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1
Introduction

Machine translation (MT) refers to the use of software to translate texts written in
a source language (e.g., German) to a target language (e.g., English). Modern MT
systems are typically statistical and data-driven, meaning that they are built using large
quantities of data rather than hand-crafted rules. Before a data-driven statistical MT
(SMT) system can be used for translation, it has to be trained on large amounts of
example translations between the source and target language, so-called parallel corpora.
Such bilingual corpora are publicly available for a select number of text types and
language pairs, such as parliamentary proceedings in many European languages (Koehn,
2005). Consequently, translation output for such texts is often of good quality.

The picture looks less bright, however, when training data is scarce for the translation
task at hand, for example if one wishes to translate TED talks or medical texts. In such
cases, the majority of the available training data differs from the translation task in both
writing style and vocabulary. This mismatch between the training data and the nature
of the text to be translated can cause large drops in translation quality. To address this
problem, a large body of previous work has targeted domain adaptation, in which an
MT system is adapted to the domain of the translation task or test set, for instance by
favoring the most relevant example translations (Axelrod et al., 2011; Costa-jussà and
Banchs, 2011; Matsoukas et al., 2009; Foster et al., 2010; Chen et al., 2013, among
others) or by combining models from different (in-domain and out-of-domain) MT
systems (Banerjee et al., 2011; Bisazza et al., 2011; Foster and Kuhn, 2007; Koehn and
Schroeder, 2007; Sennrich, 2012b, among others).

Unfortunately, the notion of a domain is not uniformly defined among MT re-
searchers. Typically, a domain is named after its origin or provenance, such as a
particular website or a corpus number. This definition neglects the fact that within a
single domain documents or sentences may vary at many levels. For example, different
documents from the same website often discuss different topics, or belong to different
genres, such as news articles or editorial pieces and their corresponding user comments.
Large variations can also exist within genres, in particular between texts written by
different authors lacking standardization, such as most user-generated (UG) data. Even
more extreme examples are conversational texts, in which two consecutive utterances
likely have different speakers, who each use a different style of language (reflected by
register) and have different intents (reflected by dialogue acts).

To shed light on the concept of a domain and its impact on MT, the core question

1



1. Introduction

in this thesis is: “What’s in a domain?” To answer this question, we distinguish
various aspects that together make up a domain, i.e., topic, genre, register, dialogue
acts, speakers, and speaker gender, and we study to what extent MT output differs
among these aspects, and how we can improve translation quality for each of the aspects.
Adaptation to most of these fine-grained levels of a domain has gained little to no
attention, and is thus a novel contribution of this thesis.

Within the large body of previous work on domain adaptation for MT, most research
is driven by relatively formal genres such as news or parliamentary proceedings, which
are characterized by a very standardized language use. These are, however, not rep-
resentative for the abundance of informal or colloquial data emerging on the Internet,
for which state-of-the-art MT systems perform markedly worse, a pattern observed in
past MT evaluation campaigns. In this thesis, we pay special attention to analyzing
and translating informal language. We distinguish in total six types of informal data:
SMS messages, chat messages, telephone conversations, weblogs, user comments, and
fictional dialogues. For each of these genres, we analyze which challenges they pose to
MT and how translation quality can be improved.

In our experiments, we focus on domain or genre adaptation for MT without a
dependency on corpus information. Most previous work on MT adaptation makes the
strong assumption that the translation task has known domain or genre labels that are
exploited to adapt the system. While this is a fair assumption in a controlled research
scenario, it also limits the applicability of the proposed methods. In an online setting, for
example, the genre or domain of the translation task is typically not known in advance.
Throughout this thesis we present a number of approaches that move away from this
assumption and apply genre or domain adaptation without relying on corpus labels.

Most of the analyses and experiments in this thesis are performed using phrase-based
MT, to which we refer as PBMT. In Chapter 8, we also work with the recently developed
paradigm of neural MT, to which we refer as NMT. We discuss both paradigms in detail
in Chapter 2. While we cannot draw definitive conclusions for NMT based on findings
in PBMT, and vice versa, we will end in Chapter 9 with a brief reflection on the lessons
learned throughout this thesis and their expected implications on adaptation for NMT.

1.1 Research outline and questions

This thesis covers three research themes, all three related to domain adaptation in
MT. The first theme concerns disambiguating the concepts domain, genre, and topic
and studying their respective impacts on PBMT. Since genre differences appear to be
particularly challenging to PBMT, we mainly focus on genre adaptation, for example
by enhancing the bilingual training data with genre-specific resources, or by using
genre-revealing textual features to improve translation.

The second theme deals with a particularly interesting genre: user-generated (UG)
data. In an era of increasing use of the Internet, UG data is ubiquitous. However, it is
also highly variable and not standardized or editorially controlled, making it difficult
to translate automatically. Despite these challenges, most of the MT research to date
has been driven by more formal translation tasks or by domains with very uniform
language use, which are noticeably easier to translate. In this thesis we translate and

2



1.1. Research outline and questions

analyze a variety of colloquial and conversational genres and formulate challenges and
recommendations for improving PBMT of these informal genres.

The third theme addresses domain adaptation for the new paradigm of NMT. Since
domain adaptation for NMT is still an under-explored research direction, we use in
this part of the thesis domains that are defined by their provenance rather than the
fine-grained levels addressed in the first two research themes. Concretely, we apply a
state-of-the-art adaptation approach to both PBMT and NMT and discuss the observed
performance differences. Finally, we introduce a novel approach to improve upon the
existing method for NMT adaptation.

Part I. The role of genres in phrase-based machine translation
An important goal of this thesis is to clarify the concept domain and its impact on
PBMT. As a first step, we distinguish genre and topic—two different aspects that are
often neglected when defining a domain by its provenance or corpus label—, and we
ask:

RQ1 What impact do genre and topic differences have on PBMT quality?

a. Can we clarify the ambiguous use of the concept domain with regard to
adaptation in PBMT?

b. Which of two intrinsic text properties, topic and genre, presents a larger
challenge to PBMT?

c. To what extent do topic and genre differ with respect to out-of-vocabulary
words and phrases?

We answer RQ1 in Chapter 3 by (i) formulating clearer definitions of the concepts
topic and genre, (ii) introducing a new benchmark set with controlled topic-genre
distributions, and (iii) measuring and analyzing translation performance and model
coverage variations at both the topic and the genre level.

Next, since we find that genre differences pose a large challenge to PBMT, we zoom
in on genres alone. We investigate the impact of genre differences on PBMT in different
language and resource scenarios, and we ask:

RQ2 Is the observed impact of genre differences on PBMT consistent among various
language pairs and data settings?

a. To what extent does the impact of genre differences on PBMT vary among
language pairs?

b. To what extent can differences in PBMT performance among genres be
explained by the proportion of genre-specific resources?

We answer RQ2 in Chapter 4 by (i) automatically harvesting parallel training data for
four genres in four language pairs, and (ii) analyzing correlations between translation
performance and the proportion of language- and genre-specific resources.

After disentangling the concepts of genre and topic and analyzing their respective
impact on PBMT, we move to adaptation. Most existing domain adaptation approaches
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rely on the availability of domain labels for both the training and the test data. While
this is a realistic assumption in controlled research scenarios, such labels may not
be available when users consult a commercial MT system, or when (training) data is
harvested from the web. In addition, even if all used corpora have known origin, genre,
and topic, MT quality may still benefit from automatic detection of relevant data rather
than relying on manually assigned labels. To address these issues, we investigate how
to improve adaptation when corpus information is not available for the test data, the
training data, or both. We therefore ask:

RQ3 How can we adapt PBMT systems to different genres without relying on explicit
corpus labels?

a. Can we successfully adapt PBMT systems using automatic genre classifiers?

b. Can we successfully adapt PBMT systems using textual indicators of genre?

c. Can we successfully adapt PBMT systems using LDA features?

We answer RQ3a in Chapter 4 by incorporating automatic genre classifiers into an
end-to-end PBMT pipeline. We answer RQ3b and RQ3c in Chapter 5 by modifying a
relevance weighting approach for domain adaptation such that it uses textual features
or latent Dirichlet allocation (LDA) features rather than manually assigned subcorpus
labels.

Part II. Translating and analyzing informal language

A genre that is particularly interesting in an era of increasing use of the Internet is
user-generated (UG) data. While this term can be used to cover a variety of sub-genres,
all UG texts have in common that they have been written by a lay-person, as opposed
to a journalist or professional author, and that they have not undergone any editorial
control. Consequently, most UG data is difficult to translate correctly. To gain a better
understanding of the challenges of PBMT for UG data, we conduct a series of analyses
on various UG benchmarks and ask:

RQ4 How is translation quality of PBMT influenced by different types of user-generated
text?

a. What are the most common error types for various UG genres?

b. To what extent do PBMT errors differ for different types of UG text and
between UG text and news?

c. What are promising strategies to improve PBMT for UG genres?

We answer RQ4 in Chapter 6 by (i) quantitatively comparing PBMT performance of
five UG benchmarks and two news data sets, and (ii) qualitatively analyzing common
error types for these benchmarks.

An interesting informal genre that has only rarely been used in PBMT research,
is conversational text. Conversations, or dialogues, involve—by definition—multiple
speakers, and are thus noticeably different from more formal texts that are typically
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written by a single writer with a single goal. Different speakers likely have different
intentions and language use, demanding system adaptation at fine-grained levels of
dialogue-specific aspects, such as speakers, speaker gender, dialogue acts and register.
We study the impact of these aspects on PBMT quality and their potential to serve as
indicators for adaptation by asking the following question:

RQ5 What impact do dialogue-specific aspects have on translation quality?

a. To what extent does PBMT quality vary between different speakers, speaker
genders, dialogue acts and register?

b. Which dialogue aspects are most indicative for PBMT quality?
c. Can automatic annotations of dialogue-specific aspects benefit adaptation

for PBMT?

We answer RQ5 in Chapter 7 by (i) automatically extracting utterances from movie
dialogues and annotating these utterances with speaker, speaker gender, dialogue act
and register information, (ii) measuring translation quality variations for each of these
aspects, and (iii) adapting PBMT systems to different dialogue acts and register levels.

Part III. Domain adaptation for neural machine translation
Finally, as research in MT is rapidly moving from PBMT to NMT, we are interested
in how domain adaptation methods and findings from PBMT generalize to NMT.
Compared to PBMT, research in domain adaptation for NMT is still in its infancy.
We therefore start with a well-established PBMT method for domain adaptation, and
investigate its applicability to NMT. The chosen method (Axelrod et al., 2011) performs
data selection based on the training data’s similarity to the domain of interest, and does
not depend on the presence of corpus labels in the training data. For PBMT, this type of
data selection improves domain-specific translation while simultaneously speeding up
training. It would therefore be desirable if (a variant of) this method also succeeds for
NMT. In summary, we ask:

RQ6 To what extent and how can we successfully apply data selection for domain
adaptation in NMT?

a. How does a state-of-the-art data selection approach perform when applied
to PBMT and NMT?

b. Can we improve upon state-of-the-art data selection for NMT by dynami-
cally changing the selected data subsets during training?

We answer RQ6 in Chapter 8 by (i) comparing the performance of a state-of-the-art
domain adaptation method for PBMT and NMT, and (ii) proposing two novel techniques
to improve upon the existing approach for domain adaptation for NMT.

1.2 Main contributions

This thesis contributes at various levels to research in MT. Here we summarize the main
algorithmic and empirical contributions, as well as the constructed resources.
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Algorithmic contributions

Measuring model coverage: In Chapters 3 and 6 we propose and apply a method to
measure PBMT model coverage for a given test set. Rather than only counting
out-of-vocabulary (OOV) words, our metric covers source phrase recall, target
phrase recall and source-target phrase pair recall for phrases and phrase pairs of
any length.

Harvesting parallel data: In Chapter 4 we describe our step-by-step approach to
automatic harvesting of parallel corpora from the web. This method is designed
such that it can easily be used for a large number of web sources.

Genre adaptation using text features: In Chapter 5 we propose a way to improve
upon an existing adaptation approach by replacing its dependency on subcorpus
information with textual indicators of genre. The new method can be applied to
any training corpus, even if it is not known from where the data originates.

Automatic detection and annotation of movie dialogues: In Chapter 7 we propose
a procedure to (i) detect utterances and utterance boundaries from movie sub-
titles, and (ii) automatically annotate these utterances with speaker and gender
information, dialogue acts and register levels.

Dynamic data selection for NMT: In Chapter 8 we propose dynamic data selection
for NMT, for which we introduce two variants: sampling and gradual fine-tuning.
Both techniques vary the size or composition of the selected subset of a parallel
training corpus between training epochs. While sampling yields varying results,
gradual fine-tuning performs substantially better than static data selection.

Empirical contributions

Genre and topic differences in PBMT: In Chapter 3 we formulate clear definitions
of the notions genre and topic, which together make up a domain. The definitions
are based on research literature in the fields of text analysis and classification.
Next, we show that genre differences pose a larger challenge to PBMT than
topic differences, and that this difference can be largely attributed to poor model
coverage.

Resources versus language pairs: In Chapter 4 we show that PBMT quality differ-
ences between genres generalize to a large degree across language pairs, and that
these differences can partially be explained by the proportion of genre-specific
bilingual resources in the training data.

Genre adaptation using automatic classifiers: In Chapter 4 we show that PBMT
quality for a test set comprising a mixture of genres can be improved substantially
when employing genre classifiers that route each test document to the most ap-
propriate genre-specific PBMT system. We compare various types of classifiers
and feature sets, and show that using a support vector machines (SVM) classifier
in combination with bag-of-words (BOW) features performs best on this task.
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Comparing user-generated (UG) data sets: In Chapter 6 we show that different types
of UG data exhibit different PBMT errors, but also that there are some common
patterns among various UG test sets. For example, we find that UG data is
translated with shorter phrases than news, which can likely be explained by poor
bilingual model coverage.

Analyzing dialogue aspects: In Chapter 7 we show that BLEU fluctuations between
speakers, speaker genders, dialogue acts and register values are more prominent
than randomly expected, and that these aspects can be used to successfully adapt
PBMT systems.

Static data selection for PBMT and NMT: In Chapter 8 we show that a state-of-the-
art data selection method that works consistently well for PBMT is much less
effective for NMT, requiring much larger selections to achieve similar results.

Resources

Gen&Topic data set and OOV annotations: In Chapter 3 we introduce an Arabic-
English development and test set, the Gen&Topic benchmark, which have con-
trolled topic-genre distributions. In addition, we annotate observed OOVs in
the Gen&Topic test set according to an OOV taxonomy distinguishing five main
OOV classes.

Web-harvested parallel genre bitexts: In Chapter 4 we introduce new parallel train-
ing, evaluation and test data covering four genres (colloquial, editorial, news,
and speech) for four language pairs (Arabic-English, Bulgarian-English, Chinese-
English, and Persian-English).

Movie dialogue data set: In Chapter 7 we introduce a data set covering five language
pairs with utterances extracted from movie subtitles. All utterances are annotated
with speaker, speaker gender, dialogue act, and register labels.

1.3 Thesis overview

After this introductory chapter, the remainder of this thesis consists of a background
chapter (Chapter 2), six research chapters (Chapters 3–8) covering three research
themes, and a concluding chapter (Chapter 9). Below we present a high-level overview
of the main content of each of these chapters. Each part covering a research theme is
self-contained and can be read without knowledge of the other parts.

Chapter 2: Background provides an introduction to the two MT paradigms used in
this thesis: phrase-based MT (PBMT) and neural MT (NMT). For both paradigms,
we briefly discuss the core models, the training data needed, and the learning and
optimization strategies we employ. Moreover, we describe the basic experimental
settings for our in-house PBMT system Oister and NMT system Tardis.
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Part I. The role of genres in phrase-based machine translation

In the first part of this thesis we shed light on the concepts domain, genre, and topic,
and we introduce two methods for genre adaptation.

Chapter 3: Genre and Topic Differences in PBMT disentangles the concepts genre
and topic and studies their respective impact on PBMT quality. We first introduce
clear definitions of both concepts, then present the Gen&Topic benchmark, which
has controlled topic-genre distributions, and finally use this data set to perform an
extensive analysis of word and phrase pair coverage for different genres as well
as topics.

Chapter 4: Genre Adaptation Using Automatic Classifiers introduces genre adap-
tation using automatic genre classifiers. To this end, we first describe our efforts
to harvest from the web large amounts of parallel data in four genres and four
language pairs. After further analyzing the impact of genre differences on PBMT
quality, we train genre classifiers which accurately classify our test documents in
five languages. Finally, we incorporate these classifiers into an end-to-end PBMT
pipeline for successful genre adaptation.

Chapter 5: Genre Adaptation Using Text Features introduces genre adaptation us-
ing textual features and LDA. We improve upon an existing domain adaptation
approach by replacing its dependency on subcorpus information with textual
indicators of genre.

Part II. Translating and analyzing informal language

In the second part of this thesis we analyze the impact of informal language such as
found in SMS messages, user comments or dialogues on PBMT quality.

Chapter 6: Translating and Analyzing User-Generated Data analyzes the PBMT
errors for five types of user-generated (UG) genres, both quantitatively and
qualitatively. Concretely, we compare five UG and two news data sets, to discover
both differences and consistencies among various types of UG data. For this
study, we introduce novel error analysis measures and adopt existing ones.

Chapter 7: Translating and Analyzing Fictional Dialogues analyzes the impact of
conversational aspects on PBMT quality. First, we create a movie dialogue
corpus by annotating parallel subtitles with speaker, speaker gender, register,
and dialogue act information. Next, we study to what extent translation quality
differs for each of these aspects. Finally, we investigate whether PBMT benefits
from a simple adaptation approach at fine-grained dialogue-specific levels.

Part III. Domain adaptation for neural machine translation

In the third part of this thesis we address domain adaptation for NMT. Here we ignore
more fine-grained aspects of domains since adaptation for NMT is still in its infancy.
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Chapter 8: Dynamic Data Selection for NMT investigates the effectiveness of a state-
of-the-art data selection method for domain adaptation for both PBMT and NMT,
and introduces two variants of dynamic data selection to make data selection
profitable for NMT.

Finally, we summarize findings from all three research themes in the concluding chapter:

Chapter 9: Conclusions concludes this thesis by recapitulating the research questions
and their respective answers. We also reflect on interesting future research
directions and on what NMT can learn from findings in PBMT and findings in
this thesis.

1.4 Origins

The research presented in Chapters 3–8 of this thesis is based on a number of peer-
reviewed publications. Below we indicate the origins of each chapter and we specify
the roles of the authors.

Chapter 3 is based on van der Wees, Bisazza, Weerkamp and Monz (2015c), What’s
in a Domain? Analyzing Genre and Topic Differences in Statistical Machine
Translation, published in ACL 2015 (Short Papers). Van der Wees created the
Gen&Topic data set and designed and carried out the MT experiments. Bisazza
performed the manual analysis of unseen Arabic words. All authors contributed
to the text.

Chapter 4 is based on technical project reports and comprises work on harvesting
parallel corpora from the web, learning to classify texts by genre, and adapting
PBMT systems using automatic genre classifiers. Van der Wees designed the
methods, performed the experiments, and wrote the text in this chapter.

Chapter 5 is based on van der Wees, Bisazza, and Monz (2015b), Translation Model
Adaptation Using Genre-Revealing Text Features, published in the Second Work-
shop on Discourse in Machine Translation (DiscoMT 2015). Van der Wees
designed the methods, performed the MT experiments and wrote most of the text.

Chapter 6 is based on van der Wees, Bisazza, and Monz (2015a), Five Shades of Noise:
Analyzing Machine Translation Errors in User-Generated Text, published in the
First Workshop on Noisy User-generated Text (W-NUT 2015). Van der Wees
designed the methods, performed the PBMT experiments and wrote most of the
text. Bisazza manually analyzed the Arabic examples. This paper was awarded
the best paper award at the workshop.

Chapter 7 is based on van der Wees, Bisazza, and Monz (2016a), Measuring the
Effect of Conversational Aspects on Machine Translation Quality, published in
COLING 2016. Van der Wees created the annotated movie dialogues corpus,
designed and performed the MT methods and experiments and wrote most of the
text.
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Chapter 8 is based on van der Wees, Bisazza, and Monz (2017), Dynamic Data
Selection for Neural Machine Translation, published in EMNLP 2017. Van der
Wees developed the methods, performed the PBMT and NMT experiments and
wrote most of the text.

Finally, work in this thesis benefits from results published in van der Wees, Bisazza,
and Monz (2016b), A Simple but Effective Approach to Improve Arabizi-to-English
Statistical Machine Translation, published in the Second Workshop on Noisy User-
generated Text (W-NUT 2016). For this work, an Arabizi (i.e., Romanized Dialectal
Arabic) transliteration software component and an Arabizi-English parallel data set
were released.
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Background

In this chapter we discuss the two machine translation (MT) paradigms that are used in
this thesis: phrase-based machine translation (PBMT, Section 2.2) and neural machine
translation (NMT, Section 2.3). Both are statistical approaches to automatic translation,
in which the models are generated from large amounts of data using machine learning
techniques. Since the training data is an essential ingredient for building statistical
models, we first devote Section 2.1 to describing this data. Finally, in Section 2.4 we
detail the main experimental setup used in the research chapters of this thesis.

Naming conventions. Statistical machine translation is generally referred to as SMT
and includes a number of approaches such as PBMT, hierarchical MT (Chiang, 2007),
and syntax-based MT (Zollmann and Venugopal, 2006). Throughout this thesis we
focus on the SMT paradigm of PBMT, which is one of the most widely used approaches.
While NMT is also a statistical approach to MT, it is typically not referred to as SMT.
To maximize clarity, we use in this thesis the terms PBMT and NMT when explicitly
addressing phrase-based or neural MT, respectively. We only refer to (S)MT when
making general statements about (statistical) machine translation.

2.1 Parallel and monolingual corpora

Both PBMT and NMT are data-driven and statistical: their model components are
trained on large collections of data in a statistical manner. Since the goal of MT is to
automatically translate text in a source language (e.g., German) into a target language
(e.g., English), the most important input data comprises example translations between
the two languages of the language pair of interest. A collection of such example
translations is called a parallel corpus or bitext. Typically, example translations in
a bitext are paired at the sentence level, yielding parallel sentence pairs. How many
sentence pairs are needed for good translation results depends to a large extent on the
language pair and the nature of the data, but a complete bilingual training corpus often
contains hundreds of thousands up to several millions of sentence pairs (Bojar et al.,
2013, 2014, 2015, 2016).

Besides quantity, SMT performance is very dependent on the quality of the training
data and its suitability for the translation task of interest. Regarding quality, optimal
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parallel corpora consist of professional translations, however these are expensive and
often not easy to obtain. Professionally translated corpora are limited to parliamentary
proceedings such as Europarl (Koehn, 2005) or the Canadian Hansard corpus,1 and a
number of smaller corpora available through the Linguistic Data Consortium (LDC).2
If one wishes to translate texts of a different nature, it is not uncommon to use non-
professional or even automatic translations that are of lower quality but more relevant
for the translation task (Bertoldi and Federico, 2009; Sennrich et al., 2016b).

While parallel corpora are a necessary input to train any type of SMT system,
PBMT systems also employ monolingual corpora. Such corpora contain texts in the
target language and are used to increase the fluency of the output translations. Since
monolingual corpora do not require manual translations, they are much more abundant
and easier to obtain than parallel corpora. A typical monolingual corpus used for PBMT
easily contains over a hundred million sentences (Bojar et al., 2013, 2014).

2.2 Phrase-based machine translation

Phrase-based machine translation (PBMT) has been the state-of-the-art approach to
automatic translation since the early 2000s (Koehn, 2009). As the name suggests,
phrase-based MT uses phrases as its main translation units. Phrases are contiguous
sequences of words, usually up to a pre-defined maximum number of words, that do not
need to have linguistic coherence but instead appear in the training bitext. This is for
example illustrated in Figure 2.1b, where valid extracted phrase pairs include ‘animals
are in $ Tiere leben in’ and ‘are in the $ leben in den’.

The PBMT approach uses a log-linear combination of several models capturing
different aspects of translation: The translation model takes care of the translation
options, the reordering model deals with word order differences between the source
and the target language, and the language model ensures fluency of output translations.
Below we discuss each of these models (§2.2.2–2.2.4), followed by an explanation
of their parametrized log-linear combination used for translation (§2.2.5). In the next
section, we first tackle the tasks of word alignment and phrase extraction, which are
necessary steps for the creation of translation and reordering models.

2.2.1 Word alignment and phrase extraction

Given a parallel training corpus, the first goal is to discover which words are translations
of each other. This is done by automatically inferring hidden ‘links’ between words in
the source and target language, called word alignments. Even if one would have access
to a traditional dictionary, two challenges complicate the process of inferring word
alignments: First, words are inherently ambiguous and can often translate into various
words in another language, depending on the context. Second, sentences in different
languages often differ in their word order, making word alignment a non-monotonic
process and dramatically increasing the number of possible alignment links.

1LDC corpus number LDC95T20.
2
https://www.ldc.upenn.edu/
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a) German-English symmetric word alignment

meisten tiere leben in den ozeanendie

of the animals are in the oceansmost

die meiste inmost of the in
tiere in theanimals in den

tiere leben in the oceansanimals are in den ozeanen
tiere leben in theanimals are in den

leben the oceansare den ozeanen
leben in oceansare in ozeanen

leben in the are in the

b) Extracted phrase pairs up to phrase limit 3

Figure 2.1: a) German-English sentence pair with its word alignment. b) the sentence pair’s
extracted phrase pairs using a phrase limit of 3. Note that for example the translation ‘meiste
$ most’ cannot be extracted from this particular sentence pair since both words have alignment
links with other words and would thus violate the consistency constraints.

Word alignment is typically done using IBM models 1–5 (Brown et al., 1993) and
HMM-based alignment (Vogel et al., 1996), which create one-to-many alignments in
two language directions (source-target and target-source). Search for the most plausible
alignment links for each direction is done using the Expectation Maximization (EM)
algorithm (Dempster et al., 1977). Merging both alignments results in a single symmetric
many-to-many alignments, in which words can also stay unaligned. A common method
of merging alignments and adding neighboring unaligned words is the grow-diag-final-
and heuristic (Koehn et al., 2005). Word alignment quality depends on reliable statistics
and is usually poor when using insufficient amounts of training data. An example of a
word alignment for a German-English sentence pair is shown in Figure 2.1a.

Next, from the symmetric word alignments we can extract source-target phrase
pairs. In the phrase extraction process, all phrase pairs that are consistent with the word
alignment are collected. To be consistent, a candidate phrase pair (i) only includes
consecutive sequences of words maintaining their original order, (ii) contains at least
one word alignment link, and (iii) has no alignment links with words outside of the
phrase pair. Figure 2.1b illustrates all the phrase pairs that can be extracted from the
word alignment in Figure 2.1a. Once all phrase pairs for a given bitext have been
collected, we can compute each phrase pair’s translation and reordering probabilities,
which we discuss in the next two sections.

2.2.2 Translation models

Translation models, also called phrase tables, can be considered as large dictionaries
containing phrase translations with their corresponding translation probabilities. These
probabilities are estimated by counting and normalizing occurrences of phrase and word
pairs in the training bitext. Formally, the conditional probability of translating source
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phrase ¯f into target phrase ē is estimated as the relative frequency of joint counts:3
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is the joint count of ē and ¯f in the training bitext, and c (ē) is the total
count of ē. Phrase translation probabilities for the inverse translation direction p
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can be computed similarly.
Unfortunately, phrase translation probabilities can be unreliable, especially for

infrequent phrases. To overcome this problem, it is common to decompose phrase pairs
and compute lexical translation probabilities for the aligned words within a phrase pair
(Koehn et al., 2003). Lexical translation probabilities are estimated as:
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given its aligned source word f
j

, computed following
(2.1). Inverse lexical translation probabilities are computed similarly.

While phrase and lexical translation probabilities are the core components of trans-
lation models, it is common to also include a word penalty and a phrase penalty. These
are factors that encourage a bias towards using either fewer or more words or phrases,
respectively, during translation. The word penalty factor ! favors the use of fewer
words, i.e., shorter translations, if ! < 1 and more words, i.e., longer translations, if
! > 1. The phrase penalty factor ⇢ favors the use of fewer phrases, i.e., longer average
phrase length, if ⇢ < 1, and more phrases, i.e., shorter average phrase length, if ⇢ > 1.
Word and phrase penalties do not depend on the actual phrase pairs, but are general
system features.

Besides word and phrase translation probabilities, other features can be added to
translation models. In Chapter 5, for example, we add features capturing phrase-pair-
specific information used for genre adaptation.

2.2.3 Reordering models

Like translation models, reordering models contain source phrases with their potential
translations in the target language. However, rather than providing information on
which translation to generate, reordering models contain information on the order in
which phrase translations should be generated. Each phrase pair in the reordering
model contains probabilities for its orientation with respect to the previous and the next
phrase, considering three orientation types: monotone, swap, and discontinuous. It is
common to use lexicalized reordering models (Tillmann, 2004), in which the orientation
probabilities are conditioned on the actual phrases and their counts in the training bitext.

Besides orientation probabilities, reordering behavior of PBMT is also affected by
the distortion cost and the distortion limit (Berger et al., 1996). The distortion cost adds

3It is historically common to denote the two languages of a language pair with F (for foreign or French)
and E (for English), indicating the source and target, respectively.
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a penalty for the length of each non-monotonic reordering, and the distortion limit indi-
cates the maximum length of a non-monotonic ‘jump’ to allow during translation. This
limit helps reducing translation complexity but also forbids long-distance reorderings,
which is undesirable for some language pairs. A comprehensive survey on reordering
models is provided by Bisazza and Federico (2016).

2.2.4 N-gram language models
The language model (LM) is the only PBMT model trained on monolingual data. By
observing word and phrase counts in a large monolingual corpus in the target language,
the LM estimates probabilities reflecting the likelihood of a sequence of words to
be uttered by a fluent English speaker. While their main function in PBMT is to
ensure fluency of output translations, they also help making translation and word order
decisions. A good LM favors (i) correct word order over incorrect word order:

pLM (the cat meows) > pLM (the meows cat),

and (ii) common word combinations over rare word combinations:

pLM (the cat meows) > pLM (the cat barks).

The language models used in PBMT are usually n-gram LMs, modeling contiguous
sequences of words up to length n. In n-gram LMs, probabilities are estimated from
n-gram counts in the training corpus. For example, for a trigram LM, we estimate the
likelihood of observing word w3 directly after observing words w1 and w2 as follows:

p (w3 | w1, w2) =
c (w1, w2, w3)P
wi

c (w1, w2, wi

)

, (2.3)
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w
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” in the training corpus.
To compute the probability of an entire sentence s, the LM multiplies the observed
probabilities4 of each word given its history of n� 1 words:

p (s) =

|s|+1Y

i=1

p (w
i

| w
i�n+1, . . . , wi�1) . (2.4)

LM probabilities also include the tokens hsi and h/si, indicating the beginning and end
of a sentence, respectively. Using these, an LM can estimate the likelihood of a given
word to start or end a sentence.

The above equations ignore an important problem: If a given n-gram in the output
sentence under translation has never been observed in the training corpus, its LM prob-
ability equals zero, making the probability of the entire sentence zero as well. This
problem is typically solved by backing off to lower order n-grams and by applying
smoothing techniques that add a small probability mass to unseen events. A compre-
hensive empirical comparison of LM smoothing techniques is presented by Chen and
Goodman (1999).

4To avoid having to compute extremely small numbers, it is in practice more common to add up negative
log-probabilities rather than to multiply probabilities.
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2.2.5 Decoding and the log-linear model

Decoding is the process of finding the best automatic translation of an incoming source
sentence. During decoding, the PBMT system (or decoder) uses a parametrized log-
linear combination (Och and Ney, 2002) of the different models discussed in the
previous sections. Formally, the aim of the decoder is to find the most probable target
sentence ˆE given a source sentence F by scoring possible translation hypotheses:

ˆE = argmax

E,a

exp

nX

i=1

�
i

h
i

(F,E, a) . (2.5)

Here, a is a latent variable representing phrasal alignments between F and the translation
hypothesis under consideration E, h

i

(F,E, a) are n feature functions, and �
i

their
corresponding feature weights. Typically, feature functions are the log-probabilities of
the above discussed translation, reordering and language models as well as the features
word penalty, phrase penalty, and distortion cost.

Parameter optimization

Finding the optimal values for the feature weights �
i

is done during parameter opti-
mization, commonly referred to as tuning. During tuning, translations are generated for
a held-out or development data set, and compared to the set of reference translations
of this development set, thus directly optimizing translation quality. Two of the most
common parameter optimization techniques are minimum error rate training (MERT,
Och (2003)) and pairwise ranking optimization (PRO, Hopkins and May (2011)). The
final set of feature weight values is highly dependent on the nature of the development
set. It is therefore common practice to use a development set that is representative of
the translation task in terms of vocabulary and style. Using a development set that
differs too much from the desired translation task likely results in decreased translation
performance.

Decoding process

The actual decoding process consists of (i) decomposing the source sentence into phrases
that occur in the phrase table, (ii) finding a suitable translation for each source phrase,
and (iii) placing these phrase translations in the optimal order. For each sentence there
are many different phrase segmentations, many translation options, and many reordering
possibilities. Searching through the entire space of possible translation hypotheses to
find the single best translation is computationally infeasible, and PBMT decoding has
been shown to be NP-complete (Knight, 1999). PBMT decoding is therefore performed
by approximate search methods employing a number of different techniques, which we
discuss below and illustrate with a translation example in Figure 2.2.

Translation hypotheses are generated from left to right. Starting from an empty
hypothesis, phrase translations can be added for different phrase segmentations of the
source sentence. Note that the source sentence does not have to be processed from
left to right: phrases can be reordered provided that the distortion limit constraint is
never violated. During the decoding process, a coverage vector keeps track of which
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most

the

most of the

the most

most of the

the most animals

most of the animals

most of the animals

most of the animals

most

the the most

most of the

the most animals

most of the animals

Figure 2.2: Example of PBMT stack decoding. Top: translation hypothesis expansion of the
German input sentence ‘Die meisten Tiere leben in den Ozeanen’. The coverage vector indicates
which source words have been translated. Bottom: recombination of identical partial hypotheses
(light arrows). Typically, hypotheses with more (and shorter) phrase translations are discarded.

source words have been translated so far, and ensures that eventually each source word
is translated exactly once (Nießen et al., 1998). Each partial hypothesis is stored in a
stack together with other hypotheses with the same number of translated source words
(Tillmann et al., 1997).

To increase search efficiency, similar translation hypotheses with a different con-
struction history (e.g., different phrase segmentations) can sometimes be merged, a
process called recombination (Zens et al., 2002). The idea behind recombination is
that a hypothesis with a lower probability than another hypothesis that is identical from
a search perspective can never become the best-scoring hypothesis anymore, and can
thus be discarded. Two partial hypotheses can be recombined if they meet a number
of criteria: the hypotheses must have (i) identical coverage vectors, (ii) the same last
n� 1 words (such that the language model cannot distinguish the two hypotheses), and
(iii) the same position of the most recently translated phrase (such that the reordering
models cannot distinguish the two hypotheses).

