
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Bayesian Optimization for Optimizing Retrieval Systems

Li, D.; Kanoulas, E.
DOI
10.1145/3159652.3159665
Publication date
2018
Document Version
Final published version
Published in
WSDM'18
License
Article 25fa Dutch Copyright Act

Link to publication

Citation for published version (APA):
Li, D., & Kanoulas, E. (2018). Bayesian Optimization for Optimizing Retrieval Systems. In
WSDM'18: proceedings of the Eleventh ACM International Conference on Web Search and
Data Mining : February 5-9, 2018, Marina Del Rey, CA, USA (pp. 360-368). Association for
Computing Machinery. https://doi.org/10.1145/3159652.3159665

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://doi.org/10.1145/3159652.3159665
https://dare.uva.nl/personal/pure/en/publications/bayesian-optimization-for-optimizing-retrieval-systems(7149b1b9-6f09-4567-80df-2460ac01bcb7).html
https://doi.org/10.1145/3159652.3159665

Bayesian Optimization for Optimizing Retrieval Systems
Dan Li

University of Amsterdam
Amsterdam, The Netherlands

d.li@uva.nl

Evangelos Kanoulas
University of Amsterdam

Amsterdam, The Netherlands
e.kanoulas@uva.nl

ABSTRACT
The effectiveness of information retrieval systems heavily depends
on a large number of hyperparameters that need to be tuned. Hy-
perparameters range from the choice of different system compo-
nents, e.g., stopword lists, stemming methods, or retrieval models,
to model parameters, such as k1 and b in BM25, or the number
of query expansion terms. Grid and random search, the dominant
methods to search for the optimal system configuration, lack a
search strategy that can guide them in the hyperparameter space.
This makes them inefficient and ineffective. In this paper, we pro-
pose to use Bayesian Optimization to jointly search and optimize
over the hyperparameter space. Bayesian Optimization, a sequen-
tial decision making method, suggests the next most promising
configuration to be tested on the basis of the retrieval effectiveness
of configurations that have been examined so far. To demonstrate
the efficiency and effectiveness of Bayesian Optimization we con-
duct experiments on TREC collections, and show that Bayesian
Optimization outperforms manual tuning, grid search and random
search, both in terms of retrieval effectiveness of the configuration
found, and in terms of efficiency in finding this configuration.

CCS CONCEPTS
• Information systems → Retrieval models and ranking;

KEYWORDS
Retrieval system; Hyperparameter optimisation; Bayesian Opti-
mization; Covariance function
ACM Reference Format:
Dan Li and Evangelos Kanoulas. 2018. Bayesian Optimization for Optimizing
Retrieval Systems. InWSDM 2018: The Eleventh ACM International Confer-
ence on Web Search and Data Mining, February 5–9, 2018, Marina Del Rey, CA,
USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3159652.
3159665

1 INTRODUCTION
The effectiveness of information retrieval (IR) systems heavily de-
pends on a large number of hyperparameters that need to be tuned.
Hyperparameters range from the choice of different system com-
ponents, e.g., stopword lists, stemming methods, retrieval models,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WSDM 2018, February 5–9, 2018, Marina Del Rey, CA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5581-0/18/02. . . $15.00
https://doi.org/10.1145/3159652.3159665

to model parameters, such as k1 and b values in BM25, number of
top-ranked documents to consider in pseudo-relevance feedback,
and number of query expansion terms.

Retrieval performance is rather sensitive to parameter (or hy-
perparameter) tuning. Zhai and Lafferty [37] demonstrated this
sensitivity for the smoothing parameters in language models, and
Trotman et al. [31] for parameters in BM25. Automatic techniques
for optimizing model parameters have attracted the attention of the
research community in recent years [12–15, 20, 23, 24]. However,
parameters are usually optimized in isolation, while their mutual
dependencies are, to a great extend, unexplored [1, 19]. Ferro and
Silvello [11] recently examined this mutual dependency between
choices of stopword lists, stemmers and retrieval models, and con-
cluded that parameter interactions have a strong effect on system
performance.

Grid search has been the most widely used strategy for automatic
joint optimization of hyperparameters in information retrieval [33].
Grid search is easy to implement, parallelization is trivial, and it
is reliable in low dimensional spaces [3]. However, grid search
suffers from the curse of dimensionality because the number of
configurations grows exponentially with the number of hyperpa-
rameters [2]. To reduce the number of candidate configurations
to be explored researchers often apply grid search on one dimen-
sion/hyperparameter at a time, while fixing the values of the rest
hyperparameters until all of them have been traversed. However,
this approach is not guaranteed to find a global optimum. Bergstra
and Bengio [3] instead propose random search as a more efficient
search algorithm. Random search generates candidate configura-
tions drawn uniformly from the same configuration space as would
be spanned by a regular grid. Bergstra and Bengio [3] show that ran-
dom search is more efficient than grid search in high-dimensional
spaces because objective functions of interest often have a low effec-
tive dimensionality, i.e. they are more sensitive to changes in some
dimensions than others [7]. Nevertheless, random search remains
agnostic to the effect that a δ -step in the hyperparameter space that
would have to the effectiveness of an IR system. Quantifying this
effect could lead to more efficient search strategies.

Bayesian Optimization has risen as a promising framework for
efficient and effective search in the candidate configuration space [4,
5, 17, 25, 26, 29, 36]. Under the Bayesian Optimization framework,
one does not need to explicitly specify the objective function; what
is only necessary is the ability to query this function and get an
observation. In the case of information retrieval, one does not need
to analytically express system effectiveness as a function of the
hyperparameters, but only observe the effectiveness of a system
configuration in terms of an evaluation measure, e.g. average preci-
sion. Bayesian Optimization uses a surrogate model to approximate
system effectiveness. Taking a prior belief over this surrogate model
allows Bayesian Optimization to sequentially refine it. Further, the

Technical Presentation WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

360

https://doi.org/10.1145/3159652.3159665
https://doi.org/10.1145/3159652.3159665
https://doi.org/10.1145/3159652.3159665

surrogate model, which indicates a probability distribution over
the possible system effectiveness functions, allows designing dif-
ferent strategies for selecting the next configuration to be tested,
exploiting hyperparameter subspaces that have shown to contain
high performance configurations, or exploring hyperparameter
subspaces with high potential [25].

In this paper, we use Bayesian Optimization to automatically op-
timize the retrieval system hyperparameters. Information retrieval
effectiveness, however, as a function of the hyperparameter space
exhibits high irregularity. Furthermore, hyperparameters can be
continuous, or categorical [10], with the latter contributing most of
the irregularity of the objective function. To tackle this wemodel the
effect of a δ -step in the hyperparameter space to the effectiveness
of the IR system, by suggesting to use different similarity functions
(covariance functions) for continuous and categorical hyperparam-
eters, and examine their ability to effectively and efficiently guide
the search in the hyperparameter space. We compare Bayesian Op-
timization to manual tuning, grid search, and random search using
TREC collections, and demonstrate that Bayesian Optimization is
able to find better configurations in terms of retrieval effectiveness
when all methods are granted the same computational budget. To
the best of our knowledge, this is the first work that uses Bayesian
Optimization to find optimal configurations of retrieval systems.

