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Special Issue Article

Network Analysis on Attitudes:
A Brief Tutorial

Jonas Dalege1, Denny Borsboom1, Frenk van Harreveld1,
and Han L. J. van der Maas1

Abstract

In this article, we provide a brief tutorial on the estimation, analysis, and simulation on attitude networks using the programming
language R. We first discuss what a network is and subsequently show how one can estimate a regularized network on typical
attitude data. For this, we use open-access data on the attitudes toward Barack Obama during the 2012 American presidential
election. Second, we show how one can calculate standard network measures such as community structure, centrality, and
connectivity on this estimated attitude network. Third, we show how one can simulate from an estimated attitude network to
derive predictions from attitude networks. By this, we highlight that network theory provides a framework for both testing and
developing formalized hypotheses on attitudes and related core social psychological constructs.
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Network theory might be the most interdisciplinary framework

to date (e.g., Barabási, 2011; Borgatti, Mehra, Brass, &

Labianca, 2009; Wasserman & Faust, 1994; Watts & Strogatz,

1998). In the past decade, network analysis has become

increasingly important in psychology, where it was introduced

as a psychometric framework for the representation of clinical

and cognitive psychological constructs (e.g., Borsboom, 2008;

Cramer, Waldorp, van der Maas, & Borsboom, 2010; Bos-

chloo, van Borkulo, Borsboom, & Schoevers, 2016; McNally

et al., 2015; van Borkulo, Boschloo, Borsboom, Penninx, &

Schoevers, 2015; van de Leemput et al., 2014; van der Maas

et al., 2006). More recently, network modeling has also been

introduced into social psychology in the form of the Causal

Attitude Network (CAN) model, which conceptualizes atti-

tudes as networks of causally interacting evaluative reactions

(i.e., beliefs, feelings, and behaviors toward an attitude object;

Dalege et al., 2016).

The CAN model provides a promising theoretical frame-

work for research on attitudes and other related social psy-

chological core constructs, such as self-concept, prejudice,

and interpersonal attraction. The generality of the data-

analytic framework and simulation techniques that the CAN

model uses, invites the application of the model to many

different attitude objects. The model may be thus useful

to researchers with various substantive interests, and here,

we provide a brief tutorial on how to apply network theory

to attitudes. While we focus on attitude networks, the tech-

niques discussed here can easily be transferred to related

constructs.

The outline of this article is as follows. First, we briefly dis-

cuss what a network is. We then illustrate network estimation

from data on attitudes and calculation of standard network

measures. Finally, we show how one can use simulations to

investigate consequences of manipulating structural properties

of an estimated network. The tutorial provides code in the pro-

gramming language R (R Core Team, 2013), and we assume

basic familiarity with R. Readers, who are not familiar with

R, are referred to Torfs and Bauer (2014) for an excellent intro-

duction to R.

What is a Network?

A network (called a graph in the mathematical literature) is an

abstract representation of a system of entities or variables (i.e.,

nodes) that have some form of connection with each other (i.e.,

edges). Nodes can represent any entity or variable, like people,

brain regions, or evaluative reactions, and edges can represent

any form of connection, like friendship, associations in blood

flow, or direct causal connections. Figure 1 shows an example

of a simple network. Networks can be unweighted (i.e., edges
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are either present or absent) or weighted (i.e., edges can also

differ in magnitude), and networks can be directed (i.e., edges

indicate the direction of the connection) or undirected (i.e.,

edges show no direction). Here we focus on weighted undir-

ected networks because the techniques for estimating directed

networks from correlational data require assumptions that are

often not tenable in psychological data (e.g., there are no reci-

procal influences between variables; Costantini et al., 2014).

Excellent and thorough introductions to network theory are

provided in Kolaczyk (2009) and Newman (2010).

From a network perspective, attitudes are systems of cau-

sally interacting evaluative reactions that strive for a coherent

representation of the attitude object (Dalege et al., 2016). Based

on this basic idea, Dalege et al. (2016) developed the CAN

model that links research on attitudes to network theory. Impor-

tant tenets of the CAN model are that attitude networks show a

high degree of clustering, with similar evaluative reactions

exerting stronger influence on each other than dissimilar eva-

luative reactions (e.g., judging a person as honest exerts a stron-

ger influence on judging this person as caring and vice versa

than judging this person as intelligent) and that strong attitudes

correspond to highly connected attitude networks. The CAN

model further assumes that the dynamics of attitude networks

can be captured by the Ising (1925) model, which originated

from statistical physics. Here we use this assumption to simu-

late attitude networks based on the CAN model.