Unfortunately, recombination alone cannot sufficiently decrease decoding com-
plexity. Another, more radical solution to decreasing the search space is to prune
out hypotheses that are not considered good enough (Wang and Waibel, 1997). This
is done, for example, by only allowing a maximum number of hypotheses per stack
(histogram pruning), or by discarding hypotheses whose probability is more than a
threshold ↵ times worse than the best hypothesis in the same stack (threshold pruning).
Pruning-based decoding is also referred to as beam search since it resembles a beam of
light shining on the best hypothesis and only illuminating other hypotheses that are in
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close vicinity of the best one. In beam search, the beam width is used ambiguously to
indicate either the number of hypothesis to keep or the pruning threshold ↵ to use.

Pruning does not come without risks. Based on partial translations, one could prune
out hypotheses that may eventually have been extended to the optimal translation. This
risk to make search errors is exacerbated by the fact that partial hypotheses in the same
stack can have different coverage vectors and that some partial translations may have
used easier phrase segmentations than others. The second stack in Figure 2.2 shows an
example of two hypotheses in the same stack with different spans of translated source
words. When deciding which hypotheses to prune, we do not only want to consider the
probability score of the hypothesis, but also its expected future cost. Since computing
the exact future cost is computationally intractable, we instead estimate how difficult the
remaining part of the sentence is to translate. Typically this is done using an optimistic
combination of the translation and language model scores for the phrases still to be
translated. Detailed explanations and derivations of future cost estimation and all other
discussed models are provided by Koehn (2009).

2.3 Neural machine translation

End-to-end neural machine translation (NMT) is a novel machine translation paradigm
in which translation is performed by a neural network (Kalchbrenner and Blunsom,
2013; Sutskever et al., 2014; Bahdanau et al., 2014; Cho et al., 2014b). Also known
as the encoder-decoder framework, this complex neural model performs translation as
a bilingual language modeling task predicting output words one by one. To this end,
it first encodes a source sentence as a vector and then decodes this vector to an output
sentence in the target language. Unlike in PBMT, no explicit modeling of reordering,
phrase segmentation, or word alignment is needed in NMT, making it a conceptually
simpler MT paradigm.

In this section we first discuss at a high level the basic components of an NMT
system: word embeddings (§2.3.1), recurrent neural language models (§2.3.2), the
encoder-decoder architecture (§2.3.3), and the attention mechanism (§2.3.4). Next,
we explain how to train and optimize an NMT system (§2.3.5) and how to use it for
translation (§2.3.6).

2.3.1 Word embeddings and vocabulary size

Unlike PBMT, which uses a large monolingual corpus for language modeling, NMT
requires as its training data only a parallel corpus. Starting from this bitext, the first
step is to convert both the source and the target tokens to numerical representations.
This is done using word embeddings, which represent words as vectors of real numbers,
based on the observed contexts of a word in the training corpus (Collobert et al., 2011).
In theory, elements in the embedding vectors can reflect certain aspects of words, for
example a word being feminine or masculine. While in practice it is rare for vector
elements to have this kind of intuitive meaning, words with similar characteristics
typically have similar embedding vectors. We can even perform arithmetic operations
with embedding vectors (Mikolov et al., 2013b; Levy and Goldberg, 2014).
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While word embeddings can be pre-trained on monolingual corpora (Mikolov et al.,
2013a; Pennington et al., 2014) before being used for translation, most end-to-end NMT
systems learn the embedding vectors as part of the training process (see Section 2.3.5).

For a given training corpus, the number of words in the vocabulary can be extremely
large (easily over a million, depending on the corpus size and the morphological
complexity of the language), with many words occurring only once or a few times. Since
these words are likely to have unreliable statistics, and to reserve some representation
for words that do not appear at all in the training data, it is common to restrict the
vocabulary size to a maximum of V words (commonly between 30K and 80K) and
replace rare words with a special token representing unknown words: hUNKi (Sutskever
et al., 2014).

2.3.2 Recurrent neural language models

The main building blocks of an NMT system are recurrent neural networks (RNNs,
Mikolov (2010)). Like other types of neural networks, RNNs take a numerical input,
apply a non-linear operation in a hidden layer, and predict an output value. However,
unlike simpler (feed-forward) neural networks, RNNs are characterized by having
connections between hidden states of sequentially connected network units, making
them very suitable for modeling sequential events such as strings of words. For example,
RNNs can be used as a language model that predicts the most likely next word given a
sequence of preceding words. In this scenario, the main input of an RNN architecture
are embedding vectors of words, and the predicted output is a probability distribution
over a vocabulary V of words. More formally, at each time step t � 1, the input of the
network’s hidden states h

t

is defined by the embedding vector m
t

of the current word
as well as by the output of the hidden state h

t�1 of the RNN at time step t � 1. The
advantage of this hidden state connection is that information from previous parts of the
sentence is automatically passed on to the next RNN unit, and prediction of each word
can be conditioned on an arbitrarily long history.

RNNs come in different flavors. One of the most commonly used RNNs is the long
short-term memory (LSTM, Hochreiter and Schmidhuber (1997); Gers et al. (2000)).
Compared to the above described general RNN setup, LSTMs explicitly model a
memory. This memory consists of a number of gates that manage the information flow
through the network. Typically, an input gate controls which information to allow into
the memory, an output gate controls which information that is stored in the memory
to use, and a forget gate controls which information to keep in memory and which to
forget. Thanks to their memory architecture, LSTMs are superior to standard RNNs
(and even more so to feed-forward neural LMs or n-gram LMs) in capturing semantic
and syntactic long-distance dependencies (Neubig, 2017).

2.3.3 Encoder-decoder models

The encoder-decoder framework used for end-to-end NMT is similar to the above
described LSTM (Sutskever et al., 2014). However, instead of computing the probability
p (E) of sentence E, NMT models the probability p (E | F ) of target sentence E given
source sentence F .
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A schematic overview of an encoder-decoder model is shown in Figure 2.3. As
suggested by the name, this model consists of two components: an encoder and a
decoder. The encoder processes an incoming source sentence F word by word. Each
word is converted to an embedding vector before being fed as input to the network. In
addition, hidden states capturing information of previous words are passed on to the
current time step, and when the entire source sentence has been processed, the last
hidden state contains information about the entire sentence. It is common practice
to encode the source sentence in reverse order such that the first word of the source
sentence is remembered most clearly by the network, which has been shown to improve
translation quality (Sutskever et al., 2014; Luong et al., 2015a). The intuitive explanation
is that for many language pairs the beginning of the source sentence is likely the most
relevant part for translating the beginning of the target sentence. However, if the word
ordering between the source and target language is very different, it is more beneficial
to use a bidirectional encoder (Bahdanau et al., 2014).

The second component of the NMT architecture, the decoder, takes as its input the
last hidden state of the encoder and an embedding vector for the special start-of-sentence
token hsi. The network then computes conditional probabilities5 over words in a fixed
target language vocabulary e 2 VE :

p
�
e
t

| et�1
0 ;F

�
. (2.6)

For each time step t, the probabilities over VE depend on the history of predicted
target words and on the complete source sentence. Decoding stops when a special
end-of-sentence token h/si is generated.

State-of-the-art encoder-decoder models contain multiple (typically four) layers
of stacked LSTMs, yielding more powerful models than single-layer LSTMs. The
observed improved performance using multiple layers may be explained by the fact
that different layers learn to encode different types of linguistic information (Shi et al.,
2016). Figure 2.3 illustrates a two-layer stacked LSTM.

2.3.4 Attention mechanisms

The NMT architecture discussed so far has an important shortcoming: the hidden state
vectors capturing the source sentence have a pre-determined fixed size, regardless of
the length of the input sentence. As a consequence, the system cannot accurately store
all of the information for long sentences, leading to deteriorated translation quality. In
addition, the encoder-decoder model does not exploit the fact that some source words
are more relevant than others for the prediction of a given target word.

To overcome this limitation, current state-of-the-art NMT systems employ an atten-
tion mechanism (Bahdanau et al., 2014; Luong et al., 2015a), which tells the system
how much to “focus” on each source word when predicting a particular target word.
Concretely, the attention mechanism includes an attention vector ↵

t

that contains scores
representing the similarity of each hidden state of the source sentence h

(f)
j

with the
hidden state of the current target word h

(e)
t

. A common way to compute the attention

5Probabilities are computed using a softmax function over the network output, see Section 2.3.5.
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Encoder Decoder

<s> fear the   enemy of playis

fear the  enemy of play </s>is

spielen vom feind der ist angst

(f)m (f)m (f)m (f)m (f)m (f)m (e)m (e)m (e)m (e)m (e)m (e)m (e)m

Figure 2.3: Schematic representation of an encoder-decoder model with two stacked layers of
LSTMs. The input sentence ‘Angst ist der Feind vom Spielen’ is processed in reverse order.
Circles with m(f) and m(e) represent embedding lookup tables for source and target words,
respectively.

vector is by first computing the dot product of the hidden states of target word e
t

and
source word f

j

:

a
t,j

= h

(e)
t

>
h

(f)
j

. (2.7)

Combining these scores for all source words j 2 {1, . . . ,m} yields a score vector a
t

for time step t. We obtain the attention vector by taking the softmax over a
t

:

↵

t

= softmax (a
t

) . (2.8)

Alternative functions to compute a

t

are discussed by Luong et al. (2015a).
Next, the attention vector is used to derive a context vector c

t

from the hidden
source sentence representations h

j

:

c

t

=

nX

j=1

↵
t,j

h

(f)
j

. (2.9)

This context vector is taken into account when making target word predictions during
translation, which we show in (2.11) in the next section.

Attention has proven a very powerful mechanism, and several variants exist. Some
approaches also use input feeding (Luong et al., 2015a), in which the attentional vector
↵

t

is fed to the input of the next hidden state h

t+1. In fact, it has recently been argued
that ‘attention is all you need’ to achieve competitive translation performance (Vaswani
et al., 2017). While attention resembles traditional word alignment, the two often do
not correspond (Koehn and Knowles, 2017; Ghader and Monz, 2017).
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2.3.5 Training an NMT system
The performance of an NMT system depends to a large extent on the values of the model
parameters. While in PBMT it is common to first train the various model components
and then optimize their feature weights, NMT training consists of directly optimizing
all parameters on the training bitext. When the basic model architecture (e.g., number
of layers, embedding vector size, hidden state vector size) has been determined, the only
task is to find the optimal set of parameter values. However, the number of parameters
in NMT is extremely large, requiring advanced optimization techniques.

Model parameters

Like in any type of neural network, the NMT model parameters consist of weight
matrices and bias vectors. For a vanilla RNN encoder-decoder model, hidden unit h

t

at time step t � 1 (each rectangle in Figure 2.3) takes two inputs: an input vector x
t

(arrows pointing up in Figure 2.3) and a hidden state vector h
t�1 (arrows pointing right

in Figure 2.3). It then multiplies x
t

with a weight matrix W
hx

and h

t�1 with a weight
matrix W

hh

, adds a bias vector b
h

, and applies a non-linearity, e.g., a tanh function, to
the resulting vector:

h

t

= tanh (W
hx

x+W
hh

h

t�1 + b

h

) . (2.10)

In the final output layer, we do not compute a hidden state vector, but instead we obtain
a linear score vector by multiplying hidden layer input h

t

and the attention context
vector c

t

with weight matrix W
sh

, before adding bias vector b
s

:

s

t

= W
sh

[h

t

; c

t

] + b

s

. (2.11)

In summary, for the vanilla RNN NMT architecture discussed in this section, the
following high-dimensional sets of parameters need to be optimized: W

hx

2 R|h|⇥N

(N = |m| in the first hidden layer, N = |h| in the next hidden layers), W
hh

2 R|h|⇥|h|,
W

sh

2 R|VE |⇥h, b
h

2 R|h|, and b

s

2 R|VE |. Typically, the embedding size |m| and
hidden layer size |h| are in range 500–2000, and the vocabulary size |VE | is between
30K and 80K. For an LSTM encoder-decoder, similar additional weight matrices exist
for the input, output, and forget gates (see Section 2.3.2).

Training process

NMT training operates in two steps, a forward pass and a backpropagation step (Rumel-
hart et al., 1986). First, in the forward pass, the model computes its output probabilities.
This is done using (2.10) and (2.11), followed by applying a softmax normalization
function to the output vector s

t

to obtain word probabilities over the output vocabulary
at time step t:

p

t

= softmax (s
t

) . (2.12)

Next, since during training we know the actual output word e
t

, we can compute a loss
function, which is the negative logarithm of the output probability of e

t

:

` = � log (p

et) . (2.13)
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The second step of NMT training is the backpropagation step, which takes the loss `
as its input and traverses back through the network, computing gradients with respect
to each set of parameters. Optimization of the model parameters—with the goal of
reducing the loss—is then done by taking a small step in the direction of the gradients.
The size of this step depends on a pre-defined learning rate ⌘ and on the magnitude of
the gradient.

Next, given an updated set of parameter values, we repeat the forward pass and
the backpropagation step, until the loss eventually converges to a stable minimum. A
common method to perform this iterative process is stochastic gradient descent (SGD).

Epochs and mini-batches

Updating the model parameters can be done at different intervals. In the extreme
cases, parameter values are updated after every single training sentence pair (i.e., online
learning) or after observing the entire training bitext (i.e., batch learning). Online
learning converges quickly but is overly influenced by the most recently observed
training examples, while batch learning is slow but more stable. A compromise between
these extremes is mini-batch learning, in which we calculate gradients after observing n
training examples, where typically n 2 [8, 128] sentences.

Even with online or mini-batch learning, NMT training requires iterating over the
training bitext multiple times before converging to a stable minimum. One pass over the
entire training corpus is referred to as a training epoch. In order to avoid overfitting and
to know when to stop training, it is common to measure after every epoch how well the
model performs on an unseen validation set. Typically, the set of parameters yielding
the highest performance (or lowest cross-entropy or perplexity) on the validation set is
selected to use for translation of unseen test data.

2.3.6 Decoding
Similar to PBMT, decoding of an unseen test set is done using beam search, with the
difference that in NMT hypotheses are organized by their actual length rather than by
the number of translated source words. Given a beam width b, only the top b distinct
hypotheses with the highest probability p (E | F ) are kept at any time step. It has been
shown that beam search decoding tends to favor short output translations, which can
be avoided by normalizing the log probability of the sentence under translation for
sentence length (Cho et al., 2014a):

ˆE = argmax

E

log p (E | F )

|E| . (2.14)

Recently, a number of open-source NMT systems have been released: Nematus6

(Sennrich et al., 2017), Neural Monkey,7 OpenNMT,8 and seq2seq.9 All systems have
setups similar to the one described in this section but also include many additional

6
https://github.com/EdinburghNLP/nematus

7
https://github.com/ufal/neuralmonkey

8
https://opennmt.net

9
https://google.github.io/seq2seq/
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features. NMT and sequence-to-sequence modeling are explained in more detail in the
ACL2016 Neural Machine Translation Tutorial10 and by Neubig (2017).

2.4 Experimental setup

In this section we describe the general experimental setup used for the experiments
described in the research chapters of this thesis.

2.4.1 Oister and general PBMT setup

We run all of our PBMT experiments using Oister, an in-house system similar to Moses
(Koehn et al., 2007) and developed in Perl. Unless stated otherwise in the research
chapters, we use the following settings, toolkits and algorithms:

Word alignment of the bitext is performed with GIZA++ (Och and Ney, 2003) in both
directions, generating the symmetric alignments using the ‘grow-diag-final-and’
heuristics. Alignment symmetrization and phrase extraction are done using scripts
from the Moses toolkit.

Translation models include bidirectional phrase translation probabilities up to a maxi-
mum phrase length of 7, and bidirectional lexical weighting features (Koehn et al.,
2003). Phrase and word penalty feature weights are determined automatically
during tuning.

Reordering models all use lexicalized reordering, distinguishing between monotone,
swap, and discontinuous reordering, with respect to the previous and the next
phrase (Tillmann, 2004). We use a distortion limit of 5. The weight of the
distortion cost is determined automatically during tuning.

Language models for the target language are linearly interpolated 5-gram models
trained with modified Kneser-Ney smoothing (Kneser and Ney, 1995; Chen and
Goodman, 1999). We use SRILM (Stolcke et al., 2002) to compute our LMs.

Tuning is done using pairwise ranking optimization (PRO, Hopkins and May (2011)).
During tuning, 14 parameter estimation runs are performed in parallel on differ-
ent samples of the n-best list after each decoder iteration. The weights of the
individual runs are then averaged and passed on to the next decoding iteration.

Decoding is done with threshold pruning and a beam width of 0.1.

2.4.2 Tardis and general NMT setup

We run all of our NMT experiments using Tardis,11 an in-house system similar to
one described by Luong et al. (2015a) and developed in Torch. We use the following
settings:

10
https://sites.google.com/site/acl16nmt/

11
https://github.com/ketranm/tardis
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Word embedding vectors are trained as part of the end-to-end NMT model and have
a size of 1,000. We initialize the embedding values by sampling from a Gaussian
distribution with unit variance.

Encoder-decoder models are four-layer unidirectional LSTMs with layer sizes of
1,000. No input feeding is used, which comes at the cost of optimal translation
quality but allows for a relatively fast realization of large-scale experiments.

Attention is computed using the global attention mechanism with the dot product
function as formulated in (2.7) and described by Luong et al. (2015a).

Parameter optimization is done using stochastic gradient descent (SGD), with a mini-
batch size of 64 and an initial learning rate of 1, which is decayed by a factor two
every epoch after the fifth epoch. All network parameters are uniformly initialized.
In addition, we use dropout with probability 0.3 to prevent the network from
overfitting (Srivastava et al., 2014).

Decoding is done with a beam size of 12 and using sentence length normalization as
described in (2.14).

2.4.3 Evaluation
We evaluate all our translation experiments using the Bilingual Understudy Evaluation
metric, better known as BLEU (Papineni et al., 2002). BLEU is a precision-based
evaluation metric that counts how many n-grams in the translation output of a test set
match with n-grams in one or more human reference translations. To prevent BLEU
from rewarding short sentences that have a perfect match with words in the references,
it also includes a brevity penalty that penalizes short translations. Unless specified
otherwise, we compute case-insensitive BLEU up to and including n-grams of length 4.

We measure statistically significant differences between two experimental outcomes
using approximate randomization (Riezler and Maxwell, 2005), which measures how
many times out of 2,000 random permutations we observe a BLEU difference that is
similar to or larger than the experimental finding. This number is then divided by 2,000
to obtain the p-value of the experiment. We use p  0.05 and p  0.01 to indicate weak
or strong statistical significance, respectively.

2.5 Summary

In this chapter we have given high-level introductions on two common MT paradigms:
phrase-based machine translation (PBMT) and neural machine translation (NMT).
The remainder of this thesis consists of six research chapters. In all chapters we run
experiments and perform analyses using PBMT. In the final research chapter, Chapter 8,
we also use NMT for our experiments. Finally, in Chapter 9 we reflect on future work
and what NMT can learn from findings in PBMT and findings in this thesis.
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Part I

The Role of Genres in
Phrase-Based Machine Translation

The first part of this thesis addresses domain and genre adaptation for PBMT. While
domain adaptation has been an active field of research, the definition of a domain is
often ambiguous, confusing the concepts genre, topic, and provenance. Most previous
work uses in-domain and out-of-domain data that differs at both the genre and the topic
level, making it unclear whether the proposed adaptation methods help deal with topic
or genre differences.

Despite these unclear definitions, many adaptation approaches depend on the avail-
ability of ‘domain’ (i.e., provenance) information in both the training and the evaluation
data. While this dependency is sensible in controlled research scenarios, it also limits the
applicability of the proposed methods. For example, in online scenarios the translation
task is often of unknown origin, hence an MT system can not in advance be adapted to
the task. Even in research settings, provenance labels may not always be available or
may be uninformative, e.g., corpus numbers do not necessarily reflect the most useful
categorization for a specific translation task.

In this research theme we first demystify the concept of a domain by formulating
clear definitions of the two intrinsic text properties genre and topic, before investigating
the impact of both aspects on PBMT quality (Chapter 3). Since we find that genre
differences pose a larger challenge to PBMT than topic differences, we then propose two
methods for genre adaptation. The first method improves translation of a multi-genre
test set by (i) enhancing the bilingual training data with genre-specific resources, and
(ii) automatically classifying the genre of incoming test documents (Chapter 4). The
second method alters an existing weighting approach by relieving its dependency on
subcorpus labels in the training data and instead using intrinsic genre-revealing textual
features (Chapter 5).
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3
Genre and Topic Differences

in Phrase-Based Machine Translation

3.1 Introduction and research questions

Training corpora for statistical machine translation (SMT) are typically collected from a
wide variety of sources and therefore have varying textual characteristics such as writing
style and vocabulary. The test set, on the other hand, is much smaller and usually more
homogeneous. The resulting mismatch between the test data and the majority of the
training data can lead to suboptimal translation performance. In such situations, it is
beneficial to adapt the translation system to the translation task at hand, which is exactly
the challenge of domain adaptation in SMT.

In domain adaptation research, the test data is considered in-domain data, while
(the majority of) the training data is referred to as out-of-domain or general domain
data. However, the concept of a domain itself is not unambiguously defined across
existing domain adaptation methods. Often, different domains correspond to different
subcorpora, in which documents exhibit a particular combination of genre and topic,
and optionally other textual characteristics such as dialect and register. This definition
has two major shortcomings. First, subcorpus-based domains depend on provenance
information, which might not be available, or on manual grouping of documents, which
is labor-intensive and often carried out according to arbitrary criteria.

Second, the commonly used notion of domain neglects the fact that topic and genre
are two distinct properties of text (Lee and Myaeng, 2002; Stein and Meyer Zu Eissen,
2006). Two texts can discuss a similar topic, but using very different styles: a news
article about Nelson Mandela differs substantially in style from a blog post, tweet, or
editorial piece about the same person. Similarly, two news articles, one about sports and
the other about politics, share the same genre but have very different vocabulary. Since
most previous work on domain adaptation for SMT uses in-domain and out-of-domain
data that differ on both the topic and the genre level, it is unclear whether the proposed
solutions help deal with topic or genre differences.

In this chapter we take a step back and first disentangle the concepts topic and genre,
then we analyze and quantify their effect on PBMT, which we believe is a necessary
step towards further improving domain adaptation. Concretely, we ask:
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RQ1 What impact do genre and topic differences have on PBMT quality?

To answer this question, we first need clear definitions of the different aspects that
together make up a domain. To this end, we ask:

RQ1a. Can we clarify the ambiguous use of the concept domain with regard to adapta-
tion in PBMT?

After providing clear definitions of the concepts topic and genre, we introduce a new
annotated benchmark set that has controlled topic and genre distributions. By translat-
ing our new benchmark set with a genre-balanced PBMT system and measuring the
respective translation quality of topics and genres, we ask:

RQ1b. Which of two intrinsic text properties, topic and genre, presents a larger chal-
lenge to PBMT?

Next, we perform a number of quantitative and qualitative analyses to get a deeper
understanding of the differences among topics and genres in the context of PBMT. First,
we introduce new quantitative metrics that compute how well each genre or topic is
covered by the PBMT models. Not only do we evaluate the portion of unknown source
words, but we also compute model coverage of source phrases and source-target phrase
pairs. Together with a manual annotation of observed out-of-vocabulary (OOV) words,
these measures enable us to answer the question:

RQ1c. To what extent do topic and genre differ with respect to out-of-vocabulary words
and phrases?

Organization. This chapter is organized as follows: In Section 3.2 we provide an
overview of existing work on domain adaptation for PBMT. Next, in Section 3.3 we
disentangle the concept domain by providing clear definitions of topic and genre, and
we introduce our new benchmark set with controlled genre and topic distributions, the
Gen&Topic data set. In Section 3.4 we use this new benchmark to quantify and analyze
the impact of different genres and topic on PBMT. Finally, we discuss conclusions and
implications of this work in Section 3.5.

3.2 Domain adaptation for PBMT

Domain adaptation is the task of adjusting or modifying a statistical model learned from
some type of data (the source domain) in such a way that it is useful for another type of
data with a different distribution (the target domain) (Ben-David et al., 2010). Typically,
labeled data for the target domain, i.e., in-domain data, is scarce, yielding models that
are adapted to the target domain but have weak statistical power. On the other hand,
labeled data for the source domain, i.e., out-of-domain data, is usually plentiful. It is
therefore often beneficial to exploit (at least part of) the out-of-domain data in addition
to the available in-domain data.

In the scenario of PBMT, where domain adaptation was first addressed by Langlais
(2002), labeled data consists of parallel corpora, which are only abundant for a few
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Table 3.1: Categorization of domain adaptation strategies for PBMT. Detailed descriptions of
each strategy are provided in the text, in the same order as the listing in this table.

Level of Adaptation Cross-domain or Applicable to
adaptation strategy dynamic adaptation? TM or LM?

Data level
Data selection Cross-domain TM, LM
Data augmentation Cross-domain TM, LM
Data clustering Cross-domain, dynamic TM, LM

Model level

Mixture modeling Cross-domain, dynamic TM, LM
Phrase-table fill-up Cross-domain TM
Feature augmentation Cross-domain TM, LM
Instance weighting Cross-domain, dynamic TM
Word alignment adaptation Cross-domain TM
Domain-specific classifiers Dynamic TM, LM

text types such as news articles and parliamentary proceedings. For other types of text,
parallel translations can be hard to obtain, and the resulting PBMT models are usually
weak. Using large amounts of out-of-domain data, however, is also not optimal due to
differences in writing style and vocabulary between the training and test data.

To address these problems, domain adaptation for PBMT has been an active research
area in recent years. Since this thesis builds upon previous findings and achievements,
we provide in this section an extensive overview of related research in domain adaptation.
To this end, different categorizations of domain adaptation methods can be made. In the
following we group approaches based on whether the main adaptation process takes
place at the data or the model level. However we also distinguish (i) whether the target
domain is known in advance, i.e., cross-domain adaptation, or adaptation is performed
dynamically at translation time, i.e., dynamic adaptation, and (ii) whether adaptation
applies to the language model (LM) or the translation model (TM). Table 3.1 provides a
summary of the main types of adaptation methods.

3.2.1 Domain adaptation at the data level

A straightforward way of adapting a PBMT system to a new domain is by applying data
selection. The goal of data selection is to either select or discard training data based on
their relevance for the domain of interest. Data selection can be applied monolingually
for LM adaptation (Gao et al., 2002; Moore and Lewis, 2010) or bilingually for TM
adaptation (Yasuda et al., 2008; Axelrod et al., 2011; Duh et al., 2013; Cuong and
Sima’an, 2014a; Axelrod et al., 2015; Chen and Huang, 2016). While data selection is
typically performed in a cross-domain adaptation fashion, Hildebrand et al. (2005) vary
the selection size and composition between different test sentences, however this is not
feasible at translation run time since new models have to be trained for each selection.
We further discuss and explore data selection methods in Chapter 8.

Instead of removing irrelevant training data, one can also include additional relevant
training data to adapt a PBMT system. This strategy is applied in data augmentation
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methods, which aim at obtaining or synthesizing parallel in-domain data. In order to
acquire additional bilingual training data, some approaches extract data from in-domain
comparable corpora (Munteanu and Marcu, 2005; Daumé III and Jagarlamudi, 2011;
Irvine et al., 2013b), while others opt for domain-focused web-crawling (Pecina et al.,
2011, 2015). A second data augmentation procedure involves the generation of synthetic
parallel data from in-domain parallel data. These methods use a pre-trained out-of-
domain PBMT system to translate in-domain monolingual data which is then used as
in-domain bilingual training data. Translations can be synthesized from the source to
the target language (Ueffing, 2006; Schwenk, 2008), or from the target to the source
language. The latter has been shown to yield the largest improvements (Bertoldi and
Federico, 2009).

Most of the above approaches rely on the assumption that domain information is
available for the complete training corpus. This is, however, not always a realistic
scenario, especially when data is harvested from the web. Data clustering methods
circumvent this shortcoming by performing automatic clustering of training sentences
(Yamamoto and Sumita, 2008; Sennrich, 2012a; Carpuat et al., 2014) or sentences in
the development set (Sennrich et al., 2013), such that a single system can be adapted to
multiple domains.

3.2.2 Domain adaptation at the model level

Given a certain amount of in-domain (or ‘pseudo in-domain’ if obtained with selection
or augmentation) data, there are several techniques to use this data in the PBMT models.
A common strategy to is mixture modeling (Friedman et al., 2001), in which two or more
TMs or LMs are interpolated using weights representing their respective relevance. The
available in-domain data is used to create PBMT models that are tailored to the given
translation task but have poor coverage, while the out-of-domain data serves to train
large PBMT models with good coverage but low similarity to the domain of interest.
While it is often preferable to use small, specific models rather than large, general
models, even better results can be obtained by interpolating both types of models, either
log-linearly (Koehn and Schroeder, 2007) or linearly (Foster and Kuhn, 2007). The
latter also investigate cross-domain versus dynamic model interpolation and conclude
that for cross-domain adaptation both TM and LM interpolation work well, while for
dynamic adaptation only LM interpolation is profitable. Sennrich (2012b) shows that
mixture modeling can be extended to multiple (4 or 10) translation models by learning
interpolation weights through translation model perplexity minimization.

Another strategy to combine different models is to use domain-specific classifiers
that route an incoming sentence or document to pre-trained domain-specific PBMT
systems (Xu et al., 2007; Banerjee et al., 2010; Song et al., 2011; Wang et al., 2012).
Since such classifiers can make different decisions for different sentences at decoding
time, this is a dynamic adaptation approach. We further discuss and explore this strategy
in Chapter 4.

Next, an alternative model combination approach is the fill-up technique (Bisazza
et al., 2011), a method that starts with an in-domain phrase table (or reordering model),
and extends this with entries from a larger out-of-domain model. An additional feature
indicates whether or not each phrase pair is observed in the in-domain model. The
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benefits of this strategy are confirmed by Haddow and Koehn (2012), who analyze the
effects of adding in-domain data at various training stages, and conclude that the best
results are obtained when using out-of-domain data to improve coverage of rare words.

Related to this are feature augmentation methods, which extend the PBMT models
with additional features, for example by creating domain-specific copies of the original
log-linear feature set, such that adaptation is done automatically during system opti-
mization (Daumé III, 2007; Clark et al., 2012). Cuong et al. (2016) include features
indicating to what extent phrases are domain-specific or phrase pairs are coherent across
domains. Feature augmentation methods have the advantage of being extendable to
multiple domains, albeit at the cost of increased computational complexity.

A large body of work has performed feature augmentation based on the relevance
of specific training data. Such instance weighting methods prioritize bilingual training
instances that are most relevant to the development and test data, by assigning weights
to sentence pairs (Matsoukas et al., 2009) or phrase pairs (Foster et al., 2010; Chen
et al., 2013; Cuong and Sima’an, 2014b). Dynamic variants of this technique typically
use a vector space model (VSM) in which each training phrase pair is represented by a
vector. This vector captures for example the phrase pair’s source context (Costa-jussà
and Banchs, 2011) or latent representations learned with Latent Semantic Indexing
(LSI, Landauer et al. (1998)) (Banchs and Costa-Jussà, 2011). At test time, the cosine
distance between the test sentence under translation and each phrase-pair vector is added
as a feature indicating the phrase pair’s relevance. Instead of computing a similarity
score, Chen et al. (2014) add vector entries based on subcorpus frequencies as direct
features to the phrase table. We further discuss and explore adaptation by means of
instance weighting in Chapter 5.

Finally, word alignment adaptation methods aim at improving domain-specific
word alignments, for example using general-domain and domain-specific translation
dictionaries (Wu and Wang, 2004), by interpolating different word alignment models
(Wu et al., 2005; Civera and Juan, 2007), or by inducing latent sub-domains in a
heterogeneous bilingual corpus (Cuong and Sima’an, 2015). Duh et al. (2010) show
that adding data during word alignment but removing it before phrase extraction can
help decrease lexical translation ambiguity.

3.3 Genre and topic differences in PBMT

The definition of a domain varies across the above described previous work on domain
adaptation and is often imprecise. Typically, domain means ‘different data set,’ and is
therefore a hard-labeled concept that corresponds to provenance or particular topic-genre
combinations. In this chapter, we explicitly note that topic and genre are two distinct
properties of text (Lee and Myaeng, 2002; Stein and Meyer Zu Eissen, 2006). Both
concepts have been mentioned in previous work on domain adaptation, but definitions
are often ambiguous and overlapping. While some work illustrates the challenge of
domain adaptation using vocabulary difference examples, others note that different
domains are characterized by variations in writing style. A few previous efforts have
analyzed the impact of domain adaptation on PBMT (Duh et al., 2010; Haddow and
Koehn, 2012; Irvine et al., 2013a), however these all use subcorpora as domains and
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do not provide any insight in how topic and genre differences affect PBMT. Based on
previous work, it is unclear whether proposed solutions help deal with topic or genre
differences.

3.3.1 Definitions
To allow for a more focussed discussion of the impact of topic and genre on PBMT, we
avoid in this chapter using the ambiguous term domain, and instead focus on the text
properties topic, genre and provenance:

Topic is the general subject of a document. Topics can be determined on multiple
levels, ranging from very broad to more detailed. Examples of topics include
sports, politics, and science, but one could also opt for more fine-grained topics
like football, tennis, and swimming.
Topics are typically associated with vocabulary and word sense differences,
for example illustrated by Hasler (2014) with the French word ’noyau’, which
translates as ‘nucleus’ in scientific topics, as ‘core’ in financial topics, and as
‘kernel’ in technical topics.

Genre is harder to define, as there is no single definition in literature. For example,
Swales (1990) refers to it as a class of communicative events where there is some
shared set of communicative purposes, while Karlgren (2004) calls it a grouping
of documents that are stylistically consistent and intuitive to accomplished readers
of the communication channel in question. Based on previous definitions, Santini
(2004) concludes that the term genre is used as a concept complementary to topic,
covering the non-topical text properties function, style, and text type. Like topics,
genres can also exhibit different levels of granularity (Lee, 2001). Examples of
genres include formal or informal text (high-level), and newswire, editorials, and
user-generated text (low-level).
Genres are typically characterized by stylistic aspects such as writing style, distri-
butions of pronouns and stopwords, and register. For example, informal genres
are more likely to exhibit a casual register, reflected by the use of contractions
(ain’t) or acronyms (LOL meaning laughing out loud).

Provenance indicates the origin of a document, typically expressed by the document’s
collection or subcorpus name. In previous work, provenance is sometimes accom-
panied by manually assigned genre labels, however these may not be available.
In this thesis we use the term provenance and subcorpus interchangeably.

Although in theory any topic and genre can co-occur, some combinations are more
common than others, e.g., technical manuals are more likely to be about smartphones
than about politics. While both topic and genre are intrinsic properties of text, prove-
nance information has to be provided explicitly to be of use for adaptation in PBMT.
Still, most previous work on domain adaptation uses exactly this type of information
to adapt PBMT systems to a specific translation task, see Section 3.2. In this chapter
we disregard provenance information as much as possible, as it is not guaranteed to be
available, and focus on topics and genres.
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3.3.2 Genre and topic adaptation

Topic adaptation for PBMT has been explicitly addressed in recent years (Tam et al.,
2007; Eidelman et al., 2012; Hasler et al., 2012, 2014a,b,c; Hewavitharana et al., 2013;
Su et al., 2015), mostly using topic modeling. These methods assume that in a document
collection, i.e., a parallel or monolingual corpus, a number of latent topics exist, which
are all represented by their most common words. At training time, these topics are
detected using different flavors of latent semantic analysis (LSA, Deerwester et al.
(1990)) or latent Dirichlet allocation (LDA, Blei et al. (2003)), and the resulting topic
probabilities are added as features to the translation model or the language model
(Ruiz and Federico, 2011, 2012). At decoding time, a distribution over the considered
latent topics is inferred for each test document or sentence. Based on this distribution,
adaptation takes place dynamically at the document or sentence level.