Therefore, the main contributions of this work are the following:
(1) We propose the use of Bayesian Optimization for retrieval

system configuration;
(2) We decompose the components of Bayesian Optimization

that affect the effectiveness of the method and suggest an
instantiation of it that fits the IR hyperparameter space; and

(3) We demonstrate the effectiveness of the method in building
IR systems and explain the reason in terms of optimization
behaviour.

2 RELATEDWORK
We first discuss prior work on hyperparameter optimization in IR.
Next, we give an overview of Bayesian Optimization methods and
the domains they have been applied to.

2.1 Hyperparameter optimization in IR
Optimizing the hyperparameters of a retrieval system is inevitable
in order to achieve optimal performance [33]. Different methods
have been proposed in the literature for automatically optimizing in-
dividual components of a retrieval system [12–15, 20, 23, 24, 30, 38].
Taylor et al. [30] use gradient descent method to optimize the pa-
rameters of ranking functions like BM25F. Their approach however
makes the assumption that the cost functions must be differentiable.
Bigot et al. [6] propose a method for hyperparameter optimization
on a per-query basis. However, this method is hard to generalise as
it only works on queries already seen in the training set. Deveaud
et al. [8] cast the problem of system configuration optimization as a
ranking problem and use learning to rank approaches to select the
best combination of hyperparameters for IR systems. The drawback
is that all the configurations to be ranked must be run in advance
for training and the element number of configurations (e.g. about
10,000 in the paper) grows exponentially with the number of space
dimension. The work of [6] and [8] is orthogonal to the work in this

paper. In both aforementioned works all candidate configurations
need to be considered and the focus lies in finding the best one of
them for each query. Instead, in this paper we propose a search
strategy that avoids considering all candidate configurations and
focuses search in the most promising sub-spaces of hyperparameter
space.

2.2 Bayesian Optimization
The problem of hyperparameter optimization appears in many
machine learning applications, and lately it has attracted a wide in-
terest in that community [4, 5, 17, 25, 26, 29, 36]. Bayesian Optimiza-
tion has emerged rapidly as a promising framework for efficiently
identifying effective configurations. Popular Bayesian Optimization
approaches include sequential model-based optimization (SMBO)
[26], sequential model-based algorithm configuration (SMAC) [17],
tree-based Parzen estimator (TPE) [5] and multi-task Bayesian Op-
timization [29] etc. Bayesian Optimization methods have been ap-
plied successfully in many tasks [28, 34, 36]. For example, Bayesian
Optimization can find better hyperparameters for deep neural net-
works in MNIST digit recognition and CIFAR-10 object recognition
[28]. Also, by applying TPE in feature selection, basic machine
learning algorithms like logistic regression and SVM are proven
to outperform state-of-art neural network models in topic classifi-
cation and sentiment analysis task in NLP [36]. As an important
surrogate model, Gaussian process as well as its covariance func-
tions have been also studied extensively [18, 28]. These successful
applications have inspired us to use Bayesian Optimization to opti-
mize retrieval systems.

3 PRELIMINARIES
3.1 Bayesian Optimization
The Bayesian Optimization framework provides a mechanism to
sequentially search for the global optimum x of an objective func-
tion f (x) : X → R. There are two key components in Bayesian
Optimization [25]. The first is a probabilistic surrogate model used
to predict the objective function value y given a point x . For every
x , there is a random variable y, whose distribution p(y |x) is given
by the surrogate model. One example of the predictive distribution
p(y |x) can be observed in the top panels of Figure 1. In this example
the surrogate model is a Gaussian Process (described in Section 3.2).
The black curve depicts the original objective function (for instance
mean average precision), while the x-axis in the figure represents
an 1-dimensional hyperparameter space, e.g. the parameter µ of a
Language Model with Dirichlet smoothing. The predictive distri-
bution of y can then be used to construct an acquisition function.
An acquisition function is a policy for selecting the sequence of
points {x1,x2, ...,xi , ...}, i.e. a mechanism to select the next con-
figuration xn+1 to test given D1:n := {(x1,y1), (x2,y2), ..., (xn ,yn)}.
As the acquisition function x is usually a closed-form expression
of hyperparameters it is easier to be optimized than the original
objective function. The bottom panel of Figure 1 demonstrates an
acquisition function. The acquisition function values for different
configurations (i.e. along the x-axis) dictate the potential of a certain
configuration to yield a high objective function value.

The second component is the objective function itself, a func-
tion of the target model requiring hyperparameter optimization. In

Technical Presentation WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

361

our case the objective function can be any retrieval effectiveness
measure, such as average precision, normalized discount cumula-
tive gain and so on. Computing the objective function for different
system configurations is the most time-consumptive step [5].

Current Model (round 4) Current Model (round 10)

Acquisition Function Acquisition Function

Figure 1: The optimization process of Bayesian Optimiza-
tion. The upper panel describes the current model, and the
bottom panel describes the acquisition function. The black
curve is the actual objective function, the black dots are the
observed values of the objective function. The red vertical
line denotes the best value among the observed points, the
green vertical line denotes the next point that Bayesian Op-
timization choose. The light blue line and shade are the es-
timated function values and variances.

The entire process of Bayesian Optimization is demonstrated in
Algorithm 1. The algorithm stops when the computational budget
is exhausted. Figure 1 uses an 1-dimensional continuous function to
illustrate the optimization process, and demonstrates it at round 4
(i.e. after the first 3 configurations have been tests) at the left-most
panels, and at round 10 at the right-most panels.

Algorithm 1 Bayesian Optimization
Require: surrogate modelM, acquisition function αM , objective function

f , input space X
1: Initially sample k points {x1, x2, ..., xk } from X , query f to get
{y1, y2, ..., yk }

2: UpdateM
3: for n = 1, 2, ... do
4: Select xn+1 ← argmax

x
αM (x ;Dn)

5: Calculate yn+1 ← f (xn+1)
6: Augment Dn+1 = {Dn, (xn+1, yn+1)}
7: UpdateM
8: end for
9: Select the best y from D

3.2 Gaussian Process
The Gaussian Process (GP) is the most commonly-used surrogate
model in Bayesian Optimization [21]. The key hypothesis underly-
ing GP is that any finite set of {yi } follows a Multivariate Gaussian
Distribution. There is an analytic expression for the joint distribu-
tion p(y1:n |x1:n) ∼ N (0,K), with K being the covariance matrix,

K =

k(x1,x1) · · · k(x1,xn)
...

