
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

CoreFlow: Enriching Bro security events using network traffic monitoring data

Koning, R.; Buraglio, N.; de Laat, C.; Grosso, P.
DOI
10.1016/j.future.2017.04.017
Publication date
2018
Document Version
Final published version
Published in
Future Generation Computer Systems
License
Article 25fa Dutch Copyright Act

Link to publication

Citation for published version (APA):
Koning, R., Buraglio, N., de Laat, C., & Grosso, P. (2018). CoreFlow: Enriching Bro security
events using network traffic monitoring data. Future Generation Computer Systems, 79(1),
235-242. https://doi.org/10.1016/j.future.2017.04.017

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://doi.org/10.1016/j.future.2017.04.017
https://dare.uva.nl/personal/pure/en/publications/coreflow-enriching-bro-security-events-using-network-traffic-monitoring-data(b56e5030-6799-4b38-9d4e-ced98fae2206).html
https://doi.org/10.1016/j.future.2017.04.017


Future Generation Computer Systems 79 (2018) 235–242
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

CoreFlow: Enriching Bro security events using network traffic
monitoring data
Ralph Koning a,b,∗, Nick Buraglio b, Cees de Laat a,b, Paola Grosso a

a Universiteit van Amsterdam, Science Park 904, Amsterdam, The Netherlands
b Energy Sciences Network, Lawrence Berkeley Lab, Berkeley, CA, USA

h i g h l i g h t s

• Enriching IDS data with NetFlow information gives a better view of an attack.
• CoreFlow ingests data from the Bro IDS and augments this with flow data from the devices in the network.
• The augmented information can be the starting point for sophisticated countermeasures close to the origin.
• The CoreFlow prototype is tested in the ESnet network, using inputs from 3 Bro systems and more than 50 routers.

a r t i c l e i n f o

Article history:
Received 20 September 2016
Received in revised form
8 April 2017
Accepted 8 April 2017
Available online 13 April 2017

Keywords:
Security
Network
IDS
Netflow
Flow
Detection
IPFIX
DDoS
Carrier networks
Transit networks

a b s t r a c t

Attacks against network infrastructures can be detected by Intrusion Detection Systems (IDS). Still
reaction to these events are often limited by the lack of larger contextual information in which they
occurred. In this paper we present CoreFlow, a framework for the correlation and enrichment of IDS data
with network flow information. CoreFlow ingests data from the Bro IDS and augments this with flow
data from the devices in the network. By doing this the network providers are able to reconstruct more
precisely the route followedby themalicious flows. This enables them todevise tailored countermeasures,
e.g. blocking close to the source of the attack. We tested the initial CoreFlow prototype in the ESnet
network, using inputs from 3 Bro systems and more than 50 routers.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

As society becomes more reliant on cyber-infrastructures
and computer networks, securing this infrastructure becomes
increasingly more important. Large scale cyber attacks might be
directed toward critical infrastructure components such as theDNS
root servers [1]; against commercial network providers such as
end-user ISPs [2]; or against educational and research networks

∗ Corresponding author at: Universiteit van Amsterdam, Science Park 904,
Amsterdam, The Netherlands.

E-mail addresses: r.koning@uva.nl (R. Koning), buraglio@es.net (N. Buraglio),
delaat@uva.nl (C. de Laat), p.grosso@uva.nl (P. Grosso).

http://dx.doi.org/10.1016/j.future.2017.04.017
0167-739X/© 2017 Elsevier B.V. All rights reserved.
serving academia [3]. All these attacks show how fragile computer
networks can be.

Given these continuous attacks carefully monitoring Internet
systems and components for suspicious activities becomes imper-
ative. There are many developments in monitoring and intrusion
detection systems (IDS) that enable them to trigger alerts when
such activities are present [4,5]. When such an episode occurs it
is the responsibility of the security and incident response teams
that monitor this information to further investigate these events;
this often requires them to look up and combine information from
multiple sources to make a more informed judgment. In this paper
we describe CoreFlow, a prototype framework to enrich IDS data
with network flow data; this enhancement provides more context
to security events and this in turn creates more targeted alerts and
more advanced responses. This is in particular important for car-

http://dx.doi.org/10.1016/j.future.2017.04.017
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2017.04.017&domain=pdf
mailto:r.koning@uva.nl
mailto:buraglio@es.net
mailto:delaat@uva.nl
mailto:p.grosso@uva.nl
http://dx.doi.org/10.1016/j.future.2017.04.017


236 R. Koning et al. / Future Generation Computer Systems 79 (2018) 235–242
rier networks that due to their characteristics require to correlate
information coming from distant elements in the network.

In Section 2 we will briefly review the different challenges
carrier networks face to secure their networks, and we introduce
ESnet, the network where we tested CoreFlow; in Section 3 we
discuss the information sources used in this research. Section 4
and Section 5 describe CoreFlow architecture and implementation.
In Section 6 we reflect on the functionality of the framework and
discuss what can be improved. Section 7 covers related work and
Section 8 contains the conclusion and future work.

2. Carrier network security

Carrier networks present different challenges than enterprise
or campus networks due to their different characteristics. In
Table 1 we list five aspects in which carrier networks differ from
enterprise and campus networks when we consider them from
a security perspective: external connectivity, application security,
restrictions and policies, impact of countermeasures and network
capacity. For example, in carrier networks it is unfeasible to run
all traffic through a single or a set of security appliance devices
due to very high data rates, as well as the large or numerous data
flows and multiple ingress and egress points. Additionally, carrier
networks are often tasked with adhering to network neutrality
laws or policieswhich prevent filtering or otherwise altering traffic
in anyway other than to protect the infrastructure of the network.