Genre adaptation for PBMT has not been studied as extensively as topic adaptation,
and approaches dubbing their contribution ‘genre adaptation’ usually adapt to the
same subcorpora that are used for domain adaptation. One piece of previous work
has explicitly addressed style adaptation of the language model (Bisazza and Federico,
2012). However, this method requires the availability of clearly separable training
corpora, and thus also really adapts to provenance rather than genre.

3.3.3 The Gen&Topic benchmark set

To analyze the impact of genre and topic differences in PBMT, we need a test set where
both dimensions are controlled as much as possible. Unfortunately, currently available
and commonly used benchmarks meet this requirement only to a limited degree. For
instance, while the NIST OpenMT sets do contain documents drawn from two genres,
newswire and web, both genres exhibit a different distribution over topics, i.e., the same
topic might not be equally represented across genres, and vice versa.

To overcome this limitation, we introduce a new Arabic-English parallel benchmark,
the Gen&Topic data set, that contains documents with controlled topic and genre
distributions. This benchmark consists of manually translated news articles crawled
from the web with their corresponding, manually translated readers’ comments, and
thus comprises the genres newswire (NW) and user-generated (UG) text. Since each
pair of NW and UG documents originates from the same article, we assume that both
documents discuss the same topic, for which labels are provided by the source websites.
By including comparable numbers of tokens per genre for each article, we enforce equal
topic distributions across genres. Examples of NW-UG pairs are shown in Table 3.2.
Note that the UG sentences in the Gen&Topic data set are well-formulated comments
rather than dialogue-oriented content such as SMS or chat messages. Further details on
the web crawling efforts from which the Gen&Topic data set has emerged are given in
Section 4.3.

For parameter optimization purposes, we split the complete benchmark into a devel-
opment and a test set, such that the development set contains approximately one-third
of the data, while ensuring that articles in each set originate from non-overlapping time
periods. Table 3.3 lists the specifications of the complete benchmark, which is available
for download at http://ilps.science.uva.nl/resources/gen-topic/.

35

http://ilps.science.uva.nl/resources/gen-topic/


3. Genre and Topic Differences in Phrase-Based Machine Translation

Table 3.2: English-side samples from the Gen&Topic data set. All pairs of newswire (NW) and
user-generated (UG) fragments in the data set discuss the same article and are topically related.

Topic Newswire sentence User-generated sentence(s)

Culture The 12 contestants competed dur-
ing a May 3rd Prime before a panel
of judges and millions of viewers
across the Arab world.

Your program’s name is “Arab Idol”,
which is in English, and you allowed
Barwas to participate and represent Iraq
while she sings in Kurdish!!!

Economy Yemen is mulling the establishment
of 13 industrial zones across its six
planned administrative regions in a
bid to stimulate development and
create job opportunities.

What development in Yemen are you
talking about? We will continue to call
for freedom until independence and lib-
eration and the routing of the northern
occupation from our lands.

Health The availability of a defibrillator at
the American University sports club
saved the life of 21-year-old student
Munir Khalil.

May Allah give you well-being! May
Allaah have mercy upon him. This ma-
chine is in the USA and the government
places it in the public places.

Politics Eager to satisfy public aspirations
for an economic recovery, presiden-
tial candidates are proposing a mix
of mega projects and smaller or non-
traditional ones, experts say.

There are questions that are without an-
swers regarding Egypt since the black
historical date of 1952?!! Isn’t 60 years
of lies and failings enough for you?

Security Some cafe owners have taken pre-
cautionary measures to protect their
establishments and to ensure the
safety of their customers.

Which group commits them and what is
their purpose? Poetry is the noble Iraqi’s
main nutrient; nothing can prevent it, not
bombing or anything else.

3.4 The impact of genre and topic differences on PBMT

To quantify the impact of multiple genres and topics in a test corpus, we run a series of
experiments in which we measure translation quality, model coverage, and observed
out-of-vocabulary (OOV) types.

3.4.1 Translation quality

We first run a translation experiment on the Gen&Topic test set using our in-house
PBMT system Oister (see Section 2.4.1). The 5-gram linearly interpolated language
model covers all topics and genres contained in the benchmark. We tune our system on
the complete Gen&Topic development set, covering both genres and all topics.

Naturally, performance differences across topics and genres depend on the degree to
which both are represented in the parallel training data. To allow for a fair comparison,
we down-sample our available training data to be as balanced as possible in terms of
topics and genres. The resulting system is trained on approximately 200K sentence
pairs with 6M source tokens per genre, see Table 3.4, as much as is available for UG.
All data originates from the same web sources as the documents in the benchmark. Our
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Table 3.3: Statistics of the Arabic-English Gen&Topic data set containing five topics and two
genres: newswire (NW) and user-generated (UG) text. Tokens are counted on the Arabic side.

Genre

Topic NW UG Total

Culture Lines 654 507 1161
Tokens 15.5K 14.9K 30.4K

Economy Lines 500 578 1078
Tokens 16.0K 15.5K 31.5K

Health Lines 384 319 703
Tokens 9.7K 9.3K 19.1K

Politics Lines 494 646 1140
Tokens 15.8K 15.8K 31.6K

Security Lines 532 826 1358
Tokens 16.1K 15.9K 32.0K

Total Lines 2564 2876 5440
Tokens 73.2K 71.3K 144.5K

more competitive system (see Chapter 6) that uses also LDC-distributed data achieves
slightly better performance, but is more favorable for NW than for UG translation tasks.
Due to the strict data requirements in terms of topic and genre distributions, as well as
the availability of sizable parallel training data, our current experimental set-up covers
Arabic-English only. We tokenize all Arabic data using MADA (Habash and Rambow,
2005).

Table 3.4: Arabic-to-English down-sampled training data specifications of our balanced genre
system. Tokens are counted on the English side.

Lines Tokens

Newswire 206K 6.2M
User-generated 189K 6.2M

Total 395K 12.4M

Table 3.5 compares BLEU scores of the Gen&Topic data, split down by topics and
genres. We observe that translation performance fluctuates much more across genres
than across topics: there is a large gap of 3.9 BLEU points between NW and UG,
which can be entirely attributed to actual genre differences given the construction of
the Gen&Topic data set and the use of down-sampled training data. On the other hand,
the gap between different topics is only 0.6 BLEU points on average, and at most 1.1
(between culture and politics). A translation quality gap between genres has also been
observed in past OpenMT evaluation campaigns. However, as the NIST benchmarks
have not been controlled for topics across genres, it is unclear to what extent this gap
can be attributed to actual genre differences.

37



3. Genre and Topic Differences in Phrase-Based Machine Translation

Table 3.5: Arabic-to-English BLEU scores on the Gen&Topic test set (1 reference translation)
per topic-genre combination. Tuning was done on the complete Gen&Topic development set.
Variations in translation quality are represented by average pairwise BLEU score differences.

NW UG All

Culture 19.2 17.6 19.3
9
>>>>=

>>>>;

Avg. diff.: ±0.6
Economy 19.9 15.9 18.9
Health 19.3 17.7 18.8
Politics 21.3 13.6 18.2
Security 19.3 16.2 18.5

All 19.9 16.0 18.9
| {z }

Avg. diff.: ±3.9

3.4.2 Model coverage analysis

Next, to explain the large performance gap between genres, we analyze the phrase
lengths within Viterbi translations, source phrase and phrase pair recall, and phrase pair
OOV of the Gen&Topic test set. All quantitative results of these analyses are shown in
Table 3.6.

Average source-side phrase length

We first compute the average number of source words contained in the phrases that our
PBMT system uses to produce the 1-best translations for the Gen&Topic test set. One
can see that UG is translated with shorter phrases than NW, and that differences are
more pronounced between genres than among topics. This difference, in turn, can be
due to unreliable translation probabilities but also to the mere lack of translation options
in the models. We quantify the impact of the latter by measuring phrase recall on each
test portion.

Phrase recall and phrase pair OOV

To compute phrase recall, we first automatically word-align the test set and extract from
it a set of reference phrase pairs using the same procedure applied to the training data.
Then, we count the number of reference phrase pairs whose source side is covered
by the translation models (source phrase recall) and the number of reference phrase
pairs that are fully covered by the translation models (source-target phrase pair recall).
Formally, we define the set of source-matching phrases as:

MS

= {
�
¯f, ē
�
|
�
¯f, ·� 2 Ptest ^

�
¯f, ·� 2 Ptrain}, (3.1)

where P
d

refers to the set of phrase pairs
�
¯f, ē
�

that can be extracted from corpus d.
Source phrase recall RS

n

for phrases of length n is then defined as:
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Table 3.6: Impact of genre and topic differences on various indicators of PBMT model quality.

Gen&Topic Avg.phr. Source phrase recall Src-trg phrase pair recall Phr.pair
portion BLEU length 1 2 3 4+ 1 2 3 4+ OOV

NW 19.9 1.45 99.3 81.4 41.8 7.1 73.8 39.4 13.7 1.8 71.5
UG 16.0 1.38 97.2 74.7 36.0 6.3 56.2 28.8 8.7 1.1 76.0

Culture 19.3 1.39 98.2 77.6 36.5 5.3 66.2 35.2 10.7 1.2 74.2
Economy 18.9 1.42 98.4 78.7 39.4 6.5 65.3 33.5 10.9 1.4 73.8
Health 18.8 1.41 98.3 76.6 37.1 5.4 64.5 33.5 11.0 1.2 75.2
Politics 18.2 1.41 98.1 78.6 39.8 7.7 60.8 33.1 11.2 1.5 73.4
Security 18.4 1.42 97.6 77.0 40.2 8.4 62.7 33.3 11.6 1.8 73.3

RS

n

=

P
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)

2M

S^|̄f |=n ctest
�
¯f, ē
�

P
(
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)
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�
¯f, ē
� , (3.2)

where ctest
�
¯f, ē
�

denotes the frequency of phrase pair
�
¯f, ē
�

in the test set. Analo-
gously, we define the set of source-target-matching phrase pairs as:

MS,T
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�
¯f, ē
�
|
�
¯f, ē
�
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�
¯f, ē
�
2 Ptrain}, (3.3)

and the source-target phrase pair recall RS,T

n

for phrases of length n as:
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P
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)
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Finally, we call phrase pair OOV the portion of reference phrase pairs that are not
covered by the translation models, that is: 1�

P
N

n

RS,T

n

, where N is the phrase limit
used for phrase extraction.

The results of our analysis, broken down by source phrase length, show that source
phrase recall is much lower in UG than in NW, while variations among topics are only
very small. The stronger impact of genre differences is even more visible on phrase
pair recall: for instance, our system knows the correct translation of 73.8% of the
single-source-word phrase pairs in the NW genre. In UG this is only 56.2%, despite the
equal amounts of training data per genre in our system. These figures suggest that model
coverage—both mono- and bilingual—is an important reason for the low translation
quality on UG data.

Most existing approaches to domain adaptation focus on domain-sensitive scoring
or selection of existing translation candidates (Matsoukas et al., 2009; Foster et al.,
2010; Axelrod et al., 2011; Chen et al., 2013, among others). This strategy is supported
by the error analysis of Irvine et al. (2013a), who show that scoring errors are more
common across domains than errors caused by OOVs, in the source as well as the target
language. Across genres however, our results in Table 3.6 show that both word-level and
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Table 3.7: Categorization of (sub)classes used for our manual OOV analysis.

Main OOV class Subclasses

Rare: Rare but correct Numbers, proper nouns, technical terms, foreign words
Dial: Dialectal forms Egyptian future tense, unusual spelling of dialectal form
Morph: Morphological variants Unseen morphological variant
Spell: Spelling errors Replaced letter, missing or inserted blank
Coll: Colloquialisms Unconventional spelling, emphasis with repeated letters

Table 3.8: Examples of OOVs observed in the Gen&Topic set with their respective explanation
and main OOV class. See Table 3.7 for details of the OOV classes.

Arabic OOV English translation Explanation of OOV Main OOV class

⌘Å´ @ X ISIL New proper noun Rare

@ÒÇ  ⌧J⌦Î (they) will forget Dialectal future tense Dial
 ‡ ÒÉ Y ⇣ÆK⌦ (they) revere Third person plural present tense Morph

 ≠�K A  £ÒÀ @Q�⌦  ØÒ⇣K creationofjobs Missing blank Spell
 ·�⌦J⌦´Ò¢⇣J÷œ @ volunteeeers Deliberate wrong spelling Coll

phrase-level OOVs are a more likely explanation for the performance differences. This
stresses the need to not only improve model scoring, but to also address model coverage,
for example by paraphrasing (Callison-Burch et al., 2006), translation synthesis (Irvine
and Callison-Burch, 2014), source sentence simplification (Hasler et al., 2016), text
normalization (Bertoldi et al., 2010), or automatic collection of additional sizeable
bilingual resources (see Chapter 4). Interestingly, similar conclusions have been drawn
for adaptation of part-of-speech (POS) taggers (Plank et al., 2014).

3.4.3 Manual OOV analysis

To get a better understanding of the OOVs observed for the genres and topics in the
Gen&Topic set, we perform a fine-grained analysis, for which we manually annotate
500 sentences on the source side (equally distributed over genres and topics) to identify
the class of each OOV. Annotations are done for top and sub-level classes, e.g., replaced
letter, which is a subclass of spelling errors. In total, we consider 17 subclasses which we
group into five main classes, see Table 3.7 for an overview of the considered categories
and Table 3.8 for examples.

Table 3.9 shows the type level percentages for each main OOV class per genre or
topic. When comparing the two genres, a number of observations emerge. Firstly,
rare but correct words (e.g., proper nouns and technical terms, both regular issues for
adaptation in PBMT) make up the vast majority of the OOVs in NW, but are relatively
infrequent in UG. By contrast, OOVs containing unseen morphological variants are
equally common in both genres. Although complex morphology is language-specific, a
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Table 3.9: Type-level error percentages per Gen&Topic portion of main OOV classes, see
Table 3.7 for details of the OOV classes. Other events include words that are not understandable
or occur in the phrase table but only captured in a different context.

Gen&Topic OOV type

portion Rare Dial Morph Spell Coll Other

NW 77.8 0.0 16.7 5.6 0.0 0.0
UG 9.8 9.0 17.2 42.6 12.3 9.0

Culture 17.4 0.0 17.4 52.2 8.7 4.3
Economy 13.8 0.0 34.5 31.0 13.8 6.9
Health 15.8 10.5 15.8 36.8 10.5 10.5
Politics 25.0 25.0 12.5 25.0 0.0 12.5
Security 23.5 8.8 5.9 41.2 14.7 5.9

Table 3.10: Token-level error percentages per Gen&Topic portion of main OOV classes, see
Table 3.7 for details of the OOV classes. Other events include words that are not understandable
or occur in the phrase table but only captured in a different context.

Gen&Topic OOV type

portion Rare Dial Morph Spell Coll Other

NW 89.5 0.0 7.9 2.6 0.0 0.0
UG 11.7 8.6 17.2 41.4 12.5 8.6

Culture 16.7 0.0 20.8 50.0 8.3 4.2
Economy 18.8 0.0 31.3 28.1 15.6 6.3
Health 23.8 9.5 14.3 33.3 9.5 9.5
Politics 25.0 25.0 12.5 25.0 0.0 12.5
Security 48.1 5.8 3.8 28.8 9.6 3.8

rare morphological word in Arabic often maps to a rare multi-word phrase in English,
resulting in phrase-level OOVs. Next, not entirely surprising, the majority of OOVs
in UG are due to spelling errors. Finally, OOVs assigned to the remaining classes are
never observed in NW but occasionally occur in UG.

Next, a comparison of the main OOV classes among the various topics shows a few
notable distributions. Dialectal forms, for example, are rare in all topics except politics,
where they are commonly observed in the form of Egyptian future tense. This can be
explained by the presence of news articles about elections in Egypt in the Gen&Topic set.
Next, while spelling errors are common in all topics, its abundance is most prominent
in culture. Most spelling errors concern missing or inserted blanks, suggesting that
comments may have been written on mobile devices. Finally, unseen morphological
variants are more frequent in economy than in other topics, however with no conclusive
explanation.
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Finally, Table 3.10 shows the token level percentages for each main OOV class per
genre or topic. Patterns are very similar to those observed for word types, with the
notable exception that a small number of unseen proper nouns occur repeatedly in a few
topics. For example, ⌘Å´ @ X meaning ‘ISIL’ is the main topic of a number of security
documents, yielding a very high token-level OOV rate for this topic.

3.5 Conclusions

Despite the fact that domain adaptation is an active field of research in SMT, there is
little consensus on what exactly constitutes a domain. Typically, different domains
correspond to different subcorpora or data sets. Since most previous work on domain
adaptation in SMT uses in-domain and out-of-domain data that differ on both the topic
and the genre level, it is unclear whether the proposed solutions help deal with topic or
genre differences. In this chapter we have disentangled these two concepts and asked:

RQ1 What impact do genre and topic differences have on PBMT quality?

To answer this question, we first provided clear definitions of the different aspects
that together make up a domain: while topic refers to the subject of a text and is
mostly characterized by specific vocabulary or word senses, genre refers to non-topical
properties function, style and text type and is characterized by aspects such as writing
style, stopwords, and register.

Using these definitions, we introduced a new annotated Arabic-English benchmark
set with controlled topic and genre distributions covering newswire (NW) and user-
generated (UG) documents in five topics. When translating this data using a genre-
balanced PBMT system, we found that translation performance in BLEU fluctuates
much more between the two genres than across topics, and that UG is translated with
shorter phrases than NW. Next, we introduced new quantitative metrics measuring
source phrase recall and source-target phrase pair recall, representing the source and
source-target coverage of our models. We found that poor model coverage—both mono-
and bilingual—is an important reason for the low PBMT quality on UG data, stressing
the need for methods improving the PBMT quality of informal, UG data. Finally, our
fine-grained manual error analysis at the word level also suggests that source coverage
could benefit from text normalization or increasing the amount of relevant training data.
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Genre Adaptation

Using Automatic Classifiers

4.1 Introduction and research questions

Motivated by the observation that genre differences pose a bigger challenge to PBMT
than topic differences (see Chapter 3), we further explore the impact of different genres
on PBMT quality. While the systematically constructed Gen&Topic data set is limited
to the Arabic-English language pair and covers only two genres, we extend our research
in this chapter to four genres (colloquial, editorial, news, and speech) and four language
pairs (Arabic-English, Bulgarian-English, Chinese-English, and Persian-English), for
which we automatically harvest data from the web. Using this diverse setting, we
address the following question:

RQ2 Is the observed impact of genre differences on PBMT consistent among various
language pairs and data settings?

We first look at different language pairs. We study whether and to what extent the
observed differences between genres are language-pair specific or stable across language
pairs. Concretely, we ask:

RQ2a. To what extent does the impact of genre differences on PBMT vary among
language pairs?

Since translation quality differences between genres likely depend on the amount of
available training data covering the genre of interest, we also ask:

RQ2b. To what extent can differences in PBMT performance among genres be ex-
plained by the proportion of genre-specific resources?

To answer this question, we automatically harvest parallel data from the web covering
all four genres of interest, thus addressing the problem of poor coverage we observed
in Chapter 3. In addition, we exploit our newly collected corpora to take a first step
towards adapting PBMT systems to different genres, which is the central theme of RQ3:
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RQ3 How can we adapt PBMT systems to different genres without relying on explicit
corpus labels?

Most existing adaptation approaches depend on the availability of (manually assigned)
corpus or provenance labels and make two strong assumptions, which contribute to
the success of these methods: first, the translation task has known domain, genre or
topic labels that are exploited to adapt the system. Second, an in-domain development
set, that is similar to the test set in terms of writing style and vocabulary, is available
to optimize the adaptation approach for a specific translation task. While these are
fair assumptions in a controlled research setting, they are less realistic in for example
an online MT service. In this chapter, we consider the scenario in which a PBMT
system is provided with a test document of unknown origin. We investigate whether
we can exploit automatic genre classification to guide each test document to the most
appropriate pre-trained system, by asking:

RQ3a. Can we successfully adapt PBMT systems using automatic genre classifiers?

Concretely, we use our harvested corpora in four genres to build genre-specific PBMT
systems. We then learn accurate document-level genre classifiers, which we use to
determine which of the genre-specific systems to employ for the particular document.

Organization. This chapter is organized as follows: After surveying related work
in Section 4.2, we describe in Section 4.3 the collection and creation of training and
evaluation corpora of four genres in four language pairs. In Section 4.4 we describe how
we train baseline PBMT systems for all genres, and we analyze the relation between
translation quality and the amount of genre-specific resources. To adapt PBMT to a
mixture-of-genres test set, we train automatic genre classifiers in Section 4.5, and use
these for genre adaptation in Section 4.6. Finally, we provide conclusions of this chapter
in Section 4.7.

4.2 Related work

Three research areas are relevant for this chapter: first, we discuss related work on using
web data as parallel corpora. Next, we discuss research on genre classification, which
is relevant for our work on training automatic genre classifiers. Finally, we discuss
previous work performing adaptation using automatic classifiers.

4.2.1 Web as corpus

The rapid growth of the Internet has resulted in a large body of work on extracting and
using web-crawled data for various natural language processing (NLP) tasks, which
is reflected by the existence of a workshop series and a special interest group on Web
as Corpus (WAC).1 Besides detecting relevant web pages (Qi and Davison, 2009) and
extracting clean textual content (Spousta et al., 2008), data harvesting for MT faces

1
www.sigwac.org.uk
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another challenge: multilinguality. The most useful and interesting web-crawled corpora
for MT are bilingual. Preferably, such corpora contain parallel translations; however
previous work has shown that the use of comparable corpora, from which near-parallel
sentence pairs can be extracted, also helps improving PBMT quality (Munteanu and
Marcu, 2005, 2006; Tillmann, 2009; Tillmann and Xu, 2009).

While a fair number of approaches exist for web-crawling of parallel corpora, most
related to our work are previous efforts to harvest domain- or genre-specific bilingual
data. For example, Pecina et al. (2011, 2012) construct a pipeline combining various
open-source tools for web crawling, preprocessing, and sentence alignment, and use
the resulting corpora for adaptation to two domains. Further experiments also show
that parallel development data does not have to be very clean since in-domain tuning is
robust to noise (Pecina et al., 2015).

A different line of work focuses on detecting and extracting comparable sentences
from microblogs, e.g., Twitter or Sina Weibo, a noisy user-generated genre difficult
to automatically translate. To this end, Jehl et al. (2012) use an information retrieval
(IR) approach to detect comparable tweets related to the topic “Arab Spring”. Carter
(2012, Chapter 5) uses a similar IR-based approach as well as a self-learning approach
in which Twitter translations are generated by a general-purpose PBMT system, which
outperforms the IR approach. This work is not restricted to specific topics, and even
abandons the assumption that the test data is known at training time. Finally, Ling
et al. (2013b) exploit the fact that people regularly use multiple languages in a single
microblog message. Assuming that such messages contain internal parallel segments,
they use a dynamic programming approach to detect these parallel parts. All three
approaches show that adding web-crawled microblog data to a general-domain training
corpus improves translation of microblog test data.

4.2.2 Text genre classification

While traditionally most text classification work focused on classification by topic
(Sebastiani, 2002), the past decades have shown an increasing interest in genre classifi-
cation, which has resulted in various methods that combine different classifiers with
different sets of genre-specific features.

Karlgren and Cutting (1994) are among the first to use simple document statistics,
such as common word frequencies, first-person pronoun count, and average sentence
length. Kessler et al. (1997) use similar features and categorize four types of genre-
revealing cues: structural cues (e.g., part-of-speech (POS) tag counts), lexical cues
(specific words), character-level cues (e.g., punctuation marks), and derivative cues
(ratios and variation measures based on other types of cues). Stamatatos et al. (2000) use
the most frequent words of the entire written English language together with punctuation
mark frequencies to distinguish four text genres. With a discriminant analysis, they
determine that the optimal number of most frequent words is 30. Dewdney et al.
(2001) compare a large number of presentation features (representing a document’s
stylistic information) and show that these outperform bag-of-words approaches, which
are traditionally used in topic-based text classification, and that the optimal feature
set contains both word and presentation features. Lee and Myaeng (2002) use word
statistics to determine which terms are most discriminative between genres and between
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topics. Finally, Finn and Kushmerick (2006) compare the bag-of-words approach with
simple text statistics and conclude that both methods achieve high classification accuracy
on fixed topic-genre combinations but perform worse when predicting topic-independent
genre labels.

While most genre classification research has focused on the English language, some
work has addressed language-independent, i.e., mono-lingual methods applicable to
any language (Sharoff, 2007; Sharoff et al., 2010), or cross-lingual genre classification,
i.e., training a classifier on one language to use it for classification in another language
(Gliozzo and Strapparava, 2006; Petrenz, 2012; Petrenz and Webber, 2012), indicating
that a single type of features can often generalize across multiple languages. In this
chapter we develop language-independent genre classifiers. While the exact features
differ among languages, we provide a single recommendation for genre classification
regardless of the language.

4.2.3 Adaptation using classifiers

Adaptation using automatic classifiers has been applied in a few previous efforts. For
example, Xu et al. (2007) build a general PBMT system with domain-specific tuning
and language modeling. To decide which domain-specific system has to be used for
an incoming document, they use text classification techniques based on LM perplexity
or bag-of-words similarity. Banerjee et al. (2010) apply a similar method, using an
SVM classifier with tf-idf word bigram features. Translation models in their work are
built using in-domain data and tuning. Finally, Wang et al. (2012) also combine text
classification with routing test documents to the most appropriate decoder settings. In
addition, they find that BLEU loss strongly correlates with classification errors.

All three methods limit their application to two provenance-based domains, which
are typically very distinct, e.g., patents versus ‘generic’. To the best of our knowledge,
we are the first to extend this setup up to four genres and four language pairs, where
documents within a genre originate from a variety of sources.

4.3 Bilingual resource acquisition

We want to study the impact of genre differences on PBMT on a diverse set of language
pairs, covering both commonly and rarely studied language pairs. Parallel training data
for common language pairs is abundant but limited to a few genres such as parliamentary
and legal proceedings. For low-resource languages the situation is—by definition—
much worse, with very few to no bilingual corpora available. In addition, we found
in Chapter 3 that poor translation quality for genre differences can to a large extent
be attributed to poor model coverage. We therefore start our work in this chapter by
describing how we automatically harvest parallel data from the web.

In this section we describe the language pairs and genres of interest (§4.3.1), the
technical details of the data automated collection process including the main web
sources that we used for data collection (§4.3.2), and the specifications of the final
training and evaluation sets (§4.3.3).
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4.3.1 Language pairs and genres

While most research in MT is evaluated on a small number of high-resource language
pairs and ‘domains’, we opt for a more balanced distribution of source languages that
allows us to measure to what extent our findings for common language pairs generalize
to languages with limited resources. We therefore evaluate our experiments in this
chapter on the following language pairs:

Arabic-English (AR-EN) is commonly used in research literature and often covered
in MT evaluation campaigns. Arabic is a morphologically rich language, and
has local to medium-long word-reordering with English. Sizable Arabic-English
resources exist covering mostly news and UN documents.

Chinese-English (ZH-EN) is commonly used in research literature and often covered
in MT evaluation campaigns. Chinese has no morphology, but complex word-
reordering with respect to English. Sizable Chinese-English resources exist
covering mostly news and parliamentary proceedings.

Bulgarian-English (BG-EN) is not often used in research literature and not covered
in MT evaluation campaigns. Bulgarian has some morphology and only short-
distance word-reordering with respect to English. Bulgarian-English resources
are limited to Europarl (Koehn, 2005).

Persian (Farsi)-English (FA-EN) is rarely used in research literature and was only
once covered in an MT evaluation campaign. Persian is morphologically rich and
has long-distance word-reordering with respect to English. There are no publicly
available Persian-English resources.

For each of these language pairs we consider four different genres:

News covers general news, as it can be found in (online) newspapers, and in transcripts
of broadcast news.

Editorial covers Op-Ed pieces in (online) newspapers, that represent a subjective, and
unlike news less matter-of-fact point of view. Editorials often consist of complex
arguments, assuming a certain level of sophistication from their readership.

Colloquial covers informal conversation such as blog comments and Internet forum
discussions. This is the most conversational and interactive genre in this list.

Speech covers speeches from which transcripts are available. Note that this cate-
gory does not include informal spoken language, and does not require speech
recognition tools.

While not all language-genre combinations are equally common, we can construct at
least a translation test set for each of the four genres in each of the four language pairs.
To this end, we use a large number of web sources, see Table 4.1.
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Table 4.1: Overview of web sources used to collect bilingual corpora for AR-EN, BG-EN,
FA-EN, and ZH-EN.

Contains documents in

Web source AR-EN BG-EN FA-EN ZH-EN Available genre(s)

globalvoicesonline.org 3 3 3 3 news, colloquial

mawtani.al-shorfa.com 3 3 news, colloquial

al-shorfa.com 3 3 news, colloquial

magharebia.com 3 news, colloquial

sabahionline.com 3 news, colloquial

www.setimes.com 3 news, colloquial

centralasiaonline.com 3 news, colloquial

www.sada-e-azadi.net 3 news

www.tolonews.com 3 news

iwpr.net 3 3 news

www.niqash.org 3 news

www.fao.org 3 3 news

www.cuyoo.com 3 news

cn.nytimes.com 3 news, editorial

www.worldbank.org 3 3 3 3 news, editorial, speech

translations.state.gov 3 3 3 news, editorial, speech

www.chinadialogue.net 3 editorial, colloquial

www.danielpipes.org 3 3 3 3 editorial

www.project-syndicate.org 3 3 editorial

www.ted.com 3 3 3 3 speech

4.3.2 Systematic data harvesting

Crawling and extracting textual content from the web is a time-consuming procedure
as it has to be adapted to different formats for different sources and changes of format
over time. To make this procedure more flexible and less time-consuming we create a
single software component that employs a structured and easy-to-use data harvesting
method that works for all of the above listed web pages listed in Table 4.1. The software
is written in Python and makes use of BeautifulSoup2, a library that extracts data from
HTML files. The only adjustment needed for different web pages is a source-specific
tag file as input to the data harvesting software. See Figure 4.1 for an example.

The software component follows a simple work flow. First, the source-specific tag

2http://www.crummy.com/software/BeautifulSoup/
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@info: SOURCE          - sabahionline
@info: GENRE           - news
@info: HOMEPAGE        - http://sabahionline.com
@info: OVERVIEW        - /en_GB/archives/2013/07
@info: DATE_FORMAT     - year month day
@head: HEADLINE        - meta[name=title]
@head: DESCRIPTION     - meta[name=description]
@head: DATE            - meta[name=date]
@body: BODY            - div[id=articlescontent]
@body: CAPTIONS        - li[class=image_block]
@user: COMMENTS        - div[id=comments_comments]

Figure 4.1: Example of source-specific tags. The first field indicates how a tag will be processed
in the software: @info tags contain meta information of the web source. @head and @body
tags are css selectors used for extracting information form the head and body of the HTML page,
respectively. @user tags indicate the location of user-generated data in an HTML file. All css
selector values can be replaced by ‘none’ if the specific tag is not present on a web page.

file is read and processed. This file contains the URLs of one or more overview pages,
such as news archives or sitemaps, which are then downloaded. Next, a list of URLs
of actual text documents is extracted from each overview page. After downloading
these pages, we then identify their translations in one of the following two ways: we
first try to follow direct links, such as ‘read this article in Arabic.’ If no such links
exist, we replace the language abbreviation in the url. For example, cn.nytimes.com/
20130922/kenya/zh-hant contains a Chinese translation of cn.nytimes.com/
20130922/kenya/en-us. Following this procedure, documents with no direct links
will not be marked as translations. However, with only a few exceptions, all parallel
pages are easily detected using these criteria.

4.3.3 Training and evaluation sets
Our data harvesting efforts yield large numbers of harvested bilingual documents for
many genres and language pairs. However, PBMT system training requires data to be
sentence-parallel rather than document-parallel. Hence, we have to align sentences
that are translations of each other from parallel documents. To this end, we use a
combination of two sentence alignment techniques:

• Moore’s sentence alignment: An alignment method based on a combination
of sentence length and word correspondence (Moore, 2002). This alignment
approach does not require any prior knowledge of the languages in the corpus,
but comes with a computational cost.

• Champollion sentence alignment: A sentence alignment approach that requires
a dictionary of the target and source languages in a language pair, but is computa-
tionally easier and more robust than Moore’s sentence alignment (Ma, 2006).

In this work we first use Moore’s sentence aligner on a subset of the parallel documents.
During this procedure a dictionary is created, which we then use as input for the
Champollion sentence aligner. This combinatorial approach optimizes both sentence
alignment quality and computational cost.
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Table 4.2: Specifications of the harvested Arabic-English training, development and test data.
Tokens are counted on the English side of the corpora.

Training data Development set Test set

Genre Docs Lines Tokens Docs Lines Tokens Docs Lines Tokens

Colloquial 18.6K 273K 8.9M 89 1.5K 77.3K 110 1.5K 73.0K
Editorial 5.1K 156K 4.7M 46 1.5K 45.6K 47 1.5K 47.3K
News 59.7K 600K 18.0M 175 1.5K 50.4K 168 1.5K 48.1K
Speech 1.7K 140K 3.4M 20 1.5K 35.7K 19 1.5K 38.7K

Total 85.1K 1.2M 35.0M 330 6.0K 209K 344 6.0K 207K

Table 4.3: Specifications of the harvested Chinese-English training, development and test data.
Tokens are counted on the English side of the corpora.

Training data Development set Test set

Genre Docs Lines Tokens Docs Lines Tokens Docs Lines Tokens

Colloquial 4.0K 55K 1.7M 84 1.5K 42.5K 104 1.4K 35.8K
Editorial 10.1K 370K 10.2M 42 1.5K 43.1K 44 1.5K 42.6K
News 20.5K 584K 16.4M 68 1.5K 39.2K 50 1.5K 35.8K
Speech 1.7K 146K 3.3M 33 1.5K 42.6K 33 1.5K 37.5K

Total 36.3K 1.2M 31.6M 227 6.0K 169K 231 5.9K 152K

Next, we organize the collected bilingual data into training, development, and test
sets. To avoid dependencies between the different data portions, we compose them
by selecting documents from fixed time intervals, a strategy that is also used by the
LDC. In our case, all training documents are older then the evaluation documents, and
the development documents are older than the test documents. Obviously, there is no
temporal overlap between any of the data portions. For evaluation, we select documents
from a one-year period. The first six months are used for generating the development
set and the second six months are used for generating the test set.

We tokenize all Arabic data using MADA, segment the Chinese data following
Tseng et al. (2005), and use a simple in-house tokenizer for the other languages. The
total numbers of foreign-English sentence pairs for our four genres in four language
pairs are listed in Tables 4.2–4.5.