. . .
...

k(xn ,x1) · · · k(xn ,xn)

and k(xi ,x j) being a covariance function. The conditional dis-
tribution of the objective function value given the sequence of
past observations and a new point xn+1 is p(yn+1 |xn+1,D1:n) ∼
N (µn (xn+1),σ 2

n (xn+1)), where µn (xn+1), andσ 2
n (xn+1) are themean

and the variance of the posterior distribution, respectively. They
are defined as

µn (xn+1) = k
TK−1y1:n

σ 2
n (xn+1) = k(xn+1,xn+1) − k

TK−1k

and

k =
[
k(xn+1,x1), k(xn+1,x2), · · · , k(xn+1,xn)

]T
The covariance function models the effect of taking a δ -step in

the hyperparameter space to the objective function. In Section 4.2
we suggest covariance functions we believe to be appropriate for the
continuous, and categorical hyperparameters of a retrieval system.

3.3 Acquisition Function
A good acquisition function is the one that finds an optimal trade-off
between exploration and exploitation in the hyperparameter space
on the basis of the application at hand. In practice, an acquisition
function balances between configurations for which the predicted
function value f (x) is high (exploitation) and configurations for
which the predicted variance σ (x) is high (exploration) [25]. In
this work, we consider three acquisition functions: probability of
improvement (PI), expected improvement (EI) [9] and upper confi-
dence bound (UCB), defined as follows:

αP I (x |Dn) := P(y > y∗) = Φ(
µn (x) − y

∗

σn (x)
)

αEI (x |Dn) := E(max(y − y∗, 0))

= (µn (x) − y
∗)Φ(

µn (x) − y
∗

σn (x)
) + σn (x)ϕ(

µn (x) − y
∗

σn (x)
)

αUCB (x |Dn) := µn (x) + βσn (x)

where α(·) is the acquisition function, y∗ is a target value which
is often set to max({yi }ni=1) [35], and Φ and ϕ are the Cumulative
Distribution Function and Probability Density Function of the stan-
dard normal distribution, respectively. β is a hyperparameter that
can be set according to some theoretically motivated guidelines.

A drawback of PI, intuitively, is that it is pure exploitative. Con-
figurations that have a high probability their effectiveness being
infinitesimally greater than y∗ will be drawn over configurations
that offer larger gains but with less certainty. EI on the other hand
considers the magnitude of the improvement a configuration can
potentially yield, instead of PI. In UCB it is the parameter β that
controls the trade-off between exploration and exploitation. These
three acquisition functions are point-wise, that is they only care
about the improvement over y∗ on each single point. There are
also entropy-based acquisition functions that make use of what

Technical Presentation WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

362

has been observed about the objective function to pick up the most
informative point, which will be left for the future study.

3.4 Initialization
The first posterior distribution of the surrogate model can be ob-
tained by using the predefined prior distribution to draw the first
hyperparameter point, i.e. the first configuration. This strategy runs
the risk of getting stuck in a local optimum, since it heavily depends
on the first point that will be used. A more general strategy, which
we follow in this work is to sample a set of configurations randomly
in the search space so that the surrogate model can observe the
overall "landscape" of configurations. In this work we test three
sampling methods: Latin hypercube sampling, random sampling,
and sampling from Sobol sequences [16].

3.5 Selecting the Optimal Configuration
At the end of the optimization process one needs to decide which
configuration is the optimal one. The natural choice is to select
the configuration with the best observed effectiveness. However,
this strategy runs the risk of overfitting the observed objective
function values. A different strategy is to select the configuration
with the highest predicted value, instead of the actual observed
value, which can accommodate noisy outputs. The two strategies
are called incumbent and latent, respectively [16], and we test both
in this work.

4 METHODOLOGY
In this section we first elaborate the hyperparameter optimization
process, then we focus on the particular characteristics of the re-
trieval systems hyperparameter space and discuss the covariance
functions we consider appropriate for this space.

4.1 Hyperparameter Optimization Process
Following the Bayesian Optimization framework, we have two
major modules in our algorithmic pipeline, the IR module and the
BO module (see Figure 2). The IR module tackles the conditional
hyperparameters, and computes the objective function value yn ,
given a hyperparameter configuration xn . The BO module adds
(xn ,yn) into the sample set, updates the posterior distribution of the
surrogate models, selects the next hyperparameter configuration
xn+1, and passes it back to IR module.

4.2 Hyperparameter Structure and Covariance
functions

Snoek et al. [26] suggest that it is the choice of the covariance func-
tions that has the strongest effect on the performance of Bayesian
Optimization . In this paper we only consider a simple case, station-
ary covariance function, which is defined as a function of |x −x ′ |(=
r). Themean square differentiability of a stationary covariance func-
tion around 0 determine the smoothness properties of the samples
drawn from the corresponding Gaussian process [22], which essen-
tially dictates the expected response in the objective function if a
δ -step is taken in the hyperparameter space.

The squared exponential covariance function (SE) is a widely
made choice for smooth objective functions; it is mean square

Start

IR

Solve hyperparameter conflict

Compute objective function

BO

Update posterior

Select next point

Stop condition

Stop

))(,(nn xfx

1�nx

N

Y

Figure 2: Hyperparameter optimization architecture.

differentiable at any order and thus very smooth. It is defined as:

KSE(x ,x
′) = exp(−r

2

2)

where x and x ′ are two points in the hyperparameter space, and r
is the distance between x and x ′.

The Matérn1 covariance function (Matérn1) is appropriate to
model rough objective functions, as it is only first-order mean
square differentiable. Martén1 is defined as follows:

KMatérn1(x ,x
′) = exp(−r).

Selecting a covariance function requires examining the hyper-
parameter space of an IR system. Retrieval model parameters, e.g.
the smoothness parameter λ in Jelinek-Mercer Smoothing of Lan-
guage Models, or the parameter b in BM25, are typically continuous.
On the other hand, the choice of the retrieval model itself can be
expressed with a categorical hyperparameter; the use or not of
relevance feedback algorithms is also categorical, as is the choice
of a stopword list, or a stemmer. The default distance used in either
SE covariance function or Matérn1 covariance function is Euclidean
distance, defined as

rE :=

√√√ N∑
d=1
(xd − xd

′)2.

It would treat categorical hyperparameters as ordinal, whereas this
should not be the case. Therefore, considering the heterogeneity
of the hyperparameters of IR systems, Euclidean distance is not a
good fit. Instead, inspired by [17], we use Hamming distance for
categorical dimensions, while Euclidean distance for continuous or
discrete dimensions. The Hamming distance is defined as

rH :=
N∑
d=1
(1 − δ (xd ,xd ′))

where δ is the Kronecker delta function (equalling one if its two
arguments are identical and zero otherwise).

