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Notation and Abbreviations

This list is not exhaustive as it only includes basic notation that is valid throughout the
entire thesis.

Notation

1{·}: Indicator function (thus, 1{A} = 1 if event A occurs, 1{A} = 0 otherwise)

a∗: Optimising value of a

ai(t): Action taken at time t for arm i (ai(t) ∈ {0, 1})

Bn: Bn = {0/n, 1/n, . . . , (n− 1)/n}

εt: Innovation at time t

ηi(t): Number of time steps ago that arm i was last observed before t

ι(·): Index function

IX(·): LD rate function of X (Legendre transform of ΛX(·))

I(· |x): LD rate function of Pois(x)

L: Likelihood ratio

L : Log-likelihood ratio

ΛX(·): Cumulant-generating function of a random variable X

MX(·): Moment-generating function of a random variable X

πι: Index policy with index function ι(·)

ri(·): Expected immediate reward: ri(s) := Es[R1
i (Xi)]

Rai (Xi): Reward of arm i when it is in state Xi under action a

τ : Stopping time

θX(a): Optimising value of θ such that IX(a) = θX(a) a− ΛX
(
θX(a)

)
ϑ: Belief state

X(r): r-th Sample of the random variable X

1



Notation and Abbreviations 2

Abbreviations

AR: Gaussian autoregression of order 1

ARMA: autoregressive moving average

CLT: Central limit theorem

EV: Extreme value

GE: Gilbert-Elliott

i.i.d.: Independent and identically distributed

LD: Large deviations

LLR: Log-likelihood ratio

MA: moving average

MDP: Markov decision process

MGF: Moment-generating function

MMP: Markov-modulated Poisson

Ph: Phase-type

POMDP: Partially observable Markov decision process

RMAB: Restless multiarmed bandit problem

RORMAB: Reward-observing restless multiarmed bandit problem

VAR: Vector autoregressive

VARMA: Vector autoregressive moving average

Kendall’s notation

M/G/m: m-Server queueing system with stationary Poisson arrivals and stationary
random service times

M/M/m: m-Server queueing system with stationary Poisson arrivals and stationary
exponentially distributed service times

M/M/∞: Infinite-server queueing system with stationary Poisson arrivals and sta-
tionary exponentially distributed service times

MMP/Ph/m: m-Server queueing system with Markov modulated Poisson arrivals and
Phase-type distributed service times



Preface

There is nothing certain but the uncertain. This proverb could well be the slogan of the
discipline of stochastic modeling, whose main objective it is to incorporate the certainty
about the uncertainty into any mathematical model of the real world. For example, in
telecommunication systems uncertainty may result from random fluctuations in the num-
ber and behaviour of users, the duration of service, and environmental factors. Other
common application areas for stochastic modeling and analysis include industrial manu-
facturing, biology, medicine and traffic.

“Uncertainty is an uncomfortable position”, said Voltaire, which may explain why such
a large community of researchers all around the globe struggles to make the uncertain
tractable despite the seeming absurdity of such an endeavour. To this end, uncertain
events are included in the model, weighed by the likelihood with which they occur. In
this way it may be hoped that any conclusions drawn from the model are sufficiently
robust – at least with respect to this ‘predictable randomness’ in the dynamic behaviour
of the system.

While as mathematicians we strive to answer all our questions fully analytically, delv-
ing into this ‘philosophy’ of stochastic modelling reminded me that there is no guaranteed
accuracy to even a fully exact analysis of the model with respect to the real-world system
it is describing. From this point of view, it seems to me that any decision guidelines
derived from a stochastic model should first of all aim to be practical.

Looking back on all the problems I tackled and could only solve by means of heuristics
and approximations, I find this thought a comforting one. In fact, I came to learn that
heuristics and approximations often turn out to be more useful than the exact solution.
For example, in Part II of this thesis we investigate heuristic policies for a certain class
of Markovian decision problems referred to as bandit problems. In Part III we consider
procedures for the detection of changes in the probabilistic behaviour of data streams that
are based on approximations to the type I error probability. For both classes of problems
heuristic solutions have been of interest for decades even though an exact analysis of
the problems is actually possible, simply because such an analysis is too cumbersome
and computationally expensive to be practical. Asymptotically accurate solutions are in
comparison much more tractable, and they often yield good results, particularly in the
face of nowadays’ data abundance and large-scale networks.