2.1. ESnet

Our CoreFlow development and validation has taken place at
ESnet. ESnet is a national research and education network (NREN)
that interconnects multiple national labs in the US to each other,
to supercomputing facilities, as well as other research networks in
theworld. Fig. 1 shows the topology of the ESnet backbonenetwork
that spans the US and a part of Europe. The backbone consists
mainly of 100 Gbps links and allows sites to connect to ESnet at
various speeds.

ESnet primarily transits data within the connected institutions
and to other connected research facilities and resources and
therefore operates as a carrier or transit networks for scientific
traffic.

Given their architectures NRENs like ESnet fall in the category
of carrier or transit networks and are therefore a suitable testing
ground for CoreFlow.

3. Information sources

Different information sources can be used to identify and
counteract network attacks.

IDS systems are able to perform in depth inspection of packets
to detect security problems, yet they only have a limited end
perspective of the network. NetFlow and other flow-based tools
provide detailed network traffic information. This information can
be collected from all routers over the entire extent of the network
and can provide a global view and the origin of the traffic that
transits a network. Correlating data from both of these information
sources may give a more detailed view on the origin of the
malicious traffic and thus provide more context to act upon, this
detailed multi-source view makes countermeasure less sensitive
to spoofed traffic information.

This is particularly useful when an attack is volume based such
as in the case of a Distributed Denial of Service (DDoS) attack. In
this case instead of blocking traffic at the end systems, it may be
preferable to prevent themalicious data fromentering the network
at the entry point, or contact an upstream provided to block the
specific traffic. This reaction at the network edges is complicated
by the fact that this attack traffic is often spoofed to cover its
origin, causing it to have another entry point into the network than
presented. Since the addressing information cannot be relied upon,
one has to determine the origin by checking presence of this traffic
pattern on all routers on the path.

In our development of CoreFlow we relied specifically on Bro
data, on NetFlow information, on Splunk for data aggregation and
on Route Explorer for path calculation.

3.1. Bro

Bro [6] is an open source network analysis framework devel-
oped at the International Computer Science Institute in Berkeley,
CA and the National Center for supercomputing Applications in Ur-
bana–Champaign, IL. Bro focuses on network security monitoring
and offers functionality beyond traditional intrusion detection sys-
tems. It includes an event engine and a policymodule in which one
can write custom policies. Due to clustering capabilities, Bro can
scale to 100 Gbps links [7]. Bro has an extensive policy system that
can be used to react on or to trigger events. Events can thus also
be correlated within the Bro framework itself as part of a policy. To
implement policies Bro uses its own scripting language. This lan-
guage is limited but it could in principle be used to implement the
CoreFlow functionality as a plugin in the C language. This would
require knowledge of two languages, the Bro domain specific lan-
guage and C; for this reason it seemed more practical to us to im-
plement CoreFlow as a stand-alone system using Python.

Building a stand-alone system makes CoreFlow more flexible
since we are able to use multiple input sources or replace out Bro
in favor of a different IDS. Python is a widely used and easy to
learn language which became very popular among data scientists,
therefore by using it we try to lower accessibility for potential
collaborators that can help to extend CoreFlow with new features.
Additionally, Python has a large set of libraries and tools available
that are specifically useful for analysis and working with large
data sets, these libraries can be used to aid the correlation and
enrichment process.

3.2. NetFlow and IPFIX

NetFlow, originally developed by Cisco Systems, but now
present on most modern routers is a protocol that allows
routers and other network devices to export flow information.
According to [8], Cisco traditionally distinguishes a flow based on
7 properties, two of which are not required:

• IP source address
• IP destination address
• source port
• destination port
• L3 protocol type
• Class of service (optional)
• Router or switch ingress port (optional).

These properties are extended in subsequent versions such that
NetFlow supports IPv6, vlans, and MPLS labels.

IPFIX (IP Flow Information eXport) described in RFC515 [9] is a
protocol developed by IETF that supersedes NetFlow v9. Themajor
tools and collectors used to work with netflow information are
adapted to also accept the IPFIX format. In this paper we use the
term NetFlow to refer to both the NetFlow and IPFIX protocols. In
CoreFlow the data we import from the routers uses the nfdump1
format.

1 nfdump website: https://github.com/phaag/nfdump.

https://github.com/phaag/nfdump


R. Koning et al. / Future Generation Computer Systems 79 (2018) 235–242 237
Table 1
Major differences between Enterprise/Campus networks and Carrier/Transit networks that are relevant from a security point of view.

Aspect Enterprise/Campus Carrier/Transit

External connectivity Limited (single or redundant uplink) Many connected networks
Application security Security can be tailored to application Need to allow everything
Restrictions and policies Can be applied anywhere Subject net neutrality laws
Impact of countermeasure May affect users of a host or system Can affect many users and other networks
Network capacity Accommodates one organization Accommodates many institutions
Fig. 1. ESnet network.
Source: http://www.es.net.
3.3. Splunk

Splunk [10] is a search and analysis system for big data that is
often used as a security information and eventmanagement (SIEM)
system. It can be used to import logs from multiple sources for
analysis. It provides a web interface that can be used to search
and to make visualizations of the data for easy analysis. If needed,
Splunk can also trigger and present security alerts. ESnet uses
Splunk to aggregate and visualize log data, therefore we set up
CoreFlow to consume the already aggregated Bro data in Splunk
via a REST interface.