Network Analysis

In this section, we show how networks can be estimated from

responses to attitude items and how one can calculate common

network measures on these estimated networks. We focus on

binary data, as the simulation based on the estimated networks

that we discuss later is based on a model of binary variables. For

estimating networks from continuous data or from data involv-

ing different types of variables, the interested reader is referred

to Epskamp (2016) and Haslbeck and Waldorp (2016), respec-

tively, and to the Supplemental Materials for examples. For the

illustration of the techniques, we use the open-access data from

the American National Election Study (ANES) of 2012 (avail-

able at www.electionstudies.org) on evaluative reactions toward

Barack Obama (see Table 1 for an overview of the evaluative

reactions). In the ANES of 2012, 5,914 individuals, representa-

tive of the adult U.S. American population, participated.

Estimation of Attitude Networks

For the estimation of attitude networks, we use the eLasso pro-

cedure (van Borkulo et al., 2014). The eLasso procedure

regresses each variable on all other variables in turn, and each

regression function is subjected to regularization to reduce the

size of the statistical problem of regressing a variable on a large

number of variables and cope with the problem of multicolli-

nearity in a data set involving a large number of variables (see

Friedman, Hastie, & Tibshirani, 2008; Tibshirani, 1996). The

best-fitting regression function is selected using the extended

Bayesian information criterion as described in Foygel and

Drton (2010). The independent variables included in the

selected regression function define the nodes that the depen-

dent variable is connected to by edges, which are weighted

by the regression parameters.

If the observed data are indeed realizations of a (sparse) net-

work structure, this technique provides an accurate estimation

of this network (van Borkulo et al., 2014). In this case, the

resulting network can also be regarded as a causal skeleton,

in which the edges represent putative causal associations that

can be either directed or reciprocal.

If one does not want to make the assumption that a causal

network underlies the data, a network may still be highly use-

ful, because the edges represent how well the connected

Table 1. List of Items Tapping Evaluative Reactions and Their
Abbreviations.

Item Abbreviation

Items tapping beliefs
“Is moral” Mor
“Would provide strong leadership” Led
“Really cares about people like you” Car
“Is knowledgeable” Kno
“Is intelligent” Int
“Is honest” Hns

Items tapping feelings
“Angry” Ang
“Hopeful” Hop
“Afraid of him” Afr
“Proud” Prd

Note. Participants rated whether the items tapping beliefs described Barack
Obama and whether they ever felt the feelings described by the items tapping
feelings toward Obama.

1

2

3

4

5

6
7

8

9

10

Figure 1. Example of a simple undirected and unweighted network
with 10 nodes (represented by circles) and 17 edges (represented by
lines).
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variables predict each other if all other observed variables are

being held constant. Thus, networks can be used to gain insight

into the causal structure of the data, but also to merely describe

the pattern of predictive relations in a dataset, or to represent

the correlation structure of the data (Epskamp et al., 2012).

In some instances, one might be willing to make the assump-

tion that some of the variables measured form a causal system,

while other variables might be worth controlling for without

making the assumption that they form part of the causal

system (i.e., covariates). We included a description in the

Supplemental Material how to deal with covariates in network

estimation.

Simulation studies have shown that for binary data, sample

sizes of 500 are generally sufficient to estimate networks of low

and moderate size (i.e., networks consisting of 10–30 nodes)

and that for large networks (i.e., networks consisting of 100

nodes), a sample size of 1,000 is needed (van Borkulo et al.,

2014). Regarding networks based on continuous data, sample

sizes of 250 are generally sufficient for networks of moderate

size (e.g., 25 nodes; Epskamp, 2016).

To estimate a network on the responses to the attitude items,

which are stored in the data frame Obama (see the Supplemen-

tary R code), we can use the function IsingFit, available in

the R package IsingFit (van Borkulo & Epskamp, 2015) and

save the results in the object ObamaFit:

ObamaFit <- IsingFit(Obama)

The object ObamaFit now contains the estimated network

in the form of a weight adjacency matrix. A weight adjacency

matrix has the same number of columns and rows as the num-

ber of nodes in the network, and the values in the matrix repre-

sent the edge weights between the different nodes (see the

Supplemental Material for how to assess the stability of edge

weights). The weight adjacency matrix of the Obama network

can be called by using the command ObamaFit$weiadj (see

Table 2). Each value above (below) the diagonal represents an

edge from the node in the given row (column) to the node in the

given column (row). As the Obama network is undirected, the

weight adjacency matrix is symmetric. The values on the diag-

onal represent self-loops of the nodes, and these are all 0 in the

Obama network, as self-loops cannot be estimated using cross-

sectional data. The object ObamaFit also contains the thresh-

olds of the different nodes that are the slopes of the regression

equations of predicting a given node. The thresholds can be

called with the command ObamaFit$thresholds.