In order to accommodate both continuous and categorical hyper-
parameters, we combine the Euclidean distance and the Hamming

Technical Presentation WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

363

distance into a mixture distance, the Hamming Euclidean mixture
distance (HE distance). HE treats continuous and categorical hyper-
parameters differently; it is defined as

rHE :=
√ ∑
d ∈con

(xd − xd
′)2 +

∑
d ∈cat
(1 − δ (xd ,xd ′))

where con is the set of continuous dimensions and cat the set of
categorical dimensions. It is easy to prove that HE is a distance (or
metric). By replace the original distance function rSE with rHE , we
get two new covariance functions,

KHSE(x ,x
′) = exp(−

r2HE
2)

KHMatérn1(x ,x
′) = exp(−rHE).

Comparedwith SE andMatérn1, HSE andHMatérn1 are designed
to handle heterogeneous space where the continuity property of
different dimensions are not the same. To sum up, in this work, we
test the performance of SE, HSE, Matérn1 and HMatérn1 as four
representative covariance functions for continuous and categorical
hyperparameters.

5 EXPERIMENT SETUP
5.1 Research questions
In the remainder of the paper we aim to answer the following three
research questions:

RQ1 What is the most critical component of the Bayesian Opti-
mization framework for identifying the best retrieval system
configuration?

RQ2 How effective is Bayesian Optimization in searching the
configuration space, and in finding configurations that gen-
eralize across queries and collections?

RQ3 How to explain the optimization behaviour of Bayesian
Optimization in terms of exploration and exploitation?

5.2 Implementation of Retrieval System and
Bayesian Optimization

We use Pyndri [32], a Python Interface to the Indri Search En-
gine [27], as the IR module in our pipeline, which is mainly decom-
posed to indexing, retrieval, and pseudo-relevance feedback. All
the three modules are considered in our optimization experiments.

The objective function can be any retrieval effectiveness measure.
In this work we optimize for the Mean Average Precision (MAP),
Normalized Discounted Cumulative Gain (NDCG) and Mean Recip-
rocal Rank (MRR) and use trec_eval 1 for the computations.

We use Pybo [16] in our experiments, a Python package for
Bayesian Optimization . Pybo supports the default version of the SE
covariance function and the Martén1 covariance function which use
Euclidean distance to measure the distance of two points; we imple-
mented the HSE covariance function and the HMartén1 covariance
function within Pybo ourselves.

1http://trec.nist.gov/trec_eval/

5.3 Candidate Configurations
There are twomajor choices to make when indexing documents: the
stopword list and the stemmer. Ferro and Silvello [11] has shown
that the choice of different stopword lists, like that of indri, Lucene,
Smart and Terrier, has limited effect to the performance of a IR
system; however, having stopword list or not makes a big difference.
On the other hand, indexing document collections takes a long time.
Therefore for efficiency and convenience we only set two values
for the categorical hyperparameter stopper: TRUE means using
Indri stopword list and FALSE means not using any stopword list.
The situation is similar for stemmer: TRUE means using Krovets
stemmer and FALSE means not using any stemmer.

There are three retrieval models implemented in Indri: TF-IDF
with BM25 term weighting, Okapi BM25, and Language Models.
Language Models supports three different smoothing methods,
Jelinek-Mercer (JM), Dirichlet (DIR), and two-stage smoothing (TS).
Let rm denote a categorical hyperparameter that represents the re-
trieval model type and takes values in [TF-IDF, BM25, LM-JM, LM-
DIR, LM-TS], that is the TF-IDF model with BM25 term weighting,
the Okapi BM25 model, the Language Model with JM smoothing,
the Language Model with Dirichlet smoothing, and the Language
Model with two-stage smoothing respectively. There is a number
of hyperparameters per model: k1 and b for TF-IDF, k1, k3, and
b for Okapi BM25, λcol and λdoc for the JM smoothing, µ for the
Dirichlet smoothing, and λ and µ for the two stage smoothing. The
parameters of these models lay in a continuous space.

Indri also supports pseudo-relevance feedback models. We con-
sider a binary hyperparameter prf that takes the value TRUE if
pseudo-relevance feedback is used, and FALSE otherwise. There are
four hyperparameters that need to be set for the pseudo-relevance
feedback models, the number of feedback documents to be consid-
ered, fbDocs, the number of feedback terms, fbTerms, the Dirichlet
smoothing parameter used for the feedback document language
model,fbMu, and the weight of the original query, fbOrigWeight,
in the mixture model between the original query and the feedback
documents. In total, we have a conditional hyperparameter space
of 18 dimensions (see Figure 3).

5.4 Test collections
We conduct our experiments on the ad-hoc test collections of TREC
5-8 and TREC Robust 2004, as well as the web test collections
of TREC 2010-2012 in order to thoroughly evaluate the proposed
method in diversified datasets. The details can be found in Table 1.
As we can see, ad-hoc tracks and web tracks are quite different
test collections. Web tracks have much more documents and the
average length of documents is also longer, indicating they are
more challenging compared with ad-hoc tracks.

5.5 Baselines
Manual Search. The first baseline is obtained by running Indri
with its default hyperparameters. Then we manually select the
best performing model among TF-IDF/BM25/Language Models,
with/without pseudo-relevance feedback.
Grid Search. The second baseline is grid search. Grid search is the
most widely used method for hyperparameter tuning. For each of
the five retrieval model (TF-IDF, BM25, LM-JM, LM-DIR, LM-TS)

Technical Presentation WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

364

IR system

Retrieval model

Pseudo-relevance

feedback model

TF-IDF

BM25

Language

model

k1

b

k1

k3

b

JM

smoothing

doc
col

Dirichlet

smoothing

Two-stage

smoothing

fbDocs

fbTerms

fbMu

fbOrigWeight

Stopper

Stemmer

Hyperparamter Type Values
Stopper Boolean {True, False}
Stemmer Boolean {True, False}
rm Integer {TF-IDF, BM25, LM-JM, LM-DIR, LM-TS}
k1 Real value [1,2]
b Real value [0,1]
k1 Real value [1,10]
k3 Real value [1,10]
b Real value [0,1]
λdoc Real value [0,1]
λcol Real value [0,1]
µdir Real value [0,3000]
µts Real value [0,3000]
λts Real value [0,1]
pr f Boolean {True, False}
f bDocs Integer [1,50]
f bT erms Integer [1,50]
f bMu Real value [0,3000]
f bOr iдWeiдht Real value [0,1]