3.4. Packet design route explorer

Route Explorer [11] is a route analysis system developed
by Packet Design. The appliance provides visibility into routing
behavior for IGP and BGP routing protocols and VPNs. By peering
with the routers it is able to track real-time changes in thenetwork;
itmonitors routing tables and can store them for historical analysis.
It can then be used by network administrators to debug problems
in a complex network infrastructure. CoreFlow can use Route
Explorer to perform path calculation (see Section 5.1).

4. Coreflow architecture

The architecture of CoreFlow is composed of three distinct
phases: input, enrichment, and output. This is shown in Fig. 2.

The CoreFlow development was driven by a number of design
requirements:
• support the Bro data format. The system needs to ingest and

process Bro data;
• allow formultiple input sources.Wewanted to be able to accept

Bro data fromdifferent sources, for example reading from file or
gathering it in real-time;
• process large amounts of NetFlow data. The system needs to

process data from multiple routers.
Fig. 2. CoreFlow correlates input data from Bro to NetFlow and uses the enriched
data to query the route analyzer. Finally, it outputs the security event with
additional data from both enrichers.

4.1. Input phase

We support multiple ways to import the Bro data into
CoreFlow:

file operates on Bro log files in either text or gzip format
stdin operates on output from the standard input in Bro log

format
splunk opens a socket to the Splunk server and starts a real time

search for incoming events
elasticsearch reads Bro data that has been imported into Elastic-

search using an included import tool.

The stdin and splunk input methods support streaming of real
time data. The file and splunk methods support reading historical
data from within specified time window. We will elaborate on
these two different uses in Section 4.2.

As main input we use the Bro notice log; this log file contains
(security) events that are interesting enough to require further

http://www.es.net


238 R. Koning et al. / Future Generation Computer Systems 79 (2018) 235–242
Table 2
Bro notice.log field necessary for the correlation process.

Field Type Description

ts Datetime Timestamp
uid String Unique id to correlate to conn log
id.orig_h String Ip address source
id.orig_p String Source port
id.resp_h String Ip address destination
id.resp_p String Destination port
proto String Protocol (TCP, UDP, ICMP)
. . . . . . . . .

Table 3
The CoreFlow flow tuple and the equivalent fields in Bro and NetFlow data.

CoreFlow proto ip1 port1 ip2 port2
Bro proto orig_h orig_p resp_h resp_p
NetFlow pr sa sp da dp

investigation. The fields relevant for correlation are listed in
Table 2.

The uid field contains a unique identifier which is a hash based
on various properties of the event. This can be used to correlate
the event betweenmultiple Bro log files. To correlate Bro events to
NetFlow data we cannot use this uid and we are required to match
on the flow data contained in the event. Not all Bro events contain
the required flow data and the events without this data are passed
to the output queue without further enrichment.

We chose to represent the flow information in CoreFlow with
a tuple consisting of 5 elements: protocol, source ip, source port,
destination ip and destination port. These elements correspond to
the mandatory NetFlow properties we discusses in Section 3. Each
one of these properties correspond to a specific Bro field. Table 3
shows themapping. Since we are working with data frommultiple
nodes, event time stamps may not be the same everywhere and it
is not be used in the initial matching process.

4.2. Enrichment phase

We distinguish two modes of correlation: historical and real
time.

Historical correlation specifies a timewindow inwhich tomatch
the flows. CoreFlow first processes the Bro data, correlates it with
the NetFlow data and then exits. The sizes of the log files can easily
exceed gigabytes; the data workflow is customized to minimize
memoryutilization and random IOand to retain reasonable speeds.

Real time correlation works by streaming the latest events
from the Bro notice log. Since we are using nfdump files for
NetFlow processing and do not have a source that was able
to stream real time NetFlow information, there is a time delay
introduced in processing the events. CoreFlow periodically sends
out NetFlow searches and queues events until the previous search
is completed, this approach prevents slowdown caused by many
searches blocking on disk I/O.

After the matching process the Bro event is enriched with one
or more NetFlow records, one for every router it was seen on.
When combinedwith sufficient topology information one can now
estimate the exact path of the event flowand the ingress and egress
router and ports (see Section 5.1).

4.3. Output phase

When the NetFlow and path information is merged with the
Bro events summary output is written to stdout. Listing 1 shows
an example of the stdout output. The output includes: alert id,
Fig. 3. Execution flowof CoreFlow,with its three threads:main loop (orange), input
thread (blue), search thread (cyan/green). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

flow(protocol, source ip, source port, destination ip, destination
port), alert message, and an ordered list of routers provided by the
route estimation described in Section 5.1. Besides the summarized
output, CoreFlow provides an output module that exports the full
enriched output as json to a log file. There is also support for
Elasticsearch. Other outputs are being considered, for example, a
Bro output such that the enriched output can be used to create new
alerts. This idea is discussed in Section 6.4.