To plot the network, we can use the function qgraph,

available in the R package qgraph (Epskamp et al.,

2016). The following command produces the network

shown in Figure 2 (except for the color of the nodes; we

come back to this issue in the section on community

detection):

ObamaGraph <- qgraph(ObamaFit$weiadj, layout ¼
‘spring’, cut ¼ .8)

Table 2. Weight Adjacency Matrix of the Obama Network.

Node Mor Led Car Kno Int Hns Ang Hop Afr Prd

Mor 0 0.38 1.23 0.49 1.13 1.76 �0.22 0.19 �0.42 0.52
Led 0.38 0 0.8 1.38 0.58 0.93 �0.84 0.33 �0.46 0.82
Car 1.23 0.8 0 0.65 0.68 1.38 �0.49 0.78 �0.48 0.86
Kno 0.49 1.38 0.65 0 2.66 0.67 0 0.56 �0.23 0.39
Int 1.13 0.58 0.68 2.66 0 0.86 0 0.31 0.24 0.25
Hns 1.76 0.93 1.38 0.67 0.86 0 �0.36 0.34 �0.73 0.42
Ang �0.22 �0.84 �0.49 0 0 �0.36 0 �0.28 2.21 0
Hop 0.19 0.33 0.78 0.56 0.31 0.34 �0.28 0 �0.78 2.32
Afr �0.42 �0.46 �0.48 �0.23 0.24 �0.73 2.21 �0.78 0 �0.16
Prd 0.52 0.82 0.86 0.39 0.25 0.42 0 2.32 �0.16 0

Note. See Table 1 for the abbreviations of the nodes.

Mor

Led

Car

Kno

Int

Hns

Ang

Hop

Afr

Prd

Figure 2. Network of the attitude toward Barack Obama. Nodes
represent evaluative reactions and edges represent connections
between evaluative reactions, with the edge width and color density
corresponding to the strength of the connections. Green (red) edges
represent positive (negative) connections. Colors of the nodes cor-
respond to detected communities in the network. See Table 1 for the
abbreviations of the nodes. See the online article for the color version
of this figure.
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The first argument in the function specifies the weight adja-

cency matrix to plot. The layout argument is used to plot the

network using the Fruchterman–Reingold algorithm (Fruchter-

man & Reingold, 1991) that places strongly connected nodes

close to each other. The cut argument specifies which edges

should be plotted with higher width. All edges higher than the

value specified in the cut argument are plotted with width

according to their magnitude. Edges below the value specified

in the cut argument only differ in color density. In the Supple-

mentary R code, we also show how to plot a network using

other color pallets.

Community Detection

Looking at the network shown in Figure 2, one can immedi-

ately recognize that nodes differ in their interconnectedness.

To formalize this impression, we can use an algorithm that

detects communities (or clusters) within the network. We use

the walktrap algorithm (Pons & Latapy, 2005), as this algo-

rithm performs well on psychological networks (Gates, Henry,

Steinley, & Fair, 2016; Golino & Epskamp, 2016). An advan-

tage of this algorithm compared to factor analyses is that it can

detect dimensions of variables very well even when the differ-

ent dimensions are highly correlated (Golino & Epskamp,

2016). To run the walktrap algorithm on the Obama network,

we can use the function cluster_walktrap, available in the

R package igraph (Amestoy et al., 2015). Before doing so, we

have to create an igraph object containing the information on

the Obama network and we have to take the absolute values

of the edge weights because the walktrap algorithm can only

deal with positive edge values:

ObamaiGraph<- graph_from_adjacency_matrix(abs

(ObamaFit$weiadj), ‘undirected’, weighted ¼
TRUE, add.colnames ¼ FALSE)

This command creates the igraph object ObamaiGraph
containing the Obama network with absolute edge weights. The

first argument specifies the input adjacency matrix, which is

the weighted adjacency matrix of the Obama network with

absolute values. The second and third arguments specify that

we want an undirected and weighted network, respectively.