4.4 Genre-specific baseline systems

We use the newly assembled resources to create PBMT systems tailored to translate
four different genres. In this section we first discuss the general experimental setup
(§4.4.1) and then train and evaluate baseline PBMT systems for each individual genre
and for a mixture of genres (§4.4.2).
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Table 4.4: Specifications of the harvested Bulgarian-English training, development and test data.
Tokens are counted on the English side of the corpora.

Training data Development set Test set

Genre Docs Lines Tokens Docs Lines Tokens Docs Lines Tokens

Colloquial – – – – – – 146 1.4K 33.9K
Editorial – – – – – – 6 178 5.1K
News 8.4K 215K 5.3M 57 1.2K 30.2K 68 2.0K 49.5K
Speech 1.5K 206K 3.9M 16 1.2K 22.5K 22 2.0K 44.6K

Total 9.9K 422K 9.2M 73 2.4K 52.7K 242 5.6K 133K

Table 4.5: Specifications of the harvested Persian-English training, development and test data.
Tokens are counted on the English side of the corpora.

Training data Development set Test set

Genre Docs Lines Tokens Docs Lines Tokens Docs Lines Tokens

Colloquial 15.9K 629K 16.4M 19 1.5K 40.3K 25 1.5K 37.7K
Editorial – – – – – – 19 600 19.4K
News 49.1K 618K 16.8M 148 1.5K 44.5K 163 1.5K 47.4K
Speech 1.2K 119K 2.5M 14 1.5K 31.2K 18 1.5K 35.6K

Total 66.2K 1.4M 35.7M 181 4.5K 116K 225 5.1K 140K

4.4.1 Experimental setup
All systems in this chapter are trained using Oister (Section 2.4.1). We use the data
harvested from the web (Section 4.3), supplemented with commonly used training
data (if available) such as LDC corpora for Arabic-English and Chinese-English, and
Europarl data (Koehn, 2005) for Bulgarian-English. The Persian-English system uses
exactly the same training data as listed in Table 4.5. Training data specifications of
the Arabic-English, Chinese-English, and Bulgarian-English systems are shown in
Tables 4.6, 4.7 and 4.8, respectively.

In order to create genre-specific PBMT systems, we have to adequately use the
available data. Simply concatenating the different corpora yields a general PBMT
system that performs reasonably well across a variety of genres, i.e., those covered in
the training data, but is not optimal for each individual genre. Since we aim to create
genre-specific systems, we use a fill-up technique (Bisazza et al., 2011), in which we
combine models trained on a particular genre with models trained on the remaining
training corpora. Using this model combination technique, an additional feature is
learned that favors genre-specific models, and ‘backs off’ to additional (out-of-genre)
models for phrases that are unseen in the genre of interest. For instance, to train our
news translation system, we train two phrase tables: one using all news data and one
using all non-news data. We use the latter to complement the first with phrase pairs that
are not covered in the first.
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Table 4.6: Specifications of the complete Arabic-English training data. Detailed statistics of the
web crawls are listed in Table 4.2.

Corpus/genre Sentence pairs English tokens

LDC broadcast conversation 47K 1.3M
LDC broadcast news 41K 1.1M
LDC (comparable) newswire 816K 26M
LDC weblogs & newsgroups 23K 577K
LDC SMS/chat/CTS 136K 1.6M

Web crawls (Table 4.2) 1.2M 35M

Total 2.2M 66M

Table 4.7: Specifications of the complete Chinese-English training data. Detailed statistics of the
web crawls are listed in Table 4.3.

Corpus/genre Sentence pairs English tokens

LDC broadcast conversation 67K 1.2M
LDC broadcast news 69K 1.8M
LDC (comparable) newswire 1.0M 32M
LDC weblogs & newsgroups 45K 1.2M
LDC SMS/chat/CTS 181K 2.2M
LDC lexicons 1.2M 2.0M

Web crawls (Table 4.3) 1.2M 32M

Total 3.7M 72M

Table 4.8: Specifications of the complete Bulgarian-English training data.

Corpus/genre Sentence pairs English tokens

Europarl 393K 11M

Web-crawled news 215K 5.3M
Web-crawled speech 206K 3.9M

Total 815K 20M

Following the above strategy we can train genre-specific systems for all genres
for which we have training data. Genres not covered in the training data have to be
translated using a system trained on a mixture of genres or on one of the other genre-
specific systems. For example, editorial Persian-English data is scarce, so for Persian
editorial documents we have to resort to our colloquial, news, speech or mix system.

In addition to using the fill-up approach, we tune each genre-specific system on a
development set covering only the genre of interest.
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Table 4.9: Arabic-English translation quality in BLEU of four test genres using different genre-
optimized systems and a genre-agnostic baseline. Best results for each test set genre are boldfaced.
‘Combined best BLEU’ indicates the overall BLEU score when combining the bold-faced results
of all test genres in a single test set, followed by the difference with the genre-agnostic system.

Test set Genre-agnostic PBMT system optimized for Combined
genre baseline colloquial editorial news speech best BLEU

Colloquial 11.7 13.8 10.8 11.7 11.2
9
>>=

>>;
17.9 (+1.1)

Editorial 22.6 19.6 23.5 21.6 21.0
News 22.6 20.2 21.7 23.2 21.2
Speech 11.5 11.5 11.1 11.0 11.7

All 16.8 16.6 16.4 16.6 16.0

Table 4.10: Chinese-English BLEU of various systems, see Table 4.9 for detailed explanation.

Test set Genre-agnostic PBMT system optimized for Combined
genre baseline colloquial editorial news speech best BLEU

Colloquial 11.4 11.6 11.3 10.7 11.3
9
>>=

>>;
13.9 (+0.5)

Editorial 15.5 14.9 16.3 14.6 14.3
News 13.3 12.8 13.3 13.5 12.4
Speech 12.8 12.5 12.5 12.1 13.9

All 13.4 13.1 13.4 12.7 13.2

4.4.2 Results
Tables 4.9-4.12 provide translation quality results for all language pairs. For each
language pair, we measure BLEU for our four test genres with the available genre-
specific systems as well as the genre-agnostic system. Note that some Arabic-English
and Chinese-English BLEU scores might be lower than those reported in literature since
our test data contains only one reference translation, whereas some commonly used
publicly available test sets have four reference translations.

The results confirm our expectation that the various test set genres benefit from being
translated using a genre-optimized system rather than using a general system: generally,
the highest BLEU scores are located on the diagonal of each table. In cases were no
genre-specific system is available, we see that the best results are mostly obtained using
the general system rather than a system optimized for a different genre.

Genre differences across language pairs. Next, in order to study patterns across
language pairs and genres, we measure the linear correlation between the amount
of genre-specific parallel data in the genre-agnostic system and the observed BLEU
differences between genres, see Figure 4.2. If we do this for all language pairs at
once (left in Figure 4.2), we find a Pearson correlation coefficient of r = �0.04. This
indicates that over the four language pairs, there is no correlation between the amount

53



4. Genre Adaptation Using Automatic Classifiers

Table 4.11: Bulgarian-English BLEU of various systems, see Table 4.9 for detailed explanation.

Test set Genre-agnostic PBMT system optimized for Combined
genre baseline colloquial editorial news speech best BLEU

Colloquial 29.1 – – 28.0 28.1
9
>>=

>>;
33.4 (+0.6)

Editorial 24.7 – – 25.4 21.3
News 39.8 – – 40.4 34.7
Speech 27.4 – – 25.8 28.4

All 32.8 – – 31.9 30.5

Table 4.12: Persian-English BLEU of various systems, see Table 4.9 for detailed explanation.

Test set Genre-agnostic PBMT system optimized for Combined
genre baseline colloquial editorial news speech best BLEU

Colloquial 22.4 22.5 – 20.9 21.5
9
>>=

>>;
22.3 (+0.4)

Editorial 15.7 15.2 – 15.6 15.1
News 24.2 22.3 – 24.3 23.0
Speech 21.3 19.5 – 20.7 22.6

All 21.9 20.8 – 21.3 21.5

of genre-specific parallel training data and BLEU. Instead, we see that BLEU scores
vary more between language pairs than between genres, reflecting that some languages
are easier to translate despite limited amounts of training data (e.g., Bulgarian-English)
while others achieve poor BLEU scores even though large amounts of training data are
available (e.g., Chinese-English).

However, if we look at training data and BLEU scores within each of the language
pairs, we observe moderate to strong positive correlations, see Table 4.13. This is also
visible in the right plot in Figure 4.2, where we apply per-language pair normalization
of training data sizes and BLEU scores. Concretely, we measure and display for
each genre (i) the proportion of genre-specific data in the training bitext, and (ii) the
BLEU difference with respect to the average BLEU for the language pair. Using
these normalized values we observe a Pearson correlation of r = 0.61, suggesting that
differences in PBMT performance among genres can to some extent be explained by
the proportion of genre-specific resources.

The right plot in Figure 4.2 also shows some patterns that are consistent among
language pairs. For instance, both BLEU scores and resource proportions are always
high for news, while translation quality for colloquial and speech documents is always
relatively poor. Translation quality for editorial pieces varies: in the two language
pairs (Arabic-English and Chinese-English) for which the editorial genre is covered in
the parallel training data—even in small amounts—, BLEU scores are relatively high.
However, when no editorial training data is available, BLEU scores are lowest of all
four genres.
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Figure 4.2: Training data size versus BLEU for four genres in four language pairs. Left: absolute
bitext size and absolute BLEU show no linear correlation (r = �0.04). Right: relative (per
language pair) bitext size and BLEU show a moderate positive correlation (r = 0.61). Genre
abbreviations: C=colloquial, E=editorial, N=news, S=speech.

Table 4.13: Pearson correlation coefficients for four language pairs between BLEU scores and
the amount of genre-specific parallel training data.

Language pair Pearson’s r

Arabic-English 0.46
Bulgarian-English 0.73
Chinese-English 0.55
Persian-English 0.83

4.5 Automatic genre classification

We observed that translation quality is usually best when translating each genre using its
respective genre-specific baseline system. This motivates the hypothesis that translation
of a mixture-of-genre test set can be improved by using a genre classifier, which routes
test sentences or documents to the most appropriate PBMT system. Figure 4.3 illustrates
this setup, which we put into practice in the current and the next section.

Colloquial PBMT system

Editorial PBMT system

News PBMT system

Speech PBMT system

 نوكرتشلما ناك ،كلذ ىلإ
 يف ءانغلا يف اورابت دق 12ـلا
 ةعمجلا ءاسم ،مياربلا ةرهس
 ةنجل مامأ ،ويام/رايأ 3
 نيدهاشلما ينيلامو ميكحتلا
.يبرعلا ملاعلا يف

Genre classifier?
Figure 4.3: Schematic overview of our genre adaptation pipeline using genre classification. The
genre classifier escorts an incoming document to the most relevant genre-specific PBMT system.
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In this section we address the first component of this genre adaptation pipeline:
building an accurate genre classifier. In particular, we aim at developing a single
classification procedure that can be used on any source document regardless of the
language it is written in. For this purpose, we apply our experiments to three languages:
Arabic, Chinese, and English.

4.5.1 Building classifiers

We compare a number of classification techniques and feature sets, which we train and
evaluate using a subset of the harvested data sets introduced in Section 4.3. Specifica-
tions of the data, features and classifiers are outlined below.

Data

For our genre classifiers we consider the same four text genres as covered in our data
harvesting efforts: colloquial, editorial, news, and speech. To train the classifiers we
randomly select documents from the training data listed in Tables 4.2 and 4.3. The
complete selection comprises 1,000 documents per genre, thus enforcing equal prior
classification probabilities for all genres. To obtain stable results, we repeat this selection
strategy ten times, yielding ten different sets of 4⇥1000 training documents. All results
reported in Section 4.5.2 are averaged over these ten training subsets.

We evaluate the performance of our classifiers in two ways: first, we apply 10-
fold stratified cross-validation on the training data. Second, we report classification
accuracy on held-out test documents, which are exactly the test documents used for
Arabic-English and Chinese-English translation, see Tables 4.2 and 4.3. A summary of
the test document statistics is given in Table 4.14.

Table 4.14: Test document statistics per language used for genre classification. The Arabic
and Chinese test collections comprise the source sides of the parallel test documents listed in
Tables 4.2 and 4.3. The English test collection comprises the target sides of these documents.

Number of test documents

Language Colloquial Editorial News Speech

Arabic 110 47 168 19
Chinese 104 44 50 33
English 214 91 218 52

Features

We experiment with three different features settings: first, we extract document features
with the bag-of-words (BOW) approach, which is often used in subject or topic clas-
sification (Sebastiani, 2002; Moschitti and Basili, 2004). For this task, it is common
to remove stopwords since these are not very distinctive for the subject of a document.
However, for genre classification, we expect that stopwords do have the potential to
distinguish between various genres, so we include these in our feature sets. Concretely,
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we collect the set of n most common words per genre, and take the union of these
genre-specific sets as our features. We repeat this setting for various values of n:
n 2 {10, 50, 100, 500, 1000, 5000}. We use relative frequencies rather than binary
labels of the n most common words per document as our feature values.

Our second setting closely resembles the previous approach. However, instead of
the words’ surface forms we use part-of-speech (POS) tags as document features, which
we extract using the Stanford POS tagger (Toutanova et al., 2003). In previous work,
POS tags have been shown to be informative in text genre classification of English text
(Finn and Kushmerick, 2006). Since there exist only a few dozens of different POS
tags,3 we do not select the most common ones, but we include them all. Feature values
are again represented as relative frequencies.

In our third setting, we combine the previous two approaches. Here, the set of
features includes the top n most common words as well as all POS tags. Previous work
on text genre classification has shown that such combined feature sets result in high
classification accuracy (Dewdney et al., 2001).

Models

For the classification experiments in this work, we use three types of classifiers: Naive
Bayes (John and Langley, 1995), C4.5 Decision tree (Quinlan, 1993), and Support
Vector Machines (SVM) using the sequential minimal optimization (SMO) algorithm
(Platt, 1998) with linear kernels. SVMs in particular have shown to be very suitable
for text classification tasks (Dewdney et al., 2001), often superior to other classifiers
(Joachims, 1998). We run all experiments using the WEKA data mining software (Hall
et al., 2009).

4.5.2 Results

Figures 4.4, 4.5, and 4.6 show the results of our classification experiments for Arabic,
Chinese, and English, respectively. The line plots in the left columns show training,
10-fold cross-validation and test set accuracy for the three different classifiers using
various BOW feature sets. These figures do not display POS or combined features, but
exclusively compare various sizes of n in the BOW feature approaches, thus giving
an indication of the optimal number of words. For all languages and classifiers, we
observe that the most accurate predictions result from using 500 or 1000 word features.
Increasing the number of words to 5000 either stabilizes prediction accuracy or—
particularly when using SVMs—leads to overfitting of the model parameters.

The bar plots in the right columns of Figures 4.4–4.6 show a comparison on the
test documents between using BOW features alone (green bars) or in combination with
POS features (purple bars). In addition, the dashed lines indicate classification accuracy
when using only POS features. In each figure, the best performing variant per classifier
is marked with its accuracy. While results vary between language pairs and classifiers,
we can formulate some general findings:

3The exact number depends on the language. On our training documents, the Stanford POS tagger finds
30 distinct tags for Arabic, 35 for Chinese, and 46 for English.
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Figure 4.4: Arabic genre classification results (average of 10 classifiers) using Naive Bayes (top),
C4.5 decision tree (center), and SVM (bottom) classifiers. Left: training, 10-fold cross-validation
and test set accuracies of different BOW features sets. Right: Test set accuracies using various
BOW feature sets excluding and including POS features. Dashed black line indicates test set
accuracy when using only POS features. Value of the best performing feature set for each classifier
is displayed above the corresponding bar. All error bars represent standard deviations over 10
training samples.
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Figure 4.5: Chinese genre classification results (average of 10 classifiers) using Naive Bayes
(top), C4.5 decision tree (center), and SVM (bottom) classifiers. Left: training, 10-fold cross-
validation and test set accuracies of different BOW features sets. Right: Test set accuracies using
various BOW feature sets excluding and including POS features. Dashed black line indicates test
set accuracy when using only POS features. Value of the best performing feature set for each
classifier is displayed above the corresponding bar. All error bars represent standard deviations
over 10 training samples.
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Figure 4.6: English genre classification results (average of 10 classifiers) using Naive Bayes
(top), C4.5 decision tree (center), and SVM (bottom) classifiers. Left: training, 10-fold cross-
validation and test set accuracies of different BOW features sets. Right: Test set accuracies using
various BOW feature sets excluding and including POS features. Dashed black line indicates test
set accuracy when using only POS features. Value of the best performing feature set for each
classifier is displayed above the corresponding bar. All error bars represent standard deviations
over 10 training samples.
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• When using the Naive Bayes classifier, it is best to use the combined BOW+POS
feature set, while for the other classifiers performance is superior if only BOW
features are used.

• ‘More is better’ when using the C4.5 Decision tree classifier. Test set accuracies
are highest using the largest tested number of BOW features (5000).

• The overall best performance is achieved using the SVM classifier with 500
BOW features, which is therefore the recommended setting for our translation
experiments in the remainder of this chapter. An additional advantage of using
BOW features only is that we do not depend on the availability of POS tagging
software, which only exists for a limited number of languages.

Confusion matrices. The above discussed figures only provide overall classification
accuracies. However, since we are dealing with a multi-class classification task, it is
interesting to examine which genres are mostly classified correctly and which misclassi-
fications are common. To this end, we show in Table 4.15 for each language a confusion
matrix of the test documents using the SVM classifier with 500 BOW features. Reported
numbers are averaged over classifiers trained on ten different training samples.

Table 4.15: Confusion matrices for genre classification (average of 10 classifiers) using the
best performing genre classifier (SVM in combination with 500 BOW features), measured on
Arabic (left), Chinese (center) and English (right) test documents. Genre mapping: C=colloquial,
E=editorial, N=news, S=speech.

Arabic Classified as

To
ta

l

test docs C E N S

Tr
ue

la
be

l C 102 2 3 3 110

E 0 47 0 0 47

N 0 0 167 1 168

S 0 0 1 18 19

Total 102 49 171 22 344

Chinese Classified as

To
ta

l

test docs C E N S

Tr
ue

la
be

l C 74 13 9 8 104

E 0 44 0 0 44

N 3 3 44 0 50

S 1 0 0 32 33

Total 78 60 53 40 231

English Classified as

To
ta

l

test docs C E N S

Tr
ue

la
be

l C 171 15 14 14 214

E 0 88 1 2 91

N 7 11 198 2 218

S 1 0 1 50 52

Total 179 114 214 68 575

For all languages, classification of editorial and speech documents is extremely
accurate, sometimes even perfect. A likely explanation is that editorial and speech
documents are on average longer than news and colloquial documents, resulting in more
non-zero feature values which allow for more accurate class prediction. Colloquial
documents, on the other hand, have the largest numbers of misclassifications, which can
be explained by the fact that these documents are highly variable in their nature since
they are not editorially controlled or standardized.

Most discriminative features. Finally, it is interesting to look at which features are
most discriminative for each genre. Since our multi-class SVM classifier comprises
multiple binary SVM classifiers, we show in Table 4.16 the top five most important
English BOW features for both genres in each possible genre pair. From this table we
can make a few interesting observations:
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Table 4.16: Top five most important features for pairwise (each genre versus each other genre)
English SVM genre classifiers that together make up the multi-class genre classifier. All features
are tokenized and lowercased BOW features.

Colloquial vs. Editorial

i commentary
this distinguished

think analysis
is recent

they –

Colloquial vs. News

i said
all added
this post
you photo

# recent

Colloquial vs. Speech

. . . – –
is bank

should laughter
any percent
am applause

Editorial vs. News

, said
but blog

commentary bloggers
that says

indeed added

Editorial vs. Speech

commentary – –
highest percent
indeed we

but bank
analysis you

News vs. Speech

said – –
magharebia we

says our
blog this

according these

• Some words are very indicative for a genre regardless of the contrastive genre.
For example, ‘– –’ is always the most discriminative token for speech documents,
‘said’ is always the most discriminative token for news documents, and ‘com-
mentary’ is always in the top three of most discriminative words for editorial
documents.

• Some words are indicative for a genre only when it is contrasted with a particular
other genre. For example, ‘i’ is the most discriminative word for colloquial
documents except for classification of colloquial and speech since the latter also
contains relatively high frequencies of ‘i’.

• Some words can be indicative of multiple genres, also depending on which other
genre is classified. For example, ‘recent’ is indicative for both editorial and
news documents when contrasted with colloquial documents, however not in
other scenarios. This suggests that the real information comes from the absence
of ‘recent’ in colloquial documents rather than its presence in news or editorial
documents.

• Overall, most of the top five BOW features are stopwords, justifying our choice
to not remove stopwords for genre classication.

To summarize, we have shown in this section that we can learn accurate genre classifiers
for four text genres using SVM classifiers and a feature set containing the 500 most
common words per genre. This classification setup works well for at least three lan-
guages; Arabic, Chinese, and English, and is thus very suitable for PBMT adaptation,
where the input documents are often not written in English.
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4.6 Genre adaptation using automatic classifiers

In this section we address the second component of the genre adaptation pipeline
illustrated in Figure 4.3: incorporating genre classification into an end-to-end PBMT
system. Concretely, we classify for each document in the test set its genre, and guide it
to the most appropriate PBMT system. Note that while we do have access to the true
genre labels in this controlled research scenario, we intentionally mimic a more realistic
situation in which an incoming test sentence is of unknown origin.

Figures 4.17–4.20 show the translation quality measured with BLEU for all language
pairs using (i) a genre-agnostic baseline system trained and tuned on a mixture of
genres, (ii) several genre-specific systems which we combine manually and refer to as
our ‘oracle’ system, and (iii) several genre-specific systems which we combine using
automatic genre classifiers. For all subsequent experiments we use SVM classifiers
with 500 BOW features since this proved the best performing setup in the previous
section. We measure statistical significance with respect to the genre-agnostic baseline
using approximate randomization (Riezler and Maxwell, 2005). We report significant
improvements at the p  0.05 (M) or p  0.01 (N) level, as well as significant
deteriorations at the p  0.05 (O) or p  0.01 (H) level.

Table 4.17: Arabic-English translation results in BLEU. Manual oracle results are combined from
several genre-optimized systems using manual genre labels of the test documents, see Table 4.9.
Improvements indicated with N are statistically significant at the p  0.01 level.

System

Genre Genre-agnostic Manual oracle Genre-classified

Colloquial 11.7 13.8N 13.8N

Editorial 22.6 23.5N 23.5N

News 22.6 23.2N 23.2N

Speech 11.5 11.7 11.6

Overall 16.8 17.9N 17.8N

Table 4.18: Chinese-English translation results in BLEU. Manual oracle results are combined
from several genre-optimized systems using manual genre labels of the test documents, see
Table 4.10. Improvements indicated with N are statistically significant at the p  0.01 level.

System

Genre Genre-agnostic Manual oracle Genre-classified

Colloquial 11.4 11.6 11.5
Editorial 15.5 16.3N 16.3N

News 13.3 13.5 13.6
Speech 12.8 13.9N 14.0N

Overall 13.4 13.9N 13.9N
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Table 4.19: Bulgarian-English translation results in BLEU. Manual oracle results are combined
from several genre-optimized systems using manual genre labels of the test documents, see
Table 4.11. Statistically significant differences are indicated with M or O at the p  0.05 level
and with N or H at the p  0.01 level.

System

Genre Genre-agnostic Manual oracle Genre-classified

Colloquial 29.1 29.1 28.6H

Editorial 24.7 25.4M 25.4M

News 39.8 40.4N 40.4N

Speech 27.4 28.4N 28.4N

Overall 32.8 33.4N 33.1N

Table 4.20: Persian-English translation results in BLEU. Manual oracle results are combined
from several genre-optimized systems using manual genre labels of the test documents, see
Table 4.12. Improvements indicated with N are statistically significant at the p  0.01 level.

System

Genre Genre-agnostic Manual oracle Genre-classified

Colloquial 22.4 22.5 22.5
Editorial 15.7 15.7 15.6
News 24.2 24.3 24.2
Speech 21.3 22.6N 22.6N

Overall 21.9 22.3N 22.1N

For Arabic-English and Chinese-English (Tables 4.17 and 4.18, respectively), we
train our classifiers on four genres with a balanced prior distribution. Our Arabic
genre classifier achieves near-perfect classification accuracy (97%), which is reflected
by BLEU scores that are very similar—if not equal—to the oracle system. Our best
Chinese genre classifier yields lower accuracy (84%), however BLEU scores of the
genre-classified system do not suffer from this sub-optimal classification performance.
On closer inspection we see that some documents actually benefit from being translated
by a different genre-optimized system. For example, the three Chinese news documents
classified as editorial (see confusion matrix in Table 4.15), totalling 189 sentences,
improve with 0.4 BLEU if translated using the editorial rather than the news system.
This may be explained by the nature of these documents: all three documents are longer
than the average Chinese-English news article (which is 30 lines, see Table 4.3) and
resemble editorial pieces in terms of writing style and vocabulary.

Next, we look at the languages for which not all genres are covered in the training
data. Consequently, we can only train classifiers for two (Bulgarian) or three (Persian)
of the genres in the test set. For the remaining test genres, the predicted genre will
be one of the genres in the training data, and translation is performed using the corre-
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sponding genre-specific system. Note that the genre-agnostic baseline system is never
recommended based on classifier predictions, despite sometimes being the best option.

Table 4.19 shows the end-to-end results for Bulgarian-English translation. The
Bulgarian genre classifier achieves 100% accuracy on news and speech, for which
the classifier is trained. The six editorial test documents are all classified as news,
which is advantageous for the PBMT output quality since the news system yields
much higher BLEU than the speech system on the editorial translations (25.4 versus
21.3, see Table 4.11). Genre predictions for the 146 colloquial test documents are
distributed fairly evenly over news and speech, achieving a BLEU score of 28.6. While
the genre-agnostic system performs better (29.1), the result using an automatic classifier
is superior to translating all colloquial documents with either the news (28.1) or the
speech (28.0) system. This finding indicates that automatic genre classification can even
be profitable if no training data for a given genre is available.

Finally, Table 4.20 shows the end-to-end results for Persian-English translation.
The Persian classifier achieves 90% accuracy on the genres covered in the training
data; colloquial, news, and speech. Of the 19 editorial documents, 14 are classified
as news and 5 as speech. However, BLEU scores using the genre-agnostic and the
genre-optimized systems are very similar for all genres except speech. Improvements
using the genre-classified system are therefore small.

4.7 Conclusions

Motivated by the observation in Chapter 3 that genre differences pose a bigger challenge
to PBMT than topic differences, we further explored in this chapter the impact of
different genres and language pairs on PBMT quality.

Concretely, we extended our research in this chapter to four genres (colloquial, edi-
torial, news, and speech) and four language pairs (Arabic-English, Bulgarian-English,
Chinese-English, and Persian-English), for which we harvested parallel training, devel-
opment and testing corpora from the web. The presented process of data harvesting
is fully automated, and can easily be adapted to other web sources covering human
translations.Armed with our new resources, we asked:

RQ2 Is the observed impact of genre differences on PBMT consistent among various
language pairs and data settings?

To answer this questions, we first trained genre-agnostic baseline systems for each
language pair. We then measured translation quality in BLEU as a function of the
proportion of genre-specific resources in the training data (i) for all genres in all
language pairs, and (ii) per language pair. While we found that variations in BLEU
are to a large extent language-specific, we also observed moderate to strong positive
correlations between genre-specific proportions of training data and BLEU scores. This
indicates that differences in PBMT performance can to a certain degree be explained by
the amount of available training data. Moreover, a number of genre-specific patterns
generalize across language pairs and are thus no incidental observations. For example,
news is always relatively easy to translate, whereas colloquial and speech documents
achieve relatively low BLEU scores for all language pairs.
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After studying the impact of genre differences on PBMT, we moved to genre
adaptation for PBMT, asking:

RQ3 How can we adapt PBMT systems to different genres without relying on explicit
corpus labels?

We exploited our new corpora to train genre-specific rather than genre-agnostic PBMT
systems and tested the hypothesis that automatic genre classifiers can replace the need
to manually guide test documents. To this end, we first trained genre classifiers for
several languages. We achieved the best performance using an SVM classifier with
the 500 most common words per genre as features. We then incorporated this genre
classifier into an end-to-end PBMT pipeline, and showed that we can indeed for all
four language pairs significantly improve translation quality over the genre-agnostic
baseline system, without any dependency on knowing test set genre labels in advance.
We also found that misclassification does not always lead to deterioration of translation
quality, but rather benefits some documents. This indicates that manual genre labels do
not always provide the most useful information for PBMT adaptation.

The classifiers used in this work are all crisp classifiers, i.e., they assign a single
label per test document. Another strategy beyond the scope of the current chapter is
to apply multi-label classification, in which different genre-specific PBMT models
can be interpolated using classifier output weights. Such a setting might particularly
benefit documents with low classification confidence, which are currently sent to a
single system which may not be the most optimal.
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Using Text Features

5.1 Introduction and research questions

In Chapter 3, we explicitly noted that topic and genre are two distinct properties of
documents (Lee and Myaeng, 2002; Stein and Meyer Zu Eissen, 2006), and we believe
that PBMT adaptation can be applied to both properties separately rather than only to
the ambiguous concept domain. Specifically, we are interested in applying adaptation
without relying on the availability of provenance information or manual subcorpus
labels since these restrictions limit the applicability of adaptation methods. For example,
we saw in Chapter 4 that misclassification of a document’s genre can actually improve
PBMT quality, indicating that manual genre labels do not always provide the most
useful information for PBMT adaptation. Moreover, obtaining accurate subcorpus or
genre labels may be time-consuming and not straightforward, as we will demonstrate
later in this chapter.

While adaptation methods without subcorpus dependencies have been applied to
topic adaptation, they have not been used yet to adapt PBMT systems to different genres,
which is interesting since the latter pose larger challenges to PBMT than topics (see
Chapter 3). We therefore ask:

RQ3 How can we adapt PBMT systems to different genres without relying on explicit
corpus labels?

In Chapter 4 we addressed genre adaptation by means of model combination using
genre automatic classifiers. In this chapter we explore genre adaptation with an instance
weighting approach. Concretely, we replace its dependency on subcorpus labels with
features that can be automatically extracted from the parallel bitext. First, we ask:

RQ3b. Can we successfully adapt PBMT systems using textual indicators of genre?

To this end, we incorporate genre-revealing features inspired by previous findings in
the text genre classification literature, e.g., punctuation marks and different types of
pronouns, into a competitive translation model adaptation approach with the aim of
improving translation quality across two test sets with two genres: the first containing
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newswire (NW) and user-generated (UG) comments, and the second containing NW
and UG weblogs.

Next, we explore the use of latent Dirichlet allocation (LDA) features for the task of
genre adaptation, and we ask:

RQ3c. Can we successfully adapt PBMT systems using LDA features?

LDA uses the words observed in a document collection to infer a number of latent
threads, and has been used successfully for topic adaptation (see Section 3.3.2). Com-
pared to topics, text genres may be less specified by the content words in a document.
Nevertheless, our work on text genre classification in Section 4.5 showed that also
genres can be distinguished by vocabulary differences. We therefore hypothesize that
LDA may be useful for genre adaptation. In addition, we also investigate the combined
use of textual genre features and LDA features.

Organization. This chapter is organized as follows: In Section 5.2 we discuss related
work. Next, in Section 5.3 we describe the adaptation framework that we use as well as
three different feature variants (subcorpus labels, genre-revealing text features, and LDA
features). After a brief description of the experimental setup in Section 5.4, we discuss
in Section 5.5 the PBMT results using different genre adaptation variants. Finally, we
measure to what extent consistency of output translations is increased using our genre
adaptation approach in Section 5.6, before summarizing this chapter in Section 5.7.

5.2 Related work

Some previous work related to this chapter has been discussed in Sections 3.2 (domain
adaptation), 3.3.2 (topic and genre adaptation) and 4.2.2 (genre classification). Below
we discuss two lines of relevant work in more detail: instance weighting methods for
PBMT adaptation and LDA.

5.2.1 Instance weighting for PBMT adaptation
Instance weighting methods are commonly used for adaptation in PBMT. Such methods
aim to prioritize bilingual training instances that are most relevant to the development
and test data while not completely discarding less relevant data (which is done in data
selection methods). One of the first and most well-known instance weighting approaches
is presented by Matsoukas et al. (2009), who represent sentences in the training corpus
by a vector capturing provenance information, then estimate a weight for each sentence
by optimizing an objective function on the development set.

Most subsequent work learns relevance weights for phrase pairs rather than sen-
tences. For example, Foster et al. (2010) use features that capture the usefulness of
phrase pairs, e.g., perplexities, word frequencies and OOV rates, rather than manual
subcorpus labels. However, their method still relies on known corpus boundaries of
in-domain and out-of-domain data. Chen et al. (2013) propose a phrase pair weighting
approach based on a vector space model (VSM), in which the vector dimensions are
manually assigned subcorpus labels of the training data, and compute for each phrase
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pair a similarity score with a vector representing the test domain. We discuss the techni-
cal details of this method in Section 5.3.1. Instead of computing a similarity score, Chen
et al. (2014) add vector entries based on subcorpus frequencies as direct features to the
phrase table, allowing for optimization per phrase pair but also substantially increasing
the complexity and runtime during parameter tuning.

A number of dynamic variants of instance weighting have been proposed, which
compute phrase pair relevance scores at decoding time rather than with respect to an
in-domain development set (Costa-jussà and Banchs, 2011; Banchs and Costa-Jussà,
2011), and therefore alleviate the dependency on provenance information of the test
set. Unfortunately, computing relevance scores of the entire training bitext for every
test sentence under translation is a very time-consuming task. In this work, we want to
explore to what extent different feature types can serve for genre adaptation and thus
compare a large number of experiments. We therefore choose to work with a static
rather than a dynamic instance weighting approach.

5.2.2 Latent Dirichlet allocation

Latent Dirichlet allocation (LDA, Blei et al. (2003)) is a statistical model that infers
hidden information that can explain similarity patterns in data. LDA is commonly used
for topic modeling, in which it is assumed that each document describes a mixture
of topical dimensions. These dimensions are, however, not known and are inferred
probabilistically from the surface forms of the available documents. More formally,
LDA assumes a generative probabilistic process from which the documents in a corpus
arise. A graphical model illustrating this process is shown in Figure 5.1. Here each
node represents a random variable, and each box represents a repeated process.

N
M

z wα

β

θ

Figure 5.1: Graphical model representation of the generative process for document construction
that is assumed in LDA. Figure adapted from Blei et al. (2003).

Concretely, the generative process consists of the following steps:

For each of M documents D
m

in a corpus:

1. Given prior parameter ↵, choose a distribution ✓ over a mixture of topics.

2. For each of N word positions in document D
m

:

1. Given the topic distribution ✓, assign a topic z.

2. Given topic z and prior parameter �, choose a word w
n

.
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The documents in the corpus resulting from this generative process all share the same
set of latent dimensions, but in different proportions, resulting in a different set of
words for each document. Next, when facing a large document collection, we are not
interested in the generative process, but in the inference of the hidden distributions
✓ for all documents. For this step, the algorithm needs to know the number of latent
dimensions, and then searches for a latent distribution that best describes the observed
documents.1 Concretely, for each document, the LDA inference returns a distribution
over the latent dimensions that probabilistically quantifies the relative contribution of
each of the dimensions to the document during the assumed generative process.