Monitoring and control. The systems to be modelled are increasingly complex. For
example, in modern telecommunication networks the presence of many users and large
amounts of data requires a top speed processing capability of the system. This is enabled
through powerful hardware and software, supplemented by smart architecture, effective
control policies, and careful use of the available resources. Questions related to the design

3



Preface 4

and control of such stochastic systems are therefore of great practical importance.
Static control problems are those that can or must be solved to a large extent a-

priori, such as questions related to system architecture, the number and type of servers
required, and more generally all issues related to the design of the system. Design choices
affecting the architecture of the system are often not easily reversible and in this case
have to be made off-line. This can apply, for example, in the context of manufacturing
networks, where one has to make decisions about the number or the type of machines to be
acquired, or the layout of a factory. But even in cases in which a certain choice of design
can be adjusted easily, it may be more cost-effective or otherwise desirable to decide such
questions a-priori: For example, in the context of staffing it can be impractical to update
the staffing rule for a particular day in the course of that day as it incurs additional labour
costs for on-call service.

On the other hand, there are circumstances in which it can be worth these additional
costs to update the staffing rule throughout the day; for example in hospitals, where
it is very crucial that a certain performance standard is being kept. In other cases, it
may be comparatively easy to adapt one’s initial choices at a later point in time, as is
true for example for certain financial portfolios of stocks that can be bought or sold at
any point time; or in communication networks, where calls can be rerouted to different
servers. Generally, one hopes that a greater flexibility in the control policy yields a better
performance of the system.

Dynamic control policies allow for adaptation based on up-to-date information con-
cerning the current state of the system. The latter is identified by performance charac-
teristics which affect the control or decision that is to be taken. Examples include the
workload of each node in a computer network, or the signal-to-noise-ratio of a communi-
cation channel; for the aforementioned financial portfolio stock prices are an important
performance measure.

A good control policy, whether static or dynamic, makes use of the information avail-
able concerning the typical dynamic behaviour of the system. This means that the per-
formance of the decision policy crucially depends on the validity of the stochastic model.
Consequently, procedures for testing and monitoring the relevant data streams are needed.
Since environmental factors may change, for example during times of peak load, one re-
quires procedures that are capable of detecting such changes in an automated fashion.

Outline of the thesis. Paralleling the described trinity of control problems given by
static control, dynamic control and monitoring of stochastic systems, this thesis is divided
into three parts. Each part begins with an introductory chapter, which explains the
motivation and summarises some of the necessary mathematical background. The other
chapters are based on the research I conducted together with my supervisors and other
co-authors. This research led to a number of articles which I am referencing at the end
of the thesis, together with other related literature. To acknowledge the contribution of
my co-authors, I provided a clarification of my own contributions in the preamble of this
thesis. I briefly summarize the contents of Parts I–III below; more detailed outlines are
provided in the introductory chapters preceding each part.

Part I is mainly focussed on performance analysis as an important first step in de-
signing static control policies for stochastic systems. In particular, we derive asymptotic
expressions and efficient simulation algorithms for certain performance characteristics
that are related to rare events such as network congestion of failure. The study of the
asymptotic behaviour of rare event probabilities is commonly known as large deviations
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theory [38]. Often large deviations asymptotics are derived for the scaled logarithm of
the probability of interest. Many of our results in Part I, however, are in terms of exact
or sharp asymptotics, that is, we provide approximations for the rare event probability
itself instead of for its logarithm. Such exact approximations can be considerably more
accurate. In order to be able to check the quality of the obtained approximations, as well
as to enable performance evaluation in cases where the asymptotic regime does not yield
a realistic description of the system, we consider efficient methods for the simulation of
such performance measures.

In Chapters 2 and 3 of Part I we are concerned with performance metrics relevant for
the analysis of particular queueing models [131, Chapter 8]. The focus is on rare-event
simulation in Chapter 2, and on both exact asymptotics and simulation in Chapter 3.
In particular, in these chapters we are interested in the probability that backlog, that
is, the number of customers or jobs waiting in the queue, exceeds a given (large) level –
as we point out in Chapter 3 knowledge of this probability can aid the system designer
for example in devising static rules for staffing. In Chapter 4 we focus on rare-event
probabilities related to the comparison between order statistics of two populations of
sample means. The derived expressions may be useful for devising static control policies
for certain queueing or packing problems. They also have implications regarding the
design of testing procedures such as those we consider in Part III (see below).