Listing 1: CoreFlow stdout summary output
1 CCRhhP1Q4xukkv7e2c (’tcp’, ’192.0.2.170’,

’36099’, ’203.0.113.212’, ’5308’)
[’203.0.113.232 has a certificate on port
5308/tcp that has not been baselined.’] [’
aofa’]

2 COH5qYtCGGUzpr0J (’tcp’, ’192.0.2.150’, ’42090’,
’203.0.113.175’, ’80’) [’A local user used
curl or wget to download a file. They
downloaded: N/A’] [’aofa’, ’sacremento ’]

3 C2xdQx38J8Uuzsc6M9 (’tcp’, ’192.0.2.170’,
’36033’, ’203.0.113.222’, ’5308’)
[’203.0.113.232 has a certificate on port
5308/tcp that has not been baselined.’] [’
denver ’]

4 CbgfBygofMvZf9KY5 (’tcp’, ’192.0.2.170’, ’35651’,
’203.0.113.222’, ’5308’) [’203.0.113.232 has
a certificate on port 5308/tcp that has not

been baselined.’] [’kansas’, ’newyork ’]
5 CtaOF23vFUr1fJmpV1 (’tcp’, ’192.0.2.214’,

’18779’, ’203.0.113.184’, ’443’) [’SSL
certificate validation failed with (self
signed certificate in certificate chain)’] [’
chicago ’]

6 CZyAWWMU0PHN7e3g1 (’tcp’, ’192.0.2.170’, ’35587’,
’203.0.113.222’, ’5308’) [’203.0.113.232 has
a certificate on port 5308/tcp that has not

been baselined.’] [’aofa’, ’chicago’, ’kansas
’, ’newyork’, ’sacremento ’, ’washington ’]

5. Implementation

The first prototype of CoreFlow is implemented in Python 3.5
using the Python requests and Elasticsearch libraries. CoreFlowhas
a main loop that routes messages from input to the output via the
NetFlow enricher.

Fig. 3 shows the execution flow of CoreFlow. There are three
threads: a main loop, an input thread and a search thread.

The input modules run in a separate thread that is being
watched and when necessary restarted by CoreFlow. CoreFlow
receives the data from the import thread via an event queue which
contains the bro_alert and the event_id.



R. Koning et al. / Future Generation Computer Systems 79 (2018) 235–242 239
CoreFlow reads the events queue and when it finds new events
it extracts the flow tuple. This togetherwith the event id is inserted
in a queue for the NetFlow enricher. When the NetFlow enricher
is idle it picks up all items in the queue at once; it creates a filter
for all the flows and their reverse that can be passed to nfdump. A
reverse flow is simply the flow detected by Bro with source and
destination IP/port swapped. We need both flow and its reverse
given that we want to have visibility in the bidirectional traffic.
Creating such a bulk request, a filter with multiple flows/reverse,
is significantly faster than passing each event one by one because
nowwehave to search through the flowdata only once. Depending
on the amount of routers in the network the NetFlow enricher will
spawn one search thread per router that runs nfdump with the
previously compiled filter. The results of the bulk request come
back out of order, and we need to mapped them back onto the
original Bro data.

Now the NetFlow data is mapped back to the event id’s and
it put into another queue to CoreFlow. CoreFlow now adds the
NetFlow data to the existing events and passes them on to the
output module that logs the enriched data.

The enriched event data contains multiple occurrences of the
flow reported by multiple routers and together with topology
information CoreFlow tries to reconstruct the path of the flowwith
a route estimation procedure (see Section 5.1). For more detailed
route estimation CoreFlow can interface with products such as
Route Explorer by Packet Design.

Finally, after the routes have been identified, CoreFlow exports
the results.

5.1. Route estimation

ESnet uses OSCARS [12] for provisioning links across its
network andOSCARS thereforemaintains a databasewith topology
information. To create the required topology information for
CoreFlow, we extract the topology information from the OSCARS
topology publisher. The extracted information does not contain
policy information or any routingmetrics used to select preference.
Therefore, we decided upon finding the shortest path with the
constraint of traversing all the routers for a single flow as an
approximation. We designed Algorithm 1 with the following
requirements in mind:
• The input listmay havemissing routers; for example a flowmay

traverse a router but may not be recorded due to the sample
rate.
• The path may traverse a router multiple times; flows may

be observed on a router twice for example using different
vlan/mpls label.
The algorithm works as follows.
We take as a starting point the first router in list D, start (line

5); then we use the topology to build a tree from start limited to
a depth and return the paths as an array P (line 6). To include all
possibilities the depth should be set to themaximumspanning tree
distance of the network graph.

We reverse all the paths (lines 7–9) and then we concatenate
the result Rwith the original paths in P (lines 10–14). This gives us
list A of all paths that traverse the start node. We then filter A to
only include paths that contain all routers in D and store this as F
(lines 15–18).We select theminimum length paths in F and return
this list as value O (lines 20–23).