Since LDA inference provides a way to automatically learn information about a
document, it has been used to replace subcorpus or provenance information in topic
adaptation (Tam et al., 2007; Eidelman et al., 2012; Hasler et al., 2012, 2014a,b,c;
Hewavitharana et al., 2013; Su et al., 2015). However, we are interested in genre
adaptation rather than topic adaptation. While LDA is a bag-of-words approach that
may be insufficient to model genre accurately, we found in Chapter 4 that lexical features
can in fact distinguish genres. We therefore explore in this chapter whether LDA can
also be of use for genre adaptation.

5.3 Translation model genre adaptation

For the task of genre adaptation to the genres NW and UG comments or weblogs, we
use a flexible translation model adaptation approach based on phrase pair weighting
using a vector space model (VSM) inspired by Chen et al. (2013). The reason we choose
an instance-weighting method rather than a mixture modeling approach is twofold: first,
mixture modeling approaches intrinsically depend on subcorpus boundaries, which
resemble provenance or require manual labeling. Second, Irvine et al. (2013a) have
shown that including relevant training data in a mixture modeling approach solves many
coverage errors, but also introduces substantial amounts of new scoring errors. With
phrase-pair weighting we aim to optimize phrase translation selection while keeping
our training data fixed, and we can thus compare the impact of several methodological
variants on genre adaptation for PBMT.

5.3.1 VSM adaptation framework

In the selected adaptation method, each phrase pair in the training data is represented
by a vector capturing information about the phrase:

V
�
¯f, ē
�
= hw1

�
¯f, ē
�
, . . . , w

N

�
¯f, ē
�
i. (5.1)

Here, w
i

�
¯f, ē
�

is the weight for phrase pair
�
¯f, ē
�

of dimension i 2 N in the vector
space. The exact definition of dimensions i 2 N , and hence the information captured by
the vector, depends on the definition of the vector space, for which we describe different
variants in Sections 5.3.2–5.3.4.

1Typically, the inference methods are either sampling-based algorithms or variational algorithms. We
will skip the technical details since their relevance for the purpose of adaptation in PBMT is very limited.
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In addition to the phrase pair vectors, a single vector is created for the development
set which is assumed to be similar to the test data:

V (dev) = hw1 (dev) , . . . , wN

(dev)i, (5.2)

where weights w
i

(dev) are computed for the entire development set, summing over the
vectors of all phrase pairs that occur in the development set:

w
i

(dev) =
X

(

f̄ ,ē

)

2Pdev

cdev
�
¯f, ē
�
w

i

�
¯f, ē
�
. (5.3)

Here Pdev refers to the set of phrase pairs that can be extracted from the development
set, cdev

�
¯f, ē
�

is the count of phrase pair
�
¯f, ē
�

in the development set, and w
i

�
¯f, ē
�

is the phrase pair’s weight for dimension i in the vector space.
Next, for each phrase pair in the training corpus, we compute the Bhattacharyya

Coefficient (BC, Bhattacharyya (1946)) as a similarity score2 between its vector and the
development vector:

BC
�
dev ; ¯f, ē

�
=

i=NX

i=0

q
p
i

(dev) · p
i

�
¯f, ē
�
, (5.4)

where p
i

(dev) and p
i

�
¯f, ē
�

are probabilities representing smoothed normalized vector
weights w

i

(dev) and w
i

�
¯f, ē
�
, respectively.

The computed similarity is assumed to indicate the relevance of the phrase pair
with respect to the development and test set and is added to the decoder as a new
feature. In a similar fashion, two similarity-based decoder features BC

�
dev ; ¯f, ·�

and BC (dev ; ·, ē) are added for the marginal counts of the source and target phrases,
respectively. Further technical details can be found in (Chen et al., 2013).

The presented framework for translation model adaptation allows us to empirically
compare various sets of VSM features, of which we present three in the following
sections.

5.3.2 Genre adaptation with subcorpus labels

First, we adhere to the commonly used scenario in which adaptation is guided by manual
subcorpus labels that resemble provenance of training documents, which is also used
by Chen et al. In this formulation, each weight w

i

�
¯f, ē
�

in (5.1) is a tf-idf weight
capturing the relative occurrence of phrase pair

�
¯f, ē
�

in each subcorpus s
i

in a total of
C subcorpora:

w
i

�
¯f, ē
�
= tf

i

�
¯f, ē
�
· idf

�
¯f, ē
�
. (5.5)

Here, phrase pair frequency tf
i

�
¯f, ē
�

is computed as the raw count of phrase pair�
¯f, ē
�

in subcorpus s
i

, divided by the maximum count of any phrase pair in s
i

:

2Chen et al. compared three similarity measures and observed that the BC similarity performed best. We
follow their recommendation in our work.

71



5. Genre Adaptation Using Text Features

tf
i

�
¯f, ē
�
=

c
i

�
¯f, ē
�

max{c
i

�
¯f
j

, ē
k

�
:

�
¯f
j

, ē
k

�
2 s

i

}
. (5.6)

Next, the inverse subcorpus frequency idf
�
¯f, ē
�

measures how common
�
¯f, ē
�

is across
all subcorpora:

idf
�
¯f, ē
�
= log

 
C

df
�
¯f, ē
�
+ �

!
. (5.7)

Here, C is the number of subcorpora, df
�
¯f, ē
�

refers to the subcorpus frequency
and counts the number of subcorpora in which

�
¯f, ē
�

occurs at least once, and � is a
smoothing term. Following Chen et al. we use � = 8.

Since our aim is to adapt to multiple genres in a test corpus, we follow Chen
et al. and manually group our training data into subcorpora that reflect various genres
(see Table 5.3). While this definition of the vector space can approximate genres at
different levels of granularity, manual subcorpus labels are labor intensive to generate,
particularly in the scenario where provenance information is not available, and may not
generalize well to new translation tasks.

5.3.3 Genre adaptation with genre features

To move away from manually assigned subcorpus labels, we explore the use of genre-
revealing features that have proven successful for distinguishing genres in classification
tasks (see Section 4.2.2). To this end, we construct a list of features that are directly
observable in raw text, see Table 5.1. For each genre feature g

i

, we first compute its
raw count c

i

(d) per document d in the training corpus D, which we then normalize for
document length:

c0
i

(d) =
c
i

(d)

|d| , (5.8)

where |d| is the number of tokens in document d. We then scale each feature to a value
in range [0, 1] by min-max normalizing its values across all documents, and we obtain
the final document-level feature value w

i

(d):

w
i

(d) =
c0
i

(d)�min{c0
i

(d
j

) : d
j

2 D}
max{c0

i

(d
j

) : d
j

2 D}�min{c0
i

(d
j

) : d
j

2 D} (5.9)

Next, each vector weight w
i

�
¯f, ē
�

in (5.1) equals the weighted average of the document-
level values of genre feature g

i

for all training instances of phrase pair
�
¯f, ē
�
:

w
i

�
¯f, ē
�
=

1

ctrain
�
¯f, ē
�
X

d2D

c
d

�
¯f, ē
�
w

i

(d) . (5.10)

Here, ctrain
�
¯f, ē
�

is the total count of phrase pair
�
¯f, ē
�

in the training corpus, D is the
number of documents in the training corpus, c

d

�
¯f, ē
�

is the count of
�
¯f, ē
�

in document
d, and w

i

(d) is the document-level weight of genre feature g
i

for document d. Note

72



5.3. Translation model genre adaptation

Table 5.1: Selection of document-level features inspired by genre-classification literature. The
top seven features are most discriminative between the genres NW and UG, and are used in the
genre-specific VSM approaches.

Feature

First person pronoun count
Second person pronoun count
Repeating punctuation count (“...”, “?!”, etc.)
Exclamation mark count
Question mark count
Emoticons count
Numbers count

Third person pronoun count
Plural pronoun count
Average word length
Average sentence length
Total punctuation count
Quote count
Dates count
Percentages count
Long words (> 7 characters) count
Stopwords count
Unique words count

that this definition differs from the standard tf-idf weight that is used in Section 5.3.2
since each genre feature has exactly one score per document, and we do not have to
normalize for dissimilar subcorpus sizes.

We determine the most genre-discriminating features with a Mann-Whitney U
test (Mann and Whitney, 1947) on the observed feature values for each genre in the
development set. The seven most discriminative features between the genres NW and
UG, which we use in the remainder of this chapter, are shown in the top part of Table 5.1.
The main goal of this chapter is to investigate whether this type of genre-revealing
features can be useful for the task of translation model genre adaptation, hence we do
not attempt to fully exploit the set of possible features. Since genre-discriminating
features have the potential to generalize across languages (Petrenz and Webber, 2012),
we compute the document-level feature values w

i

(d) on the source as well as the target
sides of our bitext, and we examine whether both are equally suitable for translation
model genre adaptation.

5.3.4 Genre adaptation with LDA

Next, we use LDA-inferred document distributions as a third vector representation in
the adaptation framework. In this formulation, each weight w

i

(d) is a document-level
probability for latent dimension i, and weights w

i

�
¯f, ē
�

are average probabilities of
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5. Genre Adaptation Using Text Features

latent dimension i for all training instances of phrase pair
�
¯f, ē
�
, computed as in (5.10).

We implement LDA using Gensim (Řehůřek and Sojka, 2010), an off-the-shelf tool
for LDA inference in Python. By default, Gensim only returns probabilities that are
larger than a small threshold ↵, resulting in incomplete probability distributions. Since
we want vectors of equal lengths for all documents in our corpora, we distribute the
remaining probability mass uniformly over the missing dimensions. We experiment
with varying numbers of latent dimensions (5, 10, 20, and 50), of which LDA with 10
dimensions yields the best translation performance, which is consistent with findings in
a related approach by Eidelman et al. (2012). The LDA features in this VSM variant are
inferred from the source side of the training data.

5.4 Experimental setup

We evaluate the methods described in Section 5.3 on two Arabic-to-English translation
tasks, both comprising NW and UG. The first evaluation set is the Gen&Topic bench-
mark (see Section 3.3.3), comprising web-crawled news articles and their respective user
comments, both covering five different topics. Since this evaluation set has controlled
topic distributions per genre, differences in translation quality between genres can be
entirely attributed to actual genre differences. The second evaluation set contains NIST
OpenMT Arabic-English test sets, using NIST 2006 for tuning, and NIST 2008 and
NIST 2009 combined for testing. These data sets cover the genres NW and UG weblogs
but are not controlled for topic distributions. Specifications for both evaluation sets
are shown in Table 5.2. Note that Gen&Topic contains one reference translation per
sentence, while NIST has four sets of reference translations.

Table 5.2: Corpus statistics of the evaluation sets. Numbers of tokens are counted on the Arabic
side. Note that Gen&Topic contains one reference translation per sentence, while NIST has four
sets of reference translations.

Benchmark NW UG Total

Dev
Lines 997 1127 2124

Gen&Topic Tokens 26.9K 25.8K 52.7K

(1 reference)
Test

Lines 1567 1749 3316
Tokens 46.3K 45.5K 91.8K

Dev
Lines 1033 764 1797

NIST Tokens 34.4K 14.6K 49.0K

(4 references)
Test

Lines 1399 1274 2673
Tokens 46.6K 39.9K 86.6K

All runs use parallel corpora made available for NIST OpenMT 2012, excluding the
UN data. While LDC-distributed data sets contain substantial portions of documents
within the NW genre, they only contain small portions of UG documents. To alleviate
this imbalance we augment our LDC-distributed training data with a variety of web-
crawled manually translated documents (see Section 4.3), containing user comments
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5.5. Results

Table 5.3: Corpus statistics of the Arabic-English parallel training data. Tokens are counted on the
Arabic side. Genre mapping: BC=broadcast conversation, BN=broadcast news, NG=newsgroup,
NW=newswire, WL=UG weblogs, CM=UG comments, ED=editorials, SP=speech transcripts.

Subcorpus Genre Lines Tokens

NIST broadcast conversation BC 48K 1,1M
NIST broadcast news BN 41K 923K
NIST newsgroup NG 15K 392K
NIST newswire NW 133K 4.5M
NIST weblog WL 7.7K 126K
ISI newswire NW 699K 22.2M

Web newswire NW 376K 11.1M
Web UG comments CM 203K 6.0M
Web editorials ED 127K 4.4M
Web Ted talks SP 98K 2.2M

Total All 1.75M 52.9M

that are of a similar nature as the UG documents in the Gen&Topic benchmark, set as
well as a number of other genres. Table 5.3 lists the corpus statistics of the training
data, split by manual subcorpus labels as used for the subcorpus VSM variant (see
Section 5.3.2). While our manually grouped subcorpora approximate those used by
Chen et al., exact agreement was impossible to obtain, illustrating that it is not trivial to
manually generate optimal subcorpus labels.

We perform our experiments using Oister, see Section 2.4.1 for experimental details.
For all experiments, tuning is done separately for the two genre-specific development
sets. We use a linearly adapted language model that covers both genres in the benchmark
sets, but is not varied between experiments since we want to investigate the effects of
different features on translation model adaptation. Finally, we tokenize all Arabic data
using MADA.

5.5 Results

In this section we compare a number of variants of the general VSM framework,
differing in the way vectors are defined and constructed (see Sections 5.3.2–5.3.4).
Statistically significant BLEU improvements are marked with M and N for the p  0.05
and the p  0.01 level, respectively.

5.5.1 VSM using intrinsic text features

We first test various VSM variants that use automatic indicators of genre and do not
depend on the availability of provenance information or manual subcorpus labels
(Table 5.4). Of these, genre adaptation with LDA-based features (Section 5.3.4) achieves
strongly significant improvements over the unadapted baseline for the NIST-NW and
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5.5. Results

the complete NIST test sets, however improvements on the other test portions are very
small. When manually inspecting the LDA-inferred latent dimensions, we observe that
LDA is overly aggressive in considering all of the UG genre as a single thread, while
latent dimensions inferred for NW are more fine-grained. While this finding can be
explained by the unbalanced amount of training data per genre, it also illustrates that
LDA-based features seem less suitable to capture low-resourced genres.

Next, we evaluate the VSM variant that uses genre-revealing text features inspired
by genre classification research (Section 5.3.3). This approach achieves statistically
significant improvements over the baseline in all runs except one, i.e., target-side
features on Gen&Topic NW. We also see that translation quality is fairly similar for
features computed on either side of the bitext, indicating that the proposed genre features
can generalize across languages.

Our last VSM variant in Table 5.4 combines genre-revealing and LDA features
by using VSM similarities from both approaches as additional decoder features. This
combined setting yields the largest improvements, which are all strongly significant and
always equal to or better than the performance achieved by either individual feature type,
suggesting that the two vector representations are to some extent complementary. Again,
source and target genre feature values perform alike, with source-side genre features
performing best for Gen&Topic, and target-side genre features obtaining slightly better
overall results for NIST.

5.5.2 VSM using manual subcorpus labels

Next we compare our best performing VSM variant per test set (bold-faced in Table 5.4)
to the originally proposed VSM variant using manual subcorpus labels (Section 5.3.2).
The latter can be considered as an adapted baseline, however with the disadvantage that
it relies on the availability of provenance information or manual grouping of documents
into informative subcorpora.

Table 5.5 first shows the performance of VSM with manual subcorpus labels, which
works well on NIST, confirming previously published results (Chen et al., 2013), but
does not lead to significant improvements on Gen&Topic with respect to the unadapted
baseline. This suggests that the success of this approach depends on a good fit between
the test data distribution and the partitioning of training data into subcorpora, and that a
single set of manual subcorpus labels is not guaranteed to generalize to new translation
tasks.

The bottom half of the table shows that similar (for NIST) or larger (for Gen&Topic)
improvements can be achieved when using the most competitive VSM variant that uses
intrinsic text properties instead of manual subcorpus labels. Finally, we use intrinsic text
features on top of manual subcorpus labels, i.e., we add all three proposed VSM feature
types as additional decoder features. For NIST, this approach yields weakly significant
improvements over the runs with only manual subcorpus labels, indicating that the
automatic genre features capture additional genre information that is not contained in
the manually grouped subcorpora. For Gen&Topic, including manual subcorpus labels
does not increase translation performance with respect to VSM with genre and LDA
features only, confirming the poor generalization of manual subcorpus labels to new
translation tasks.
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5. Genre Adaptation Using Text Features

5.6 Translation consistency analysis

In the proposed translation model adaptation approach, lexical choice is more tailored
towards the different genres than in the baseline. We therefore hypothesize that the
adapted system increases consistency of output translations within genres. To test this
hypothesis, we measure translation consistency following Carpuat and Simard (2012).
Their approach studies repeated phrases, defined as source phrases p in the phrase table
that occur more than once in a single test document d and contain at least one content
word. For each repeated phrase, all of its 1-best output translations are compared. If
these are identical except for punctuation or stopword differences, the repeated phrase
is deemed consistent.

The results of the consistency analysis for the unadapted baseline and the best
performing VSM genre+LDA variants are shown in Table 5.6. We observe that for both
benchmark sets translation consistency is clearly lower in NW than in UG documents.
This is likely due to the lower coverage of UG in the training data, which is in agreement
with the finding by Carpuat and Simard that translation consistency increases for weaker
systems trained on smaller amounts of training data. In line with our expectation, the
results also show that document-level translation consistency increases when using the
adapted system. Although Carpuat and Simard show that translation consistency does
not imply higher quality, they also conclude that consistently translated phrases are
more often translated correctly than inconsistently translated phrases.

Table 5.6: Document-level translation consistency values for the baseline and best performing
VSM variant using automatic genre indicators.

% Consistent phrases

Test set Genre # Repeated phrases Baseline VSM auto. genre

G&T
NW 7,318 43.2 47.4 (+4.2)
UG 6,024 55.5 58.2 (+2.7)
All 13,342 48.7 52.3 (+3.6)

NIST
NW 7,412 40.5 40.6 (+0.1)
UG 5,431 54.5 57.1 (+2.6)
All 12,843 46.5 47.6 (+1.1)

Table 5.7 shows some examples of phrases that were translated consistently in one
system, but inconsistently in the other. While more phrases moved from being translated
inconsistently in the baseline to consistently in the adapted system, the opposite was
also observed for all benchmarks. In the UG examples, we see that the adapted system
often favors translations that are more colloquial or simplified than (some of) their
counterparts in the baseline system, e.g., ‘shows’ instead of ‘indicates’, ‘a year’ instead
of ‘annually’, and ‘vaccination’ instead of ‘immunization’. For NW, on the other
hand, translations in the adapted system are often more formal, e.g., ‘global’ instead of
‘worldwide’ or more concise, e.g., ‘the health sector’ instead of ‘workers in the health
sector’, and ‘east africa’ instead of ‘east african countries’, than in the baseline.
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Table 5.7: Examples of source phrases that generate inconsistent translations in the baseline and
consistent translations in the adapted system (top), and vice versa (bottom).

Genre Baseline translation(s) VSM automatic genre translation(s)

Inconsistent in baseline, consistent in adapted system:

UG and this indicates / and this shows that and this shows
UG fatigue and stress / and the stress and the stress
NW the health sector / workers in the health sector the health sector
NW percent of egyptians / percent of them percent of

Consistent in baseline, inconsistent in adapted system:

UG annually annually / a year
UG immunization immunization / vaccination
NW east african countries east african countries / east africa
NW worldwide worldwide / global

5.7 Conclusions

Domain adaptation is an active field for PBMT, and has resulted in various approaches
that adapt system components to specific translation tasks. Motivated by the large
translation quality gap that we previously observed between different genres, we have
in this chapter focused on genre adaptation. Since most previous approaches depend on
the availability of provenance information or manual subcorpus labels, we asked:

RQ3 How can we adapt PBMT systems to different genres without relying on explicit
corpus labels?

To answer this question, we improved upon an existing adaptation framework by
replacing its dependency on subcorpus information with automatic indicators of genre.
We explored two types of features that can be automatically extracted from the parallel
training and evaluation corpora: genre-revealing features inspired by previous findings
in the text genre classification literature, and LDA features.

Experiments on two test sets with two genres showed that the combination of both
feature types yields the largest BLEU improvements. This indicates that the proposed
genre and LDA features are to some extent complementary. In addition, we observe
small improvements over the original adaptation approach when using automatic genre
features on top of manual subcorpus labels. We also find that the genre-revealing
feature values can be computed on either side of the training bitext, indicating that our
proposed features are to some degree language independent. Finally, we find that our
genre-adapted translation models encourage document-level translation consistency
with respect to the unadapted baseline.

79





Part II

Translating and Analyzing
Informal Language

Research in MT has mostly been driven by formal genres, which are characterized
by a large degree of standardization and editorial control. Examples of formal genres
are news, legal or parliamentary proceedings, and IT or medical guidelines. However,
translation of informal, typically user-generated (UG), genres containing colloquial
language is a more difficult task for PBMT systems. This is reflected by low scores
obtained with automatic quality metrics, however little is known about why exactly
PBMT for informal genres is challenging, and which aspects indicate whether translation
is easy or not. We address these issues in our second research theme by translating a
number of informal text genres and analyzing (i) which errors are common, (ii) why
these errors are made, (iii) which aspects can be indicative of poor translation quality,
and (iv) what are viable strategies for improving PBMT for informal language.

First, in Chapter 6 we focus a variety of UG sub-genres, which have in common that
they have been written by a lay-person, as opposed to a journalist or professional author.
To gain a better understanding of the challenges of PBMT for UG text, we conduct a
series of analyses on five different UG benchmarks: SMS messages, chat messages,
transcripts of telephone conversations, weblogs, and user comments to news articles.
We not only contrast informal and formal genres, but also look into the differences
between various UG test sets.

Next, an interesting informal genre that has only rarely been used in PBMT research
is conversational text. Conversations, or dialogues, involve—by definition—multiple
speakers, and are thus noticeably different from formal texts that are typically written by
a single writer with a single goal. Different speakers likely have different intentions and
language use, possibly demanding PBMT system adaptation at fine-grained levels of
dialogue-specific aspects, such as speakers, speaker gender, dialogue acts and register.
In Chapter 7 we study the impact of these aspects on PBMT quality and their potential
to serve as indicators for improved PBMT adaptation.
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6
Translating and Analyzing

User-Generated Text

6.1 Introduction and research questions

User-generated (UG) text such as found on social media and web forums poses different
challenges to SMT than formal text. This is reflected by poor translation quality
for informal genres (see for example Figure 6.1), which is typically measured with
automatic quality metrics such as BLEU (Papineni et al., 2002), METEOR (Banerjee
and Lavie, 2005), or TER (Snover et al., 2006). These scores alone, however, only
reflect the overall translation quality, and do not provide any insights in what exactly
makes translating UG text hard. While such knowledge is crucial for improving SMT
of UG text, no previous work on error analysis for SMT of user-generated text has been
reported.

Moreover, the notion of user-generated content only partially specifies the exact
nature of documents. What all documents that can be classified as being UG have in
common is the fact that they have been written by a lay-person, as opposed to a journalist
or professional author, and that they have not undergone any editorial control. UG text
also tends to express the writer’s opinion to a larger degree than news articles which
generally strive for balance and nuance. Within UG text, we can distinguish several
subclasses, including (i) message and dialogue-oriented content such as short message
service (SMS) texts, Internet chat messages, and transcripts of conversational speech,
(ii) commentaries to news articles, often expressing an opinion about the corresponding
articles and relating the content to the reader’s situation, and (iii) weblogs, which can
bear some resemblance to editorial pieces published by news organizations.

你 路上 慢 点
take your time
you are on the road to slow points

In (Chinese):
Reference:
MT output:

 
she said so the kids do not feel upset
she said because of the sons

In (Arabic):
Reference:
MT output:

شلعزتم لايعلا ناشع تلاق

Figure 6.1: SMS examples with poor PBMT output.
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While UG text processing tasks are becoming more common, most research in
MT is still driven by formal translation tasks,1 and existing error analysis approaches
may only be partially useful for UG. To explain the typically poor PBMT performance
observed for UG texts, we conduct a series of analyses on five UG benchmarks for two
language pairs, Arabic-English and Chinese-English, by asking:

RQ4 How is translation quality of PBMT influenced by different types of user-generated
text?

To answer this question, we compare our five UG benchmarks both quantitatively
and qualitatively. Our quantitive analysis starts with measuring translation quality,
average translation phrase length, and model coverage of source phrases, target phrases
and phrase pairs of various lengths. Next, we also compare for each UG test set the
distribution of errors caused by (i) unseen source words, (ii) unseen target words, or
(iii) suboptimal scoring of possible translation candidates. Our qualitative analysis
comprises sentence-level annotations representing these errors. Together, these analyses
answer the following question:

RQ4a. What are the most common error types for various UG genres?

In addition, we also run all of our analyses for two news benchmarks, allowing us to
compare PBMT performance and errors across UG test sets and between UG text and
more formal text. Doing so, we address the following question:

RQ4b. To what extent do PBMT errors differ for different types of UG text and between
UG text and news?

Finally, we want to identify translation modeling aspects that should be addressed to
improve translation of UG data, and we therefore ask:

RQ4c. What are promising strategies to improve PBMT for UG genres?

Organization This chapter is organized as follows: In Section 6.2 we discuss relevant
related work. In Section 6.3, we briefly discuss the experimental setup and the data
sets used in this chapter. Next, in Section 6.4 we describe all of our quantitative and
qualitative analyses and discuss the results and findings. Finally, we provide conclusions
in Section 6.5.

6.2 Related Work

Relevant previous work for this chapter concerns two research subjects: error analysis
for PBMT and PBMT for informal language, both of which we discuss below.

1One of the few exceptions is NIST OpenMT 2015, which focusses entirely on translating UG genres.
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6.2.1 Analyzing PBMT errors

Identifying and analyzing different types of PBMT errors is an essential step towards
the development of translation approaches that can achieve more robust performance,
and has therefore been the focus of earlier work. The majority of previous work on
PBMT error analysis has dealt with categorizing errors and designing error taxonomies,
typically for post-editing purposes. Such taxonomies often use part-of-speech (POS)
tags or other syntactic or linguistic information to classify PBMT output errors into
one of several categories, reflecting various granularity levels of inflectional errors,
reordering errors, lexical errors, and punctuation errors (Font Llitjós et al., 2005; Vilar
et al., 2006; Bojar, 2011; Popović and Ney, 2011). Giménez and Màrquez (2008, 2010)
use a large set of existing automatic evaluation metrics to assess PBMT errors. Other
work considers very specific aspects of PBMT output errors, such as fluency (Elliott
et al., 2004) or verb inflections (Popović and Ney, 2006). Finally, Costa et al. (2015)
present a comprehensive taxonomy covering most of the classes considered in previous
work.

All of the above have in common that they only look at PBMT output, and do not
provide insights into why certain mistakes are made during translation. In addition,
the presented analyses often deal with language-specific phenomena, for example for
translating into Chinese (Vilar et al., 2006), Czech (Bojar, 2011), or Spanish (Popović
and Ney, 2006). One of the few works analyzing the causes of PBMT errors rather than
their appearance is performed by Irvine et al. (2013a), who use word alignment links to
determine whether incorrect lexical choices are made due to poor source word coverage,
poor target word coverage, suboptimal scoring of translation options, or search errors
during decoding. They mainly use their error analysis to determine how the observed
errors change when shifting domains, however it can be applied to any translation task
in any language pair.

Finally, a few other efforts have analyzed PBMT in the context of domain adaptation,
for example by examining at which stage of the PBMT pipeline the available in-domain
data can best be used (Duh et al., 2010), how in-domain and out-of-domain models can
best be combined (Bisazza et al., 2011), or whether it is more promising to improve
either phrase extraction or scoring (Haddow and Koehn, 2012).

6.2.2 PBMT for informal language

The vast majority of PBMT research, including the above described work on error
analysis, is evaluated on test sets containing relatively formal language, such as news,
legal or parliamentary proceedings, and IT or medical guidelines. Work on PBMT
of informal, UG text mostly targets reduction of OOV words in the source text, for
example by correcting spelling errors (Bertoldi et al., 2010), normalizing noisy text
to more standardized text (Banerjee et al., 2012; Ling et al., 2013a), or enhancing the
training data with bilingual segments extracted from Twitter (Jehl et al., 2012; Ling et al.,
2013b). Other work improves PBMT of UG text by combining statistical and rule-based
MT (Carrera et al., 2009), or models trained on more formal and less formal genres
(Banerjee et al., 2011). Finally, Roturier and Bensadoun (2011) conduct a comparative
study to determine the ability of several PBMT systems to translate UG text, but they do
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6. Translating and Analyzing User-Generated Text

not examine what errors the systems make. To our knowledge, our work is the first that
looks inside an PBMT system to systematically inspect its behavior across a diverse
spectrum of UG text types.

6.3 Experimental setup

We perform our error analysis on five UG data sets in two language pairs, Arabic-English
and Chinese-English. Below we describe the details of our data and experimental setup.

6.3.1 Evaluation sets

For both language pairs we use evaluation sets for five types of user-generated text:
SMS messages, chat messages, manual transcripts of phone conversations (called Con-
versational Telephone Speech (CTS)), weblogs, and readers’ comments to news articles.
The first four data sets originate from BOLT and NIST OpenMT, and are distributed
by the Linguistic Data Consortium (LDC), while the last data set is crawled from the
web (see Section 4.3 for details on the harvesting procedure). All UG experiments are
contrasted with two news data sets: the news portions of NIST evaluation sets, and
web-crawled news articles.

For Arabic-English, the web-crawled news articles and comments originate from
the Gen&Topic data set (introduced in Section 3.3.3), in which both genres cover the
same distributions over various topics. Consequently, any observed differences between
the news and UG portions of this data set can be entirely attributed to genre differences
and not to potential topical variation.

We have attempted to create similar-sized and reasonably large benchmark sets.
However, benchmarks for some genres are smaller since data is for these genres is
scarce. Tables 6.1 and 6.2 show the data specifications of the Arabic-English and
Chinese-English evaluation sets, respectively. Note that two of the NIST evaluation
sets contain four reference translations instead of one. To allow for a fair comparison,
we compute in all our analyses scores for these benchmarks using a single reference
translation and average the scores of the four references.

6.3.2 PBMT systems

All experiments presented in this chapter are performed with our in-house phrase-based
PBMT system Oister (see Section 2.4.1). Our Arabic-English system is built from
1.75M lines (52.9M source tokens) of parallel text, and our Chinese-English system
from 3.13M lines (55.4M source tokens) of parallel text. We tokenize all Arabic data
using MADA (Habash and Rambow, 2005), ATB scheme, and we segment the Chinese
data following Tseng et al. (2005). Both systems use an adapted 5-gram English
language model that linearly interpolates different English Gigaword subcorpora with
the English side of our bitexts, containing both news and UG data.

While parallel data is scarce in general, the situation is much worse for UG data,
where there are hardly any sizable parallel corpora for any language pair. As a con-
sequence, the training data of both systems comprises 70–75% news data, mostly
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Table 6.1: Statistics of the Arabic-English UG (top) and contrastive news (bottom) evaluation
sets. Tokens are counted on the Arabic side.

Dev set Test set

Genre Lines Tokens Lines Tokens Refs

SMS 2.7K 23.3K 7.6K 44.9K 1
Chat 3.5K 22.5K 7.1K 44.5K 1
CTS 2.4K 23.1K 3.6K 40.6K 1
Comments 1.1K 25.8K 1.7K 45.5K 1
Weblogs 0.8K 14.6K 1.3K 39.9K 4

News 1 1.0K 26.9K 1.6K 46.3K 1
News 2 1.0K 34.4K 1.4K 46.6K 4

Table 6.2: Statistics of the Chinese-English UG (top) and contrastive news (bottom) evaluation
sets. Tokens are counted on the Chinese side.

Dev set Test set

Genre Lines Tokens Lines Tokens Refs

SMS 1.8K 15.3K 4.2K 36.3K 1
Chat 4.0K 25.6K 6.0K 45.7K 1
CTS 2.2K 25.1K 2.9K 44.8K 1
Comments 1.0K 26.5K 1.5K 41.0K 1
Weblogs 0.5K 8.8K 0.7K 14.4K 4

News 1 0.8K 24.5K 1.5K 41.9K 1
News 2 1.2K 29.4K 0.7K 17.7K 4

LDC-distributed, and 25–30% data in various other genres (weblogs, comments, editori-
als, speech transcripts, and small amounts of chat data), mostly harvested from the web.
Per language pair, all experiments use the same PBMT models, but we tune parameters
separately for each benchmark.

To put the results of our system into perspective, we also run a first series of
experiments on a well-known and established online PBMT system.

6.4 Error analysis and results

In this section, we perform four different experiments series on all of our benchmarks.
First, we quantify the gap in translation quality between news and different types of UG
data (§6.4.1). Next, we investigate what kind of translation choices the PBMT system
makes for the different benchmarks (§6.4.2), and what kind of translation choices the
PBMT system could have made (§6.4.3). Finally, we examine why the PBMT system
made the translation choices that it made (§6.4.4).
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6. Translating and Analyzing User-Generated Text

Figure 6.2: Translation performance of baseline experiments for two news and five UG Arabic-
English (top) and Chinese-English (bottom) benchmarks, measured in case-insensitive BLEU for
one reference translation.

Figure 6.3: Average source-side and target-side phrase lengths used during decoding of two news
and five UG Arabic-English (top) and Chinese-English (bottom) benchmarks.
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6.4.1 Overall translation quality

A first important indication of PBMT quality across different genres can be given by
translation quality measures that are based on the similarity between the PBMT output
and a reference human translation. To estimate the gap in translation quality between
news and UG text, but also among various types of UG text, we measure the BLEU
scores (1 reference) of our in-house PBMT system and that of the online system on all
our evaluation sets.

The results in Figure 6.2 (top) show that translation quality differs greatly between
the Arabic-English data sets. In particular, the News 1 data set (from NIST) yields
considerably higher BLEU scores than all other evaluation sets, including the News 2
(from Gen&Topic) set, which represents the same genre but is visibly more difficult to
translate. On the other end of the spectrum, we see that translation quality of the SMS
and chat data sets is very poor. Note that our in-house system is optimized per genre,
whereas the online system is optimized for general language and speed.

For Chinese-English (Figure 6.2, bottom) the differences in BLEU are less pro-
nounced, both across the different data sets and between the two PBMT systems. Still,
translation quality is worse for the UG data sets than for news, indicating that also for
this language pair translating UG text is more challenging than translating news.

As all subsequent analyses require system-internal information, we carry out the
experiments with our in-house system only.

6.4.2 Translation phrase length analysis

Most state-of-the-art PBMT systems, including our in-house system, are phrase-based,
with translations being generated phrase by phrase rather than word by word (Koehn
et al., 2003). An abundant usage of small phrases during decoding indicates that the
system is not taking advantage of the model’s ability to memorize large contextual and
possibly non-compositional translation blocks. It is therefore interesting to measure the
average phrase length, i.e., number of tokens, used by the system, for the source as well
as the target language (Figure 6.3). For Arabic-English (top) we see that source-side
phrases are noticeably longer for both news benchmarks than for the UG data sets.
The average target-side phrase length, on the other hand, shows less correlation with
the genres of the data sets. Similar trends are observed for Chinese-English (bottom),
however differences are less extreme.

In general, PBMT systems incur higher model costs when utilizing many small
phrases rather than few large phrases. If, in spite of that, a system selects many short
phrases, which is the case for most of our UG benchmarks, this can be due to (i)
unreliable translation probabilities or (ii) to the mere lack of correct translation options
in the models. We investigate both issues in the following analyses.

