agree).
They observed this inflation regardless of whether thresh-
olds were symmetric or asymmetric, but Bandalos (2014)
and Rhemtulla et al. (2012) both found that asymmetry of
thresholds can exacerbate inflated Type I error rates of the
X3, statistic for testing overall model fit. Rhemtulla et al.
(2012) also found that the number of categories influences
the degree of inflation. Although Bandalos (2014) and
Rhemtulla et al. (2012) did not investigate multi-group
models, it can be expected that if these conditions hold for
multiple groups, then 3, will also yield inflated errors in
multi-group models. Because the y3,, statistic is used to
assess configural invariance, a permutation test could pro-
vide better control of Type I errors under these conditions.
Chen (2007) found that the ratio of group sample sizes
affected power to detect violations of invariance in CFA
with multivariate normally distributed indicators. Because
she did not investigate unbalanced groups when studying
Type I error rates, we are also interested in investigating that
possible effect in IFA with ordered-categorical indicators.

In line with past research, we hypothesize that for tests of
configural invariance, 33, will yield inflated Type I error rates
when items have asymmetric thresholds, that inflation will be
more severe in small than in moderate samples, and that
inflation will be more severe when items have fewer than
more categories, but we expect permutation to yield nominal
Type 1 error rates across all conditions. We hypothesize that
A3, will yield inflated Type I error rates when testing scalar
invariance in small samples, although there is no evidence that
threshold asymmetry or number of categories will affect this
inflation. We have no expectations about whether unbalanced
sample sizes will affect Type I error rates for x3,,, or Ay3,,, but
we expect them to be nominal using permutation. Because past
research showed that Type I error inflation dissipated in very
large samples (e.g., N=1000), we have no need to compare the
permutation method to (A)y3,, in larger samples.

Regarding software implementations, we expect the
exact method for calculating the Jacobian of the constraint
function to control Type I error rates at least as well as the
approximate delta method, although we know of no pre-
vious research on which to base any more specific hypoth-
eses. Because both methods are available using lavTestLRT,
we use the lavaan package in our investigation. Because

most other simulation research we reviewed (Bandalos,
2014; Chen, 2007; French & Finch, 2006; Kim & Yoon,
2011; Rhemtulla et al., 2012; Sass et al., 2014) used Mplus,
we also fit models using Mplus.

Although we expect Type I error rates to be closer to
nominal using permutation than (A)y3,, in conditions stated
above, if the differences are not substantial, then it would be
of practical interest to know whether better control of Type I
errors comes at the expense of losing adequate power to
detect true violations of invariance. To this end, we also
explore power as an outcome of secondary interest.

METHOD

Sass et al. (2014) simultaneously tested metric and scalar
invariance constraints while manipulating many of the fac-
tors whose effects we are interested in. We therefore par-
tially replicated their Monte Carlo simulation so that we
could compare our results to theirs. For factors that we
manipulated that they did not, we borrowed conditions
from other studies so that our results could be compared
to previous research. Whereas Whereas Sass et al. (2014)
investigated only tests of scalar invariance, we investigated
tests of both configural and scalar invariance.

Data for two groups were generated in R using the
simulateData function in the lavaan package, which simu-
lates latent-item responses from multivariate normal distri-
butions implied by specific population parameters, then
applies specified population thresholds to discretize latent
item-responses. Borrowing Sass et al.’s (2014) simulation
conditions, we simulated a single latent common factor
(b= 0 and o = 1 in both groups) measured by eight indicator
variables with factor loadings of A = .60 and residual var-
jances of 1 — A% = .64. Following Sass et al. (2014), we
manipulated the values of thresholds, as well as the number
of thresholds (i.e., response categories), total and group
sample sizes, and for tests of scalar invariance, whether
factor loadings were invariant. We simulated 1000 replica-
tions in each condition, described below.

Response categories

Sass et al. (2014) only simulated data with five response
options per indicator, but we also simulated data with two
response options because previous simulations conflicted
about the degree to which results differ (Rhemtulla et al.,
2012) or not (Bandalos, 2014) across this factor. We chose
dichotomous and five-category polytomous data to mimic
response scales that are often used in applied research. For
example, binary data represent “Yes” or “No” responses indi-
cating whether a statement is true. Data with five response
options represent response scales where, for example, partici-
pants are asked to indicate their level of agreement with a



RANDOM PERMUTATION TESTING APPLIED TO MEASUREMENT INVARIANCE TESTING 579

statement on a Likert-type scale from 1 (Strongly Disagree) to
5 (Strongly Agree). Only two levels were chosen because
previous research has already investigated additional levels
(Bandalos, 2014; Rhemtulla et al., 2012). Our goal of compar-
ing Type I error rates across testing methods is served most
parsimoniously by investigating lower and upper limits of the
number of categories applied researchers would likely treat as
categorical in practice. Rhemtulla et al. (2012) showed that
robust maximum likelthood and DWLS produce similar
enough results to treat ordered-categorical data as continuous
when there are at least five response categories (except in
some asymmetric-threshold conditions), so we use that as
our upper-limit condition, and binary as our lower limit.