Figure 3: Conditional hyperparameters and their search
ranges in Indri

Table 1: Test collections

TREC Document collection No. of Doc. Doc. Length Topics
Median Mean

TREC 5 Volume 2 & 4 524,929 340 546 251-300
TREC 6 Volume 4 & 5 556,077 326 526 301-350
TREC 7 Volume 4 & 5 − CR* 528,155 328 480 351-400
TREC 8 Volume 4 & 5 − CR 528,155 328 480 401-450

TREC Robust 2004 Volume 4 & 5 − CR 528,155 328 480 301-450
601-700

TREC Web 2010 ClueWeb09 21,258,800 629 1096 51-100
TREC Web 2011 ClueWeb09 21,258,800 629 1096 101-150
TREC Web 2012 ClueWeb09 21,258,800 629 1096 151-200
* : Congressional Record documents.

in Section 5.3, we generate the grid points by evenly partitioning
the search space of each parameter into 20 parts and making a
complete combination of all the parameters of that retrieval model.
Furthermore, based on the five sub-baselines, we easily get five
more sub-baselines by setting pfb =TRUE and fixing fbDocs = 10,
fbTerms = 10, fbMu = 2500, and fbOrigWeight = 0.5. For instance,
the baseline LM-DIR + PFB contains 20 search points obtained
by setting µ to the values partitioning [0, 3000] into 20 parts and
setting pfb=TRUE. For all the sub-baselines, stopper and stemmer
are set to TRUE. This is a common practice in the use of grid search,

and allows the reduction of the 6.6 × 1019 possible points of our
hyperparameter space down to 1.8 × 104.
Random Search. The third baseline is random search [3]. For ran-
dom search, we use 3 sampling designs, Uniform, Latin, Sobol, and
we allow its number of iteration same with Bayesian Optimization .

6 RESULTS AND ANALYSIS
6.1 Decompose component effect of Bayesian

Optimization
This experiment is designed to answer RQ1. In order to study which
components of Bayesian Optimization has the strongest effect on
the performance of Bayesian Optimization in finding optimal sys-
tem configurations we run a full factorial experiment, using 54 joint
strategies of Bayesian Optimization : the 3 initialization strategies
× the 3 covariance functions × the 3 acquisition functions × the 2
selection strategies. The experiment was run on the Robust 2004
dataset. We measure performance on the basis of MAP and we
run an analysis of variance (ANOVA) considering only the main
effects of the Bayesian Optimization components (that is we ignore
any interactions between them, since we do not have enough data
points for a detailed analysis).

The results of the ANOVA can be seen in Table 2. The impor-
tant observation lays in the last column of the table; this is the
p-value that designates whether a factor has a significant effect
when p(>F)<0.05, or there is not enough evidence to reach that
conclusions otherwise. As we can observe, and in accordance to
previous work [26] ANOVA suggests that the choice of the covari-
ance function is the most important decision one needs to make
when instantiating Bayesian Optimization , at least among the com-
ponents we considered in this work. Therefore, we vary covariance
functions and fix the rest strategies by selecting the respective best
ones, that is Sobol + EI + Incumbent in the following sections.

Table 2: The effects of different components of Bayesian Op-
timization on objective function via ANOVA.

SS DF F p(>F)

Initialization strategy 0.000566 2.0 0.903685 0.412144
Covariance function 0.002976 2.0 4.748861 0.013338
Acquisition function 0.000647 2.0 1.032076 0.364368
Selection strategy 0.000543 1.0 1.734376 0.194376

6.2 Optimizing IR systems using Bayesian
Optimization

This experiment is designed to answer RQ2. We first run the four
methods on Robust 2004 or Web 2012 as the training set, then
we tested the corresponding optimal configurations on TREC 5-8
or Web 2011-2012. In order to have a thorough study of Bayesian
Optimization , we further experimented on the 2-dimensional space
which is is λ and µ for the two stage smoothing, and the 18-dimensional
space which includes the complete hyperparameters introduced in
Section 5.3 respectively.

Table 3 shows the performance of the best configurations found
by each method. As expected, there is no big difference among

Technical Presentation WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

365

the four search methods in 2-dimensional space. It is because both
grid search and random search are able to cover the space in low
dimensional space. However, grid search needs more budget com-
pared with Bayesian Optimization and random search. Therefore,
Bayesian Optimization , grid search and random search can achieve
comparable performance, but Bayesian Optimization and random
search are more efficient in 2-dimensional spaces than grid search.
The situation changes with the number of dimension increasing.
We can see Bayesian Optimization performs slightly better than
random search, grid search and manual method in 18-dimensional
space. Random search is comparable with Bayesian Optimization
in low (2) dimensional space, but it fails in high (18) dimensional
space. However, there seems no significant difference among the
four methods according to the results in Table 3 .

6.3 Optimization behaviour of Bayesian
Optimization

This experiment is designed to answer RQ3.We study how Bayesian
Optimization searches points in the search space and how different
covariance functions affect this behaviour. For visualisation conve-
nience we take 1-dimensional and 2-dimensional hyperparameter
space as examples.

The hyperparameter considered in 1-dimensional space is µ in
language model with Dirichlet smoothing. We initialised the poste-
rior of the surrogate model with 2 points, and iteratively searched
32 points. We also recorded the predictive function predicted by the
surrogate model in round 1 and 32. The result is show in Figure 4.
We can see that the intensive red lines tend to appear near the global
optimum for most datasets and measures, indicating that Bayesian
Optimization spends more efforts and exploits much near the global
optimum. It is more obvious when the objective function is highly
irregular like MRR. By "irregular" we mean there are many local
optimums. On the right panel of Figure 4a, we find that Bayesian
Optimization prefers exploitation near these local optimums and
allows exploration in other areas, and finally it spends most efforts
near the global optimum. Figure 4b shows the zoomed-in result
on TREC 6 + MRR. The posterior of the surrogate model in round
1 does not know much about the objective function and predicts
the same value for most points except the area near the two initial
points. Whereas in round 32, the predictive function can model the
rough trend quite well, where several local maximums and mini-
mums are quite consistent with the real objective function. Overall
speaking, Bayesian Optimization ’s performance in 1-dimensional
space is as good as we expect in terms of exploration and exploita-
tion. Its preference of exploitation near global optimum makes it a
reliable optimization approach.