The add.colnames argument can be ignored at the moment.

We can now run the walktrap algorithm on the ObamaiGraph
object:

ObamaCom <- cluster_walktrap(ObamaiGraph)

This function runs the walktrap algorithm on the Obama net-

work and saves the results to the object ObamaCom. We can

extract the found communities using the following command:

communities (ObamaCom)

To plot the network with the nodes being colored according

to their community membership, we can use the following

command, which creates Figure 2:

qgraph(ObamaFit$weiadj, layout ¼ ‘spring’,
cut ¼ .8, groups ¼ communities(ObamaCom),
legend ¼ FALSE)

The groups argument is used to assign nodes to groups and

the communities function extracts a list containing the com-

munity membership of each node. Here, the add.colnames¼
FALSE argument of the graph_from_adjacency_matrix
function comes into play because this argument results in the

nodes being numbered instead of having the variable names.

This is needed, because the groups argument can only handle

numeric values. The legend ¼ FALSE argument is used

because plotting the legend of the communities would not be

informative.

The interpretation of the results of the community detec-

tion algorithm is straightforward: The red nodes represent

negative feelings toward Barack Obama; the green nodes rep-

resent positive feelings toward Obama; the light blue nodes

represent judgments pertaining mainly to interpersonal

warmth (with judging Obama as a good leader also belonging

to this community); and the purple nodes represent judgments

pertaining to Obama’s competence. The community structure

of the Obama network is also in line with the postulate of the

CAN model that similar evaluative reactions are likely to

cluster (Dalege et al., 2016).

Node Centrality

While community detection can be used to inspect the global

structure of the network, centrality of nodes can be used to

inspect the structural importance of the different nodes. Cen-

trality of nodes can, for example, be used to infer which evalua-

tive reactions most likely influence decision-making (Dalege,

Borsboom, van Harreveld, Waldorp, & van der Maas, 2017)

and which evaluative reactions would be the most effective tar-

gets for persuasion attempts (see section on network simula-

tion). The probably most popular measures of centrality are

degree (called strength in weighted networks), closeness, and

betweenness (Barrat, Barthélemy, Pastor-Satorras, & Ves-

pignani, 2004; Freeman, 1978; Opsahl, Agneessens, & Skov-

retz, 2010). The most straightforward of these indices is

strength, as it is the sum of the absolute edge values connected

to a given node and therefore represents the direct influence a

given node has on the network.

Closeness and betweenness both depend on the concept of

shortest path lengths. The shortest path length between two

given nodes refers to the shortest distance between these two

nodes based on the edges that directly or indirectly connect

these two nodes. Dijkstra’s algorithm is used to find shortest

path lengths in weighted networks (Brandes, 2001; Dijkstra,

1959; Newman, 2001). Based on this algorithm, shortest path

lengths represent the inverse of edge weights that have to be

“travelled” on the shortest path (see the Supplemental Material

for an illustration of shortest path lengths). Closeness sums the

shortest path lengths between a given node and all other nodes

in the network and takes the inverse of the resulting value.
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Therefore, closeness represents how likely it is that information

from a given node “travels” through the whole network either

directly or indirectly. Betweenness represents how strongly a

given node can disrupt information flow in the network, as

betweenness calculates the number of shortest paths a given

node lies on.

To calculate the different centrality estimates for the Obama

network, we can use the function centralityTable and to

plot these indices, we can use the function centralityPlot,

both available in the R package qgraph (see the Supple-

mental Material for how to assess the stability of centrality

indices):

ObamaCen <- centralityTable(ObamaGraph,
standardized ¼ FALSE)

centralityPlot(ObamaGraph, scale ¼ ‘raw’)

The first argument in these functions specifies the network

for which we want to calculate the centrality indices, and the

standardized¼FALSEand scale¼‘raw’arguments spe-

cify that we want unstandardized centrality estimates. The plots

produced by thecentralityPlot function are shown in Fig-

ure 3. As can be seen, two nodes seem to have high structural

importance: The node Led has the highest betweenness and the

highest closeness, while the node Hns has the highest strength.