Threshold symmetry

We specified population thresholds (z scores from a standard
normal distribution for each latent item-response) that yielded
symmetric or asymmetric observed indicator distributions.
Generating data using asymmetric thresholds was done in
order increase generalizability to applied research where
response distributions are often asymmetric (e.g., the Serious
Harm Reduction Scale; Martens, Pederson, LaBrie, Ferrier, &
Cimini, 2007) and to replicate previous simulation work
(Bandalos, 2014; Rhemtulla et al., 2012; Sass et al., 2014).
We simulated symmetric dichotomous distributions using a
single threshold of 0, similar to previous research (Beauducel
& Herzberg, 2006; Rhemtulla et al., 2012). We simulated
symmetric five-category polytomous data using thresholds of
—1.30, —0.47,0.47, and 1.30, chosen by Sass et al. (2014)
to simulate conditions that generalize to applied research.

For tests of configural invariance, we simulated asym-
metric dichotomous data using a single threshold of 1.198,
and asymmetric polytomous data using thresholds of 0.85,
1.10, 1.45, and 2.00, in order to compare our results to those
of Bandalos (2014). Although she did not report the exact
thresholds she specified, she reported that they yielded
expected skew = 2.40 and kurtosis = 3.78, noting that “the
terms skew and kurtosis are not germane to categorical
data” (Bandalos, 2014, p. 105). These were the least
extreme values of skew and kurtosis she simulated, but
they were more extreme than values used in other simula-
tion research (Rhemtulla et al., 2012; Sass et al., 2014).

For tests of scalar invariance, we simulated asymmetric
dichotomous data using a threshold of 0.70, which we chose
as a compromise between what Rhemtulla et al. (2012) defined
as moderate (0.36) and extreme (1.04) asymmetry. We simu-
lated asymmetric polytomous data using thresholds of —0.25,
0.38, 0.84, and 1.28, which Sass et al. (2014) indicated were
representative of “those typically found in practice” (p. 170).

Sample sizes and ratios

Sass et al. (2014) simulated total sample sizes of N = 300,
600, or 1000, with equal sizes in each of two groups. These

are typical values in simulation research (Elosua, 2011;
Elosua & Wells, 2013; Lubke & Muthén, 2004; Sass
et al., 2014), but because Bandalos (2014) and Sass et al.
(2014) only found inflated Type I errors at small and mod-
erate sample sizes, we only simulated total sample sizes of
N =300 or 600. In a follow-up study, we also simulated one
condition with N = 120 to verify whether permutation was
still robust with very small sample sizes.

Sass et al. (2014) cited that Chen (2007) had found group
ratios influenced power to detect non-invariance, but did not
manipulate that factor themselves. Because Chen (2007) did
not investigate whether group ratios effected Type I error
rates, we varied group ratios to be either equal across groups
(1:1 ratio) or to have twice as many cases (1:2 ratio) in the
focal group (i.e., the group receiving the non-invariance
manipulation). Holding total sample size constant at the
levels indicated above, this resulted in group sample sizes
of n =150 and 150 or » = 100 and 200 in conditions with
N = 300, or in group sample sizes of n = 300 and 300 or
n = 200 and 400 in conditions with N = 600.

Factor loading invariance

Our main goal was to investigate whether permutation could
provide better control of Type I error rates for tests of con-
figural and scalar invariance than (A)y3,,, which previous
research has shown yields inflated errors under common
conditions of small to moderate sample sizes and asymmetric
thresholds. Therefore, we simulated conditions of full mea-
surement invariance. However, better control of Type I errors
is expected to come at the expense of lower power, so we
also investigated power to detect a violation of invariance.
We therefore simulated factor loadings in the focal group
(Group 2) to be 0.35 rather than 0.60 for Items 1 and 2.
This factor-loading difference of 0.25 was used by Sass et al.
(2014) as well as French and Finch (2006), and is between
the small (0.15) and large (0.40) conditions simulated by
Stark, Chernyshenko, and Drasgow (2006).