The hyperparameters considered in 2-dimensional space are µ
and λ in language model with two-stage smoothing. We initialised
the posterior of the surrogate model with 4 points, and iteratively
searched 32 points. Same as 1-dimensional case, we also recorded
the predictive function in round 1 and 32. In Figure 5 we ploted the
results of the SE covariance function and the Matérn1 covariance
function respectively. The first two panels of Figure 5a shows the
effect of Matérn1 on the predictive function. In round the surrogate
model predicts that the lower left corner has the potential of getting
high values. In round 32 the predictive function is quite rugged

0.10

0.15

0.20

T
R
E
C
-5

MAP

0.30

0.35

0.40

NDCG

0.45

0.50

0.55

MRR

0.15

0.20

0.25

T
R
E
C
-6

0.40

0.45

0.50

0.60

0.65

0.70

0.15

0.20

0.25

T
R
E
C
-7

0.40

0.45

0.50

0.60

0.65

0.70

0.15

0.20

0.25

T
R
E
C
-8

0.45

0.50

0.55

0.60

0.65

0.70

0.05

0.10

0.15

T
R
E
C
-W

E
B
1
0

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.00

0.05

0.10

T
R
E
C
-W

E
B
1
1

0.15

0.20

0.25

0.40

0.45

0.50

0 500 1000 1500 2000 2500 3000

0.05

0.10

0.15

T
R
E
C
-W

E
B
1
2

0 500 1000 1500 2000 2500 3000

0.15

0.20

0.25

0 500 1000 1500 2000 2500 3000

0.35

0.40

0.45

(a) Overall optimization behaviour in a glance. Covariance function:
Matérn1, objective functions: MAP, NDCG, MRR. The red vertical line
associated with a number denotes Bayesian Optimization searches
which point in which round. The green curve denotes the real objec-
tive function generated by 128 devisions of the interval [0, 3000]. The
black dot line denotes the maximum objective function value.

0 500 1000 1500 2000 2500 3000

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

M
R

R

Round 1 predictive function

0 500 1000 1500 2000 2500 3000

0.6688

0.6690

0.6692

0.6694

0.6696

0.6698

Round 32 predictive function

500 1000 1500 2000 2500 3000

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

1

2 345 6

7

89

10

11

12 13

14 15
16

17
18
19

20
2122

232425

26

27282930313233

34

35

Objective function

(b) Zoomed-in result on TREC 6 +MRR. The first two panels are the pre-
dictive objective functions in round 1 and 32; the last panel is the real
objective function. The red vertical line associated with a number de-
notes BayesianOptimization searcheswhich point and inwhich round.

Figure 4: Optimization behaviour of Bayesian Optimization
in 1-dimensional space X = [0, 3000].

because multiple local optimums are observed. It predicts the area
around (2800, 0.7) having a global optimum, which is quite con-
sistent with the real objective function. The right panel compares
the point traces of Bayesian Optimization , random search and
manual search. At the beginning, Bayesian Optimization prefers
exploration and tries to cover a large area of the search space. Later
it prefers exploitation as we can see it spends more efforts near
the global optimum. It is also interesting to compare the way how
the two covariance functions model the real objective function. We
know that the smoothness of the samples generated by the two
covariance functions conforms to the order: SE >Matérn1. This is
consistent with Figure 5. The real objective function in this case
is quite smooth and seems to have one optimum, therefore SE is
enough to model its irregularity. As an evidence we can see that
more points are searched within green contour line on the most
right side in Figure 5b compared with Figure 5a.

Technical Presentation WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

366

Table 3: The best performing configurations for all search methods.

Method Budget Train A Test A Train B Test B
MAP NDCG MRR MAP NDCG MRR MAP NDCG MRR MAP NDCG MRR

2-D
Manual - 2415 5144 6915 1986 4446 6091 1195 2508 4084 1002 2393 4305
Grid 400 2531 5239 7028 2058 4535 6255 1216 2523 4350 1002 2395 4458
Random 4+32 2529 5239 7020 2058 4534 6341 1215 2522 4254 1000 2395 4458
BO SE 4+32 2520 5239 7022 2010 4284 6258 1212 2518 4352 998 2388 4408
BO Matérn1 4+32 2527 5239 7020 2056 4514 6314 1204 2516 4353 1003 2394 4389

18-D
Manual - 2755 5507 6994 2221 4817 5744 1209 2509 4242 939 2282 4019
Grid 2480 2889 5616 7248 2256 4824 6184 1404 2620 4773 922 2311 4100
Random 36+64 2692 5454 7041 2084 4776 6309 1404 2620 4773 922 2311 4100
BO SE 36+64 2908 5499 7162 2301 4705 6077 1395 2576 4860 926 2281 3933
BO HSE 36+64 2924 5549 7032 2064 4737 6273 1395 2551 5181 935 2334 3931
BO Matérn1 36+64 2925 5571 7192 2283 4781 6168 1398 2593 5268 929 2372 4140
BO HMatérn1 36+64 2747 5661 7050 2161 4864 6301 1308 2618 5502 974 2315 4160
Note: Magnitude of numbers is 10−4. Train A denotes TREC Robust 2004, Test A denotes TREC 5-8, Train
B denotes TREC Web 2012, Test B denotes TREC Web 2010-2011.

To sum up, Bayesian Optimization balances exploitation and ex-
ploitation by spending more search budget near the global optimum
or local optimums, which makes it a reliable optimization approach.
This optimization behaviour is affected by the covariance function.
If the objective function is very irregular like MRR, Matérn1 is rec-
ommended; while SE is recommended if relative objective functions
like MAP and NDCG.

7 CONCLUSIONS AND FUTUREWORK
In this paper we study the problem of retrieval system optimization.
We propose the use of Bayesian Optimization to jointly search and
optimize over the hyperparameter space. Given the heterogeneous
hyperparameters in retrieval systems we suggest the use of four co-
variance functions that can handle both continuous and categorical
hyperparameters, the SE, HSE, Matérn1 and HMatérn1 covariance
function. We analyze the effect of the different components of
Bayesian Optimization and reach at the same conclusion as prior
research on the topic [26] that it is the choice of the covariance func-
tions that have the strongest effect on the performance of Bayesian
Optimization . To demonstrate the effectiveness and efficiency of
Bayesian Optimization to identify a good system configuration, we
tested it on both the ad-hoc and the web test collections of TREC.
In both collections we demonstrate that Bayesian Optimization out-
performs manual tuning, grid search and random search, both in
terms of the retrieval effectiveness of the best configuration found,
and in terms of efficiency in finding this configuration. We further
examined the optimization behaviour of Bayesian Optimization in
terms of exploitation and exploitation. We found it spends more
search budget near the global optimum or local optimums, and
this optimization behaviour is affected by covariance functions of
different smoothness.

One should note that for the Gaussian Process the bounds for
all dimensions of the search space are axis-aligned, i.e. the search
space is a hyper-rectangle [25]. This is contradictory with the con-
ditional structure of IR hyperparameters, which means that our

instantiation of Bayesian Optimization wastes time in searching in
inactive dimensions. We leave the study of surrogate model that
can solve conditional hyperparameters as a future work.

REFERENCES
[1] Timothy G. Armstrong, Alistair Moffat, William Webber, and Justin Zobel. 2009.