Looking back at Figure 2, we can see that the reason for the

node Led having the highest betweenness is probably that,

while it belongs to the warmth community, it is also relatively

closely connected to the two feeling communities and to the

competence community. This node thus connects the different

communities and changes in the different communities proba-

bly only affect the other communities when the Led node

also changes. That the node Led is closely connected to all

communities also explains why it is the node with the high-

est closeness. Change in this node is thus likely to affect

large parts of the network. Hns has the highest strength

because it has strong connections to the nodes Mrl, Car, Int,

and Led. Change in the node Hns would thus strongly affect

many other nodes.

Network Connectivity

While centrality of nodes provides information on how

change in a given node would affect the rest of the net-

work, network connectivity provides general information

on the dynamics of the network, as network connectivity

and dynamics are closely connected (e.g., Kolaczyk,

2009; Manrubia & Mikhailov, 1999; Scheffer et al.,

2012; Watts, 2002).

A common index of network connectivity is the average

shortest path length (L; West, 1996), which is the average of all

shortest path lengths between all nodes in the network. A low L

indicates high connectivity. To calculate the L of the Obama

network, we first have to calculate the matrix, containing all

shortest path lengths. This can be done using the function

centrality, available in the R package qgraph. Then we

need to select the upper triangle of this matrix and take the

mean of the resulting values:

ObamaSPL <- centrality(ObamaGraph)
$ShortestPathLengths

ObamaSPL <- ObamaSPL[upper.tri(ObamaSPL)]
ObamaASPL <- mean(ObamaSPL)

The object ObamaASPL now contains the L of the Obama

network, which is equal to 1.53. In the section on network

simulation, we illustrate some of the differences between

highly and weakly connected networks.

Comparison of Networks

While it can be informative to study one attitude network, in

many instances we want to compare networks of different

attitudes. To do this, we can use the recently developed Net-

work Comparison Test (NCT; van Borkulo, Epskamp, &

Millner, 2016). The NCT utilizes permutations (i.e., rearran-

ging of samples) to test whether two networks are invariant

with respect to global strength (i.e., the sum of all edge

weights), network structure, and specific edge values. We

illustrate the use of the NCT by comparing the network of

the attitude toward Barack Obama to the network of the atti-

tude toward Mitt Romney. To do so, we created two

matched data frames on the evaluative reactions toward Bar-

ack Obama (ObamaComp) and Mitt Romney (Romney-
Comp), respectively (see the Supplementary R code). To

run the NCT on these data frames, we can use the function

Betweenness Closeness Strength

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
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•

•

•

•

•

•

•

•

•

•

•

Afr

Ang

Car

Hns

Hop

Int

Kno

Led

Mor

Prd

0 1 2 3 4 5 0.07 0.08 5 6 7

Figure 3. Centrality plot of the Obama network. Left (middle) [right]
panel shows the betweenness (closeness) [strength] estimates for
each node of the Obama network. See Table 1 for the abbreviations of
the nodes.
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NCT, available in the R package NetworkComparisonTest

(van Borkulo et al., 2016):

NCTObaRom <- NCT(ObamaComp, RomneyComp, it ¼ 1000,

binary.data ¼ TRUE, paired ¼ TRUE, test.edges ¼
TRUE,edges ¼ ‘all’)

The first two arguments specify the data frames, we want to use

to compare networks, theitargument specifies how many permu-

tations will be performed, the binary.data argument specifies

that we use binary data, the paired argument specifies that the

two data frames contain responses of the same group of individuals,

the test.edges argument specifies that we want to also test

invariance of single edges, and the edges argument specifies that

we want to test the invariance of all edges in the network.

The NCT indicated that the global strengths of the networks

did not differ significantly but that the structures of the net-

works and some specific edges differed significantly. The dif-

ference in global strength was 1.12, p ¼ .111. These values can

be called using the commands NCTObaRom$glstrinv.-
real and NCTObaRom$glstrinv.pval. The structure of

the networks was not invariant, as the maximum difference

in edge weights of 0.72 was significant, p ¼ .021. These values

can be called using the commands NCTObaRom$nwinv.real
and NCTObaRom$nwinv.pval. To investigate whether spe-

cific edges differed, we can use the command NCTObaRo-
m$einv.pvals that gives us the Bonferroni corrected

p values for each edge. As can be seen in Figure 4, four edge

weights differed significantly between the two networks, three

of which are connected to the node Led. From this, we can con-

clude that the node Led has a different role in the Romney

network than in the Obama network. In the Romney network,

the node Led is more strongly (positively) connected to other

beliefs, while in the Obama network, it is more strongly (nega-

tively) connected to the feeling of anger.