We did not manipulate additional levels of factor-loading
differences, nor did we manipulate other factors known to
affect power (e.g., number or proportion of non-invariant
items) because we were not interested in reiterating previous
results (Chen, 2007; French & Finch, 2006; Kim & Yoon,
2011; Sass et al., 2014; Stark et al., 2006). Furthermore, Sass
et al. (2014) showed that power to detect violations of invar-
iance were similar for loadings and thresholds. So simulating
one level of violated invariance was sufficient for our stated
purpose of comparing power across different test procedures.

Models and test statistics

Tests of configural invariance were conducted using the
A3 statistic available in lavaan by requesting
estimator = “WLSMV”, which implies estimator = “DWLS”
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and test = “scaled.shifted”. We also recorded the y3,, statistic
available in Mplus by requesting “ESTIMATOR = WLSMV”,
which also implies DWLS estimation and a mean- and variance-
adjusted test statistic. For comparison purposes, we also
recorded the results of the unadjusted y? test provided by lavaan.
We conducted the permutation test using the unadjusted x>
statistic provided by lavaan. In all permutation tests, we used
500 shuffles of the grouping variable (see Appendix A for
details).

The configural model was identified by fixing the factor mean
and variance to zero and one, respectively, in both groups, and
using the delta method (i.e., fixing residual variances of latent
item-responses to 1 — A2, so that the total variance of each latent
item-response equals one). All factor loadings and thresholds
were freely estimated in both groups. The scalar model con-
strained estimated factor loadings and thresholds to be equiva-
lent across groups, and the common-factor mean and variance
were freely estimated in Group 2. In models with dichotomous
items, Adf = 14, whereas with polytomous items, Adf =38 ."!

Tests of scalar invariance were conducted using the Ay3,,,
statistic available in Mplus using the DIFFTEST procedure,
and from lavaan using the lavTestLRT function with the
argument method = “Satorra (2000)”, which we requested
using both the A.method = “exact” and the approximate A.
method = “delta” methods for calculating the Jacobian of
the constraint function. For comparison purposes, we also
recorded the results of the unadjusted Ay? test using the
unadjusted %> values provided by lavaan. We also conducted
the permutation test using this unadjusted Ay? statistic.

The outcome of interest was the proportion of replica-
tions in which the null hypothesis of invariance was rejected
using each test, using o = .05 or .01 as criterion for sig-
nificance. When the populations were invariant, the null
hypotheses were true, so rejection rates should be nominal,
within reasonable Monte Carlo sampling error. Using a
normal approximation to the binomial distribution given
1000 trials (replications), a 95% CI around a nominal
value of .05 indicates a nominal range of .0365 to .0635
(Sass et al., 2014), and a nominal range of .0038 to .0162
using o = .01. Test statistics that showed Type I errors
within these nominal ranges would be considered to have
acceptable Type I error control. In conditions in which
measurement invariance was violated, the null hypothesis
was false, so the rejection rate is an estimate of power.
Methods that showed acceptable Type I error rates were
compared on power. Specifically, determining whether the
random permutation test controls Type I errors and yields
power similar to or greater than other testing approaches
was the main focus when interpreting the results.

"If we had fixed the factor means and variances in both groups even in
the scalar model, as Sass et al. (2014) did, these differences would have
been Adf = 16 and 40, respectively, as Sass et al. (2014) reported. We
discuss the implications of this difference in the Discussion section.

RESULTS

The exact method for calculating the Jacobian of the con-
straint function yielded Type I error rates near zero and very
low power in a subset of study conditions (see Appendix B),
so we focus only on presenting the results of the approximate
delta method, the Mplus results, and the permutation results,
along with unadjusted (A)y? results from lavaan for compar-
ison to a nonrobust method. Recall that the exact method was
the default in previous versions of lavaan, but the approxi-
mate delta method is the default since version 0.6-1.

Configural invariance

The results of the configural invariance simulation showed that
the random permutation test had acceptable Type I errors within
the nominal ranges in all but one condition. The mean- and
variance-adjusted y? tests provided by Mplus and lavaan per-
formed nearly identically, and showed inflated Type I errors in
conditions with asymmetric thresholds with five response cate-
gories. The error rates were especially inflated with five
response categories when the total sample size was 300
(25.3%, 24.0%, 20.2%, and 19.9%). Lastly, the unadjusted x2
test provided by lavaan showed error rates well below the
nominal range in all conditions (see Table 2), which is expected
given that the unadjusted y? statistic is calculated from a dis-
crepancy function between model-implied polychoric correla-
tions and the correlations estimated in a previous step, without
taking into account the uncertainty associated with those esti-
mated correlations.