The output of this algorithm can be illustrated with a simple
example. Fig. 4 shows a topology with nodes r1 − r12; a flow
entered the network at r2 and exited at r10. The routers that
observed the flow are D = [r1, r12, r3]. Our algorithm is able
to interpolate that r4 and r9 are part of the path and it returns
[r1, r4, r3, r9, r12] as estimated route together with its reverse.
Note that r2 and r10, the ingress and egress nodes, are not part
of the reconstructed path as they had not observed the flow
themselves directly. A current limitation of the algorithm is that
is not capable to determine which one was the actual ingress and
Algorithm 1 route estimation algorithm
1: topology← topology graph of the network
2: depth←max search depth
3: D← detected routers in the path
4: procedure estimate_path(D)
5: start ← D[0]
6: P ← all paths up to depth from start in topology
7: for each p ∈ P do
8: R← add reverse(path)
9: end for

10: for each p ∈ P do
11: for each r ∈ R do
12: A← add r + p[1 :]
13: end for
14: end for
15: for each p ∈ A do
16: if D ⊆ p then
17: F ← add p
18: end if
19: end for
20: for each p ∈ F do
21: O←min(length(p))
22: end for
23: return O
24: end procedure

Fig. 4. Route estimation: given a list with routers [r1 r12 r3] the algorithm is able
to interpolate that r4 and r9 must also be included in the path resulting in [r1, r4,
r3, r9, r12]. However with the current information the algorithm cannot deduct the
edge routers r2 and r10.

egress router; this is because the topology information we rely
upon does not distinguish edge routers.

6. Evaluation and discussion

We tested the prototype on the ESnet infrastructure by
enriching incoming events from three different Bro nodes with
NetFlow data collected by over 50 routers. Fig. 5 shows the latest
set-up we used for CoreFlow at ESnet. There were two specific
limitations in ESnet that we had to deal with.

We had 3 Bro detectors sending their logs to Splunk. CoreFlow
was reading the logs from Splunk and performing searches on
NetFlow data of all routers. The NetFlow data was exposed to
CoreFlow via an NFS share. Every 5 min a new NetFlow log of a
router gets saved and gets copied to the NFS server. Under normal
circumstances this copy time took less than 3min. This meant that
we had to delay the retrieval of incoming events from Splunk by
5+ 3 = 8 min.

When the flow is detected on multiple routers CoreFlow
performed route estimation as described in Section 5.1 and
prepared queries for the Route Explorer to further refine the found
route. Due to access restrictions we could not query the Route



240 R. Koning et al. / Future Generation Computer Systems 79 (2018) 235–242
Fig. 5. CoreFlow set-up at ESnet.

Explorer directly, so we verified this functionality by sending the
query from another host.

6.1. Route estimation

The route estimation can be optimized in multiple ways. The
data structures contains redundant information and for large
networks this data structure may get too big. The algorithm
does not deal with metrics and routing policies and any traffic
engineering that can manipulate the flow of traffic because this
information was not available at the time. Improvements to the
route estimation can be made by calculating paths based on
live routing tables of the network. For historical paths we can
rely on products such as Packet Designs Route Explorer that
records changes in the routing table over time. By recording this
information Route Explorer can provide paths from an ingress
router to a destination prefix at any point in time. However, this
requires us to determine the ingress router of the specific flow and
when NetFlow traffic is sampled we may not be able to because
see the flow on the ingress router. If we find the flow on one or
more routers in some situations we can use the route estimation
explained in Section 5.1 to extrapolate a potential ingress router
that we can use for the full path calculation.

Adding reconstructed paths and NetFlow information to
security events allows for more targeted monitoring or mitigation
techniques, e.g. blocking at the source or redirecting the traffic
somewhere along the path for further analysis.

6.2. IDS enhancement

Besides taking existing alerts and giving them more context
for the security team, CoreFlow can be used to enhance the IDS
function. CoreFlow can give more context to the alert and send
them back into the IDS such that the IDS can decide based on
the context whether or not to alert, reducing the total amount
of alerts raised. In addition, the alert threshold of the IDS can be
lowered. This results in events being sent into CoreFlow that was
previously not seen by and acted upon by the security team. The
added contextual information provided by CoreFlow on the events
that previously did not pass the alert threshold can be re-evaluated
by the IDS. Based on the new context the IDS can now consider
to alert on this event. By feeding back the additional information
provided by CoreFlow into the IDS, alerts can be raised for possible
attacks that previously went undetected while still keeping the
output information relevant, thus improving the ‘signal to noise’
ratio.

6.3. Sample rate

An another point of attention is the sample rate of NetFlow. In
ESnet, for example, the sample rate of the data was set to 1:1000
on each router. The unfortunate side effect of a low sample rate
is that the probability to find flows related to the IDS alerts is
also very low, since the sample rate needs to be multiplied by
rate of malicious flows to all traffic on each router. This can be
improved by increasing the sample rate on all the routers. In ESnet
this was not possible since we were running this on a production
network and higher sample rates may result in degraded network
performance because more samples require more processing on
the production routers. Another way to improve the chance of
finding flows which can have less impact on the network is using
high sample rates at the edges. This approach may be feasible
in carrier networks since the bulk traffic streams are located in
the core. Additionally, this approach also increases the chance
of finding the flow on the ingress router which benefits path
estimation and can help to apply countermeasures at the point
of entry. Methods described in [13] can also help improve the
sampling algorithms in to detect smaller flows.

One might argue whether is necessary to increase the sample
rate to detect small flows on the network in the context of cyber-
security. Volume based attacks such as DDoS attacks will for
example be clearly visible in sampled data. Yet, given the right
circumstances, an attacker can do much damage using only a few
packets. Moreover, there are instances on attackers using volume
based attacks to distract the victim from the real attack [14].
Therefore, it is important to provide asmuch context to every event
that the intrusion detection system marks as malicious.