In Part II we turn to dynamic control problems. We concentrate on a particular class
of problems related to the control of stochastic systems known as restless multiarmed
bandits [48] (RMABs). Bandit problems are a type of Markov decision problem [126], in
which at every decision time a number of competing arms of a slot machine (also known
as one-armed bandit) have to be selected to play on. RMABs are used, for example,
to model problems related to the allocation of jobs or customers to different servers, of
resources to competing projects, or of messages to transmission channels.

Our objective in this part is to investigate computationally feasible decision making
strategies for certain partially observable RMABs where the available information con-
cerning the state of each arm is assumed to be incomplete. For example, in the context
of channel selection, it is reasonable to assume that due to physical, cost or other con-
straints the state of a channel is only sensed when that channel is selected and a feedback
is received upon transmission. Given this type of incomplete state information, we are
interested in structural properties and performance characteristics of so called index poli-
cies, which form a computationally tractable class of control heuristics [48].

In Chapter 6 we review two types of models that have been proposed for the purpose
of modelling the channel selection problem. Traditionally, the focus has been on the
Gilbert-Elliott channel model, in which channels are assumed to behave like a two-state
Markov chain. A second model which has only recently come to attention in this context
is the RMAB with Gaussian autoregressive arms. We concentrate on the latter model
in Chapter 7, where we investigate structural properties and propose a heuristic index
policy.

Part III of the thesis is about statistical procedures for the testing of data sequences.
We distinguish between off-line testing and on-line (sequential) monitoring. In both cases
we focus on procedures based on a log-likelihood ratio (LLR) test statistic, motivated by
the good optimality properties of such tests. We show how one can use logarithmic LD
and other asymptotics to control the performance of the testing procedures of interest.

In Chapter 9 we consider an off-line testing problem, where the objective is to identify
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the data stream that follows a given target distribution. Since in practice data is often
limited and the collection of new data points can be expensive, we assume that the target
process is to be identified based on a limited number of samples. The question is then
how to allocate the samples in order to obtain an accurate identification procedure. We
use LD asymptotics to approximate the probability of a false identification, which allows
us to solve the problem by convex optimisation.

In Chapters 10 and 11, we focus on methods for change point detection – the detection
of changes in the model parameters. A popular method for change point detection is the
method of cumulative sums (CUSUM) [118], which proceeds by sequentially evaluating a
LLR test statistic and comparing it to a predefined threshold; a change point is detected
as soon as the threshold is exceeded. It is desirable to choose the threshold such that
the number of false alarms is kept to a specified level. Traditionally, the number of false
alarms is measured by the average run length – the expected time until the first false
alarm. However, this does not in general allow one to control the number of false alarms
at every particular time instance. Therefore, in Chapter 10 we consider two stronger
false alarm criteria, for which approximation methods are investigated that facilitate
the selection of a threshold. We provide examples featuring change point detection for
dependent Gaussian sequences in Chapter 11.
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Static Control Problems
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CHAPTER 1

Introduction

Choices regarding the design and static control of a stochastic network are made with
the objective to optimise certain relevant performance criteria. This is easily achieved
if the stochastic model is simple enough to allow for exact closed-form evaluation of the
performance criteria of interest. In many applications, however, adequate models are
more complex so that one may need to resort to approximate solutions.

In this part of the thesis, we derive approximations for a number of different perfor-
mance criteria that are relevant, for example, in the context of communication systems.
Specifically, we are interested in probabilities related to certain undesirable events that
one may wish to control, such as the probability of a blockage due to overload, or any
other type of failure probability that is affected by the network design. One then tries to
optimise the design and control of the network in a way that ensures that such events are
rare in that the probabilities of their occurrence are kept at a desired (small) level.

The study of rare event probabilities is referred to as large deviations (LD) theory [38];
we review some of the relevant literature and mathematical background in Section 1.1.1.
LD approximations are accurate with respect to some asymptotic regime, that is, they
converge to the exact value of the quantity to be estimated (often the decay rate of the
probability rather than the probability itself) as some scaling parameter grows large. This
parameter can, for example, scale the number of customers arriving to the network.

As we shall see, these LD asymptotics often yield relatively simple expressions that can
be useful to understand the behaviour of the probability of interest in a certain regime. On
the other hand, it is often difficult to find such approximations for the probability itself so
that one often has to be content with describing its decay rate. Besides, the assumption
that the system is large in some sense is not always realistic in practice, and in such
cases asymptotic expressions can yield poor approximations. Estimates obtained from
computer-simulated data are therefore also of interest. The simulation-based approach
is broadly applicable but can be computationally demanding, especially in the context
of rare event probabilities. A common technique to simulate such probabilities relatively
efficiently is known as importance sampling. We provide some background on rare-event
simulation with importance sampling in Section 1.1.2.