Scalar invariance

Results showed that random permutation testing had reason-
able Type I error control in all 16 conditions with equal
measurement parameters, whereas Mplus DIFFTEST and
lavTestLRT had reasonable Type I error control in most of
those conditions. The Mplus DIFFTEST procedure had
inflated error rates in five conditions, and the lavTestLRT
procedure with the approximate Jacobian showed an inflated
Type 1 error rate only in the condition with two response
options, asymmetric thresholds, and 300 cases in each group.
The majority of conditions with unbalanced samples had errors
below the nominal range using lavTestLRT. The unadjusted >
showed inflated Type I errors (see Table 3). The observed Type
I error rates of the random permutation test, Mplus DIFFTEST,
and lavTestLRT were close enough to the nominal range (e.g.,
within .03 above or below the nominal .05) to warrant compar-
ing their power to detect true violations of invariance.

Table 4 shows that the random permutation test, Mplus
DIFFTEST, and lavTestLRT have similar power in each of
the 16 conditions. Among these three tests, the Mplus
DIFFTEST procedure consistently showed the highest
power (also the most inflated Type I error rates), with
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TABLE 2
Configural Invariance Type | Errors
Condition Info Permutations Mplus lavaan Unadjusted
1:1, 300, 2, Symmetric .051(.007) .049(.014) .049(.014) .001(.000)
1:1, 600, 2, Symmetric .048(.012) .052(.012) .052(.012) .001(.000)
1:1, 300, 5, Symmetric .042(.008) .066(.009) .066(.009) .000(.000)
1:1, 600, 5, Symmetric .041(.009) .053(.012) .053(.012) .000(.000)
1:1, 300, 2, Non-Sym. .046(.006) .046(.008) .046(.008) .004(.002)
1:1, 600, 2, Non-Sym. .052(.010) .047(.008) .047(.008) .000(.000)
1:1, 300, 5, Non-Sym. .057(.015) 200(.076) .199(.075) 1022(.008)
1:1, 600, 5, Non-Sym. .033(.009) .090(.012) .090(.012) .001(.000)
1:2, 300, 2, Symmetric .041(.009) .046(.008) .047(.008) .000(.000)
1:2, 600, 2, Symmetric .051(.009) .055(.008) .055(.009) .000(.000)
1:2, 300, 5, Symmetric .042(.006) 1058(.010) .058(.010) .000(.000)
1:2, 600, 5, Symmetric .048(.008) .053(.010) .053(.010) .000(.000)
1:2, 300, 2, Non-Sym. .047(.009) .050(.007) .050(.007) .005(.000)
1:2, 600, 2, Non-Sym. .056(.012) .052(.008) .052(.008) .001(.000)
1:2, 300, 5, Non-Sym. .055(.017) 253(.105) .240(.088) .035(.013)
1:2, 600, 5, Non-Sym. .051(.012) .106(.026) .106(.027) .002(.000)
Note. Error rates are provided for a= .05 and o= .01 (parentheses). Values in bold fall outside of the nominal Type I error range.
TABLE 3
Scalar Invariance Type | Errors
Condition Info Permutations Mplus DIFFTEST lavaan lavTestLRT Unadjusted
1:1, 300, 2, Symmetric .046(.008) .060(.020) .056(.012) .143(.058)
1:1, 600, 2, Symmetric .040(.007) .052(.012) .050(.011) .128(.053)
1:1, 300, 5, Symmetric .046(.011) .062(.015) .054(.011) .131(.048)
1:1, 600, 5, Symmetric .051(.007) .057(.008) .053(.005) .098(.050)
1:1, 300, 2, Non-Sym .051(.017) .065(.020) .054(.014) .135(.053)
1:1, 600, 2, Non-Sym .053(.015) .078(.020) .065(.017) .139(.065)
1:1, 300, 5, Non-Sym .047(.009) .053(.013) .047(.008) .131(.050)
1:1, 600, 5, Non-Sym .054(.009) .062(.013) .056(.012) .128(.061)
1:2, 300, 2, Symmetric .049(.007) .069(.019) .035(.002) .157(.058)
1:2, 600, 2, Symmetric .061(.009) .071(.017) .041(.003) .154(.064)
1:2, 300, 5, Symmetric .039(.007) .051(.011) .017(.003) .099(.033)
1:2, 600, 5, Symmetric .056(.008) .061(.011) .019(.002) .119(.049)
1:2, 300, 2, Non-Sym .049(.010) .081(.021) .030(.006) .147(.059)
1:2, 600, 2, Non-Sym .054(.007) .072(.012) .034(.002) 131(.057)
1:2, 300, 5, Non-Sym .041(.008) .051(.016) .022(.002) .115(.038)
1:2, 600, 5, Non-Sym .050(.009) .057(.012) .022(.002) 125(.051)

