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1. Theory 

1.1 The channel-wise model fitting 
The objective of this step in the pipeline is to find – in a probabilistic fashion – the most optimal 

parameters (i.e. retention time, peak width) for each mass-to-charge channel. Prior to this step, the data 

was binned and included in a matrix form of QxJ elements, to ease the implementation of the algorithm. 

For information about the binning method, see Supporting Information. The channel-wise modelling is 

based on work of Sivia et al. [11] which proposed a Bayesian probabilistic solution to the calculation of 

the potential number of Gaussian models in spectral data. The strategy is based on the following 

modelling of the data: 

𝑆𝑗 =  ∑ 𝐴𝑖,𝑗𝑒
(−

(𝑡−𝑡𝑖,𝑗 )
2

2𝜎𝑖,𝑗
2 )

𝑁

𝑖=0
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Where 𝑁 is the number of components, 𝑆𝑗 is the modeled signal (i.e. the chromatogram for one fixed m/z 

channel 𝑗), 𝑡 is the time axis (containing Q elements), 𝐴𝑖,𝑗 is the amplitude (or peak height) for the ith peak 

at the jth channel, 𝑡𝑖,𝑗  is the elution time for the analyte 𝑖  at channel j, and 𝜎𝑖,𝑗 is the peak width for the 

analyte 𝑖 at the channel j. When fitting the model from the Eq. (1), the objective is to find the values of 

the parameters 𝐴𝑖,𝑗, 𝑡𝑖,𝑗 and 𝜎𝑖,𝑗 that minimize the 𝜒𝑗
2 function between the model and the data from 

channel 𝑗: 

𝜒2
𝑗 =  ∑

(𝐷𝑗𝑞 − 𝑆𝑗𝑞)
2

𝜎𝑛
2

𝑄

𝑞=1

 2 

Where 𝐷𝑗𝑞 is the qth element (i.e. time registry) of the Dj data vector (of Q elements), corresponding to 

the chromatogram of channel j. 𝜎𝑛
2 is the standard deviation of the noise of the signal. Eq. (1) can be 

solved probabilisitically in a Bayesian framework, calculating the posterior probability of the number of 



components (N) [11]. However, in this work [11] , such methodology is not extended to two-dimensional 

data. 

A simple extension of the ideas of [10] would be to fit each channel independently using Eqs. (1) and (2). 

The main problem of such approach is that the fitted retention times for the same compound will be 

highly different from channel to channel. In fact, by performing independent fittings for each channel 

using the above equations, we are assuming that the channels in High Resolution GC-Orbitrap are 

statistically independent. This is not true, since the chromatographic profile of a compound (and therefore 

the value of 𝑡𝑖,𝑗 and 𝜎𝑖,𝑗 in Eq. (1)) is the same, independently for the channel j. Solving this issue directly 

causes a major computational burden, forcing all the channels to be fitted simultaneously to Eq. (1), using 

common values of of 𝑡𝑖 and 𝜎𝑖 per compound. As this is unfeasible from a practical perspective, we have 

decided to modify the objective function to include a part of the contribution of other channels when 

finding the fitted parameters. Our proposal in solving these issues is to include a penalty on the objective 

function that will penalize the differences in 𝑡𝑖,𝑗  and 𝜎𝑖,𝑗 across channels:  

𝜒2̃
𝑗 =  ∑ [

(𝐷𝑗𝑞 − 𝑆𝑗𝑞)
2

𝜎𝑛
2

+  𝜆 ∑(�̃� −  𝑺)
2

𝐽

𝑗

]

𝑄

𝑞=1
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Where the matrix �̃� has each column normalized (i.e. each m/z channel has the intensities between 0 and 

1) and S is the matrix in which each column is equal to the fitted signal 𝑆𝑗, also normalized. Note that, with 

this particular construction of S, the left-hand side part of the equation estimates the goodness of fit of 

the proposed for all the channels at the same time. The penalization parameter 𝜆 governs how common 

the chromatographic profiles should be across channels. Its value is subjected to a best estimation. A large 

value of 𝜆 will lead to extremely high bias towards the first moment of the TIC peak. A very small value of 

the 𝜆  will assume almost independence between the mass channels. This second option, given the noise 

in the data, results in a high dissimilarities between the channel-wise optimized values of the fitted 

retention time and peak width. We propose the value of 𝜆 =  
𝑄

𝐽
  as recommended in [13]. This value was 

found optimal in this work after several empirical trials.  