6.4. Other use cases

CoreFlow can also be used in multi-domain defense strategies.
When it is possible to establish the ingress point of the spoofed
malicious traffic it is possible to contact the neighboring domain
to take action. If the neighbor also has such a system it can
subsequently contact its neighbors, eventually tracing the traffic
back to the source. Taking action closer to the source of the problem
can unburden networks of large volume based attacks.

During Supercomputing 2015, the University of Amsterdam
demonstrated SARNET (Secure Autonomous Response Networks)
using an interactive demo [15]. Users had to defend a network
under attack by applying countermeasures at points in the network
to recover the throughput to the services. The demo showed
that responses can become complex and even counter intuitive
when networks increase in size and when information is limited.
SARNET can greatly benefit from CoreFlow since it provides richer
information and more context to enhance the decision making
leading to autonomous response.

7. Related work

Much work is done on applying statistical methods and
machine learning approaches to NetFlow data in order to detect
anomalous behavior on computer networks. These anomalies
can be caused by network changes, outages, content changes or
security related events. Sperotto et al. published a comprehensive
overview of flow based intrusion detection in [16].

The goal of CoreFlow is not to identify security threats. CoreFlow
does not do any intrusion detection. It assumes there are already



R. Koning et al. / Future Generation Computer Systems 79 (2018) 235–242 241
facilities in place that generate these security events. CoreFlow
uniqueness is that it focuses on the correlation and enrichment of
already identified events, by using multiple data sources such as
NetFlow to create a more comprehensive view of what occurred in
order to enhance decision making.

Xu et al. describe a system that can group low level events
from several inputs based on similarities or relations [17]. When
the low level events trigger at the same time, as a group, a more
meaningful high level event (alert) can be created to act upon.
Our approach is different since we correlate the triggered events
to data sources that may not have triggered events themselves, in
order to expose more contextual information for further analysis.
If wewould acceptmultiple input sources, then grouping triggered
events becomes relevant for CoreFlow, yet this is considered future
work.

There is numerous work done on IP traceback [18,19]. A more
recent example from Tian et al. [20] uses sampled netflow data
from different autonomous systems on a hop by hop basis to
find the origin of the traffic. CoreFlow works differently: First,
CoreFlow is not a solution purely designed for route estimation.
The intra-domain route estimation is currently provided as a
working application that uses the new context, in this case router
identifiers, given by CoreFlow based on NetFlow information.
Secondly, in stead of tracing back to the source on a hop by
hop basis, the route estimation is provided with a full topology
view and a list of routers a-priori, based on the enriched data
from CoreFlow. Finally, CoreFlow does not interact with routers
or the traffic itself such as some other intra-domain traceback
methods. CoreFlow relies on other systems to make decisions on
the enriched data and take action when necessary.

In Secure Autonomous Response Networks [21]we try to create
networks that autonomously respond to cyber attacks. SARNET
uses control loops to detect, classify, analyze, decide, respond
and learn about cyber attacks on a network. Using CoreFlow
in such a framework can benefit the analyze phase by drawing
in information from multiple data sources and provide a more
comprehensive picture to the decide and response phases.

8. Conclusion and future work

Enriching IDS data with NetFlow information gives a better
view of an attack. CoreFlow provides a correlation framework that
can combine these data sources based on the flow tuples. The
successfully enriched data can be used for more advanced attack
detection and reaction.

We determined that the success of the NetFlow correlation
largely depends on the sampling rate of the NetFlow data.
We showed how to use the enriched information to do route
estimation; this in turn can be the starting point for sophisticated
countermeasures close to the origin neededwhen the attack traffic
is spoofed and for carrier networks to determine where the traffic
entered their network.

The focus of our future work is to evaluate the effectiveness
of CoreFlow with different sample rates (1:1) and other sampling
algorithms to see what settings are most beneficial, while not
affecting the performance of a production network.

CoreFlow can be extended to allow multiple in and output
plugins for other data sources such as PerfSonar2 and syslog and to
include analysismethods that can help to interpret the information
and improve the context of an event.

This new context can lead to improved and more advanced
alerts, research needs to be done on how to act upon this new

2 PerfSonar website: https://www.perfsonar.net/.
information by for example feeding this back into the IDS system
to reduce false positives; it may even be beneficial to lower the
threshold for IDS events sent into CoreFlow to discover malicious
events that previously went undetected.

Acknowledgments

This work is funded by the Dutch Science Foundation project
SARNET (grant no: CYBSEC.14.003/618.001.016) and by the Dutch
project COMMIT (WP20.11). Special thanks go to our research
partners CIENA, TNO and KLM. This work was supported by
the Director, Office of Science, Advanced Scientific Computating
Research, of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231.

Ralph is grateful for the financial support given by ESnet during
his stay at LBNL, and he thanks the ESnet team for the interesting
discussions during the CoreFlow development.

References

[1] K. McArtney, Internet’s root servers take hit in DDoS attack, 2015.
http://www.theregister.co.uk/2015/12/08/internet_root_servers_ddos/ (Ac-
cessed on 15.09.16).

[2] P. Mishra, Internet in Mumbai Goes Slow As ISPs Suffer Massive DDoS Attacks,
2016. https://www.hackread.com/ips-in-mumbai-suffer-ddos-attacks/ (Ac-
cessed on 15.09.16).