Note. Error rates are provided for o= .05 and a= .01 (parentheses). Values in bold fall outside of the nominal Type I error range.

lavTestLRT showing power equal to or greater than the
random permutation test. However, differences in power
between these three tests were typically negligible (e.g., <
4% difference between the highest and lowest power). All
testing procedures showed higher power in conditions
with higher total N, more response categories, and sym-
metric (vs. asymmetric) thresholds. Power was not always
consistently higher or lower with (un)balanced groups, but
holding other factors constant, unbalanced samples
yielded slightly higher power than balanced samples
when N = 300 than when N = 600, at least for random
permutation and Mplus DIFFTEST. But the power

advantage typically occurred in conditions that also
yielded inflated Type I errors.

When choosing a test, researchers must balance the costs of
Type I and Type II errors (the complement of power). The
comparisons between the different testing approaches on their
ability to balance power and Type I error control is shown in
Figure 1. Each plotted point represents a rejection rate when the
null hypothesis of equal factor loadings was true (x-axis) and
false (y-axis), for a given sample size (ratio), number of response
categories, and threshold distribution. This figure provides a
depiction of the balance between Type I error control and
power of these testing approaches. Figure 1 demonstrates that
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TABLE 4
Scalar Invariance Power

Condition Info Permutations Mplus DIFFTEST lavaan lavTestLRT Unadjusted
1:1, 300, 2, Symmetric .274(.108) 319(.154) .292(.121) .452(.290)
1:1, 600, 2, Symmetric .538(.300) .568(.338) .543(.313) .703(.556)
1:1, 300, 5, Symmetric A451(.228) .504(.288) 464(.241) .618(.447)
1:1, 600, 5, Symmetric 781(.582) .811(.644) .794(.604) .890(.795)
1:1, 300, 2, Non-Sym .207(.077) .258(.110) .225(.083) 361(.214)
1:1, 600, 2, Non-Sym 401(.202) 456(.244) 427(.205) .588(.413)
1:1, 300, 5, Non-Sym .337(.148) .370(.197) .335(.147) .519(.338)
1:1, 600, 5, Non-Sym 703(.477) 733(.532) .712(.490) .831(.723)
1:2, 300, 2, Symmetric .259(.105) .319(.154) .244(.102) 449(.282)
1:2, 600, 2, Symmetric .548(.319) .585(.372) .503(.266) .702(.557)
1:2, 300, 5, Symmetric A427(.214) .459(.265) .354(.139) .566(.410)
1:2, 600, 5, Symmetric .803(.611) .822(.663) .739(.506) .885(.805)
1:2, 300, 2, Non-Sym .215(.070) 276(.121) .208(.061) .368(.229)
1:2, 600, 2, Non-Sym .403(.197) 436(.238) .356(.158) .583(.402)
1:2, 300, 5, Non-Sym .341(.159) .384(.207) .274(.100) 494(.332)
1:2, 600, 5, Non-Sym .696(.468) 731(.524) .618(.343) .827(.702)

Note. Rejection rates are provided for a = .05 and a = .01 (parentheses).
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the range of power was similar across test procedures (panels),
yet the random permutation test most consistently controlled
Type 1 errors across conditions. The cost of slightly higher
power with the Mplus DIFFTEST procedure comes at the cost
of inflated Type I errors.

Small sample size follow-up

We conducted a brief follow-up simulation by generating
measurement invariant binary data for two groups with 40
and 80 cases. This was done to evaluate the generalizability
of the previously presented simulation results to cases with
fewer observations. All model specifications were consistent
with the previously described simulations; the population
threshold value was set to 0, and all population factor loadings
were set to .60. We attempted to simulate conditions with five
categories and with asymmetric thresholds, but those condi-
tions greatly increased the occurence for some categories not to
be observed at all in the simulated data, as well as after
permuting the grouping variable. We think an investigation
of small sample size across more conditions would be ideal for
comparing different methods of dealing with sparse data, as
discussed in Appendix A, but that is beyond the scope of our
study, so we suggest it for future research.