The question of the number of components can be solved probabilistically simply by computing the 

posterior probability of a particular number of components in the mixture using the Bayesian equation 

[11]:  

  

𝑝(𝑁|𝐷) =
𝑝(𝐷|𝑁) × 𝑝(𝑁)

𝑝(𝐷)
 4 

Where 𝑝(𝑁|𝐷) is the posterior probability of the number of components (N) after the data has been taken 

into account, 𝑝(𝐷|𝑁) is the so-called likelihood (the probability of obtaining the data given a proposed 

number of compounds), 𝑝(𝑁) is the prior probability of the number of compounds and p(D) is a 

normalization factor (not calculated explicitly). By applying a uniform prior on N and marginalizing over 

the parameters of the model from the equation (1) we can rewrite the equation 4: 

𝑝(𝑁|𝐷)𝑗  ∝  ∫ 𝑝(𝐷|𝐴, 𝑡, 𝜎)𝑗

𝐴,𝑡,𝜎

𝑝(𝐴) 𝑝(𝑡) 𝑝(𝜎) 𝑑𝐴 𝑑𝑡 𝑑𝜎 5 



Where 𝑝(𝐷|𝐴, 𝑡, 𝜎)𝑗 is the likelihood function that can be obtained from Eq. (2) or (3) if Gaussian noise is 

assumed. The integral expressed in eq. (5) might be solved using MCMC techniques, but this can be time 

consuming. An alternative is to solve it by proposing a Taylor expansion of the integrand (i.e. of the 

expansion of the Chi-square distribution from eq. (2)) [10]:  

𝜒2 ≈  𝜒0
2 +  

1

2
(X − X𝑜)𝑇∇∇𝜒0

2(X − X𝑜) + ⋯ 6 

 

Where X is any set of parameters of the model and 𝑋𝑜 = {𝐴, 𝑡, 𝜎} is the set of parameters yieldng the 

minimum value of 𝜒0
2 of the objective function from the eq. (3). In this equation, ∇∇𝜒0

2 is the Hessian 

matrix of the objective function. By imposing flat priors on the nuisance parameters (𝑝(𝐴) 𝑝(𝑡) 𝑝(𝜎)) we 

obtain: 

 ∫ 𝑝(𝐷|𝑏, 𝐴, 𝑡, 𝜎)𝑗

𝐴,𝑡,𝜎

 𝑝(𝑎)𝑝(𝑡) 𝑑𝐴 𝑑𝑡 𝑑𝜎 

≈
∫ 𝑒

[−
1
4

(X−X𝑜)𝑇∇∇𝜒0
2(X−X𝑜)]

𝐴,𝑡,𝜎
 𝑑𝐴 𝑑𝑡 𝑑𝜎

((𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛)(𝐴𝑚𝑎𝑥 − 𝐴𝑚𝑖𝑛)(𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛))𝑁
 

7 

Where the [𝑡𝑚𝑎𝑥, 𝑡𝑚𝑖𝑛], [𝐴𝑚𝑎𝑥, 𝐴𝑚𝑖𝑛], and [𝜎𝑚𝑎𝑥, 𝜎𝑚𝑖𝑛] are the limits of the (flat) prior distributions of 

the nuisance parameters. Note that the solution, although coming from flat priors, is biased in our case 

since we take into account the inter-dependence of the mass channels. The integral on the right hand side 

of the Eq. (7) is well known integral of a multivariate Gaussian distribution. By using this solution and 

assuming that the different N models are indistinguishable and interchangeable, we can now express Eq. 

(5) using Eq. (7) as follows [10]: 

 

𝑝(𝑁|𝐷)𝑗  ∝  
(4𝜋)𝑁/2𝑁!

((𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛)(𝐴𝑚𝑎𝑥 − 𝐴𝑚𝑖𝑛)(𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛))𝑁

𝑒−
𝜒0

2

2

√det (∇∇𝜒0
2)
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Note that the denominator and numerator containing the parameter N in the eq. (8), serves as the so-

called “Occam factor” and decreases the posterior probability if the complexity of the model increases.  

We will be further interested in the “retention time - peak width” (RT-PW) space that is obtained from the 

first step of the pipeline.  Basically the values of fitted 𝑡𝑖,𝑗 and 𝜎𝑖,𝑗 for the different values of N are of 

interest. The values of p(N|D) might be different per channel. Instead of deducing the true number of 

compounds from p(N|D), we use this value as a threshold (i.e. only the data points 𝑝(𝑁|𝐷) > 10−5 are 

considered). All the fitted 𝑡𝑖,𝑗 and 𝜎𝑖,𝑗 values (for all channels) generating p(N|D) above a threshold are 

used to populate the RT-PW space.  

The number of clusters found in this space should give a hint on the number of compounds. In other 

words, for each analyte we would expect to have a high agglomeration of points in RT-PW space around 

the retention time and peak width of such analyte. The penalty  used in Eq. (3) reduces the sparsity of 



the clusters in the RT-PW space. However, the noise is still partially affecting the parameters obtained at 

this step.  

We assume that the values of retention time and peak width follow a multivariate Gaussian distribution 

(in the RT-PW space) for each compound. From here, the idea of fitting a Gaussian mixture model (MM) 

for all points found in this space arises.  

1.2 The Mixture Model classification 
In order to fit the Mixture of Gaussians to the data, the Expectation maximization (EM) algorithm is 

employed. The EM algorithm has been extensively described in the literature [14] [15] and only a brief 

description is given here.  The algorithm starts with a proposal for the center and the variance of each 

cluster i, ci, and an estimate of the variance for each cluster, ii. 𝒄𝒊 = [𝑡�̅�, �̅�]𝑖 is the expected value of the 

centroid of the cluster 𝑖 (i.e. the expected value of the retention time and peak width of such 

chromatographic peak) At the next step, the latent parameter  𝜔𝑚,𝑖 is calculated. This latent parameter is 

found for each of the M data points and for each cluster i. This latent parameter (called “responsibility”) 

is defined as the likelihood,  𝜔𝑚,𝑖 = 𝑝(𝒙𝒎|𝒄𝒊,∑𝒊), where xm is a data point (containing a pair value in the 

RT-PW space). Note that we have defined the whole data points using 𝒙 =

[𝑡𝑟1,  𝜎1; … 𝑡𝑟𝑚,  𝜎𝑚; … 𝑡𝑟𝑀 ,  𝜎𝑀; ].  This likelihood is assumed to be multivariate Gaussian, i.e. 

𝑝(𝒙𝒎|𝒄𝒊,∑𝒊) =   (2𝜋)−
𝐾

2 det (𝚺𝒊)−
1

2𝑒𝑥𝑝 (−
1

2
(𝒙𝒎 − 𝒄𝒊)𝑇𝚺𝒊

−1(𝒙𝒎 − 𝒄𝒊)) where K=2 in our case since the 

RT-PW is a bidimensional space. In the next iteration, an update of the ci and ∑𝒊 is obtained using the new 

values of  𝜔𝑚,𝑖. For the case of ci, the update is calculated as follows: 

𝒄𝒊 =  
∑ 𝜔𝑚,𝑖𝒙𝑚

𝑀
𝑚=1

∑ 𝜔𝑚.𝑖
𝑀
𝑚=1
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For 𝚺𝒊, we force the matrix to be diagonal, since we assume in our case that parameters RT and PW do 

not influence each other. Each diagonal element (i.e. the k-th element, k={1,2}) is thus computed as 

follows: 

(Σ𝑖)𝑘,𝑘 =  
∑ 𝜔𝑚,𝑖(𝑥𝑚,𝑘 − 𝑐𝑖,𝑘)(𝑥𝑚,𝑘 − 𝑐𝑖,𝑘)𝑀

𝑚=1

∑ 𝜔𝑚,𝑖
𝑀
𝑚=1

 11 

These new parameters of ci and i are then used to update the responsibilities wm,i (Eq. 9), and the 

algorithm continues up to convergence. The values of ci and I define the center of each cluster and its 

bandwidth. In other words, they describe the features (retention time and band broadening) of the i-th 

eluting peak.