6.4.3 Model coverage analysis

Next, we examine the translation model coverage for each data set, which tells us what
phrases the system could have used for decoding. For each of our test sets, we create
automatic word alignments using GIZA++ (Och and Ney, 2003), and extract from these
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6.4. Error analysis and results

the set of all reference phrase pairs using Moses’ phrase extraction algorithm (Koehn
et al., 2007). By comparing this set of phrase pairs to the available phrases in the PBMT
models, which have been extracted using the same procedure, we can compute the
following statistics:

1. Source phrase recall, defined as the fraction of reference phrase pairs whose
source side is found in the PBMT models.

2. Target phrase recall, defined as the fraction of reference phrase pairs whose target
side is found in the PBMT models.

3. Phrase pair recall, defined as the fraction of reference phrase pairs whose source
and target side are jointly found in the PBMT models.

Low recall values indicate that the models lack phrases or phrase pairs that match
the test data, which can be addressed by adding additional relevant training data or
by generating new phrases. In addition, we measure language model perplexity as
an indication of how predictable each benchmark is for the language model: high
perplexity corresponds to lower coverage. Note that this is an extended version of our
coverage analysis presented in Section 3.4.2, which excludes target phrase recall. Formal
mathematical definitions of the above statistics are also provided in Section 3.4.2.

The model coverage results for Arabic-English and Chinese-English are shown in
Tables 6.3 and 6.4, respectively. All recall scores are broken down by phrase length,
up to phrases of four tokens. The source-target phrase pair recall (last four columns)
is split by source phrase length rather than target phrase length since source phrases
are the actual input to the PBMT system. We use shaded cells of which the intensity
represents relative recall values with respect to the best scoring benchmark according to
BLEU, i.e., News 1.

The results show that source phrase recall is substantially lower for the UG bench-
marks than for news, particularly for longer phrases. Regarding target phrase recall,
differences between various data sets and genres are much smaller. This suggests that
many of the reference phrases could potentially be generated by the system, even for the
UG data. However, to be able to output the available target phrases, the system needs
a match with the input source phrases, which is exactly what is being measured with
phrase pair recall. Here, we see that for the majority of single-word source phrases, the
expected target phrase is accessible by the system. For longer phrases, though, there is
again a drastic decline in recall, with almost no phrases of length 4 or longer having the
expected target covered by the models. Similar to source phrase recall, this decline is
notably bigger for UG than for news.

Looking at the differences between the various types of UG data, we see that the
SMS and chat benchmarks are most severely affected by overall poor model coverage.
As for weblogs, the target phrase recall is similar to SMS and chat, whereas both source
phrase and phrase pair recall are much higher. For CTS and web comments, there are
notable differences between model coverage for the two language pairs, despite similar
BLEU scores. While comments have better coverage in the Arabic-English models,
CTS has higher recall values for Chinese-English.

Finally, we see that language model perplexity is on average lower for Arabic-
English than for the Chinese-English benchmarks. This is somewhat surprising given
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that perplexity is measured on the English side, but it can partially explain the low BLEU
scores on, for example, the Chinese-English News 1 benchmark. All news benchmarks
have relatively low perplexities, which is expected since the language model covers
more news than UG data. Of the UG benchmarks, CTS has a remarkably low perplexity
value, suggesting that for this genre the language model can potentially compensate for
low translation model coverage.

6.4.4 WADE: Word Alignment Driven Evaluation

To gain a more fine-grained insight in why our PBMT system makes its translation
choices, we reimplement an evaluation approach proposed by Irvine et al. (2013a),
which analyzes PBMT error types at the word alignment level. The analysis exploits
automatic word alignments between (i) a given source sentence and its reference
translation, and (ii) the same source sentence and its automatic translation. Each aligned
source-reference word pair is examined for whether the alignment link is matched by
the decoder. Formally, f

i

is a foreign word, e
j

is a reference word aligned to f
i

, a
i,j

is
the alignment link between f

i

and e
j

, and H
i

is the set of output words that are aligned
to f

i

by the decoder. If e
j

2 H
i

, the alignment link a
i,j

is marked as correct. Otherwise,
a
i,j

is categorized with one of the following error types:

1. A SEEN error indicates an unseen source word, i.e., out-of-vocabulary (OOV)
item. This error is assigned to a

i,j

if f
i

does not appear in the phrase table used
for translation. This type of error inversely correlates with length-1 source phrase
recall (§6.4.3).

2. A SENSE error indicates an unseen target word. This error is assigned to a
i,j

if f
i

does appear in the phrase table but never with translation candidate e
j

.

3. A SCORE error indicates suboptimal scoring of translation options. This error is
assigned to a

i,j

if f
i

exists in the phrase table with translation candidate e
j

, but
another translation candidate is preferred by the decoder.

Irvine et al. consider a final category of freebies: OOVs that are copied over verbatim
to the output sentence and accidentally match the reference translation, e.g., urls, proper
nouns, etc. For the language pairs that we study, they are very rare due to the differences
in writing scripts: at most 0.35% for Arabic-English (in CTS) and 0.63% for Chinese-
English (in SMS). Manual inspection reveals that nearly all freebies are English words
in the foreign source text. Since they are so rare, we omit freebies from our results.

As WADE errors are assigned at the fine-grained level of individual words, this
analysis allows for (i) sentence-level visualization of errors, and (ii) collecting aggregate
statistics of each error type for an entire evaluation set. By assembling the latter for
various benchmarks, we can quantify global differences between genres or data sets (see
quantitative analysis below). At the same time, by examining (i) we can gain insight
in the nature of the different ‘errors’, which might be real mistakes, or, for instance,
different lexical choices (see qualitative analysis below).
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Figure 6.4: Aggregate WADE error statistics for Arabic-English (top) and Chinese-English
(bottom) benchmark sets.

Quantitative results

The aggregate error statistics for each data set are shown in Figure 6.4. To put our results
into perspective, we recall the findings of Irvine et al. (2013a). They find that for formal
domains using a French-English system, 50–60% of the alignment links are correct, and
SCORE errors are more common than SENSE errors, which in turn are more common
than SEEN errors. While we observe a similar distribution for our Arabic-English news
benchmarks, these numbers do not generalize to the Arabic-English UG benchmarks
nor to any of the Chinese-English data sets.

First, the portion of SEEN errors increases dramatically for the Arabic-English UG
translation tasks. For Chinese-English this trend is less pronounced yet also clearly
observable. Next, SENSE errors also increase substantially for most of the UG data,
making up the majority of the errors for Chinese-English SMS and chat. This indicates
that a promising strategy for adapting PBMT systems to translating UG data involves
generating new target-side translation candidates that match the source phrases in the
input sentences. Finally, we evaluate the fraction of SCORE errors. While this is the
most commonly observed error type in most of the data sets, there seems to be very
little correspondance with the genre or BLEU scores of the benchmarks. This is an
interesting finding since most work in system adaptation for PBMT focuses on better
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scoring of existing translation candidates (Matsoukas et al., 2009; Foster et al., 2010;
Axelrod et al., 2011; Chen et al., 2013, among others). However, for UG translation
tasks this does not appear as the most effective approach.

Qualitative results

The generated sentence-level error annotations allow us to examine the various error
types in detail. The first phenomenon that we repeatedly observe in the UG data are
SEEN errors due to misspellings or, in the case of Arabic, dialectal forms. Two such
examples are shown in Figures 6.5A and 6.5B: In the first, the PBMT system does not
recognize the dialectal form of verb negation ‘mtzEl$’,2 which is a morphologically
complex word containing both a prefix and a suffix. In the second, the input word
‘AlmwbAyl’ (‘mobile’) is wrongly spelled as ‘AlmwyAyl’. It is interesting to note
that ‘b’ and ‘y’ are very similar in the Arabic script. This type of errors is particularly
frequent in chat and SMS, which can partly explain the different distribution of errors
across the Arabic-English data sets (Figure 6.4).

Also frequently observed in the UG data are PBMT lexical choices that are more
formal than the reference translations. We suspect that this is caused by the large amount
of formal data in the PBMT models, and it stresses the need for adaptation to UG data.
Often, the optimal lexical choice is simply absent from the PBMT models, resulting in
SENSE errors. This can be observed in Figure 6.5A, where ‘sons’ is output instead of
‘kids’, and in Figure 6.5C, where ‘i understand’ is output instead of the colloquial ‘i got
it’. In other situations, the annotated SCORE errors indicate that the correct choice was
available to the PBMT system without being selected for translation. For example in
Figure 6.5D, the output ‘my parents’ is preferred to the more colloquial ‘mom and dad’
in the reference.

Another phenomenon, particularly common for Chinese-English UG translations,
is that idioms are translated in small chunks, thereby losing their meaning as a phrase.
In Figure 6.5D, the characters ‘说’, ‘⼀’, and ‘声’ mean ‘to say’, ‘one’, and ‘sound’,
respectively. The phrase ‘说⼀声’ as a whole means ‘talk a bit about something’ but is
not covered by the PBMT models. Similarly, ‘你路上慢点’ in Figure 6.5E literally means
‘you on the road slow a bit’, which, if covered by the models, could have been translated
into ‘be careful on your way’ or ‘take your time’. These examples illustrate that the low
phrase pair recall for longer phrases severely complicates PBMT of UG data.

A final recurring issue in SMS and chat messages is the omission of first person
pronouns, see for example Figure 6.5E. The Chinese source phrase ‘上网了’ literally
means ‘get online’ (+ auxiliary word marking past tense). A native speaker understands
that this concerns the sender, which is reflected by a first person pronoun in the reference.
The PBMT system, on the other hand, cannot infer the subject of this phrase and instead
generates a translation without pronouns.

Other, less common, types of errors occurring in the UG data are due to inconsistent
segmentation or tokenization of input text, which mostly affects rare words, emoticons,
and repeating punctation. Finally, SEEN errors for named entities are overall rare but
occur in both news and UG benchmarks.

2We use Buckwalter transliteration to represent Arabic text in a left-to-right orientation.
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Input : qAlt  E$An AlEyAl m tzEl$ 

Ref: she said so the kids do not feel upset

Output : she said because of the sons

A) Arabic-English SMS example

Input : Ely Alm wyAyl 

Ref: for the m obile phone

Output : on the

Correct

Seen error

Sense error

Score error

B) Arabic-English chat example

Input : Ah fhm t  Ah 

Ref: yeah , i got it , yeah

Output : , i understand ,

C) Arabic-English CTS example

Input :

Output : you talk to my parents said a voices

Ref: can you tell mom and dad ?

爸妈 说 ⼀ 声你                    跟

D) Chinese-English SMS example

Input :

Ref: i 'm online . take your t ime

Output : on the internet , and you are on the road to slow points

上网 路上 点慢了              ,               你

E) Chinese-English SMS example

Figure 6.5: Sentence-level error annotations from various UG benchmarks illustrating common
issues in PBMT of UG data. We use Buckwalter transliteration to represent the Arabic source
text in a left-to-right orientation.
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6.5 Conclusions

Translating user-generated (UG) text such as found on social media and web forums is
a difficult task for PBMT. This is reflected by poor translation quality, which is typically
measured with automatic quality metrics such as BLEU, METEOR, or TER. These
scores alone, however, do not provide any insights in what exactly makes translating UG
text hard. We therefore performed in this chapter an extensive error analysis explaining
the poor translation quality often observed for UG text.

Since the notion of user-generated content only partially specifies the exact nature
of documents, we have collected and used five different types of UG data: SMS
messages, chat messages, manual transcripts of phone conversations, weblogs, and
readers’ comments to news articles. What all these documents have in common is the
fact that they have been written (or spoken) by a lay-person, as opposed to a journalist
or professional author, and that they have not undergone any editorial control. However,
different types of UG text can have very different characteristics and pose different
challenges to PBMT, which we addressed by asking:

RQ4 How is translation quality of PBMT influenced by different types of user-generated
text?

To answer this question, we compared our five UG benchmarks both quantitatively and
qualitatively. Our quantitative results show among others that (i) UG data is translated
with shorter source phrases than news, (ii) UG translation model coverage deteriorates
substantially for longer phrases, and (iii) phrase-pair OOVs pose a bigger challenge
to UG translation tasks than source OOVs. In our qualitative analysis we found that
common issues in UG data include (i) OOVs due to misspellings or Arabic dialectal
forms, (ii) lexical choices that do not reflect colloquial formulations, (iii) phrasal idioms
being translated word by word, and (iv) omitted first person pronouns in SMS and chat.

In addition, when comparing to two news benchmarks, we found that the SMS and
chat benchmarks are the most distant from formal text at all the analyzed levels. Errors
in other types of UG are often more similar to news errors than to those in SMS and
chat messages. Since we found that different types of UG exhibit such dissimilar error
distributions, they demand diverse strategies to improve PBMT quality. For example,
SMS and chat data might benefit from text normalization (Bertoldi et al., 2010; Yvon,
2010; Ling et al., 2013a) or otherwise resolving source OOVs, while some of the other
UG genres likely benefit from better scoring of existing translation candidates.
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Translating and Analyzing

Fictional Dialogues

7.1 Introduction and research questions

Research in PBMT has mostly been driven by translation tasks using relatively formal
text such as parliamentary proceedings. However, as shown in Chapter 6, PBMT
of informal genres is much more challenging, and dialogue-oriented content such
as SMS and chat messages are particularly problematic. We therefore focus in this
chapter on PBMT for dialogues, an informal genre that involves, by definition, multiple
speakers, and is thus noticeably different from other types of text (Fernández, 2014).
Other, more formal text is typically written by a single, often professional, writer with
a clear intention, e.g., informing or persuading, and moreover has been editorially
controlled according to standards of language use. In dialogues, on the other hand,
different speakers have different intentions and language use. Such variations are
reflected dialogue acts, functional actions such as questions or answers (Bunt, 1979),
and by register, a term referring to socio-situational language variation (Lee, 2001),
respectively.

While these and other dialogue-specific aspects have been analyzed in dialogue
research (Schlangen, 2005; Fernández, 2014), their impact on PBMT has hardly been
studied. In this chapter, we take a first step towards investigating the effect of dialogue
acts, speakers, speaker gender, and register on PBMT performance by asking:

RQ5 What impact do dialogue-specific aspects have on translation quality?

A likely explanation for the fact that PBMT for dialogues has hardly been addressed
before is the lack of adequate evaluation data, i.e., parallel conversations annotated
with dialogue-specific variables. To overcome this limitation we first create and release
a corpus of multilingual movie dialogues annotated with the four aforementioned
dialogue-specific aspects. Since movie dialogues are fictional, we can only consider
them as an approximation of real face-to-face conversation. However, several corpus-
based studies have shown that, while movie dialogues differ from natural spoken
dialogues in terms of spontaneity—they exhibit fewer incomplete utterances, hesitations,
and repetitions—, they do not differ to a great extent in terms of linguistic features
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and main messages (Forchini, 2009, 2012; Dose, 2013). In fact, movie dialogues
approximate real face-to-face conversation more than for example SMS and chat, in
which media constraints influence the flow of a conversation (Whittaker, 2003; Brennan
and Lockridge, 2006). Finally, Danescu-Niculescu-Mizil and Lee (2011) have shown
that certain psycholinguistic and gender-specific aspects of language are also observed
in fictional dialogues, indicating that conclusions drawn from experiments on fictional
dialogues generalize at least partially to real spoken conversations.

Armed with our newly annotated dialogues, we can measure PBMT quality fluctua-
tions among different values of each dialogue aspect, thus asking:

RQ5a. To what extent does PBMT quality vary between different speakers, speaker
genders, dialogue acts and register?

Concretely, we use an approximate randomization approach to measure whether BLEU
fluctuations for each dialogue aspect are larger than expected at random. If so, this
would indicate that we may be able to (i) predict PBMT output quality by having
access to dialogue aspect information, and (ii) successfully apply PBMT adaptation at
fine-grained level of various dialogue aspects. To verify the former hypothesis, we ask:

RQ5b. Which dialogue aspects are most indicative for PBMT quality?

To verify the second hypothesis, we ask:

RQ5c. Can automatic annotations of dialogue-specific aspects benefit adaptation for
PBMT?

To this end, we perform a number of preliminary adaptation experiments towards two
dialogue aspects for which values can be heuristically detected from the training corpus,
namely dialogue acts and registers.

Organization. This chapter is organized as follows: first, in Section 7.2, we discuss
related work. Next, in Section 7.3 we describe our efforts to automatically annotate
multilingual movie dialogues with four dialogue-specific variables. In Section 7.4 we
present our approach to measuring how PBMT quality is affected by each of the four
dialogue-specific aspects, and we discuss and analyze the results in Section 7.5. Next,
in Section 7.6 we investigate the hypothesis that PBMT of fictional dialogues benefits
from adaptation towards various dialogue acts and registers. Finally, we summarize our
findings in Section 7.7.

7.2 Related work

While previous work on PBMT for dialogues is not abundant, a few lines of related
work are relevant for this chapter. Below we discuss previous work on annotating
fictional dialogue corpora and research studying dialogue and discourse phenomena in
the context of PBMT.
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7.2.1 Aligning and annotating fictional dialogue corpora

Automatic alignment or annotation of fictional dialogues has resulted in a number of
corpora, the most well-known being the OpenSubtitles corpus (Tiedemann, 2009a; Lison
and Tiedemann, 2016). This corpus contains non-professionally translated subtitles
of movies and TV series, collected from www.opensubtitles.org and cross-
lingually aligned using time information, bilingual lexicons, and cognates (Tiedemann,
2008). In recent work, Tiedemann (2016) exploits the fact that often multiple subtitle
versions of a single movie exist, which can be used to create multi-reference corpora
yielding small BLEU improvements.

OpenSubtitles corpora contain noisy bitexts due to their non-professional transla-
tions and automatic alignment, and therefore yield variable PBMT performance. Better
PBMT quality can be achieved when training a system on professionally high-quality
subtitle translations (Volk, 2009; Volk et al., 2010; Petukhova et al., 2012). Unfortu-
nately, such corpora are not publicly available.

A different source of fictional dialogues is the Internet Movie Script Database
(IMSDb),1 containing movie scripts with speakers, utterances, and context, e.g., change
of scenes. Unlike subtitles, IMSDb scripts are not multilingual and only cover the
English language. However, the available speaker names provide interesting additional
information, which has been exploited in previous work. For example, Danescu-
Niculescu-Mizil and Lee (2011) use speaker and gender annotations to show that the
psycholinguistic ‘chameleon effect’2 is also observed in fictional dialogues. Besides
speaker names and gender information, Walker et al. (2012) also annotate movie
dialogues with detailed character descriptions. The resulting corpus is used to create
character models that can be applied to character-specific language generation. Banchs
(2012) also presents an annotated English movie dialogue corpus, with a main focus on
its potential usability to train chat-oriented dialogue systems.

In this chapter we combine subtitles and scripts to annotate multilingual utterances
with speaker and other dialogue information. Recently, some related work has described
similar efforts (Wang et al., 2016; Lison and Meena, 2016; Bawden et al., 2016),
indicating that there is an increasing interest in multilingual annotated conversational
corpora. While Lison and Meena (2016) use their speaker-annotated utterances in a
non-MT scenario, both Wang et al. (2016) and Bawden et al. (2016) show, in a small-
scale setting, that PBMT adaptation to speaker genders improves BLEU. This confirms
our hypothesis that dialogue aspects such as speaker gender can be exploited to improve
PBMT quality. In this chapter we show that not only speaker gender, but also other
dialogue aspects can be used as indicators for PBMT adaptation.

7.2.2 Dialogue and discourse in PBMT

While PBMT for dialogues has rarely been addressed, there is a growing body of work
on discourse in PBMT, which aims to improve grammatical coherence of output trans-
lations. Discourse in PBMT typically involves translation and prediction of discourse
connectives (e.g., but, because) or pronouns (e.g., it, he, she). Work on the former

1
www.imsdb.com

2The effect that people adjust their language to their conversation partner.
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includes disambiguating discourse connectives (Meyer et al., 2012) or analyzing the
impact of discourse structure on MT (Meyer and Webber, 2013; Li et al., 2014). Work
on cross-lingual pronoun prediction has largely been driven by shared tasks of the
Workshop on Discourse in Machine Translation (DiscoMT, Hardmeier et al. (2015);
Guillou et al. (2016)), and includes predicting correct translations of pronouns when
translating into morphologically richer languages (Hardmeier et al., 2013; Hardmeier,
2014) or distinguishing different pronoun functionalities (Guillou, 2016). A recently
addressed discourse task concerns improving English question tags (e.g., isn’t it?, are
you?), which are particularly frequent when translating into English (Bawden, 2017).

Since we are in this chapter considering PBMT of various dialogue acts, including
questions, our work also touches upon previous work on cross-lingual question answer-
ing, in which either the question or the retrieved document needs to be translated into
another language. Most work in this field uses MT only as a tool to translate questions
or documents into English (Giampiccolo et al., 2007; Forner et al., 2008). Exceptions
focusing on optimal, task-specific, translations are made in work by Tiedemann (2009b)
and Ture and Boschee (2016).

7.3 Corpus construction and annotation

To measure the effect of dialogue acts, speakers, speaker gender, and register on PBMT
performance we need a multilingual dialogue corpus in which utterances are annotated
with each of these dialogue aspects. Unfortunately, existing corpora are limited to the
English language (Janin et al., 2003; McCowan et al., 2005; Danescu-Niculescu-Mizil
and Lee, 2011; Banchs, 2012; Walker et al., 2012) or contain only some of the required
annotations (Wang et al., 2016). We therefore first automatically annotate multilingual
movie dialogues with the above dialogue dimensions for five language pairs: Arabic-
English, Chinese-English, Dutch-English, German-English, and Spanish-English.

7.3.1 Annotation process

For our annotation process we build on OpenSubtitles, IMSDb and a number of addi-
tional resources. We create our annotated corpora as follows:

1. First we collect speaker-utterance pairs from IMSDb scripts, based on their
respective indentation sizes. We then use the Champollion sentence aligner
(Ma, 2006) monolingually to align English subtitles to the English script, and
follow the OpenSubtitles alignment links to align foreign subtitles to the English
subtitles-script bitext. Finally, we discard the script text from the resulting ‘tritext’,
yielding multilingual speaker-annotated dialogue corpora. The complete process
of speaker-utterance annotation is graphically displayed in Figure 7.1. In addition,
Table 7.1a shows statistics on the average number of speakers and main characters,
i.e., speakers with at least 20 utterances, per movie.

2. We learn each speaker’s gender based on their name’s occurrence in a number of
online name databases and a list of gender-revealing nouns such as ‘aunt’, ‘boy’,
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For each movie that exists in both IMSDb and OpenSubtitles corpus:

English Open-Subtitles 
corpus (OPUS)

Foreign OpenSubtitles 
file (OPUS)

English script-
subtitles bitext

Create 
dictionary

Champollion 
sentence 
alignment

Map Open-Subtitles 
sentence

alignments

Movie script html page 
(IMSDb.com)

English OpenSubtitles 
file (OPUS)

English identity dictionary 
(~500K entries)

Script-subtitles-subtitles ‘tritext’ 
with dialogue information

Set of enclosed dialogues 
with speaker information

Detect scene boundaries, 
speakers, and dialogues 

Figure 7.1: Diagram of the alignment process (step 1 in the complete annotation process) of
English movie scripts, English subtitles, and foreign subtitles.

or ‘grandma’. Annotations are available for ⇠58% of the utterances, and the
average female-to-male ratio is 1:1.7, see Table 7.1b.

3. We heuristically detect the dialogue act of each source-language utterance, con-
sidering questions, exclamations and declaratives. Distributions of these dialogue
acts differ between language pairs, see Table 7.1c, but make up on average 28%,
9%, and 63% of the corpora, respectively.

4. We define a register label, based on the fraction of colloquial and vulgar expres-
sions in an utterance, according to meta-information from an online dictionary.3
We consider three register levels: vulgar, colloquial, and neutral, comprising
circa 10%, 68%, and 22% of the corpora, respectively. Distribution statistics per
language pair are shown in Table 7.1d.

7.3.2 Post-processing and annotation quality
The above described alignment and annotation process is done fully automatically,
making it prone to errors. We therefore increase the alignment and annotation quality
of our corpus by taking a number of measures: first, before running the Champollion
aligner, we remove context information such as ‘[moaning]’, ‘[clapping]’ or ‘[chuckles]’,
which is most prevalent in, but not limited to, subtitles created for hearing-impaired
people. In addition, we remove subtitle-specific tokens indicating continuation of a
sentence on the next screen or switches in speaker turns, yielding more fluent and less
fragmented utterances.

Next, after running the alignment process, we favor high-quality alignments by
selecting only movies or movie versions (OpenSubtitles typically contains several
alternative versions for a single movie (Tiedemann, 2016)) that meet the following
criteria: (i) sentence lengths between both language pairs are sufficiently close, (ii)
the number of sentences for which ambiguous speakers have been aligned does not

3
www.dict.cc
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exceed a given threshold, (iii) the letter distribution is sufficiently similar to the average
distribution of the language. By enforcing these quality standards, we respectively
reduce the number of OpenSubtitles alignment errors, Champollion alignment errors,
and OCR errors. Finally, we remove utterances with ambiguous speaker labels as these
are caused by erroneous Champollion alignments.

Despite efforts to improve the alignment quality, our corpus still contains some
incorrect alignments due to either OpenSubtitles or Champollion errors. To quantify
these, and to verify the correctness of the automatic annotations, we manually inspect
randomly selected fragments across different language pairs and movies. Based on
evaluation of a sample of 120 utterances, we estimate a final alignment accuracy of
92.5%. In addition, Table 7.2 shows confusion matrices for manual versus automatic
annotation of speaker gender, dialogue acts, and register for the 120 selected utterances.
With the overall annotation agreement per variable ranging from 85% to 97.5%, we
find that our automatic annotation strategies are very accurate. Disagreement between
manual and automatic annotations occurs mostly for speakers labeled with unknown
gender, and between the register levels colloquial and neutral, indicating that these
categories can benefit from more advanced annotation methods.

Table 7.3 shows an example dialogue with annotations and its original form in
the OpenSubtitles corpus. Note that our annotated corpora differ from OpenSubtitles
since only actual dialogues are included, many erroneously aligned sentence pairs
have been removed, and utterances are longer and less fragmented. The latter is a
result of the Champollion alignment process. Since sentences in the IMSDb scripts
are typically longer than those in OpenSubtitles, Champollion regularly enforces one-
to-many alignments. Following the OpenSubtitles-internal alignment links then often
yields many-to-many alignments in which subtitles get merged into longer utterances.

Finally, Table 7.4a lists the statistics of the benchmarks which we use in this
chapter and make available for download.4 While the remainder of this chapter uses
the annotated fictional dialogues to analyze the impact of dialogue-specific aspects on
PBMT, we believe that our data set may also help to advance dialogue research—today
largely confined to the English language—in a multilingual scenario.

7.4 Measuring dialogue effects on PBMT

In this section we measure the effect of dialogue dimensions on PBMT performance of
fictional dialogues. To this end, we quantify BLEU fluctuations between differences in
dialogue acts, speakers, gender, and register, and we determine whether the observed
fluctuations are larger than randomly expected.

7.4.1 Basic experimental setup

We run our experiments using Oister (see Section 2.4.1). Our systems are trained on
59M–171M tokens (depending on the language pair, see Table 7.4b) of unannotated
OpenSubtitles corpora. We use 5-gram language models trained on 500M–1.7B tokens,
depending on the language pair, that linearly interpolate OpenSubtitles with various

4
http://ilps.science.uva.nl/resources/movie-dialogues
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7.4. Measuring dialogue effects on PBMT

Table 7.4: Specifications of parallel training and evaluation data. Training data consists of
OpenSubtitles corpora, evaluation data consists of speaker-annotated dialogues.

a) Evaluation data b) Training data

Languages Movies Utterances Lines EN tokens

AR ! EN 187 94K 12.3M 122M
DE $ EN 220 123K 9.7M 85M
ES $ EN 161 87K 16.3M 156M
NL $ EN 238 129K 17.9M 171M
ZH ! EN 211 107K 6.3M 59M

LDC and WMT corpora using weights optimized on a held-out set of OpenSubtitles
data. Systems are tuned on a different held-out OpenSubtitles set. The resulting systems
are thus at all levels adapted to the movie dialogues translation task rather than the
general domain.

7.4.2 Approximate randomization testing

When translating dialogues, we naturally observe some BLEU variations across cate-
gories such as different dialogue acts or speakers. An important question is whether
the observed differences are to be expected (the null hypothesis), or whether they are
indicators that one category is truly harder to translate than another (the alternative
hypothesis). We test this hypothesis with an approximate randomization approach
(Edgington, 1969; Noreen, 1989).

While approximate randomization (also known as approximate permutation) is often
used to compare the mean and variance of two groups, it can be adapted to our setting
with multiple categories. To this end, we compute BLEU for each of the categories
in a dialogue variable, e.g., vulgar, colloquial, and neutral utterances for the dialogue
variable of register level. Next, we randomly permute category labels over utterances,
following the original distribution of utterances per category, and we recompute BLEU
for the randomized labels.

As our test statistic of interest, we define and measure the mean absolute BLEU
difference, which captures BLEU fluctuations between categories:

MBD =

2

|S|2 � |S|

|S|X

i=1

|S|X

j=i+1

| BLEU
i

� BLEU
j

| (7.1)

Here BLEU
i

the BLEU score for category i, and S is the set of categories for a given
dialogue variable, e.g., Sregister = {vulgar, colloquial, neutral}. Each pair of categories
(i, j) is compared exactly once in terms of BLEU scores. The sum of all pairwise
BLEU differences is normalized for the total number of unordered pairs (i, j), which
is
�|S|

2

�
=

|S|2�|S|
2 . Note that MBD is a specific instance of mean absolute difference

(MD), also known as Gini mean absolute difference (GMD), a measure of statistical
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7. Translating and Analyzing Fictional Dialogues

dispersion which has shown to be superior to other common statistical dispersion
measures such as variance, standard deviation and interquartile range (Yitzhaki, 2003).

Next, we compute the p-value by counting how often, in a total of 1,000 permuta-
tions, we observe an MBD value that is at least as extreme as the one observed for the
real categories. If for a given dialogue variable p  0.05 or p  0.01, we conclude that
this variable has a weakly or strongly significant impact on PBMT quality, respectively.

For dialogue acts, gender and register we permute labels over the entire benchmark.
For speakers we only permute labels within each movie since inter-movie variations
in BLEU are affected by many other factors, e.g., script writers, translators, movie
genre, which distract from the impact of speakers. In addition, when computing speaker-
specific BLEU, we only include main characters, i.e., speakers with at least 20 utterances,
to avoid BLEU’s instability on small documents.

7.5 Results

In this section we discuss the observed BLEU fluctuations (see Table 7.5) for our four
dialogue variables of interest. We provide pointers in the text to the phenomena observed
in the Spanish-English and English-German examples in Table 7.6.

7.5.1 The effect of dialogue acts on PBMT quality

As shown in Table 7.5a, there are substantial performance fluctuations between dialogue
acts for all language pairs. However, there is no consistent pattern between different
languages. For instance, we observe punctuation errors (EX1) for Spanish-English
and English-Spanish translation, and verb drop (EX2) and wrong word order (EX3) for
English-German translation.

Since there is no consistent pattern among language pairs, we want to verify whether
BLEU fluctuations can be explained by variations in average sentence length. To this
end, we compute the Pearson correlation between the average sentence length for each
dialogue act and the corresponding BLEU scores, all normalized per language pair.
We find a weak negative correlation of r = �0.11, indicating that shorter sentences
tend to have slightly higher BLEU scores, but also that sentence length variations alone
can not explain the large BLEU variations. This makes it particularly interesting to
further investigate how dialogue acts can be exploited to improve translation quality
of (fictional) dialogues. However, when considering finer dialogue act granularities, it
may be profitable to exploit context information, i.e., previous and following sentences,
which is not used in our current PBMT setup.

Finally, improving PBMT for the dialogue acts under consideration can also be
useful for cross-lingual question answering (Tiedemann, 2009b; Ture and Boschee,
2016).

7.5.2 The effect of speakers on PBMT quality

In Table 7.5b we report the percentage of movies per language pair for which the
observed MBD is statistically significant at p  0.05, which is 18.6% on average. Since
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7.5. Results

Table 7.5: BLEU for dialogue acts, speakers, gender, and register, translated using baseline
PBMT trained and tuned on OpenSubtitles corpora. MBD: mean absolute BLEU difference, see
Equation (7.1), all statistically significant at p  0.01 (N). ssMBD: percentage of movies with
statistically significant speaker-MBD at p  0.05.

a) BLEU per dialogue act b) Speaker- c) BLEU per gender d) BLEU per register

Lang.pair Quest. Excl. Decl. MBD ssMBD Male Female MBD Vulg. Coll. Neut. MBD

AR!EN 23.1 20.3 19.3 2.5N 14.9% 20.4 22.0 1.6N 17.2 21.3 19.7 2.8N

DE!EN 24.0 20.9 21.4 2.0N 22.3% 21.4 22.7 1.2N 17.7 21.9 24.7 4.6N

ES!EN 28.9 25.7 26.8 2.1N 18.0% 26.7 28.0 1.3N 24.4 27.4 28.8 2.9N

NL!EN 26.7 29.0 23.7 3.5N 23.9% 23.9 26.8 2.9N 20.8 24.8 26.7 4.0N

ZH!EN 15.3 15.2 12.9 1.6N 16.6% 12.8 14.4 1.6N 10.9 13.4 13.1 1.7N

EN!DE 17.7 18.5 16.5 1.3N 15.9% 16.7 17.6 0.9N 13.6 16.6 19.9 4.2N

EN!ES 16.8 16.5 21.5 3.3N 13.7% 18.9 19.7 0.8N 17.2 19.2 21.0 2.6N

EN!NL 25.5 22.7 24.6 1.8N 20.6% 23.9 26.5 2.6N 21.4 24.6 26.3 3.3N

Table 7.6: Censored ES!EN (top) and EN!DE (bottom) translation examples of an annotated
dialogue, originating from Pulp Fiction and involving two speakers: Pumpkin (S1, M=male)
and Honeybunny (S2, F=female). Examples of phenomena marked with (EX#) are discussed in
Sections 7.5.1–7.5.4.

Annotations ES source ES!EN PBMT output EN reference

S1, M, neutral,
declarative

se acabaron los dı́as de
olvidar, han empezado
los de recordar.

the days are over, have be-
gun to forget them to remem-
ber.

the days of forgetting are
over. the days of remem-
bering have begun.

S2, F, colloquial,
question

¿sabes qué pareces
cuando hablas ası́?

you know what you look like
when you talk like that?

know when you go on
what you sound like?

S1, M, vulgar,
declarative

un j***do(EX4) hombre
sensato.

a sensible man.(EX6) i sound like a sensible
f***ing man.

S2, F, colloquial,
excl.

un pato. ¡cuac, cuac! a duck. [quack, quack!(EX1) you sound like a duck.
quack, quack

Annotations EN source EN!DE PBMT output DE reference

S1, M, neutral,
declarative

the days of forgettin’
are over. the days of re-
membering have begun.

die tage von vergisst sind
vorbei. die tage von an(EX2)
haben begonnen.

ja, aber jetzt kommen die
tage des erinnerns.

S2, F, colloquial,
question

know when you go on
what you sound like?

weiß, wenn du auf(EX2)
was du klingst wie?(EX3)

weißt du, wie du klingst?