When testing configural invariance, the random permuta-
tion test (.046), Mplus (.055), and lavaan (.056) showed
acceptable error control with a = .05; the same was true
with a = .01 with error rates of .014, .011, and .012,
respectively. When testing for scalar invariance with
a = .05, the random permutation test (.052) showed super-
ior error control compared to DIFFTEST procedure (.122)
and lavTestLRT procedure (.068). However, with o = .01
the random permutation test (.009) and the lavTestLRT
procedure (.009) both performed well, whereas the error
rate with DIFFTEST was inflated (.033).

DISCUSSION

Research questions

The purpose of the present research was to evaluate the use
of random permutation testing applied to tests of measure-
ment invariance with ordered-categorical indicator vari-
ables. When models with ordered-categorical data are
estimated with DWLS, the %> model-fit statistic requires a
robust correction for tests to yield nominal Type I error
rates. Recent simulation studies (Bandalos, 2014; Sass
et al., 2014) have shown that large sample sizes are required
for nominal error rates, especially when thresholds are
asymmetric. We proposed permutation as an alternative
robust test that is easily implemented in any statistical soft-
ware without the need for a scaling correction, and as a
method that can control Type I errors as well or better than
the standard (A)y3,,, particularly under conditions when

(A)y3,, yields inflated error rates. The Monte Carlo simula-
tion expanded on the work of Jorgensen et al. (2017a,
2017b) and served as a follow-up to recent studies by
Bandalos (2014) and Sass et al. (2014).

Overall, the random permutation test performed well when
testing both configural and scalar invariance. For configural
models, we observed similar Type I error inflation from y3,, as
Bandalos (2014) observed when data were asymmetric; how-
ever, we only observed inflation for five-category data, not for
binary data. Bandalos (2014), in contrast, did not report Type I
error rates separately by number of categories, stating that “the
effect of number of categories was not as pronounced” (p. 109).
The random permutation yielded nominal Type I error rates
across conditions, indicating the permutation test should be
considered a viable alternative to 3, when evaluating config-
ural invariance with small to moderate sample sizes. Given that
configural models frequently do not fit the data perfectly
(MacCallum, 2003; Putnick & Bornstein, 2016), the permuta-
tion test of configural invariance can also prevent inflated Type 1
errors when the model fits only approximately well (Jorgensen
etal., 2017).

The random permutation test was the only method that
consistently showed Type I errors within the previously
defined nominal ranges across conditions. As expected, the
power of the random permutation test was increased in
conditions with larger group sizes, but also increased with
more response categories and was greater with symmetric
response distributions. As would be expected based on the
better error control, the random permutation test showed
slightly less power than Mplus DIFFTEST and lavTestLRT.

The inflated error rates found by Sass et al. (2014)
suggested that the error control of the Mplus DIFFTEST
procedure is poor; however, their findings could be attribu-
table to the model identification conditions used in their
simulation. Sass et al. (2014) compared two groups on 10
indicator variables with five response options, and in their
configural model the common-factor means and variances
were constrained to 0 and 1 in both groups for identification.
However, they did not free those constraints in the second
group after the measurement parameters were constrained to
equality in their scalar model (Kline, 2016; Little, 2013).
Their scalar model was therefore too restrictive to merely
test for equality of measurement parameters because it
implied that all model parameters were equal across groups.
The less stringent, appropriate scalar-invariance model in
our simulation resulted in Type I errors from the Mplus
DIFFTEST procedure that were closer to nominal levels
than was reported by Sass et al. (2014).

Suggestions for random permutation testing

The results of the present research clearly show how the (A)y?

testing approaches compare on their ability to control Type I
errors. Given the only slight differences in power across testing
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procedures, the present research suggests that when research-
ers desire the Type I error rate of their test to be as close as
possible to their a level, the random permutation testing pro-
cedure could be preferable to the parametric approaches eval-
uated here, at least in non-ideal situations (e.g., small or
moderate unbalanced samples with asymmetric thresholds).
With sufficiently large, balanced samples and symmetric
thresholds, there is no reason to prefer permutation over the
current gold standard, (A)y3,,, unless the mean-and-variance
adjustment cannot be calculated because the required W
matrix cannot be inverted for a particular sample.

Limitations

The present research might not generalize to applied research
situations because invariant models were exactly correctly
specified, but Jorgensen et al. (2017a) showed that with more
realistic imperfect models (MacCallum, 2003; Putnick &
Bornstein, 2016), permutation controls Type I error rates better
than the standard y? test. Similarly, although unequal observed
response categories across groups in permutation shuffles were
infrequent in the present research, this might occur more fre-
quently in applied research, particularly in very small samples.
We employed a reshuffling method to deal with sparseness in
our current investigation, and although our results indicated
that p values could be trusted to make decisions, other options
could be explored in future research designed specifically to
test boundary conditions under which one or more alternative
solutions could be expected to fail.