The main factors influencing the final (converged) values of ci and I are: the density of each cluster (i.e. 

number of points concentrated in one cluster) and the total number of the data points (M). It is important 

to stress here that the number of mass channels of the compounds that are in the dataset can severely 

influence the fitting of ci and I. If a compound (i.e. a cluster in RT-PW space) has a larger number of 

channels compared to the neighboring compounds, it is more likely that the centers of other clusters (eq. 

10) will be biased (i.e. “attracted”) towards the center of this cluster, which can unbalance the final result. 

One solution to this handicap is to limit the value of (Σ𝑖)11 to a maximum possible value. This is done by 

imposing a threshold during the fitting. If, during an iteration, the value of  (Σ𝑖)11 found in Eq. 11 is above 



a threshold (in our case the value of the threshold is 0.064 s), the threshold value is assigned to 

(Σ𝑖)11instead of the value calculated with Eq. (11). In practice, this means limiting the influence of a 

centroid by imposing a maximum value on the sparsity of the clusters in the RT-PW space. Another 

important role of (Σ𝑖)22 is to control the uniqueness of the retention time. In other words, we assume 

that there are no analytes eluting at exactly the same retention time. To impose this condition, we follow 

a similar strategy compared to the method used in (Σ𝑖)11. However, in this case the threshld for (Σ𝑖)22 

defines its minimum, not its maximum. In other words: if, during an iteration, the value of (Σ𝑖)22 is below 

a threshold (i.e. 0.64 s), the value of the threshold is used, instead of the value given by Eq. 11. The values 

of both thresholds (0.064 and 0.64) were found empirically. More explanation about these values is found 

in the results and discussion section. 

One of the most important problems in clustering in general is how to answer to the question on how 

many clusters should be used to describe the data. Note that the number of cluster expresses the number 

of eluting analytes within the region of interest. In this work we propose the use the well-known Bayesian 

Information Criterion (BIC) and Akaike Information Criterion (AIC) to evaluate the number of clusters. Both 

BIC and AIC are forms of penalization of the log-likelihood (i.e. 𝐿 =  ∑ ln [∑ 𝑝(𝒙𝒎|𝒄𝒊,∑𝒊)
𝑁
𝑖=1 ]𝑀

𝑚=1 ): 

𝐵𝐼𝐶 = −2𝐿 +  𝛽 ln 𝑀 12 

𝐴𝐼𝐶 = 2𝛽 − 𝐿 13 

 

 With the number of free parameters 𝛽 = (3𝑁 − 1)𝐾 , M is the number of data points in the RT-PW space, 

K is the dimension of the multivariate distribution (2 in our case). The value of BIC and AIC is used to select 

the optimal value of N. The value of N yielding the lowest value of BIC (or AIC) is considered optimal. 

Further, the BIC can be used to calculate the posterior probability for N: [14] 

𝑝(𝑁|𝐵𝐼𝐶) =  
𝑒

1
2

𝐵𝐼𝐶𝑁

∑ 𝑒
1
2

𝐵𝐼𝐶𝑁
𝑁
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Where BICN represents the value of BIC (Eq. 12) using N components. 

1.3 Compound identification and spectral retrieval 
This step makes use of the posterior probability of the number of components (Eq. 14) resulted from the 

previous step and the corresponding values of the centroids, ci. Note that, in fact, the values of 𝚺𝑖 are not 

of interest for the next steps of the algorithm. This is because ci describes at full the peak feature of the 

ith component: it describes its position (RT) and its band broadening (PW). A simple optimization algorithm 

is employed to find the intensities 𝐴𝑖,𝑗 for each compound at each j channel. We simply introduce the 

value of RT (i.e. 𝑡𝑖 in Eq. 1) and PW (𝜎𝑖 in Eq. (1)) for each compound 𝑖 = 1,2, …  𝑁 and solve (via least 