Network Simulation

While network analysis can be used to describe systems, such

as attitudes, network simulation can be used to make inferences

on the dynamics of the system. Simulation of attitude networks

can therefore help researchers to derive concrete hypotheses

that in many instances cannot be derived by only studying the

descriptives of the network. In this section, we first show how

to simulate networks with varying connectivity and then show,

as an illustration, how to simulate the results of change in nodes

of varying centrality. This is helpful in determining at which

nodes a persuasion attempt should be targeted.

To model dynamics of attitude networks, we make use of the

Ising (1925) model, which represents an idealized model of

probabilities that nodes in the network will be “on” or “off”

(e.g., whether evaluative reactions will be endorsed or not). The

Ising model consists of three classes of parameters. The first

class represents continuous edge weights between nodes in the

network that can be positive, negative, or 0. Positive (negative)

edge weights make it more likely that the connected nodes

assume the same (different) state and the higher the magnitude

of the weights, the more likely it is that nodes assume the same

(different) state. The second class represents continuous thresh-

olds of nodes that also can be positive, negative, or 0. A positive

(negative) threshold of a given node indicates that the node has

the disposition to be “on” (“off”) and the higher the magnitude,

the stronger the disposition of the given node. Finally, the Ising

model utilizes a temperature parameter that scales the entropy of

the network model (Epskamp, Maris, Waldorp, & Borsboom, in

press; Wainwright & Jordan, 2008). High (low) temperature

makes the network behave more (less) randomly by decreasing

(increasing) the influence of both edge weights and thresholds.

In attitude networks, temperature can be seen as formal concep-

tualization of consistency pressures (Dalege, Borsboom, van

Harreveld, Waldorp, et al., 2017).

Network Connectivity

To simulate dynamics of estimated networks, we can use the

function IsingSampler, available in the R package Ising-

Sampler (Epskamp, 2015). This function requires the network

from which we want to simulate as input (i.e., the edge weights

as well as the thresholds of nodes). We can extract this informa-

tion from the object ObamaFit, and we saved the relevant

information in the object SimInput (see the Supplementary

R code). Note that we rescaled the negative evaluative reac-

tions Ang and Afr, so that a positive (negative) score on all eva-

luative reactions indicates a positive (negative) evaluation.

To illustrate the consequences of varying network connec-

tivity, we set all thresholds to 0 (implying all nodes have no dis-

position to be in a given state) and we manipulate the
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Figure 4. Edges that differ significantly between the Obama and the
Romney network. Red (green) edges indicate edges that had a higher
value in the Obama (Romney) network. Values indicate the difference
between the edges in the Obama network and the Romney network.
See the online article for the color version of this figure.
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temperature of the network model. To simulate cases based on

the Obama network with three different temperatures, we can

use the following commands:

sampleHighTemp <- IsingSampler(1000, SimInput$

graph, rep(0,10), .4, responses ¼ c(-1L,1L))
sampleMidTemp <- IsingSampler(1000, SimInput$

graph, rep(0,10), .8, responses ¼ c(-1L,1L))
sampleLowTemp <- IsingSampler (1000, SimInput$

graph,rep(0,10), 1.2, responses ¼ c(-1L,1L))

The first argument of the IsingSampler function speci-

fies the number of cases we want to simulate, the second argu-

ment specifies the network from which we want to simulate,

the third argument specifies the thresholds, and the fourth argu-

ment specifies the inverse temperature. The responses argu-

ment is used to indicate that the network and thresholds we are

simulating from are based on �1 and þ1 responses. As can be

seen in Figure 5, the connectivity of a network has fundamental

implications for the distributions of the sum scores. The sum

score is a useful measure of the overall state of the attitude and

represents a measure of the global attitude toward Barack

Obama in the current example. While the sum scores of a

weakly connected network are normally distributed, sum

scores of a highly connected network are distributed bimodally.

This illustrates that psychological constructs, which are based

on networks, can be regarded either as dimensions or categories

depending on the connectivity of the network (cf., Borsboom

et al., 2016). In the case of attitudes, this would mean that

weakly connected attitude networks behave as dimensions

(i.e., attitudes can take any evaluation ranging from negative

to positive), while highly connected attitude networks behave

as categories (i.e., attitudes are generally either positive or neg-

ative). For a thorough discussion of the implications of network

connectivity for attitudes and especially attitude strength, the

interested reader is referred to Dalege, Borsboom, van Harre-

veld, and van der Maas (2017).