[3] K. Hall, Academic network Janet clobbered with DDoS attacks again, 2016.
http://www.theregister.co.uk/2016/04/18/janet_clobbered_with_ddos_
attacks_again/ (Accessed on 15.09.16).

[4] H. Debar, M. Dacier, A. Wespi, Towards a taxonomy of intrusion-detection
systems, Comput. Netw. 31 (1999) 805–822.

[5] M.V. Mahoney, A machine learning approach to detecting attacks by
identifying anomalies in network traffic (Ph.D. thesis), Florida Institute of
Technology, 2003.

[6] V. Paxson, Bro: a system for detecting network intruders in real-time, Comput.
Netw. 31 (1999) 2435–2463.

[7] S. Campbell, J. Lee, Intrusion detection at 100g, in: State of the Practice Reports,
ACM, 2011, p. 14.

[8] NetFlow, Cisco IOS, Introduction to cisco ios netflow a technical overview,
2012. http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-
software/ios-netflow/prod_white_paper0900aecd80406232.html (Accessed
on 15.09.16).

[9] E. Boschi, L. Mark, J. Quittek, M. Stiemerling, P. Aitken, RFC 5153: IP flow
information export (IPFIX) implementation guidelines, IETF, April, (2008).

[10] D. Carasso, Exploring splunk, published by CITOResearch, NewYork, USA, ISBN
(2012) 978–0.

[11] Packet Design, Route Explorer, 2016. http://www.packetdesign.com/
products/route-explorer/ (Accessed on 15.09.16).

[12] C. Guok, D. Robertson, M. Thompson, J. Lee, B. Tierney, W. Johnston, Intra and
interdomain circuit provisioning using the oscars reservation system, in: 2006
3rd International Conference on Broadband Communications, Networks and
Systems, IEEE, 2007, pp. 1–8.

[13] G. Androulidakis, V. Chatzigiannakis, S. Papavassiliou, Network anomaly
detection and classification via opportunistic sampling, IEEE Netw. 23 (2009)
6–12.

[14] S. Mansfield-Devine, Under the radar, Netw. Secur. 2015 (2015) 14–18.
[15] R. Koning, B. de Graaff, C. de Laat, R. Meijer, P. Grosso, Interactive analysis of

sdn-driven defence against distributed denial of service attacks, in: 2016 IEEE
NetSoft Conference and Workshops, NetSoft, IEEE, 2016, pp. 483–488.

[16] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, B. Stiller, An overview
of ip flow-based intrusion detection, IEEE Commun. Surv. Tutor. 12 (2010)
343–356.

[17] D. Xu, P. Ning, Alert correlation through triggering events and common
resources, in: Computer Security Applications Conference, 2004. 20th Annual,
IEEE, 2005, pp. 360–369.

[18] T. Takahashi, H. Hazeyama, D. Miyamoto, Y. Kadobayashi, Taxonomical ap-
proach to the deployment of traceback mechanisms, in: Internet Communi-
cations, BCFIC Riga, 2011 Baltic Congress on Future, IEEE, 2011, pp. 13–20.

[19] L. Santhanam, A. Kumar, D.P. Agrawal, Taxonomy of ip traceback, J. Inf. Assur.
secur. 1 (2006) 79–94.

[20] H. Tian, J. Bi, An incrementally deployable flow-based scheme for ip traceback,
IEEE Commun. Lett. 16 (2012) 1140–1143.

[21] R. Koning, A. Deljoo, S. Trajanovski, B. de Graaff, P. Grosso, L. Gommans,
T. van Engers, F. Fransen, R. Meijer, R. Wilson, et al., Enabling e-science
applications with dynamic optical networks secure autonomous response
networks, in: Optical Fiber Communication Conference, Optical Society of
America, 2017, Tu3E–1.

https://www.perfsonar.net/
http://www.theregister.co.uk/2015/12/08/internet_root_servers_ddos/
https://www.hackread.com/ips-in-mumbai-suffer-ddos-attacks/
http://www.theregister.co.uk/2016/04/18/janet_clobbered_with_ddos_attacks_again/
http://www.theregister.co.uk/2016/04/18/janet_clobbered_with_ddos_attacks_again/
http://www.theregister.co.uk/2016/04/18/janet_clobbered_with_ddos_attacks_again/
http://www.theregister.co.uk/2016/04/18/janet_clobbered_with_ddos_attacks_again/
http://www.theregister.co.uk/2016/04/18/janet_clobbered_with_ddos_attacks_again/
http://www.theregister.co.uk/2016/04/18/janet_clobbered_with_ddos_attacks_again/
http://www.theregister.co.uk/2016/04/18/janet_clobbered_with_ddos_attacks_again/
http://www.theregister.co.uk/2016/04/18/janet_clobbered_with_ddos_attacks_again/
http://www.theregister.co.uk/2016/04/18/janet_clobbered_with_ddos_attacks_again/
http://www.theregister.co.uk/2016/04/18/janet_clobbered_with_ddos_attacks_again/
http://www.theregister.co.uk/2016/04/18/janet_clobbered_with_ddos_attacks_again/
http://www.theregister.co.uk/2016/04/18/janet_clobbered_with_ddos_attacks_again/
http://www.theregister.co.uk/2016/04/18/janet_clobbered_with_ddos_attacks_again/
http://www.theregister.co.uk/2016/04/18/janet_clobbered_with_ddos_attacks_again/
http://refhub.elsevier.com/S0167-739X(17)30595-2/sbref4
http://refhub.elsevier.com/S0167-739X(17)30595-2/sbref5
http://refhub.elsevier.com/S0167-739X(17)30595-2/sbref6
http://refhub.elsevier.com/S0167-739X(17)30595-2/sbref7
http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
http://www.packetdesign.com/products/route-explorer/
http://www.packetdesign.com/products/route-explorer/
http://www.packetdesign.com/products/route-explorer/
http://www.packetdesign.com/products/route-explorer/
http://www.packetdesign.com/products/route-explorer/
http://www.packetdesign.com/products/route-explorer/
http://refhub.elsevier.com/S0167-739X(17)30595-2/sbref12
http://refhub.elsevier.com/S0167-739X(17)30595-2/sbref13
http://refhub.elsevier.com/S0167-739X(17)30595-2/sbref14
http://refhub.elsevier.com/S0167-739X(17)30595-2/sbref15
http://refhub.elsevier.com/S0167-739X(17)30595-2/sbref16
http://refhub.elsevier.com/S0167-739X(17)30595-2/sbref17
http://refhub.elsevier.com/S0167-739X(17)30595-2/sbref18
http://refhub.elsevier.com/S0167-739X(17)30595-2/sbref19
http://refhub.elsevier.com/S0167-739X(17)30595-2/sbref20
http://refhub.elsevier.com/S0167-739X(17)30595-2/sbref21