squares) the value of  𝐴𝑖,𝑗 for each channel and compound. Note that step 2 of the algorithm made the 

values of ci common for each channel, and therefore 𝒕𝒊and 𝝈𝒊 do not depend on 𝑗.  The intensities of  𝐴𝑖,𝑗 

found via least-squares estimation of Eq. (1), have the imposed condition of non-negativity. At the end of 



the process, a matrix (i.e. 𝑨𝑖,𝑗) of  𝐴𝑖,𝑗  intensities for each 𝑖 (𝑖 = 1,2, …  𝑁) compound and 𝑗 channel (𝑗 =

1,2, …  𝐽) is obtained. For a fixed value of 𝑖, the vector 𝑨𝑖,∗ (for all 𝑗 = 1,2, … 𝐽 values) constitutes the 

retrieved spectrum for the 𝑖𝑡ℎ compound. It is likely to observe channels that are selective for only one 

compound. In this case, the algorithm will simply assign null intensities for this channel for the other 

compounds. We consider in this work an estimation of the uncertainty (calculated from the variance-

covariance matrix of the fitting [12]) of the fitting. These values (standard deviation, δi,j) are used in the 

next step.  

In order to compare the retrieved spectra 𝑨𝑖,∗  with a spectra available in the database, we make use of 

the correlation coefficient as follows. First, the query spectra 𝒔𝜏 from the database is interpolated to the 

same m/z values as the unknown spectra 𝑨𝑖,∗ retrieved from the previous step (for information about the 

interpolation method, see supporting information). The value of  defines an arbitrary element of the 

library containing T spectra. To simplify the terminology, let’s define a as a generic  𝑖𝑡ℎ spectrum, retrieved 

from the data, and containing J channels, 𝒂 ≡ 𝑨𝑖,∗ = [ 𝐴𝑖,1,  𝐴𝑖,2, … ,  𝐴𝑖,𝑗, … ,  𝐴𝑖,𝐽]. Let’s define  as the 

vector of standard deviations found in the previous step, 𝜹 ≡ 𝜹𝒊,∗ = [δi,1, δi,2, … , δi,j, … , δi,J] . The values 

of a are then perturbed drawing from a normal distribution with mean 𝐴𝑖,𝑗 and standard deviation δi,j, 

obtained a perturbed 𝒂𝑟 spectrum. The correlation coefficient between the perturbed spectrum and 𝒔𝜏 

is calculated. By performing this calculation 𝑅 times (i.e. randomly drawing from the distribution centered 

at 𝒂  and standard deviation 𝜹) and calculating the mean of all these correlations, an average correlation 

is found, which includes the uncertainty in the estimation of a:  

𝜌𝜏,𝑖,𝑁 =
1

𝑅
 ∑ [

𝒔𝜏 ∙ 𝒂𝑟

‖𝒔𝜏‖‖𝒂𝑟‖
]

2
𝑅

𝑟=1

 15 

A value of 𝑅 of 500 was found appropriate. 𝜏 indicates the id of a compound in the database (𝜏 = 1, . . Τ 

with Τ total number of the spectra in the library). The output will be a value of 𝜌𝜏,𝑖,𝑁 (i.e the average 

correlation with the spectrum 𝜏 of the database) assigned to every element in the database. Note that we 

made explicit that this correlation depends on i, i.e. it is obtained for each of the i=1,2,…, N spectra 

retrieved from the previous step.  

In this step of the algorithm, N is also a variable. This is because we have tried to solve the deconvolution 

with a different number of proposed compounds. Hence, in order to evaluate objectively the identity of 

the analytes within the deconvolved data, we will calculate the coefficient 𝜌𝜏,𝑖 from the Eq. 15 for all the 

𝑖 compounds 𝑖 = 1, …  𝑁 (i.e. for all the centroids 𝒄𝒊 from the Eq. 10) and for each value of proposed 𝑁, 

𝑁 =  1, . . , ℋ. In this work, we have limited the maximum number of compounds to 12, hence ℋ =12. 