S1, M, vulgar,
declarative

i sound like a sensible
f***ing man.

ich klinge wie ein ver-
nünftig verd***ter mann.

wie ein vernünftiger(EX5)
mann.

S2, F, colloquial,
declarative

you sound like a duck.
quack, quack

du klingst wie eine ente.
quak, quak

nein, wie eine ente! quak,
quak, quak!
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there are too many speakers to report individual BLEU scores, we randomly select
100 German-English movies, and compute for each of these �MBD as the difference
between MBD for real speakers and the average MBD for randomized labels:

�MBD = MBD
real

� MBD
random

(7.2)

Figure 7.2 shows that BLEU fluctuations among real speakers are often larger than
BLEU fluctuations among randomized speaker tags. These findings suggest that, while
domain adaptation is an established task in PBMT, conversational PBMT may benefit—
at least for the fraction of movies with statistically significant speaker differences—
from a fine-grained adaptation at the speaker level, as proven successful in speech
recognition research (Shinoda, 2011), and related to recent work on personalizing
machine translation (Mirkin et al., 2015; Mirkin and Meunier, 2015). For movies with
negative �MBD, BLEU variation between different speakers is lower than randomly
expected, hence successful adaptation should take place at levels other than speakers.

Figure 7.2: �MBD (see Section 7.5.2) for 100 randomly selected German-English benchmark
movies. Black bars indicate movies with statistically significant positive �MBD at p  0.05.

Finally, since our analysis is carried out on fictional dialogues, it may be worth
investigating to what extent BLEU scores fluctuate between actors or script writers
rather than only characters, however this requires additional annotation.

7.5.3 The effect of gender on PBMT quality

Table 7.5c shows that BLEU scores per gender follow a similar pattern in all language
pairs. Male speakers are significantly harder to translate than female speakers, despite
the fact that male speakers are likely better represented in the parallel OpenSubtitles
data, based on the male-to-female ratio of 1.7:1 in our evaluation sets. However, we
find that female utterances are better covered by the language model, with perplexity
values on average 8% higher for males than females. In addition, female utterances are
on average slightly shorter than male utterances, i.e., 11.8 versus 12.3 tokens for female
and male utterances, respectively, and may therefore be slightly easier to translate.
Interestingly, Bawden et al. (2016) find that PBMT adaptation towards speaker genders
mostly benefits from an increased average length of output translations, however in their
setting female utterances are harder to translate than male utterances.

Gender differences in fictional dialogues have also been reported by Danescu-
Niculescu-Mizil and Lee (2011), who show that movie characters mirror their language
use more easily to females than to males. However, we have to be careful when
drawing conclusions about the impact of gender on real spoken dialogues from our
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observations on fictional dialogues. Since the vast majority of movie scripts are written
by men (Lauzen, 2016), our findings reflect differences between language of male and
female characters as perceived by male writers. The observed BLEU differences might
therefore be based on stereotypes rather than real gender differences. On the other
hand, a large body of work has studied gender and language or discourse (Tannen,
1994; Wodak, 1997; Holmes and Meyerhoff, 2008, among others), indicating that these
concepts are closely intertwined. We therefore believe that meta-information about a
speaker’s gender is also a potential source to customize PBMT for real dialogues.

7.5.4 The effect of register on PBMT quality

The results per register (Table 7.5d) show that PBMT quality is worst for vulgar ut-
terances and generally best for neutral sentences. While consistent with our previous
findings that informal language is hard to translate (see Chapters 3 and 6), this obser-
vation cannot solely be attributed to poor model coverage, since colloquial and vulgar
language are well-represented in our OpenSubtitles-trained systems. However, due to
our annotation procedure, short sentence that are easy to translate are mostly marked
as neutral, hence increasing BLEU for neutral utterances. This indicates that register
annotations may be improved for example using LM rather than dictionary lookup
techniques.

When manually inspecting human translations for vulgar expressions, we find that
these vary from literal (EX4) to very nuanced (EX5) translations, yielding inconsistent
PBMT output. We also observe that vulgarity is often not preserved in (both human
and machine) translation (EX6): A comparison of vulgarity scores shows that, while
vulgarity sometimes increases, the number of vulgar utterances in the PBMT output is
on average 35% lower than in the reference set.

Finally, since poor PBMT quality is observed for both male characters and vulgar
language, we hypothesize that the two might co-occur. Indeed, the average vulgarity
scores for males are 64% higher than for females, which may in part explain the
observed PBMT quality between genders.

7.6 Adaptation towards dialogue variables

We observed in the previous section that BLEU scores significantly fluctuate along
dialogue dimensions. This finding suggests that PBMT for fictional dialogues may
benefit from adaptation towards different categories along these dimensions. To verify
this hypothesis we run a number of adaptation experiments, in which we adapt our
baseline PBMT systems towards different dialogue acts and different registers—two
dialogue aspects which can be computed straightforwardly for the unannotated training
corpora.

We adapt our systems at two levels: first, we create category-specific language
models by interpolating our general movie dialogue language model with a language
model trained on only the most relevant subset of the bitext’s target side. We determine
relevant sentences by applying the same annotation guidelines that were used for
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annotation of the benchmarks (Section 7.3). Second, we tune our systems on held-out
sets selected according to the same criteria, thus comprising category-specific data.

We run adaptation experiments for the language pairs with the largest observed
MBD: Dutch-English, English-Spanish, and Arabic-English for dialogue acts, and
German-English, English-German, and Dutch-English for register. Note that the aim of
our adaptation experiments is to verify whether PBMT performance can benefit from
a simple adaptation approach at the fine-grained level of different dialogue-specific
aspects, rather than presenting a novel PBMT adaptation approach.

The results of our adaptation experiments are shown in Table 7.7. The first ob-
servation we can make is that the adapted systems result in substantially lower mean
absolute BLEU differences (MBD) for both dialogue dimensions—dialogue act and
register level—for all language pairs except Arabic-English. This means that most
of the adapted systems generate translations of more uniform quality with a lower
degree of fluctuation in BLEU. Further, the BLEU scores for the individual categories
of both dialogue dimensions show that the lower MBD scores are due to statistically
significant improvements for most of the dialogue acts and registers. The only case
where our simple adaptation method causes a statistically significant drop in BLEU is
for the translation of questions from Dutch into English. Vulgar and colloquial language
profit particularly well from language model adaptation, while results for question and
exclamation marks are more variable between language pairs.

7.7 Conclusions

In previous PBMT research, very little work has been reported on PBMT for informal
genres such as dialogues, a genre that differs substantially from more formal text and
thus poses different translation challenges. Dialogues involve, by definition, multiple
speakers, often with different genders, who likely have varying intentions and language
use. Dialogues are therefore characterized by functional actions known as dialogue acts
and utterances with varying register levels. While these and other dialogue-specific
aspects have been analyzed extensively in dialogue research (Fernández, 2014), their
impact on PBMT has hardly been studied. In this chapter we addressed this issue and
investigated the effect of four dialogue-specific aspects on PBMT quality, by asking:

RQ5 What impact do dialogue-specific aspects have on translation quality?

As a first step towards answering this question, we created movie-dialogue benchmarks
for five language pairs in which utterances are annotated with dialogue acts, speakers,
speaker gender, and register. Armed with this new resource, we found that BLEU
fluctuations for speaker gender, dialogue acts, and register levels are always significantly
larger than randomly expected. As for speaker variations, we found that on average
18.6% of the movies show larger fluctuations than expected at random, suggesting that
for this subset of movies adaptation towards speakers may benefit PBMT quality.

When examining the impact of specific dialogue aspects, we observed that the
register level has a significant impact on translation quality, with translations of vulgar
utterances being of substantially lower quality than neutral or even colloquial utterances.
Similarly we found large variations in translation quality between different dialogue
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acts, although we did not detect a consistent pattern between different languages: e.g.,
questions can be more difficult to translate than exclamations for one language pair,
while the reverse is true for another language pair. Finally, we found that male speakers
are harder to translate and use more vulgar language than female speakers, and that
vulgarity is often not preserved during translation.

Our observations suggest that conversational PBMT may benefit from adaptation
at fine-grained levels, which we tested and confirmed in a series of simple adaptation
experiments towards different dialogue acts and different register levels. This indicates
that apart from domain adaptation, adaptation to other variables should be considered
to improve PBMT quality for fictional dialogues. While our analyses are carried out
on fictional dialogues, we believe that our findings generalize at least partially to other
types of dialogues, and are thus valuable for advancing conversational PBMT.
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Part III

Domain Adaptation
for Neural Machine Translation

One of the goals of this thesis is to develop and present methods for domain or genre
adaptation that do not—or at most partially—depend on the availability of subcorpus
information. The reasons for this are twofold: first, subcorpus information may not
be available, for example in online scenarios or when training data is automatically
harvested from the web. Second, subcorpus information may not provide the most
informative categorization. For example, we saw in Chapter 4 that ‘misclassification’ of
a genre label can in fact improve PBMT quality, and in Chapter 5 that a subcorpus or
genre grouping that is informative for one translation task does not always generalize to
other tasks.

After the adaptation methods using automatic genre classifiers (Chapter 4) or textual
features (Chapter 5) presented in part I, we target in the last part of this thesis domain
adaptation by means of automatic training data selection. Specifically, given a translation
task, we automatically select the most relevant training data using a language model-
based selection strategy. With this method we do not need any information on the origin
of the training data. In addition, we only need small amounts of data representing the
‘domain’ of the test set.

Data selection has proven a successful technique to simultaneously increase training
efficiency and translation performance for domain adaptation in PBMT. With the recent
increase in popularity of NMT, we explore in this part to what extent and how NMT
can also benefit from data selection. Since domain adaptation for NMT is still an under-
explored research direction, we evaluate our methods with domains that are defined by
their provenance, and we leave fine-grained levels of adaptation for future work.
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8
Dynamic Data Selection

for Neural Machine Translation

8.1 Introduction and research questions

Recent years have shown a rapid shift from PBMT to NMT (Sutskever et al., 2014; Cho
et al., 2014b; Bahdanau et al., 2014) as the most common machine translation paradigm.
With large quantities of parallel data, NMT outperforms PBMT for an increasing number
of language pairs (Bojar et al., 2016). Unfortunately, training an NMT model is often a
time-consuming task, with training times of several weeks not being unusual.

Despite its training efficiency, most work in NMT greedily uses all the available
training data for a given language pair, regardless of the translation task of interest.
However, it is unlikely that all data is equally helpful to create the best-performing
system for a given domain. In PBMT, this issue has been addressed by applying data
selection, and it has consistently been shown that using more data does not always
improve translation quality (Moore and Lewis, 2010; Axelrod et al., 2011; Gascó et al.,
2012). Instead, for a given translation task, the training bitext likely contains sentences
that are irrelevant or even harmful, making it beneficial to discard these sentences.

While data selection can be performed using domain information of the training
and test data, it can also be done in an automated fashion, where one does not need to
know the provenance of training data in advance. In general, automatic data selection
is preferable over manual data selection since (i) it allows for the inclusion of training
data with unknown origin, and (ii) the most relevant training data may not exactly be
the subset labeled as ‘in-domain’. We have seen an example of the latter in Chapter 4
when misclassification of a document’s genre in fact led to improved BLEU scores.

Motivated by the success of data selection in PBMT, we investigate in this chapter
whether NMT can benefit from data selection as well, in particular in the context of
domain adaptation. To this end, we ask:

RQ6 To what extent and how can we successfully apply data selection for domain
adaptation in NMT?

While data selection has been applied to NMT to reduce the size of the data (Cho et al.,
2014b; Luong et al., 2015b), the effects on translation quality have not been investigated.
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Intuitively, data selection for NMT is a challenging task: NMT systems are known to
under-perform when trained on limited parallel data (Zoph et al., 2016; Fadaee et al.,
2017; Koehn and Knowles, 2017), and do not have a separate large-scale target-side
language model to compensate for smaller parallel training data. To gain insights into
the effects of data selection on NMT, we first apply a state-of-the-art data selection
method (Axelrod et al., 2011) to both PBMT and NMT, and we ask:

RQ6a. How does a state-of-the-art data selection approach perform when applied to
PBMT and NMT?

Next, to alleviate the negative effect of small training data on NMT, we introduce
dynamic data selection, and we ask:

RQ6b. Can we improve upon state-of-the-art data selection for NMT by dynamically
changing the selected data subsets during training?

Following conventional data selection, we still dramatically reduce the training data
size, favoring parts of the data which are most relevant to the translation task at hand.
However, we exploit the fact that the NMT training process iterates over the training
corpus in multiple epochs, and we alter the quantity or the composition of the training
data between epochs. We propose two variants of dynamic data selection, sampling
and gradual fine-tuning. Dynamic data selection requires no modifications to the
NMT architecture or parameters, and substantially speeds up training times while
simultaneously improving translation quality with respect to a complete-bitext baseline.

Organization This chapter is organized as follows: in Section 8.2 we discuss related
work. In Section 8.3, we describe the state-of-the-art data selection method that we use
for comparison between PBMT and NMT. Next, in Section 8.4, we introduce dynamic
data selection as a way to make data selection more effective for NMT. We describe
our basic data and experimental settings in Section 8.5, and discuss the results of our
experiments in Section 8.6. In Section 8.7, we further analyze the results obtained with
dynamic data selection. Finally, we provide conclusions in Section 8.8.

8.2 Related work

A number of research topics are related to the work in this chapter. First, we provide an
overview of work on data selection for PBMT, which has has been extensively studied in
the literature. Next, since data selection can simultaneously serve two goals, improving
domain adaptation and increasing training efficiency, we discuss either goal and its
related work to date in NMT.

8.2.1 Data selection for PBMT
Regarding data selection for PBMT, previous work has targeted the two goals mentioned
above: reducing model sizes and training times, for example by speeding up model
building and reducing the complexity of search through the decoding space, or adapting
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to new domains. Data selection methods for the purpose of domain adaptation mostly
employ information theory metrics to rank training sentences by their relevance to the
domain at hand. This has been applied monolingually (Gao et al., 2002) as well as
bilingually (Yasuda et al., 2008). In more recent work, training sentences are typically
ranked according to their cross-entropy difference between in-domain and general-
domain data (Moore and Lewis, 2010; Axelrod et al., 2011, 2015), favoring sentences
that are similar to the test domain and at the same time dissimilar from the general
domain. Using such a method, Axelrod et al. (2011) have shown that using only 1% of
a very large and diverse training corpus can yield higher BLEU than using the entire
bitext. Duh et al. (2013) and Chen and Huang (2016) present similar methods in which
n-gram LMs are replaced by recurrent neural LMs or neural classifiers, respectively.

Data selection with the aim of model size and training time reduction has the
objective to use a minimum amount of data while still maintaining high vocabulary
coverage. This strategy has been applied by Eck et al. (2005) and Gascó et al. (2012),
who rank sentences based on the frequencies of unseen n-grams, and by Lewis and
Eetemadi (2013), who set a limit on the number of times each n-gram can be selected.
In a comparative study, Mirkin and Besacier (2014) find that data selection with the
objective to select data that is similar to the test set performs best if the test domain and
general corpus are very different, while data selection with the objective to maintain
high coverage is superior if the test set and the general corpus are relatively similar.
A comprehensive survey on data selection for PBMT is provided by Eetemadi et al.
(2015).

While in this chapter we use a similarity objective to rank our bitext, one could also
apply dynamic data selection using a coverage objective.

8.2.2 Domain adaptation for NMT

In NMT, like in PBMT, one of the goals of data selection could be to apply domain
adaptation. To date, domain adaptation in NMT typically involves training a model
on the complete bitext, followed by fine-tuning the parameters on a smaller in-domain
corpus (Luong and Manning, 2015; Zoph et al., 2016). Freitag and Al-Onaizan (2016)
combine fine-tuning with model ensembles, and Chu et al. (2017) with domain-specific
tags in the training corpus, which is based on a similar method that uses domain labels
without fine-tuning (Kobus et al., 2016). Sennrich et al. (2016b) adapt their systems
by back-translating monolingual in-domain data, which is then added to the training
data and also used for fine-tuning. The disadvantage of the above mentioned domain-
specific fine-tuning approaches is that translation quality severely degrades for other
domains. Dakwale and Monz (2017) address this issue by using supervision from a
general-domain ‘teacher’ network during fine-tuning, ensuring limited deterioration of
NMT quality on out-of-domain test data.

A number of very recent approaches have targeted domain adaptation for NMT
in a different way than using fine-tuning. For example, Kreutzer et al. (2017) apply
bandit learning with weak feedback to learn in-domain model parameters. Hokamp
and Liu (2017) introduce ‘Grid Beam Search,’ an extension of beam search that allows
one to lexically constrain decoding to pre-defined lexical, e.g., in-domain, constraints.
Farajian et al. (2017) show that multi-domain NMT, in which a single system is tailored
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to translate a variety of domains, is still far behind compared to multi-domain PBMT.
Finally, Wang et al. (2017a) also apply data selection for NMT. Their approach is

inspired by Axelrod et al. (2011), however rather than cross-entropy differences, they
use the NMT-internal embedding of each source sentence to score the corresponding
sentence pair’s similarity to the domain of interest. In related work, Wang et al. (2017b)
apply instance weighting to domain adaptation for NMT, by integrating relevance
weights (based on sentence-level cross-entropy scores or based on domain labels) into
the NMT objective function.

8.2.3 Training efficiency for NMT

The other benefit of applying data selection is the reduction of training times, which can
be extremely large for NMT—training times up to several weeks have been reported. To
this end, a number of previous efforts have addressed training efficiency for NMT, for
example by parallelizing models or data (Wu et al., 2016), modifying the NMT network
structure (Kalchbrenner et al., 2016), decreasing the number of parameters through
knowledge distillation (Crego et al., 2016; Kim and Rush, 2016), or by boosting parts
of the data that are ‘challenging’ to the NMT system (Zhang et al., 2016). The latter is
closely related to our work since training data is also adjusted during training, however
we reduce the training data size much more aggressively and study different techniques
of data selection.

While data selection for PBMT has the additional advantage of reduced model sizes,
the size of an NMT model is defined by the model architecture and parameters, and is
thus not affected by data selection.

8.3 Static data selection

As a first step towards dynamic data selection for NMT, we compare the effects of
a commonly used, state-of-the-art data selection method (Axelrod et al., 2011) on
both neural and phrase-based MT. Briefly, this approach ranks sentence pairs in a large
training bitext according to their difference in cross-entropy with respect to an in-domain
corpus, i.e., a corpus representing the test data, and a general corpus. Next, the top n
sentence pairs with the highest rank—thus lowest cross-entropy—are selected and used
for training an MT system. Following common conventions, we refer to data resembling
the test data as in-domain data.

Formally, given an in-domain corpus I , we first create language models from the
source side f of I (LM

I,f

) and the target side e of I (LM
I,e

). We then draw a random
sample (similar in size to I) of the large general corpus G and create language models
from the source and target sides of G: LM

G,f

and LM
G,e

, respectively. Note that the
data for creating these LMs need not be parallel but can be independent corpora in both
languages.

Next, we compute for each sentence pair s in G four cross-entropy scores:

H
C,sb = �

X
p (s

b

) log (LM
C,b

(s
b

)) , (8.1)
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where C 2 {I,G} is the corpus, b 2 {f, e} refers to the bitext side, and s
b

is the bitext
side b of sentence pair s in the parallel training corpus.

To find sentences that are similar to the in-domain corpus, i.e., have low H
I

, and at
the same time dissimilar to the general corpus, i.e., have high H

G

, we compute for each
sentence pair s the bilingual cross-entropy difference CED

s

following Axelrod et al.:

CED
s

=

�
H

I,sf �H
G,sf

�
+ (H

I,se �H
G,se) . (8.2)

Finally, we rank all sentence pairs s 2 G according to their CED
s

, and then select only
the top n sentence pairs with the lowest CED

s

.
Following related work by Moore and Lewis (2010), we restrict the vocabulary

of the LMs to the words occurring at least twice in the in-domain corpus. Our LMs
are 5-gram and created using the SRILM toolkit (Stolcke et al., 2002). To analyze the
quality of the selected data subsets, we also run experiments on random selections, all
performed in threefold to obtain stable results. Finally, we always use the exact same
selection of sentence pairs in equivalent PBMT and NMT experiments.

LSTM versus n-gram The described data selection method uses n-gram LMs to
determine the domain-relevance of sentence pairs. We adhere to this setting for our
comparative experiments on PBMT and NMT (Section 8.6.1). However, when applying
data selection to NMT, we examine the potential benefit of replacing the conventional n-
gram LMs with LSTMs.1 These have the advantage that they remember longer histories,
and do not have to back off to shorter histories when encountering out-of-vocabulary
words (Hochreiter and Schmidhuber, 1997; Mikolov, 2010). In this neural variant to
rank sentences, the score for each sentence pair in G is still computed as the bilingual
cross-entropy difference in Equation (8.2). In addition, we use the same in-domain and
general corpora as with the n-gram method, and we again restrict the vocabulary to the
most frequent words.

8.4 Dynamic data selection

While data selection aims to discard irrelevant data, it can also exacerbate the problem
of low vocabulary coverage and unreliable statistics for rarer words in the ‘long tail,’
which are a major issue in NMT (Luong et al., 2015b; Sennrich et al., 2016c). In
addition, it has been shown that NMT performance drops tremendously in low-resource
scenarios (Zoph et al., 2016; Fadaee et al., 2017; Koehn and Knowles, 2017).

To overcome this problem, we introduce dynamic data selection, in which we vary
the selected data subsets during training. Unlike other MT paradigms, which require
training data to be fixed during the entire training process, NMT iterates over the training
corpus in several epochs, allowing to use a different subset of the training data in every
epoch.

Dynamic data selection starts from a relevance-ranked bitext, which we create using
CED scores as computed in (8.2). Given this ranking, we investigate two dynamic data

1We use four-layer LSTMs with embedding and hidden sizes of 1,024, which we train for 30 epochs.
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a) Dynamic data selection: sampling b) Dynamic data selection: gradual fine-tuning
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New sample 

Training data 
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Figure 8.1: Illustration of two dynamic bitext selection techniques for NMT: sampling (left) and
gradual fine-tuning (right). Measured over 16 epochs, as used in this work, the total training time
of both examples would be ⇠30% of the training time needed when using the complete bitext.

selection techniques2 that vary per epoch the composition or the size of the selected
training data. Both techniques aim to favor highly relevant sentences over less relevant
sentences while not completely discarding the latter. In all experiments, we use a fixed
vocabulary created from the complete bitext.

While in this work we use a domain-relevance ranking of the bitext following
Axelrod et al., dynamic data selection can also be applied using other ranking criteria,
for example limiting redundancy in the training data (Lewis and Eetemadi, 2013) or
complementing similarity with diversity (Ruder and Plank, 2017).

8.4.1 Sampling sentence pairs

In the first technique, illustrated in Figure 8.1a, we sample for every epoch n sentence
pairs from G, using a distribution computed from the domain-specific CED

s

scores.
Concretely, this is done as follows: first, since higher ranked sentence pairs have lower
CED

s

scores, and they can be either negative or positive, we scale and invert CED
s

scores such that 0  CED0
s

 1 for each sentence pair s 2 G:

CED0
s

= 1� CED
s

�min (CED
G

)

max (CED
G

)�min(CED
G

)

, (8.3)

where CED
G

refers to the set of CED
s

scores for bitext G. Next, we convert CED0
s

scores to relative weights, such that
P

s2G

w(s) = 1:

w(s) =
CED0

sP
si2G

CED0
si

. (8.4)

We then use {w(s) : s 2 G} to perform weighted sampling, drawing for each epoch
n sentence pairs without replacement. While all selection weights are very close to

2Scripts to generate bitext rankings and to apply both of the dynamic data selection techniques are available
on github.com/marliesvanderwees/dds-nmt.
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zero, higher ranked sentences have a noticeably higher probability of being selected
than lower-ranked sentences. In practice we find that top-ranked sentences get selected
in nearly each epoch, while bottom-ranked sentence pairs get selected at most once.
Note that the sampled selection for any epoch is independent of selections for all other
epochs.

8.4.2 Gradual fine-tuning
The second dynamic data selection technique, see Figure 8.1b, is inspired by the success
of domain-specific fine-tuning (Luong and Manning, 2015; Zoph et al., 2016; Sennrich
et al., 2016b; Freitag and Al-Onaizan, 2016), in which a model trained on a large
general-domain bitext is trained for a few additional epochs only on small in-domain
data. However, rather than training a full model on the complete bitext G, we gradually
decrease the training data size, starting from G and keeping only the top n sentence pairs
for the duration of ⌘ epochs, where the top n pairs are defined by their CED

s

scores.
Given its resemblance to fine-tuning, we refer to this variant as gradual fine-tuning.

During gradual fine-tuning, the selection size n is a function of epoch i:

n(i) = ↵ · |G| · �b(i�1)/⌘c. (8.5)

Here 0  ↵  1 is the relative start size, i.e., the fraction of general bitext G used for
the first selection, 0  �  1 is the retention rate, i.e., the fraction of data to be kept
in each new selection, and ⌘ � 1 is the number of consecutive epochs each selected
subset is used for. Note that bi/⌘ + 1c indicates rounding down i/⌘ + 1 to the nearest
integer. For example, if we start with the complete bitext (↵ = 1), select the top 60%
(� = 0.6) every second epoch (⌘ = 2), then we run epochs 1 and 2 with a subset of size
|G|, epochs 3 and 4 with a subset of size 0.6 · |G|, epochs 5 and 6 with a subset of size
0.36 · |G|, and so on. For every size n, the actual selection contains the top n sentences
pairs of G.

8.5 Experimental settings

We evaluate static and dynamic data selection on a German-English translation task
comprising four test sets. Below we describe the MT systems and data specifications.

8.5.1 Machine translation systems
While the main aim of this chapter is to improve data selection for NMT, we also
perform comparative experiments using PBMT. Our PBMT system is trained using
Oister (Section 2.4.1). To create optimal PBMT systems given the available resources,
we apply test-set-specific parameter tuning and LM interpolation weights optimization.
Consistent with Axelrod et al., we do not vary the target-side LM between different
experiments on the same test set. All n-gram models in our work are 5-gram.

For our NMT experiments we use in-house system Tardis (Section 2.4.2). We train
for 16 epochs and test on the model from the last epoch. All NMT experiments are run
on a single NVIDIA Titan X GPU.
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8.5.2 Training and evaluation data
We evaluate all experiments on four domains: (i) EMEA medical guidelines (Tiedemann,
2009a), (ii) movie dialogues (Chapter 7) constructed from OpenSubtitles (Lison and
Tiedemann, 2016), (iii) TED talks (Cettolo et al., 2012), and (iv) WMT news. For
TED, we use IWSLT2010 as development set and IWSLT2011-2014 as test set, and
for WMT we use newstest2013 as development set and newstest2016 as test set. We
train our systems on a mixture of domains, comprising Commoncrawl, Europarl, News
Commentary, EMEA, Movies, and TED. Corpus specifications are listed in Table 8.1.

Table 8.1: Data specifications with tokens counted on the German side. The WMT training
corpus contains Commoncrawl, Europarl, and News Commentary but no in-domain news data.

Train Dev/valid Test

Corpus Lines Tokens Lines Tokens Lines Tokens

EMEA 206K 3.3M 3.9K 59K 5.8K 93K
Movies 101K 1.2M 4.5K 54K 7.1K 87K
TED 189K 3.3M 2.5K 50K 5.4K 99K
WMT 3.8M 84M 3.0K 64K 3.0K 65K

Mix 4.3M 92M 3.5K 61K – –

The in-domain LMs used to rank training sentences for data selection are trained on
small portions of in-domain parallel data whenever available (3.3M, 1.2M and 3.3M
German tokens for EMEA, Movies and TED, respectively). Since no sizable in-domain
parallel text is available for WMT, we independently sample 200K sentences (3.3M
German tokens or 3.5M English tokens) from the WMT monolingual News Crawl
corpora. This demonstrates the applicability of data selection techniques even in cases
where one lacks parallel in-domain data.

Before running data selection, we preprocess our data by tokenizing, lowercasing
and removing sentences that are longer than 50 tokens or that are identified as a different
language. After selection, we apply Byte-pair encoding (BPE, Sennrich et al. (2016c))
with 40K merge operations on either side of the complete mix-of-domains training
bitext. For our NMT experiments we use BPE-processed corpora on both bitext sides,
while for PBMT we only apply BPE to the German side. Our NMT systems use a
vocabulary size of 40K on both the source and target side.

8.6 Results

Below we discuss the results of our translation experiments using static and dynamic
data selection, measuring translation quality with case-insensitive untokenized BLEU.

8.6.1 Static data selection for PBMT and NMT
We first compare the effects of static data selection with n-gram LMs for both NMT
and PBMT using various selection sizes. Concretely, we select the top n sentence pairs
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such that the number of selected tokens t 2 {5%, 10%, 20%, 50%} of G, or t = |I|,
the in-domain corpus size. Figure 8.2 shows translation performance measured in
BLEU for our four test sets. The benefits of n-gram-based data selection for PBMT
(purple circles) are confirmed: In all test sets, the selection of size |I| (dotted vertical
line) yields better performance than using only the in-domain data of the exact same
size (purple star), and at least one of the selected subsets—often using only 5% of the
complete bitext—outperforms using the complete bitext (light purple line). We also
show that the informed selections are superior to random selections of the same size
(purple diamonds).

In NMT, results of n-gram-based data selection (green triangles) vary: while for
Movies a selection of only 10% outperforms the complete bitext (light green line),
none of the selected subsets for other test sets is noticeably better than the full bitext.3
Interestingly, the same selections of size |I| that proved useful in PBMT, never beat
the system that uses exactly the available in-domain data (green star), indicating that
the current selections can be further improved for NMT. In all scenarios we see that
NMT suffers much more from small-data settings than PBMT. Finally, the random
selections (green squares) show that NMT not only needs large quantities of data, but
it is also affected when the selected data is not relevant for the test data. In PBMT,
both low-quantity and low-quality scenarios appear to be compensated for by the large
monolingual LM on the target side.

When comparing the test sets, we observe that the impact of domain mismatch
in NMT with respect to PBMT is largest for the two domains that are most distinct
from the general bitext, EMEA and Movies. For WMT, both MT systems achieve very
similar baseline results, but translation quality deteriorates considerably in data selection
experiments, which is likely caused by the lack of in-domain data in the general bitext.

Table 8.2: NMT BLEU scores when using n-gram LMs and LSTMs for bitext ranking. Selection
sizes concern the selected bitext subsets: LMs are always created from the same in-domain data.

Selection LM type EMEA Movies TED WMT

5%
n-gram 29.8 17.4 22.6 8.1
LSTM 30.0 17.8 22.6 9.6

10%
n-gram 33.0 19.6 24.5 16.6
LSTM 33.0 19.7 24.7 17.4

20%
n-gram 34.8 19.0 25.6 21.9
LSTM 34.5 19.6 26.6 21.9

LSTM versus n-gram Before proceeding with dynamic data selection for NMT,
we test whether bitext ranking for NMT can be improved using LSTMs rather than
conventional n-gram LMs. Table 8.2 shows NMT BLEU scores of a few different sizes
of selected subsets created using n-gram LMs or LSTMs. While results vary among test
sets and selection sizes, we observe an average improvement of 0.4 BLEU when using

3Validation cross-entropy converges after 10–12 epochs, never reaching the scores of the complete bitext.
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LSTMs instead of n-gram LMs. For PBMT, similar results have been reported when
replacing n-gram LMs with recurrent neural LMs (Duh et al., 2013). In all subsequent
experiments we use relevance rankings computed with LSTMs instead of n-gram LMs.

8.6.2 Dynamic data selection for NMT

Equipped with a relevance ranking of sentence pairs in bitext G, we now examine two
variants of dynamic data selection as described in Section 8.4.

We are interested in reducing training time while limiting the negative effect on
BLEU for various domains. Therefore we report BLEU as well as the relative training
time of each experiment. Since wall-clock times depend on other factors such as the
NMT architecture and memory speed, we define training time as the total number of
tokens observed while training the NMT system, i.e., the sum of tokens in the selected
subsets of all epochs. We report all training times relative to the training time of our
complete-bitext baseline, i.e., 4.3M tokens ⇥ 16 epochs. Note that this measure of
training time corresponds closely but not exactly to the number of model updates, as the
latter relies on the number of sentences, which vary in length, rather than the number
of tokens in the training data. For completeness: training the 100% baseline takes 106
hours, while our fastest dynamic selection variant takes 19–21 hours. Computing CED
scores takes ⇠15 minutes when using n-gram LMs and 5–6 hours when using LSTMs.

Figure 8.3 shows BLEU scores of some selected experiments as a function of relative
training time. Compared to static data selection (blue lines), our weighted sampling
technique (orange triangles) yields variable results. When sampling a subset of 20% of
|G| from the top 50% of the ranked bitext, we obtain small improvements for TED and
WMT, but small drops for EMEA and Movies. Other selection sizes (30% and 40%,
not shown) give similar results lacking a consistent pattern.

By contrast, our gradual fine-tuning method performs consistently better than static
selection, and even beats the general baseline in three out of four test sets. The displayed
version uses settings (↵ = 0.5,� = 0.7, ⌘ = 2) and is at least as fast as static selection
using 20% of the bitext, yielding up to +2.6 BLEU improvement (for WMT news) over
this static version. Compared to the complete baseline, this gradual fine-tuning method
improves up to +3.1 BLEU (for TED talks).

Table 8.3 provides detailed information on additional experiments using other
settings. For all three test domains that are covered in the parallel data—EMEA, Movies
and TED—improvements are highest when starting gradual fine-tuning with only the
top 50% of the ranked bitext, which are also the fastest approaches. For WMT, which is
not covered in the general bitext, adding more data clearly benefits translation quality.
These findings are consistent with the static data selection patterns: using low-ranked
sentences on top of the most relevant selection does not improve translation performance
for any domain except WMT news.

Finally, we compare our data selection experiments to domain-specific fine-tuning
(light blue stars in Figure 8.3), which is the current state-of-the-art for domain adaptation
in NMT. To this end, we first train a model on the complete bitext, and then train for
twelve additional epochs on available in-domain data, using an initial learning rate
of 1 which is halved every epoch. Depending on the test set, this approach yields
+2.5–4.4 BLEU improvements over our baselines, however it does not speed up training
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8. Dynamic Data Selection for Neural Machine Translation

and requires a parallel in-domain text which may not be available, e.g., for WMT.
While none of our data selection experiments outperforms domain-specific fine-tuning,
we obtain competitive translation quality requiring only 20% of the training time. In
additional experiments we found that in-domain fine-tuning on top of our selection
approaches does not yield further improvements.

8.7 Further analysis

In this section we conduct a few additional experiments and analyses. We restrict
ourselves to one parameter setting per selection approach: static selection and sampling
with 20% of the data, and gradual fine-tuning using (↵ = 0.5,� = 0.7, ⌘ = 2). All
have very similar training times.

First, we hypothesize that dynamic data selection works well because more unique
sentence pairs are observed during training, and it therefore increases coverage with
respect to static data selection. To verify this, we measure for each test set the number of
unseen source word types in the training data for different selection methods. Figure 8.4
shows that the average number of unseen word types is indeed reduced noticeably in
both of the dynamic selection techniques, being much closer to the complete bitext
baseline than to static selection. Note that all methods use the same vocabulary during
training.