Node Centrality

To illustrate the consequences of influencing nodes with differ-

ent centrality, we show how to simulate targeting nodes differ-

ing in strength. As can be seen in Figure 3, the node with the

highest (lowest) strength is the node Hns (Ang). Let us assume

we want individuals to have a more positive attitude toward

Obama and we focus on individuals who have a moderately

negative attitude toward Obama. We can simulate a group of

individuals with moderately negative attitudes by setting all

thresholds of the evaluative reactions to a moderately negative

value (e.g., �.1):

SampleNeg <- IsingSampler(1000, SimInput$graph,

rep(-.1,10),responses ¼ c(-1L,1L))

The mean sum score of this sample is�5.63 with a standard

deviation (SD) of 6.54. To simulate a strong persuasion attempt

focusing on the node Hns (Ang), we can set the node’s thresh-

old to 1. This represents a persuasion attempt to make individ-

uals judge Obama as more honest (feel less angry toward

Obama):

SampleHns <- IsingSampler(1000, SimInput$
graph, c(rep(-.1,5),1,rep(-.1,4)),
responses ¼ c(-1L,1L))

SampleAng <- IsingSampler (1000, SimInput$
graph, c(rep(-.1,6),7,rep(-.1,3)),
responses ¼ c(-1L,1L))

Important to note here is that the persuasion attempt in both

situations was equally strong. Yet the persuasion attempts sig-

nificantly differed in their effectiveness reflected by the sum

scores, t(1,998) ¼ 6.27, p < .001, 95% Confidence Interval

[1.53, 2.91], d ¼ 0.28. The persuasion attempt on the central

node Hns resulted in a more positive attitude (M ¼ 1.18, SD

¼ 7.99) than the persuasion attempt on the peripheral node Ang

(M ¼ �1.04, SD ¼ 7.84). From this simulation, we can thus

derive the hypothesis that persuasion targeted at a node with

high strength would result in higher attitude change than per-

suasion targeted at a node with low strength.

Testing Predictions From Simulations

In a recent study, Dalege, Borsboom, van Harreveld, Waldorp, et

al. (2017) used the Ising model to derive predictions regarding

network structure and prediction of behavior. Simulations

showed that highly connected attitude networks are more predic-

tive of behavior than weakly connected attitude networks. To

test this prediction, Dalege, Borsboom, van Harreveld, Waldorp,

et al. (2017) estimated attitude networks based on nonbehavioral

evaluative reactions toward presidential candidates (like the net-

work discussed in the current article) and correlated the network

connectivity with how well the attitude (based on the sum score

of the evaluative reactions) predicted the voting decision. They

found an almost perfect correlation between network connectiv-

ity and predictability of voting decisions, supporting the hypoth-

esis derived from simulations on the Ising model. This study

provides an illustration of how network simulation can aid

hypothesis generation and also how to devise research on beha-

vior prediction in the attitude network framework.

Discussion

In this article, we provided a brief tutorial on estimating, ana-

lyzing, and simulating attitude networks. The combination of

network analysis and simulation illustrates that network theory

provides a framework to both test and develop formalized

hypotheses on attitudes. It is our view that this makes network

theory a unique framework, as it bridges the current gap

between social psychological theorizing and psychometric

theory.

Network analysis is a novel and still developing field in psy-

chology. An important issue that needs to be tackled in the

future is to devise strategies to make sure that all relevant nodes

534 Social Psychological and Personality Science 8(5)



in a (attitude) network are measured. While currently the focus

on questionnaire construction lies on selecting items that are

highly interrelated (resulting in high reliability of the question-

naire), the network perspective on psychological constructs

implies that the most important issue in questionnaire construc-

tion is to select items that provide a comprehensive picture of

the measured construct. Such items might not be highly inter-

related, which implies that validity and reliability of a
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Figure 5. Networks with different temperatures based on the Obama network and their associated distributions of sum scores.
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questionnaire might in some instances be incompatible (Dalege

et al., 2016).

With this tutorial, we aimed to provide an accessible intro-

duction to network analysis and simulation on attitudes. While

we have focused on attitudes in this tutorial, the techniques out-

lined here can also be applied to several other core social psy-

chological constructs such as self-concept, prejudice, and

interpersonal attraction. It is therefore our view that network

theory provides a promising framework to move our field

forward.
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