Improvements That Don’T Add Up: Ad-hoc Retrieval Results Since 1998. In Pro-
ceedings of the 18th ACM Conference on Information and Knowledge Management
(CIKM ’09). ACM, New York, NY, USA, 601–610. https://doi.org/10.1145/1645953.
1646031

[2] Richard E Bellman. 2015. Adaptive control processes: a guided tour. Princeton
university press.

[3] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. Journal of Machine Learning Research 13, Feb (2012), 281–305.

[4] James Bergstra, Daniel Yamins, and David D Cox. 2013. Making a Science of
Model Search: Hyperparameter Optimization in Hundreds of Dimensions for
Vision Architectures. ICML (1) 28 (2013), 115–123.

[5] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Al-
gorithms for hyper-parameter optimization. In Advances in Neural Information
Processing Systems. 2546–2554.

[6] Anthony Bigot, Sébastien Déjean, and Josiane Mothe. 2015. Learning to Choose
the Best System Configuration in Information Retrieval: the Case of Repeated
Queries. Journal of Universal Computer Science 21, 13 (2015), 1726–1745.

[7] Russel E Caflisch, William J Morokoff, and Art B Owen. 1997. Valuation of
mortgage backed securities using Brownian bridges to reduce effective dimension.
Department of Mathematics, University of California, Los Angeles.

[8] RomainDeveaud, JosianeMothe, and Jian-YunNia. 2016. Learning to Rank System
Configurations. In Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management (CIKM ’16). ACM, New York, NY, USA,
2001–2004. https://doi.org/10.1145/2983323.2983894

[9] Laurence Charles Ward Dixon and Giorgio Philip Szegö. 1978. Towards global
optimisation 2. North-Holland Amsterdam.

[10] Katharina Eggensperger, Matthias Feurer, Frank Hutter, James Bergstra, Jasper
Snoek, Holger Hoos, and Kevin Leyton-Brown. 2013. Towards an empirical
foundation for assessing bayesian optimization of hyperparameters. In NIPS
workshop on Bayesian Optimization in Theory and Practice. 1–5.

[11] Nicola Ferro and Gianmaria Silvello. 2016. A General Linear Mixed Models
Approach to Study System Component Effects. In Proceedings of the 39th In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’16). ACM, New York, NY, USA, 25–34. https://doi.org/10.1145/
2911451.2911530

[12] Parantapa Goswami and Eric Gaussier. 2013. Estimation of the Collection Parame-
ter of InformationModels for IR. In Proceedings of the 35th European Conference on
Advances in Information Retrieval (ECIR’13). Springer-Verlag, Berlin, Heidelberg,
459–470. https://doi.org/10.1007/978-3-642-36973-5_39

Technical Presentation WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

367

https://doi.org/10.1145/1645953.1646031
https://doi.org/10.1145/1645953.1646031
https://doi.org/10.1145/2983323.2983894
https://doi.org/10.1145/2911451.2911530
https://doi.org/10.1145/2911451.2911530
https://doi.org/10.1007/978-3-642-36973-5_39

0 500 1000 1500 2000 2500 3000

0.0

0.2

0.4

0.6

0.8

1.0

0
.0

9
1

0
.0

9
1

0.092

0.092

0.092

0.092

0.0920.092

0.092

0.092

0.092

0.092

0.092

0.092

0.092
0.092

0.092

0.092

0.093

0.093

0.093

0.093

0.093

0.093

0.094

0.094

0.094

0.094

0.094

0.094

0.09

0.094

0.095

0.095

0.095

0.095

0
.0

9
5

0.096

0.096

0.097

Round 1 predict ive funct ion

0 500 1000 1500 2000 2500 3000

0.0

0.2

0.4

0.6

0.8

1.0

0
.1

0
4

0
.1

0
4

0
.1

0
4

0
.1

0
4

0
.1

0
4

0.104

0
.1

0
5

0.105
0.105

0.105

0.105

0.105

0
.1

0
5

0
.1

0
5

0.1
05

Round 32 predict ive funct ion

0 500 1000 1500 2000 2500 3000

0.0

0.2

0.4

0.6

0.8

1.0 0.0150.0300.045

0
.0

6
0

0.0750.090 0.105

0
.1

2
0

Object ive funct ion

(a) Matérn1 + MAP.

0 500 1000 1500 2000 2500 3000

0.0

0.2

0.4

0.6

0.8

1.0

0.102
0.102

0.102
0.103

0.103
0.103

0.103

0.103

0.103

0.103

0.103

0.103

0.103

0.103

0.103

0
.1

0
3

0
.1

0
3

Round 1 predict ive funct ion

0 500 1000 1500 2000 2500 3000

0.0

0.2

0.4

0.6

0.8

1.0

0.077

0.080

0
.0

8
2

0.082

0.085

0.085

0
.0

8
7

0.090

0.092

0.095

0
.0

9
8

0
.1

0
0 0.102

Round 32 predict ive funct ion

0 500 1000 1500 2000 2500 3000

0.0

0.2

0.4

0.6

0.8

1.0 0.0150.0300.045

0
.0

6
0

0.0750.090 0.105

0
.1

2
0

Object ive funct ion

(b) SE + MAP.

Figure 5: Optimization behaviour of Bayesian Optimization in 2-dimensional spaceX = {(µ, λ)|µ ∈ [0, 3000], λ ∈ [0, 1]}. Objective
function: MAP, Data set: TREC-WEB12. The contour lines depict the predictive functions in round 1 and 32 on the first two
panels, and the real objective function on last panel. The red numbers denote Bayesian Optimization searches which point
and in which round; the black dots denote the point trace of random search; and the star denotes the point of manual search.

[13] Ben HE and Iadh Ounis. 2003. A Study of Parameter Tuning for Term Frequency
Normalization. In Proceedings of the Twelfth International Conference on Informa-
tion and Knowledge Management (CIKM ’03). ACM, New York, NY, USA, 10–16.
https://doi.org/10.1145/956863.956867

[14] Ben He and Iadh Ounis. 2007. On Setting the Hyper-parameters of Term Fre-
quency Normalization for Information Retrieval. ACM Trans. Inf. Syst. 25, 3,
Article 13 (July 2007). https://doi.org/10.1145/1247715.1247719

[15] Ben He and Iadh Ounis. 2007. Parameter Sensitivity in the Probabilistic Model for
Ad-hoc Retrieval. In Proceedings of the Sixteenth ACM Conference on Conference
on Information and Knowledge Management (CIKM ’07). ACM, New York, NY,
USA, 263–272. https://doi.org/10.1145/1321440.1321479

[16] Matthew W Hoffman and Bobak Shahriari. 2014. Modular mechanisms for
Bayesian optimization. In NIPS Workshop on Bayesian Optimization. Citeseer.

[17] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2011. Sequential model-
based optimization for general algorithm configuration. In International Confer-
ence on Learning and Intelligent Optimization. Springer, 507–523.