Next, following the static data selection experiments in Section 8.6.1, we examine
how well dynamic data selection performs using random selections. To this end, we
repeat all techniques using a bitext which is ranked randomly rather than by its relevance
to the test sets. The results in Table 8.4 show that the bitext ranking plays a crucial
role in the success of data selection. However, the results also show that even in the
absence of an appropriate bitext ranking, dynamic data selection—and in particular
gradual fine-tuning—is still superior to static data selection. We explain this result as
follows: Compared to static selection, both sampling and gradual fine-tuning have better
coverage due to their improved exploration of the data. However, sampling also suffers
from a surprise effect of observing new data in every epoch. Gradual fine-tuning on the
other hand gradually improves learning on a subset of the selected data, suggesting that
repetition across epochs has a positive effect on translation quality.

Table 8.4: BLEU scores of data selection using relevance versus random ranking of the bitext.
Gradual fine-tuning uses (↵ = 0.5,� = 0.7, ⌘ = 2), with relative training times of 18–20%.

Ranking Method EMEA Movies TED WMT

Relevance
Gradual FT 36.1 21.0 29.1 24.5
Sampling 20% 34.5 19.0 27.6 23.2
Static 20% 34.5 19.6 26.6 21.9

Random
Gradual FT 29.2 16.1 23.2 21.3
Sampling 20% 26.7 14.4 22.0 19.8
Static 20% 25.3 14.4 20.9 18.2
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Figure 8.4: Test set source words not covered in the training data of different data selection
methods.

One could expect that changing the data during training results in volatile training
behavior. To test this, we inspect the cross-entropy of our development sets after every
training epoch. Figure 8.5 shows these results for TED. Clearly, static data selection
converges most steadily. However, both dynamic selection techniques eventually con-
verge to a lower cross-entropy value which is reflected by higher translation quality of
the test set. We observe very similar behavior for the other test sets.

Figure 8.5: German-English cross-entropy of the TED dev set as a function of training time.
Each data point represents a completed training epoch.

By its nature, our gradual fine-tuning technique uses training epochs of different
sizes, and therefore also implicitly differs from other methods in its parameter optimiza-
tion behavior. Since we decrease both the training data size and the SGD learning rate
after finishing complete training epochs, we automatically decay the learning rate at
decreasing time intervals. We therefore study how this approach is affected when we (i)
decay the learning rate after a fixed number of updates (i.e., the same as in static data
selection) rather than per epoch, or (ii) keep the learning rate fixed. In the first scenario,
we observe that translation performance drops with –1.1–2.0 BLEU. When keeping a
fixed learning rate, BLEU scores hardly change or even improve, indicating that the
implicit change in search behavior may contribute to the success of gradual fine-tuning.
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8.8 Conclusions

With the recent increase in popularity of NMT, we explored in this chapter to what
extent and how NMT can benefit from data selection. The potential benefits of applying
data selection are twofold; data selection can improve translation quality by discarding
data that is not relevant for the domain of interest, and it can substantially speed up
training times, which are known to be long for NMT training. When used for domain
adaptation, automatic data selection has the advantage that no prior knowledge is
needed about which sentence pairs or subcorpora are most relevant for the task at hand.
Data selection is therefore a method that meets one of the main goals of this thesis:
developing adaptation approaches that do not rely on the availability of domain or
subcorpus information. Motivated by good results of data selection in PBMT, we asked:

RQ6 To what extent and how can we successfully apply data selection for domain
adaptation in NMT?

To answer this question, we first investigated the effects of an existing data selection
method on both PBMT and NMT. On a German-English translation task covering four
domains, we observed that the data selection method performs consistently well for
PBMT but yields unreliable results for NMT.

Next, in order to make data selection a more effective strategy for NMT, we intro-
duced dynamic data selection, which entails varying the selected subset of training data
between different training epochs. We explored two techniques of dynamic data selec-
tion, both of which employ a domain-relevance ranked bitext: sampling, in which we
sample sentence pairs from a weighted distribution based on each sentence’s relevance
to the domain of interest, and gradual fine-tuning, in which we gradually reduce the
training data size, keeping the decreasing top n most relevant sentence pairs for training.

While results using our sampling approach vary, we found that our gradual fine-
tuning technique improves consistently over conventional static data selection (up to
+2.6 BLEU) and over a high-resource general baseline (up to +3.1 BLEU). Moreover,
gradual fine-tuning approximates in-domain fine-tuning using only ⇠20% of the training
time, even when no parallel in-domain data is available. In our additional analysis we
found that potential explanations for the success of gradual fine-tuning are (i) the
increased vocabulary coverage, and (ii) the implicit change in search behavior resulting
from the gradually decreasing size of the training data.
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9
Conclusions

In this thesis we have shed light on domain adaptation for machine translation (MT),
and in particular on the effects of various fine-grained aspects that together make up a
domain. This research is motivated by the fact that despite domain adaptation being
a well-studied research topic, previous research ignores three major issues: first, the
notion of a domain is not unambiguously defined, often referring to provenance while
disregarding that different domains may vary at many other levels. Second, research
in MT is mostly driven by relatively formal, editorially controlled, translation tasks,
while informal genres are much harder to translate. Third, most existing adaptation
approaches depend on the availability of provenance labels in both the training and the
evaluation data.

This thesis covers three research themes. In the first theme we have clarified the
concept of a domain and disentangled its aspects genre and topic. We found that genre
differences pose a larger challenge to PBMT than topic differences and analyzed why
PBMT struggles with genre differences. Next, we introduced two genre adaptation
approaches that do not, or at most partially, depend on the availability of domain or
provenance information of the training or the test data.

In the second research theme we analyzed PBMT for informal genres. While most
research is driven by translation tasks with standardized language use, informal data
is known to suffer from poor translation quality. In this thesis, we considered in total
six types of informal data (SMS messages, chat messages, telephone conversations,
weblogs, user comments, and fictional dialogues), and we analyzed which challenges
they pose to PBMT and what are promising strategies to improve translation quality.

In the third research theme we addressed domain adaptation for the new paradigm
of NMT. Concretely, we investigated whether an existing adaptation approach based
on data selection can be applied to NMT. After observing that this method performs
consistently well for PBMT but yields unreliable results for NMT, we introduced a
novel data selection approach which achieves solid BLEU improvements and makes
data selection beneficial for domain adaptation in NMT.

9.1 Main findings

In this section, we revisite and answer our research questions and we summarize the
main findings within each of our three research themes.
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9. Conclusions

Part I. The role of genres in phrase-based machine translation

Within the first research theme we have answered three main research questions. First,
we addressed the fact that within the active research field of domain adaptation for
PBMT, there is little consensus on what exactly constitutes a domain. Typically, different
domains correspond to different subcorpora or data sets. Since most previous work on
domain adaptation in PBMT uses in-domain and out-of-domain data that differ on both
the topic and the genre level, it is unclear whether the proposed solutions help deal with
topic or genre differences. We have disentangled these two concepts and studied their
respective impact on PBMT by asking:

RQ1 What impact do genre and topic differences have on PBMT quality?

To answer this question, we first provided clear definitions to the concepts of topic
and genre: topic refers to the subject of a text and is mostly characterized by specific
vocabulary or word senses, while genre concerns functional and stylistic properties
and is characterized by aspects such as writing style, stopwords, and register. Using
these definitions, we introduced a new annotated Arabic-English benchmark set with
controlled topic and genre distributions covering newswire (NW) and user-generated
(UG) documents in five topics.

When translating this data using a genre-balanced PBMT system, we found that
translation performance in BLEU fluctuates much more between the two genres than
across topics and that UG is translated with shorter phrases than NW. To explain these
observations, we introduced new quantitative metrics measuring source phrase recall
and source-target phrase pair recall, representing the source and source-target coverage
of our models. We found that poor model coverage—both mono- and bilingual—is
an important reason for the low PBMT quality on UG data. Our manual qualitative
analysis at the word level also suggests that source coverage could benefit from text
normalization, paraphrasing, or efforts to increase the amount of relevant training data.

Next, we further explored the impact of different genres on PBMT quality. To
this end, we extended our research to four genres (colloquial, editorial, news, and
speech) for four language pairs (Arabic-English, Bulgarian-English, Chinese-English,
and Persian-English), for which we harvested parallel training, development and testing
corpora from the web, and then asked:

RQ2 Is the observed impact of genre differences on PBMT consistent among various
language pairs and data settings?

We found that variations in BLEU are to a large extent language-specific, we also
observed moderate to strong positive correlations between genre-specific proportions of
the training data and BLEU scores. This indicates that differences in PBMT performance
can to a certain degree be explained by the amount of available training data. Moreover,
a few genre-specific patterns generalize across language pairs. For example, news is
always relatively easy to translate, whereas colloquial and speech documents achieve
relatively low BLEU scores for all language pairs.

After studying the impact of genre differences on PBMT, we moved to genre
adaptation and asked:
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9.1. Main findings

RQ3 How can we adapt PBMT systems to different genres without relying on explicit
corpus labels?

We explored two approaches to improve genre adaptation for PBMT. First, we exploited
our new corpora to train genre-specific rather than genre-agnostic PBMT systems and
obtained significant BLEU improvements when manually routing each test document
to the most appropriate genre-specific system. However, since we do not want to rely
on manual labels, we incorporated document-level genre classifiers into an end-to-end
PBMT pipeline and showed that we can improve translation quality over the genre-
agnostic baseline system without having to know a test document’s genre in advance.
We also found that misclassification does not always lead to deterioration of translation
quality, but rather benefits some documents.

For our second approach to genre adaptation we improved upon an existing adapta-
tion framework by replacing its dependency on subcorpus information with automatic
indicators of genre. We explored two types of features that can be automatically ex-
tracted from the parallel training and evaluation corpora: genre-revealing features
inspired by previous findings in the text classification literature, and latent Dirichlet
allocation (LDA) features. While both feature sets improved PBMT for most of our test
genres, we found that combining the feature sets yields the largest BLEU improvements,
indicating that the proposed genre and LDA features are to some extent complementary.

Part II. Translating and analyzing informal language
In our second research theme we addressed two main research questions, both dealing
with translating informal genres. First, we examined what exactly makes translating
user-generated (UG) text such as found on social media and web forums a difficult
task for PBMT. We collected and analyzed five different types of UG data: SMS
messages, chat messages, manual transcripts of phone conversations, weblogs, and
readers’ comments to news articles, and we asked:

RQ4 How is translation quality of PBMT influenced by different types of user-generated
text?

To answer this question, we compared our five UG benchmarks both quantitatively and
qualitatively. Our quantitive analysis included measuring translation quality, average
translation phrase length, and model coverage of source phrases, target phrases and
phrase pairs. We also compared for each UG data set the distribution of errors caused by
unseen source words, unseen target words, or suboptimal scoring of possible translation
candidates. Our results show among others that (i) UG data is translated with shorter
source phrases than news, (ii) UG translation model coverage deteriorates substantially
for longer phrases, and (iii) phrase-pair OOVs pose a bigger challenge to UG translation
tasks than source OOVs.

We also qualitatively analyzed PBMT errors for UG using sentence-level error
annotations. In this analysis we found that common issues in UG data include (i) OOVs
due to misspellings or Arabic dialectal forms, (ii) lexical choices that do not reflect
colloquial formulations, (iii) phrasal idioms being translated word by word, and (iv)
omitted first person pronouns in Chinese SMS and chat.
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In addition, we performed all of our analyses for two news benchmarks, allowing
us to compare PBMT performance and errors for each of the UG data sets to those
observed for a more formal genre. We found that the SMS and chat benchmarks are the
most dissimilar to news at all the analyzed levels. Errors in other types of UG are often
more similar to news errors than to those in SMS and chat messages.

Our second research question in this theme deals with the informal genre of dia-
logues. Dialogues involve, by definition, multiple speakers, often with different genders,
who likely have varying intentions and language use. Dialogues are therefore character-
ized by functional actions known as dialogue acts and utterances with varying register
levels. Since the impact of these dialogue-specific aspects on PBMT has hardly been
studied, we investigated the effect of four dialogue-specific aspects and asked:

RQ5 What impact do dialogue-specific aspects have on translation quality?

First, we created movie-dialogue benchmarks for five language pairs in which utterances
are annotated with dialogue acts, speakers, speaker gender, and register. Using this
new resource we found that BLEU fluctuations for speaker gender, dialogue acts, and
register levels are always significantly larger than fluctuations of randomly shuffled data
subsets. As for speaker variations, we found that on average 18.6% of the movies show
larger fluctuations than expected at random, suggesting that for this subset of movies
adaptation towards speakers may benefit PBMT quality.

We found that the register level has a significant impact on translation quality, with
translations of vulgar utterances being of substantially lower quality than neutral or
colloquial utterances. Similarly we found large variations in translation quality between
different dialogue acts, although we did not detect a consistent pattern between different
languages, e.g., questions can be more difficult to translate than exclamations for one
language pair, while the reverse is true for another language pair.

These observations suggest that conversational PBMT may benefit from adaptation
at fine-grained levels, which we tested in a series of adaptation experiments towards
dialogue acts and register levels. We confirmed that apart from domain adaptation,
adaptation to other variables should be considered to improve PBMT quality for di-
alogues. While our analyses are carried out on fictional dialogues, we believe that
our findings generalize at least partially to real dialogues, and are thus valuable for
advancing conversational MT.

Part III. Domain adaptation for neural machine translation
In the third and final research theme we addressed domain adaptation for the new MT
paradigm of NMT. Concretely, we explored to what extent and how NMT can benefit
from data selection, asking:

RQ6 To what extent and how can we successfully apply data selection for domain
adaptation in NMT?

To answer this question, we first investigated the effects of an existing, widely used
data selection method (Axelrod et al., 2011) on both PBMT and NMT. On a German-
English translation task covering four test domains, we observed that, while consistently
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performing well for PBMT, this method yields unreliable results for NMT, resulting in
substantial drops in BLEU for small selection sizes.

Next, in order to make data selection a more effective strategy for domain adaptation
in NMT, we introduced dynamic data selection for NMT, which entails varying the
selected subset of training data between different training epochs. We explored two
techniques of dynamic data selection, both of which employ a domain-relevance ranked
bitext: (i) sampling, in which we sample sentence pairs from a weighted distribution
based on each sentence’s relevance to the domain of interest, and (ii) gradual fine-tuning,
in which we gradually reduce the training data size, keeping the decreasing top n most
relevant sentence pairs for training.

While results using our sampling approach vary, we found that our gradual fine-
tuning technique improves consistently over conventional static data selection (up to
+2.6 BLEU) and over a high-resource general baseline (up to +3.1 BLEU). Moreover,
gradual fine-tuning approximates in-domain fine-tuning using only ⇠20% of the training
time, even when no parallel in-domain data is available. In our additional analysis we
found that potential explanations for the success of gradual fine-tuning are (i) the
increased vocabulary coverage, and (ii) the implicit change in search behavior resulting
from the gradually decreasing size of the training data.

9.2 Future work

In this thesis we have shed light on domain adaptation for machine translation, and in
particular on the effects of various fine-grained aspects that together make up a domain:
genres, topics, speakers, gender, dialogue acts, and register levels. In addition, we have
presented a number of adaptation approaches that do not, or at most partially, depend
on the availability of domain or provenance information of the training or the test data.
Both of these research directions serve the ultimate goal of dynamic adaptation for MT,
a scenario we discuss below in Section 9.2.1.

While most of the work in this thesis concerns statistical PBMT, research is currently
mostly driven by the newly developed paradigm of neural MT (NMT). We therefore
dedicate Section 9.2.2 to what NMT can learn from findings in PBMT when dealing
with domain adaptation scenarios.

9.2.1 Dynamic and fine-grained adaptation for MT

In an ideal scenario, the entire adaptation process would take place at translation time
and the MT system is adjusted for each incoming translation task. This type of dynamic
adaptation can be realized at many different levels of granularity. Besides adapting an
MT system to a complete test set (see Chapters 5 and 8), to a document (see Chapters 3
and 4), or to different sentences (see Chapter 7), one could for example consider
adaptation at the sub-document level. For example, previous work has demonstrated
that changes in a document’s discourse structure can be automatically detected using
features observable in raw text (Friedrich and Pinkal, 2015a,b; Friedrich et al., 2016), an
interesting potential direction for MT adaptation. Alternatively, it might be beneficial to
look beyond individual sentences and take into account each sentence’s direct context,
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e.g., previous and following sentences. This is particularly promising for conversational
genres, where subsequent utterances can vary at many different levels but may capture
information about other utterances.

A related interesting direction for future research is investigating how to simul-
taneaously adapt to different aspects at once, for example to the genre and topic of a
document and also to the register level of individual sentences. Combining topic and
provenance adaptation has been done by Hasler et al. (2014b), but combining other
aspects has not been described before in the research literature. For PBMT, combined
adaptation can be achieved for instance by incorporating relevance weights (Chapter 5)
representing different aspects of a domain, while for NMT an encouraging strategy
would be to extend our gradual fine-tuning method (Chapter 8), for example by first fine-
tuning towards a document’s genre and then further fine-tuning towards each sentence’s
register level, or by combining model ensembles.

The above mentioned methods adapt MT systems by re-estimating parameter values.
However, we showed in Chapters 3 and 6 that translation errors for most informal genres
are more attributable to poor model coverage than to suboptimal scoring of existing
translation candidates. This can be solved by augmenting the training data with genre-
specific translation examples, i.e., phrase or sentence pairs. However, data augmentation
in turn increases model coverage and thus the complexity of the decoding search space,
a problem which can be addressed using data selection. While data augmentation
and data selection strategies seem complementary, they both aim to yield only highly
relevant training data, and preferably as much of it as possible. It is therefore interesting
to explore methods to simultaneously synthesize relevant data and discard irrelevant
data. Unfortunately, adaptation at the data level typically takes place at training time,
hence a system has to be fully re-trained for successful adaptation. Relevant future work
therefore also includes addressing training efficiency when shifting to new domains.

Another strategy that can be applied to both PBMT and NMT is adaptation using
pre-translation text classifiers. While the genre classifiers used in Chapter 4 are all
crisp classifiers, i.e., they assign a single label per test document, a different strategy is
to apply fuzzy classification, in which different MT models can be interpolated, e.g.,
linearly or log-linearly in PBMT or using ensembles in NMT, using classifier output
weights. Such a setting might particularly benefit documents with low classification
confidence. Additionally, it is worth investigating data clustering strategies, such that no
prior information is needed about domains or genres in the training data. This strategy
has the additional advantage to possibly scale to an arbitrary large number of domain
aspects since no pre-defined categories are needed.

Finally, dynamic adaptation for PBMT also implies eliminating the need of a
development set that is representative of the test set’s genre or topic distribution.

9.2.2 What NMT adaptation can learn from PBMT adaptation

While most of the work in this thesis has been applied to PBMT, the novel promising
paradigm to automatic translation is that of neural MT. Research in MT is shifting
towards NMT, and NMT achieves state-of-the-art performance for an increasing number
of language pairs and translation tasks (Bojar et al., 2015, 2016). It is thus likely that
future work on adaptation for MT mainly involves adaptation for NMT.
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Despite these promising results, NMT is still in its infancy and faces a number of
serious challenges (Koehn and Knowles, 2017), one of which is its poor performance
in domain-mismatch scenarios. To date, this has been addressed by domain adaptation
approaches which almost all follow a similar setup called fine-tuning: after training
a general-domain model, a few additional training iterations are completed using in-
domain data. While fine-tuning has the advantage that it can be applied quickly if a
general-domain system is available, it is worth designing other methods for domain
adaptation in NMT.

Since domain adaptation for PBMT has been a very active field for more than a
decade, there are a number of things NMT adaptation can learn from PBMT adaptation.
First, an important lesson learned from this thesis is that PBMT performance can benefit
from adaptation to fine-grained domain aspects rather than only to provenance-based
domains, which is consistent with findings in previous work on topic adaptation. A
logical next step in NMT adaptation research is to move away from provenance-based
domain definitions and examine other aspects as indicators for adaptation.

Second, many of the successful adaptation methods for PBMT exploit some sort
of feature augmentation, in which additional information about the domain or genre of
interest is represented with one or more additional features. In NMT, such an approach
has been applied occasionally, for example to control politeness of German output
translations, i.e., du versus Sie (Sennrich et al., 2016a), or to capture hard domain
labels during adaptation (Chu et al., 2017). This leaves room for an extensive exploration
of other additional features or side constraints to use, preferably features that can be
inferred from raw text without requiring domain knowledge.

Third, an implicit consequence of adapting—or one could say, overfitting—an MT
system to a specific domain is that it suffers from degraded translation performance
on out-of-domain data, making an adapted system unsuitable for any other domain. In
PBMT this issue has been addressed by means of model interpolation or combination
(Koehn and Schroeder, 2007; Foster and Kuhn, 2007; Bisazza et al., 2011) or using pre-
trained classifiers (Chapter 4, Wang et al. (2012)) such that one can achieve reasonable
performance on various domains. While this issue has recently been addressed by
Dakwale and Monz (2017) with a modified fine-tuning approach, it is interesting to also
explore model combination or adaptation using classifiers.

Finally, many aspects of NMT are still considered as a black box, and future analyses
have to provide insights into the successes and weaknesses of NMT. In the context of
domain adaptation for PBMT, previous work has analyzed in which stage of the pipeline
the available in-domain data can best be used (Duh et al., 2010), how in-domain and
out-of-domain models can best be combined (Bisazza et al., 2011), or whether it is more
promising to improve either phrase extraction or scoring (Haddow and Koehn, 2012).
While NMT architectures do not consist of separate model components, it is still worth
investigating what impact in-domain data, for example varying in amount or quality,
has on translation performance, albeit only to ignite new research directions.
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P. Forner, A. Peñas, E. Agirre, I. Alegria, C. Forăscu, N. Moreau, P. Osenova, P. Prokopidis, P. Rocha,
B. Sacaleanu, et al. Overview of the clef 2008 multilingual question answering track. In Workshop of the
Cross-Language Evaluation Forum for European Languages, pages 262–295, 2008. (Cited on page 100.)

G. Foster and R. Kuhn. Mixture-model adaptation for SMT. In Proceedings of the Second Workshop on
Statistical Machine Translation, pages 128–135, 2007. (Cited on pages 1, 32, and 137.)

G. Foster, C. Goutte, and R. Kuhn. Discriminative instance weighting for domain adaptation in statistical
machine translation. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language
Processing, pages 451–459, 2010. (Cited on pages 1, 33, 39, 68, and 94.)

M. Freitag and Y. Al-Onaizan. Fast domain adaptation for neural machine translation. arXiv preprint
arXiv:1612.06897, 2016. (Cited on pages 117 and 121.)

J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning, volume 1. Springer, Berlin,
2001. (Cited on page 32.)

A. Friedrich and M. Pinkal. Automatic recognition of habituals: a three-way classification of clausal aspect.
In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages
2471–2481, 2015a. (Cited on page 135.)

A. Friedrich and M. Pinkal. Discourse-sensitive automatic identification of generic expressions. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing, pages 1272–1281, 2015b. (Cited on page 135.)

A. Friedrich, A. Palmer, and M. Pinkal. Situation entity types: automatic classification of clause-level
aspect. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages
1757–1768, 2016. (Cited on page 135.)

J. Gao, J. Goodman, M. Li, and K.-F. Lee. Toward a unified approach to statistical language modeling for
chinese. ACM Transactions on Asian Language Information Processing, 1(1):3–33, 2002. (Cited on
pages 31 and 117.)
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J. Giménez and L. Màrquez. Linguistic measures for automatic machine translation evaluation. Machine
Translation, 24(3-4):209–240, 2010. (Cited on page 85.)

A. Gliozzo and C. Strapparava. Exploiting comparable corpora and bilingual dictionaries for cross-language
text categorization. In Proceedings of the 21st International Conference on Computational Linguistics and
44th Annual Meeting of the ACL, pages 553–560, 2006. (Cited on page 46.)

L. Guillou, C. Hardmeier, P. Nakov, S. Stymne, J. Tiedemann, Y. Versley, M. Cettolo, B. Webber, and
A. Popescu-Belis. Findings of the 2016 wmt shared task on cross-lingual pronoun prediction. In
Proceedings of the First Conference on Machine Translation, pages 525–542, 2016. (Cited on page 100.)

L. K. Guillou. Incorporating pronoun function into statistical machine translation. PhD thesis, The University
of Edinburgh, 2016. (Cited on page 100.)

N. Habash and O. Rambow. Arabic tokenization, part-of-speech tagging and morphological disambiguation in
one fell swoop. In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics,
pages 573–580, 2005. (Cited on pages 37 and 86.)

B. Haddow and P. Koehn. Analysing the effect of out-of-domain data on SMT systems. In Proceedings of
the Seventh Workshop on Statistical Machine Translation, pages 422–432, 2012. (Cited on pages 33, 85,
and 137.)

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The weka data mining software:
An update. SIGKDD Explor. Newsl., 11(1):10–18, 2009. (Cited on page 57.)

C. Hardmeier. Discourse in statistical machine translation. PhD thesis, Acta Universitatis Upsaliensis, 2014.
(Cited on page 100.)

C. Hardmeier, J. Tiedemann, and J. Nivre. Latent anaphora resolution for cross-lingual pronoun prediction.
In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages
380–391, 2013. (Cited on page 100.)

C. Hardmeier, P. Nakov, S. Stymne, J. Tiedemann, Y. Versley, and M. Cettolo. Pronoun-focused mt and
cross-lingual pronoun prediction: Findings of the 2015 discomt shared task on pronoun translation. In
Proceedings of the Second Workshop on Discourse in Machine Translation, pages 1–16, 2015. (Cited on
page 100.)

E. Hasler. Dynamic topic adaptation for improved contextual modelling in statistical machine translation.
PhD thesis, University of Edinburgh, 2014. (Cited on page 34.)

E. Hasler, B. Haddow, and P. Koehn. Sparse lexicalised features and topic adaptation for smt. In Proceedings
of the 9th International Workshop on Spoken Language Translation, pages 268–275, 2012. (Cited on
pages 35 and 70.)

E. Hasler, P. Blunsom, P. Koehn, and B. Haddow. Dynamic topic adaptation for phrase-based mt. In
Proceedings of the 14th Conference of the European Chapter of the Association for Computational
Linguistics (EACL), pages 328–337, 2014a. (Cited on pages 35 and 70.)

E. Hasler, B. Haddow, and P. Koehn. Combining domain and topic adaptation for SMT. In Proceedings of
the 11th Conference of the Association for Machine Translation in the Americas, pages 139–151, 2014b.
(Cited on pages 35, 70, and 136.)

E. Hasler, B. Haddow, and P. Koehn. Dynamic topic adaptation for SMT using distributional profiles. In
Proceedings of the Ninth Workshop on Statistical Machine Translation, pages 445–456, 2014c. (Cited on
pages 35 and 70.)

E. Hasler, A. de Gispert, F. Stahlberg, A. Waite, and B. Byrne. Source sentence simplification for statistical
machine translation. Computer Speech & Language, 2016. (Cited on page 40.)

S. Hewavitharana, D. Mehay, S. Ananthakrishnan, and P. Natarajan. Incremental topic-based translation
model adaptation for conversational spoken language translation. In Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics, pages 697–701, 2013. (Cited on pages 35
and 70.)

A. S. Hildebrand, M. Eck, S. Vogel, and A. Waibel. Adaptation of the translation model for statistical machine
translation based on information retrieval. In Proceedings of the Conference of the European Association
for Machine Translation, pages 133–142, 2005. (Cited on page 31.)

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.
(Cited on pages 19 and 119.)

C. Hokamp and Q. Liu. Lexically constrained decoding for sequence generation using grid beam search.
In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1:

143



9. Bibliography

Long Papers), pages 1535–1546, 2017. (Cited on page 117.)
J. Holmes and M. Meyerhoff. The handbook of language and gender, volume 25. John Wiley & Sons, 2008.

(Cited on page 109.)
M. Hopkins and J. May. Tuning as ranking. In Proceedings of the 2011 Conference on Empirical Methods in

Natural Language Processing, pages 1352–1362, 2011. (Cited on pages 16 and 24.)
A. Irvine and C. Callison-Burch. Hallucinating phrase translations for low resource MT. In Proceedings of

the Eighteenth Conference on Computational Natural Language Learning (CoNLL), pages 160–170, 2014.
(Cited on page 40.)
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Summary

Machine translation (MT) uses software to translate texts written in one language (for
example German) to another language (for example English). Modern-day MT systems
are built using large amounts of example translations between the two languages of
interest, so-called parallel corpora. If parallel corpora are sufficiently large and of high
quality, created by professional translators who adhere to language standardizations, an
MT system can produce good translations.

However, sizable high-quality parallel corpora only exist for a limited number of
translation tasks, or domains, such as parliamentary proceedings. The picture looks less
bright when training data is scarce for a domain of interest, for example if one wishes
to translate medical texts. In such cases, the available training data differs from the
translation task in both writing style and vocabulary, a mismatch that can cause large
drops in translation quality. In recent years, this problem has been addressed by domain
adaptation, in which an MT system is adapted to the domain of interest and translation
quality is often improved.

Unfortunately, the notion of a domain is not uniformly defined. Typically, domain
means ‘different data set,’ and is thus a hard-labeled concept that is often directly used to
optimize an MT system. This definition ignores three important facts: first, documents
or sentences within a single domain may vary at many levels, such as topics, genres,
and register, which may be useful information to adapt an MT system. Second, some
domains or genres may require different strategies than others to improve translation
quality due to their inherent differences. Third, available domain labels may not provide
the most useful information for effective adaptation.

To shed light on the concept of a domain and its impact on MT, the core question
in this thesis is: “What’s in a domain?” Guided by this question, we distinguish
various aspects that together make up a domain, i.e., topic, genre, register, dialogue acts,
speakers, and speaker gender. We study to what extent MT output differs among these
aspects, and how we can use them to perform fine-grained adaptation for MT. We are
particularly interested in informal and conversational genres, which lack standardization
and are notorious for poor MT output. In addition, we aim to develop methods that do
not, or at most partially, rely on manual domain or genre information.

By studying what’s in a domain and showing how we can use different aspects of
language to improve MT, we take in this thesis a step forward towards fine-grained
adaptation for machine translation.

151





Samenvatting

Computervertaalsystemen (Engels: machine translation (MT) systems) gebruiken soft-
ware om teksten geschreven in één taal (bijvoorbeeld Nederlands) te vertalen naar
een andere taal (bijvoorbeeld Engels). Hedendaagse computervertaalsystemen worden
gebouwd door te leren van grote hoeveelheden voorbeeldvertalingen tussen twee talen,
zogeheten parallelle corpora. Als zulke parallelle corpora voldoende groot zijn en van
goede kwaliteit, vaak vertaald door professionele vertalers, kan een computervertaalsys-
teem vertalingen van goede kwaliteit genereren.

Parallelle corpora van goede kwaliteit zijn echter enkel beschikbaar voor een beperkt
aantal domeinen, zoals nieuws of parlementaire verslaggevingen. De situatie is minder
rooskleurig voor domeinen waarvoor meertalige training data schaars is, wat bijvoor-
beeld het geval is voor medische teksten of berichten op sociale media. In zulke gevallen
zorgen de verschillen in schrijfstijl en vocabulaire tussen de voorbeeldvertalingen en de
te vertalen tekst ervoor dat de vertaalkwaliteit drastisch verslechtert. In de afgelopen
jaren is er veel aandacht besteed om dit probleem op te lossen door middel van domein-
adaptatie (Engels: domain adaptation). In dit proces wordt het vertaalsysteem aangepast
aan het domein van belang waardoor de vertaalkwaliteit voor dit domein verbetert.

Helaas is het concept domein niet eenduidig gedefinieerd in de huidige literatuur.
Meestal betekent een nieuw domein een ‘andere dataset’ en wordt informatie over de
oorsprong van deze dataset direct gebruikt om een vertaalsysteem te optimaliseren. Deze
definitie negeert drie belangrijke feiten: ten eerste, documenten of zinnen binnen een
domein kunnen variëren op vele verschillende niveaus, zoals qua onderwerp, tekst-genre
of taalgebruik. Variatie op deze niveaus kan belangrijke informatie bevatten om een
vertaalsysteem aan te passen. Ten tweede, sommige domeinen of tekst-genres vereisen
specifieke strategieën om vertaalkwaliteit te verbeteren dankzij inherente kenmerken
van die domeinen. Ten derde, beschikbare domein-labels bevatten niet per definitie de
meest waardevolle informatie voor effectieve adaptatie.

Om inzicht te krijgen in het concept domein en de impact van domeinen op compu-
tervertaalsystemen, stelt dit proefschrift de vraag: “Wat omvat een domein?” Aan de
hand van deze vraag onderscheiden we verscheidene aspecten die tezamen een domein
definiëren, zoals onderwerp, tekst-genre, taalgebruik, dialoogkenmerken, sprekers en
het geslacht van sprekers. We bestuderen in hoeverre vertaalkwaliteit varieert binnen
elk van deze aspecten, en hoe we deze aspecten kunnen gebruiken om adaptatie van
vertaalsystemen op verschillende niveaus te bewerkstelligen. Hierbij zijn we specifiek
geı̈nteresseerd in informele teksten en conversaties, die beide worden gekenmerkt
door een gebrek aan standaardisatie en een notoir slechte vertaalkwaliteit. Daarnaast
beogen we methodes te ontwikkelen die niet, of slechts gedeeltelijk, afhankelijk zijn
van handmatig gedefiniëerde domein-informatie.

Door te bestuderen wat een domein omvat en aan te tonen hoe we verschillende
aspecten van taal kunnen benutten om computervertaalsystemen te verbeteren, nemen
we in dit proefschrift een belangrijke stap richting verbeterde adaptatie voor computer-
vertaalsystemen.
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so-called parallel corpora. If parallel corpora are sufficiently large and of high quality, created 

by professional translators who adhere to language standardizations, an MT system can 

produce good translations.

However, sizable high-quality parallel corpora only exist for a limited number of translation 

tasks, or domains, such as parliamentary proceedings. The picture looks less bright when 

training data is scarce for a domain of interest, for example if one wishes to translate medical 

texts. In such cases, the available training data differs from the translation task in both 

writing style and vocabulary, a mismatch that can cause large drops in translation quality. In 

recent years, this problem has been addressed by domain adaptation, in which an MT system 

is adapted to the domain of interest and translation quality is often improved.

Unfortunately, the notion of a domain is not uniformly defined. Typically, domain means 

‘different data set,’ and is thus a hard-labeled concept that is often directly used to optimize 

an MT system. This definition ignores three important facts: first, documents or sentences 

within a single domain may vary at many levels, such as topics, genres, and register, which 

may be useful information to adapt an MT system. Second, some domains or genres may 

require different strategies than others to improve translation quality due to their inherent 

differences. Third, available domain labels may not provide the most useful information for 

effective adaptation.

To shed light on the concept of a domain and its impact on MT, the core question in this 

thesis is: “What’s in a domain?” Guided by this question, we distinguish various aspects that 

together make up a domain, i.e., topic, genre, register, dialogue acts, speakers, and speaker 

gender. We study to what extent MT output differs among these aspects, and how we can use 

them to perform fine-grained adaptation for MT. We are particularly interested in informal and 

conversational genres, which lack standardization and are notorious for poor MT output. In 

addition, we aim to develop methods that do not, or at most partially, rely on manual domain 
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