Our exploratory investigation of power only involved
violating metric invariance in one condition, but previous
research has shown additional factors influence power to
detect violations of invariance, such as the number of factors
and items per factor (Chen, 2007; French & Finch, 2006),
the number (or proportion) of non-invariant items (Chen,
2007), and the type (e.g., metric or scalar; Kim & Yoon,
2011; Stark et al., 2006) and magnitude (French & Finch,
2006; Stark et al., 2006) of the violation. We were primarily
interested in assessing Type I error control, and because
there is no evidence that these factors affect that, we did
not investigate these factors here. However, previous results
suggest that similar power can be expected between the
permutation test and (A)y3,, across a variety of conditions
(Jorgensen, 2017; Jorgensen et al., 2017a).

Hayes (1996) showed that the permutation test is not
entirely nonparametric. Its distributional assumptions are not
as strict as parametric tests, but it does implicitly assume that
observations are exchangeable. When subjects are randomly
assigned to groups, the exchangeability assumption is met by
design. In observational studies, this assumption can be vio-
lated to whatever degree the population distributions differ in
(for example) variance. It remains to be investigated to what
degree the method described herein would be robust to a
violation of the exchangeability assumption.

Directions for future research

Clearly, additional Monte Carlo simulation research is
needed to further evaluate the performance of the random
permutation test. The present research was designed only to
determine which variables influenced Type I error rates in
boundary conditions of factors that have been shown to
inflate errors in past research; future research is required to
further probe those effects and offer suggestions. The ran-
dom permutation test performance was overall quite similar
to the Mplus DIFFTEST method and lavTestLRT. The ben-
efit of the random permutation test is that it can be imple-
mented using any quantity of interest, so future research
could evaluate random permutation testing using popular fit
measures (e.g., RMSEA), particularly without known sam-
pling distribution (e.g., CFL, TLL, or SRMR).

The strength of the permutation method lies in its flex-
ibility. For example, equality of thresholds across groups
can be tested one pair of items at a time without fitting a
common-factor model, requiring only the assumption of
bivariate normality for each pair of items (Joreskog, 2002;
Verdam, Oort, & Sprangers, 2016). Permutation methods
have been developed for testing equivalence of between-
group heterogeneity of ordinal variables (Arboretti
Giancristofaro et al.,, 2009; Bonnini, 2014), which could
be applicable to testing between-group equivalence of
thresholds.

Conclusion

The present research provided a promising initial evaluation
of random permutation testing to handle (A)y? testing with
ordered-categorical indicator variables. The permutation test
provided nominal Type I errors under more conditions than
the parametric testing approaches that represent the current
gold standard. The present research suggests that researchers
should consider the random permutation testing procedure a
viable option for (A)y? tests of measurement invariance
with ordered-categorical indicator variables.
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APPENDIX A

Prior to conducting the larger Monte Carlo simulations, we evaluated the
influence of the number of group shuffles on the random permutation
test results. A subset of conditions used in the main simulation was used
in this pilot study. The performance of the test was evaluated in data-
generation conditions with different numbers of response options (2 vs.
5) and manipulated factor loading invariance (equal in all groups vs.
different for the first two items). Sample sizes were held constant at
N = 150 per group, using the symmetric thresholds specified in the main
study. In each replication the random permutation test was conducted
with 100 through 1,000 shuffles in increments of 100. The outcome of
interest was the proportion of replications in which the addition of 100
permutation shuffles changed the rejection decision (i.e., reject or fail to
reject the null hypothesis).

The results in Table A1 show the proportion of replications in which
the rejection decision changed with an increase in the number of per-
mutation shuffles. For example, when the number of permutation shuf-
fles increased from 100 to 200, the decision about the null hypothesis of
measurement invariance changed in 3.3% of the conditions with five
response options and population invariance. Based on these results it
was determined that beyond 500 shuffles there were few changes in the
results. Beyond 500 shuffles, there was little change in rejection deci-
sions, with less than 1% change in all four conditions. Therefore, 500

TABLE A1
Proportion of Conditions with Change in Rejection Decision

Twwo Response Options Five Response Options

Increase Invariance Non Invariance Invariance Non Invariance
100 to 200  .010 .033 .007 .028
200 to 300  .006 .018 .005 .016
300 to 400  .001 .014 .006 .015
400 to 500  .001 .013 .006 .008
500 to 600  .000 .010 .003 .009
600 to 700  .001 .008 .000 .008
700 to 800  .000 011 .001 .005
800 to 900  .000 .005 .000 .004
900 to 1000 .000 .004 .001 .003

Note. Rejection rates are provided for o = .05.

was determined to be a sufficient number for the Monte Carlo simula-
tions in the present research.