Note that the models are not nested: for each of the values of N (i.e. supposing a different number of 

clusters in the RT-PW space), we may obtain a different map of the 𝒄𝒊 values, and therefore a different 

collection of retrieved 𝑨𝑖,∗ spectra (with 𝑖 = 1,2, … 𝑁). We make this explicit in the definition of 𝜌𝜏,𝑖,𝑁.  

There are two ways to explore the results given by the correlation: one is to find the  element in the 

database that yields the maximum value of the correlation coefficient, max(𝜌𝜏,𝑖,𝑁) (referred onwards as 

“max ranked”) and hence the identity of the identified compound in the database is: 

𝜏𝑖,𝑁
′ =

𝑎𝑟𝑔𝑚𝑎𝑥
𝜏

(𝜌𝜏,𝑖,𝑁) 16 

 



Where the 𝑖 index means that this “max rank” is calculated for each of the N components (𝑖 = {1,2, … , 𝑁}) 

of the solution provided by equation 15. As explained earlier, the models are not nested. This means that 

this search performed also for all i elements for a variable N (𝑁 =  1, . . , ℋ). Further, we define 

 𝜌𝑖,𝑁,𝑀𝐴𝑋
=

max
𝜏

 (𝜌𝜏,𝑖,𝑁), i.e. the value of the maximum correlation found for all 𝜏 = 1,2, … , 𝑇 compounds 

in the database for a given i and a given N. The list of 𝜏𝑖,𝑁
′ constitute an enumeration of the possible 

compounds from the database that could be present in the sample.  

We evaluate the strength of the evidence of the presence of each of the 𝜏𝑖,𝑁
′ elements as follows. This 

evidence is defined as �̅�𝜏
′ . First, all  elements in the database that are not listed in 𝜏𝑖,𝑁

′  (i.e. they were 

never yielding the maximum correlation) receive a value of �̅�𝜏
′  of 0. For the rest of the  values, we make 

use of the value found in  𝜌𝑖,𝑁,𝑀𝐴𝑋
 . In this way we can define  𝜌𝜏,𝑖,𝑁,𝑀𝐴𝑋

 as follows: 

  𝜌𝜏,𝑖,𝑁,𝑀𝐴𝑋
= {

 𝜌𝑖,𝑁,𝑀𝐴𝑋
𝑓𝑜𝑟 𝜏 = 𝜏𝑖,𝑁

′ 

0               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 17 

 

 

 Next, we make use of 𝑝(𝑁|𝐵𝐼𝐶) as a probabilistic weight: 

�̅�𝜏
′ = ∑ [[𝑝(𝑁|𝐵𝐼𝐶)

1

𝑁
] ∑  𝜌𝜏,𝑖,𝑁,𝑀𝐴𝑋

𝑁

𝑖=1

]

ℋ

𝑁=1
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A second way is to interpret the values of the correlation from the Eq. 15 and use all values of 𝜌𝜏,𝑖,𝑁 

opposed to consider only the maximum and assign a zero value to the others. In other words, we do not 

exclude other possibilities regardless of the magnitude of the correlation value. The reasoning behind this 

approach is the fact that the ground truth may be ranked the second or lower, with a very small or 

insignificant difference from the  𝜌𝜏,𝑖,𝑁𝑀𝐴𝑋
. This method is called “all ranked” method. In this case, a 

similar computation to Eq. 18 is used, and the equation becomes: 

 

�̅�𝜏 = ∑ [[𝑝(𝑁|𝐵𝐼𝐶)
1

𝑁
] ∑ 𝜌𝜏,𝑖,𝑁

𝑁

𝑖=1

]

ℋ

𝑁=1

 19 

 

 

It is easy to identify in the last two equations a discreet form of integration over the centroids (i.e. over 

the retention times obtained with MM step) which essentially means that we lose the information about 

the retention times and the peak width of the identified compounds. The information about retention 

time of each identified compound (i.e. for each 𝜏) can be obtained when using “max ranked” approach as 



in this case there is a link between the 𝜏𝑖, 𝑐𝑖 and 𝑝(𝑁|𝐵𝐼𝐶). Hence, for one fixed 𝜏′ = Θ (with Θ ≥ 1 and 