242 R. Koning et al. / Future Generation Computer Systems 79 (2018) 235–242
Ralph Koning received his M.Sc. in System and Network
Engineering in 2007 at the University of Amsterdam. After
being employed in the System and Network Engineering
research group at the UvA he started his Ph.D. in 2015
on the SARNET project. He contributed work to several
projects such asGigaPort, CineGrid, GN3plus and COMMIT.
His current interests include computer networks, SDN
infrastructures, semantic descriptions and digital security.
https://staff.fnwi.uva.nl/r.koning/.

Nick Buraglio has been involved in the networking
industry in varying roles since 1997. Prior to joining the
Network Engineering group at ESnet, Nick was employed
by the University of Illinois as the Lead Network Engineer
working on research and HPC, campus and wide area
connectivity. In this role, Nick also functioned as the
Lead Network Engineer and IP architect for the National
Association of Telecommunications Officers and Advisors
(NATOA) broadband project of the year, UC2B. Nick
has also held Network Engineering positions at early
regional broadband internet providers as well as at the

National Center for Supercomputing Applications. Nick has participated in the
SCinet working group on several occasions and has been involved in R&E,
high performance networking and security since 2002. In addition to Network
Engineering positions, Nick has been involved in cybersecurity from the campus,
enterprise and service provider perspective and acted as a resource and trainer for
the Federal Bureau of Investigation RCAT agents. Nick has been active in the SDN
community since 2009 and is currently actively involved in several SDN related
initiatives and projects. https://es.net/about/esnet-staff/network-planning/nick-
buraglio/.
Cees de Laat chairs the System and Network Engineering
(SNE) laboratory in the Informatics Institute of the Faculty
of Science at University of Amsterdam. The SNE lab con-
ducts research on leading-edge computer systems of all
scales, ranging from global-scale systems and networks to
embeddeddevices. Across thesemultiple scales our partic-
ular interest is on extra-functional properties of systems,
such as performance, programmability, productivity, se-
curity, trust, sustainability and, last but not least, the so-
cietal impact of emerging systems-related technologies.
Prof. de Laat serves on the Lawrence Berkeley Laboratory

Policy Board for ESnet, is co-founder of the Global Lambda Integrated Facility (GLIF),
founder of GRIDforum.nl and founding member of CineGrid.org. His group is/was
part of a.o. EU projects GN4-2, SWITCH, CYCLONE, ENVRIplus and ENVRI, Geysers,
NOVI, NEXTGRID, EGEE, and national projects SARNET, COMMIT, GIGAport and VL-
e. He is a member of the Advisory Board Internet Society Netherlands and Scientific
technical advisory board of SURF Netherlands. See: http://delaat.net/.

Paola Grosso is an Assistant Professor in the SNE group at
UvA. Her research interests are green ICT, development of
information models for hybrid, multi-domain, multi-layer
networks, and software-defined networks. She has nu-
merous publications on these topics and has participated
in numerous international and national projects. Grosso is
currently involved in the EU-funded projects GN4-2 and
ENVRIPlus, and in the Dutch projects SARNET, RoN and
COMMIT. http://www.science.uva.nl/~grosso.

https://staff.fnwi.uva.nl/r.koning/
https://es.net/about/esnet-staff/network-planning/nick-buraglio/
https://es.net/about/esnet-staff/network-planning/nick-buraglio/
https://es.net/about/esnet-staff/network-planning/nick-buraglio/
http://delaat.net/
http://www.science.uva.nl/%7Egrosso

	CoreFlow: Enriching Bro security events using network traffic monitoring data
	Introduction
	Carrier network security
	ESnet

	Information sources
	Bro
	NetFlow and IPFIX
	Splunk
	Packet design route explorer

	Coreflow architecture
	Input phase
	Enrichment phase
	Output phase

	Implementation
	Route estimation

	Evaluation and discussion
	Route estimation
	IDS enhancement
	Sample rate
	Other use cases

	Related work
	Conclusion and future work
	Acknowledgments
	References