An important yet easily overlooked detail about using the permuta-
tion approach with ordered-categorical indicators is that the number of
observations per response category within each group limits the num-
ber of possible permutations for which all categories contain at least
one observation in each group after shuffling the grouping variable.
This has practical consequences on the number of random shuffles that
yield results in the empirical permutation distribution, perhaps requir-
ing more than 500 shuffles to obtain 500 observed statistics. Consider,
for example, the situation that only one (or a few) respondent(s) in a
single group endorsed a particular response option for a discrete indi-
cator. In such a case, there would be fewer thresholds for the same
indicator in one group than another, and SEM software such as Mplus
would return an error because the same parameters cannot be estimated
in all groups. One solution to which researchers might have to resort
would be collapsing categories in the observed data prior to fitting their
model. Although this ignores potentially useful information about indi-
vidual differences, there is not enough such information in all groups
to fit the same model to all groups.'?

In circumstances where a single indicator variable has very few
responses on an extreme end of a response scale for all groups, it is more
likely that a random shuffle would result in all of those observations
belonging to one group in a permuted data set. This could be handled in
a few possible ways:

e Before shuffling the grouping variable, the rows of data suscep-
tible to shuffling could be restricted to those without responses in
the sparse categories. That is, the observations with responses in
sparse categories could remain in their original groups, and all
other observations could be randomly shuffled. One disadvantage
of this constraint is that it would likely become prohibitively
difficult if more than one indicator had a sparse category.
Another disadvantage is that the restricted permutation distribution
might not be a random sample from the full permutation distribu-
tion, yielding biased estimates of p values.

12 If software is flexible enough (e.g., general Bayesian modeling soft-
ware, or more flexible SEM software like OpenMx), it is possible to fit a
model to each group that estimates only the thresholds between categories
that were observed within each group. Equality constraints could still be
imposed on loadings and the thresholds the researcher knows correspond to
categories on the same response scale used in each group.
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e A simpler solution would be to randomly shuffle the grouping
variable again whenever the number of observed categories is not
equal across groups. This also has the same potential disadvantage
that the resulting distribution of permuted statistics might not be a
random sample of the full permutation distribution. It remains to
be seen whether the restricted distribution differs enough to bias
the estimated p values.

e Whenever a random shuffle results in an unequal number of
observed categories across groups, the categories could be col-
lapsed before fitting the model to that permutation. This is not
recommended because the model df would vary across permuta-
tions, so the expected value (even if biased due to violated
assumptions) would not match that of the original data.

e A researcher could proactively collapse sparse categories before fitting
their model to the original data. This could advantageously avoid the
problem of restricted resampling or mismatched df in methods above; in
fact, it might be the only reasonable option if the original data already
had an unequal number of observed categories across groups (assuming
the software package could not allow different numbers of thresholds
across groups). The disadvantage, though, would be ignoring some
information about individual differences.

We employed the second method (reshuffling) in our current investigation
because it is the simplest to implement and because the reason for reshuffling to
make a new permutation (i.e., sparseness in a permuted data set) is itself a
random process that occurs only when the grouping variable is shuffled to begin
with. We therefore expected that the restricted permutation distribution under the
second method above should provide p values that yield nominal Type I error
rates. A more thorough investigation comparing the methods described above is
beyond the scope of the current article, but is suggested for future research.

APPENDIX B

The lavTestLRT function in R with the argument A.method = “exact”
initially showed near-zero Type I error rates and very low power (see
Table Bl). These results were gathered before adding the unbalanced
sample size conditions.

TABLE B1
Scalar Invariance Type | Errors and Power

Invariance Sample Size Responses Threshold Symmetry Rejection Rate

Yes 150 2 Symmetric .004
Yes 300 2 Symmetric .002
Yes 150 5 Symmetric .000
Yes 300 5 Symmetric .000
Yes 150 2 Non-Symmetric .010
Yes 300 2 Non-Symmetric .004
Yes 150 5 Non-Symmetric .001
Yes 300 5 Non-Symmetric .000
No 150 2 Symmetric .084
No 300 2 Symmetric 220
No 150 5 Symmetric .091
No 300 5 Symmetric 347
No 150 2 Non-Symmetric .070
No 300 2 Non-Symmetric 143
No 150 5 Non-Symmetric .049
No 300 5 Non-Symmetric 226

Note. Rejection rates are provided for o= .05.
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