Θ ≤ T) we can estimate a retention time using the median value of the centroids associated to this 𝜏′:

𝑡𝑟𝜏= Θ = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑐𝑖𝜏′=Θ) 20 

 

 

1.4 Interpolation algorithm 
Let 𝑆 be the spectra at the id 𝜏 in the database, 𝑆 =  [𝑚𝑧1, 𝐼1;  𝑚𝑧2, 𝐼2;  … 𝑚𝑧𝑖 , 𝐼𝑖; …  𝑚𝑧𝐼 , 𝐼𝐼]. Let 𝑎 be 

the vector of data at one retention time, 𝑎 =  [𝑚𝑧1, 𝐼1;  𝑚𝑧2, 𝐼2;  … 𝑚𝑧𝑗 , 𝐼𝑗; …  𝑚𝑧𝐽 , 𝐼𝐽]. And let 𝜎𝑠 be the 

standard deviation of the mass-to-charge values of the 𝑆 calculated as follows. 

∆𝑠= 𝑚𝑒𝑑𝑖𝑎𝑛(𝑚𝑧𝑖 −  𝑚𝑧𝑖−1) 

The interpolated spectra S’ is obtained as follows: 

𝑆′
𝑗 =  ∑ 𝐼𝑖𝑒

(−
(𝑚𝑧𝑖− 𝑚𝑧𝑗)

2

2∆𝑠
)

𝐼

𝑖=1

 

2. Results and discussion  
 

 
Figure SI.1 Retrieved spectra at 2.5024s and 2.5108 with corresponding identified false 
positives for the Case 1 

 



 
Figure SI.2 Retrieved spectra at 2.5064s with corresponding identified false positive for the 
Case 2 

 

 
Figure SI.3 (a) - Spectrum of Octachlorostyrene (𝜏 = 92), (b) - Spectrum of Acetamiprid (𝜏 = 441), (c) - 
Spectrum of Norea (𝜏 = 447) compared with the spectra of the compound used for the simulation. 
The magenta ellipse points to the mass channels that can cause high correlation. 

 

 



 
Figure SI.4 Spectra of the deconvolved compound (negative) and Isofenphos (positive). 

 

 
Figure SI.5 Spectrum of Bromfenvinphos and Chlorfenvinphos. 
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Appendix A  
MCR output 





 



 

Fitting error (lack of fit, lof) in % at the optimum = 4.1541(PCA) 6.0678(exp) 

Percent of variance explained (r2)at the optimum is 99.6318 

Relative species conc. areas respect matrix (sample) 1 at the optimum 

Plots are at optimum in the iteration 5 

Note: the compounds that were identified incorrectly (false positives) are labeled here with 

“Unidentified” 



(Text File) Component at scan 2667 (16.354 min) [Model = +262u] in d:\codebank\phd4_deconvolution\160303_003l.cdf
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AMDIS deconvolution



(Text File) Component at scan 2668 (16.364 min) [Model = +303u] in d:\codebank\phd4_deconvolution\160303_003l.cdf
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(Text File) Component at scan 2669 (16.368 min) [Model = TIC] in d:\codebank\phd4_deconvolution\160303_003l.cdf
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(Text File) Component at scan 2671 (16.375 min) [Model = +213u, -303u] in d:\codebank\phd4_deconvolution\160303_003l.cdf
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(replib) Benzoic acid, 2-[[ethoxy[(1-methylethyl)amino]phosphinothioyl]oxy]-, 1-methylethyl ester
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(Text File) Component at scan 2671 (16.375 min) [Model = +213u, -303u] in d:\codebank\phd4_deconvolution\160303_003l.cdf
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(replib) Benzoic acid, 2-[[ethoxy[(1-methylethyl)amino]phosphinothioyl]oxy]-, 1-methylethyl ester
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(Text File) Component at scan 2677 (16.398 min) [Model = +209u] in d:\codebank\phd4_deconvolution\160303_003l.cdf
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(mainlib) Acetamide, 2-chloro-N-(2,6-dimethylphenyl)-N-(1H-pyrazol-1-ylmethyl)-
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