[18] Frank Hutter and Michael A Osborne. 2013. A Kernel for Hierarchical Parameter
Spaces. arXiv preprint arXiv:1310.5738 (2013).

[19] Sadegh Kharazmi, Falk Scholer, David Vallet, and Mark Sanderson. 2016. Exam-
ining Additivity and Weak Baselines. ACM Trans. Inf. Syst. 34, 4, Article 23 (June
2016), 18 pages. https://doi.org/10.1145/2882782

[20] Yuanhua Lv and ChengXiang Zhai. 2009. A Comparative Study of Methods for
Estimating Query Language Models with Pseudo Feedback. In Proceedings of the
18th ACM Conference on Information and Knowledge Management (CIKM ’09).
ACM, New York, NY, USA, 1895–1898. https://doi.org/10.1145/1645953.1646259

[21] Jonas Mockus. 1994. Application of Bayesian approach to numerical methods of
global and stochastic optimization. Journal of Global Optimization 4, 4 (1994),
347–365.

[22] Carl Edward Rasmussen and Christopher K. I. Williams. 2005. Gaussian Processes
for Machine Learning (Adaptive Computation and Machine Learning). The MIT
Press.

[23] François Rousseau and Michalis Vazirgiannis. 2013. Composition of TF Nor-
malizations: New Insights on Scoring Functions for Ad Hoc IR. In Proceed-
ings of the 36th International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval (SIGIR ’13). ACM, New York, NY, USA, 917–920.
https://doi.org/10.1145/2484028.2484121

[24] Jangwon Seo and W. Bruce Croft. 2010. Unsupervised Estimation of Dirichlet
Smoothing Parameters. In Proceedings of the 33rd International ACM SIGIR Con-
ference on Research and Development in Information Retrieval (SIGIR ’10). ACM,
New York, NY, USA, 759–760. https://doi.org/10.1145/1835449.1835602

[25] Bobak Shahriari, Kevin Swersky, ZiyuWang, Ryan PAdams, and Nando de Freitas.
2016. Taking the human out of the loop: A review of bayesian optimization. Proc.
IEEE 104, 1 (2016), 148–175.

[26] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical bayesian
optimization of machine learning algorithms. In Advances in neural information

processing systems. 2951–2959.
[27] Trevor Strohman, Donald Metzler, Howard Turtle, and W. Bruce Croft. 2005.

Indri: a language-model based search engine for complex queries. Technical Report.
in Proceedings of the International Conference on Intelligent Analysis.

[28] Kevin Swersky, David Duvenaud, Jasper Snoek, Frank Hutter, and Michael A
Osborne. 2014. Raiders of the lost architecture: Kernels for Bayesian optimization
in conditional parameter spaces. arXiv preprint arXiv:1409.4011 (2014).

[29] Kevin Swersky, Jasper Snoek, and Ryan P Adams. 2013. Multi-task bayesian
optimization. In Advances in neural information processing systems. 2004–2012.

[30] Michael Taylor, Hugo Zaragoza, Nick Craswell, Stephen Robertson, and Chris
Burges. 2006. Optimisation methods for ranking functions with multiple param-
eters. In Proceedings of the 15th ACM international conference on Information and
knowledge management. ACM, 585–593.

[31] Andrew Trotman, Antti Puurula, and Blake Burgess. 2014. Improvements to
BM25 and Language Models Examined. In Proceedings of the 2014 Australasian
Document Computing Symposium (ADCS ’14). ACM, New York, NY, USA, Article
58, 8 pages. https://doi.org/10.1145/2682862.2682863

[32] Christophe Van Gysel, Evangelos Kanoulas, and Maarten de Rijke. 2017. Pyndri:
a Python Interface to the Indri Search Engine. In Advances in Information Re-
trieval: 39th European Conference on IR Research, ECIR 2017. Springer International
Publishing.

[33] Ellen M. Voorhees and Donna Harman (Eds.). 2001. Proceedings of The REtrieval
Conference (TREC 1-9). Vol. NIST Special Publication. National Institute of Stan-
dards and Technology (NIST). http://trec.nist.gov/pubs.html

[34] Lidan Wang, Minwei Feng, Bowen Zhou, Bing Xiang, and Sridhar Mahadevan.
2015. Efficient hyper-parameter optimization for NLP applications. In Proceedings
of EMNLP, Vol. 15. 2112–2117.

[35] Ziyu Wang and Nando de Freitas. 2014. Theoretical analysis of bayesian op-
timisation with unknown gaussian process hyper-parameters. arXiv preprint
arXiv:1406.7758 (2014).

[36] Dani Yogatama and Noah A Smith. 2015. Bayesian optimization of text represen-
tations. arXiv preprint arXiv:1503.00693 (2015).

[37] Chengxiang Zhai and John Lafferty. 2001. A Study of Smoothing Methods for
Language Models Applied to Ad Hoc Information Retrieval. In Proceedings of the
24th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR ’01). ACM, New York, NY, USA, 334–342. https:
//doi.org/10.1145/383952.384019

[38] ChengXiang Zhai and John Lafferty. 2002. Two-stage Language Models for
Information Retrieval. In Proceedings of the 25th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR ’02). ACM,
New York, NY, USA, 49–56. https://doi.org/10.1145/564376.564387

Technical Presentation WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

368

https://doi.org/10.1145/956863.956867
https://doi.org/10.1145/1247715.1247719
https://doi.org/10.1145/1321440.1321479
https://doi.org/10.1145/2882782
https://doi.org/10.1145/1645953.1646259
https://doi.org/10.1145/2484028.2484121
https://doi.org/10.1145/1835449.1835602
https://doi.org/10.1145/2682862.2682863
http://trec.nist.gov/pubs.html
https://doi.org/10.1145/383952.384019
https://doi.org/10.1145/383952.384019
https://doi.org/10.1145/564376.564387

	Abstract
	1 Introduction
	2 Related Work
	2.1 Hyperparameter optimization in IR
	2.2 Bayesian Optimization

	3 Preliminaries
	3.1 Bayesian Optimization
	3.2 Gaussian Process
	3.3 Acquisition Function
	3.4 Initialization
	3.5 Selecting the Optimal Configuration

	4 Methodology
	4.1 Hyperparameter Optimization Process
	4.2 Hyperparameter Structure and Covariance functions

	5 Experiment setup
	5.1 Research questions
	5.2 Implementation of Retrieval System and Bayesian Optimization
	5.3 Candidate Configurations
	5.4 Test collections
	5.5 Baselines

	6 Results and analysis
	6.1 Decompose component effect of Bayesian Optimization
	6.2 Optimizing IR systems using Bayesian Optimization
	6.3 Optimization behaviour of Bayesian Optimization

	7 Conclusions and Future Work
	References