An important class of models commonly considered in the study of stochastic systems
are referred to as queueing models. In Chapters 2 and 3 we study two particular queueing

8
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models in further detail, and we therefore provide some background on queueing theory
in Section 1.1.3.

The further outline of this part of the thesis is presented in Section 1.2.

1.1 Background

1.1.1 Large deviations

In this section we state some key results of LD theory; parts of this exposition are taken
from [80] and [88]. The theory of LD studies probabilities of rare events. A gentle
introduction to LD theory is given by Bucklew [24]. For a mathematically more rigorous
treatment we recommend the book by Dembo and Zeitouni [38].

Let us summarise some key ideas in the theory of LD that are needed in the course
of this thesis. We start by defining the large deviations principle, which will ease the
presentation of some important limit results that are presented later in this section.

Large deviations principle. Let E be a complete separable metric space and for each
n ∈ N let (Ωn,Fn, Pn) be a probability space and Xn : Ωn → E a random vector.
The LD principle (LDP) characterises the limiting behaviour of certain sequences of rare
event probability measures. Roughly speaking, it states that rare event probabilities
decay exponentially, where the exponential rate can be quantified in terms of some rate
function I . The following definitions are taken from [38] and [44].

Definition 1.1. A rate function I is a lower semicontinuous mapping I : E → [0,∞],
that is, for all finite a ∈ I (E), the level set Ψ (a) := {x ∈ E : I (x) ≤ a} is a closed
subset of E.

Note that, because E is a metric space, the lower semicontinuity property is satis-
fied if and only if xn → x implies lim infxn→x I (xn) ≥ I (x) because inf I (Bε(x)) =
inf{I (y) : y ∈ Bε(x)}, where Bε(x) denotes the open ball around x with radius ε. This
property implies that the rate function is unique (for a proof see [76, Theorem 23.8]).

In this thesis, we are concerned with cases in which I : Rd → [0,∞] is a good rate
function, meaning that the level sets defined above are compact subsets of E = Rd. This
is convenient because of the following well-known property of the rate function (a proof
can, for instance, be found in [76, p. 494]).

Lemma 1.2. Let I be a rate function on E. Then, for every non-empty compact subset
K ⊂ E, there exists at least one x∗ ∈ K such that I (x∗) = infx∈K I (x).

Thus, when I is a good rate function, for all a ∈ I (E), the infimum over the level
set Ψ(a) is attained within that set.

Definition 1.3. We say that the sequence (Xn)n∈N satisfies the LDP with rate function
I (·) if,

(a) For any closed set F ⊆ E,

lim sup
n→∞

1

n
logPn (Xn ∈ F ) ≤ − inf

x∈F
I (x);
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(b) For any open set G ⊆ E,

lim inf
n→∞

1

n
logPn (Xn ∈ G) ≥ − inf

x∈G
I (x).

Colloquially speaking, when a sequence satisfies the LDP, the probability of a rare
event decreases to zero exponentially fast as n increases. Furthermore, given that the
rare event has occurred, it has almost surely occurred in the most likely of the unlikely
ways (corresponding to the optimizing x on the right-hand side).

Let B be a Borel subset of E, and denote its closure by Bc and its interior by B◦. In
this thesis we only consider E = Rd, and B and I (·) such that I (Bc) = I (B◦), so that
the LDP reduces to [44, Proposition 3.3]

lim
n→∞

logPn (Xn ∈ B) = − inf
x∈B

I (x).

In the following we state conditions under which a sequence of random vectors satisfies
an LDP.

Logarithmic asymptotics. Let Xn := n−1
∑n
t=1Xt, and assume that Xt are in-

dependent and identically distributed (i.i.d.) as a generic random variable X. Then
provided that the mean is finite, the law of large numbers states that the law ofXn tends
to EX as n → ∞. Cramér’s theorem [33] asserts that the law of certain sets that do
not contain this point of concentration decays exponentially in n. His theorem charac-
terises the logarithmic rate of convergence by a rate function that is given by the Legendre
transform (also referred to as Fenchel-Legendre transform, or convex conjugate) of the
cumulant-generating function (see Definition 1.5).

Definition 1.4. The Legendre transform of a convex function ψ : Rd → R is defined as

I(x) := sup
θ∈Rd

(θ′x− ψ(θ)) .

Definition 1.5. The moment-generating function (MGF) of X ∈ Rd is defined as

MX(θ) := E
(
eθ
′X
)

wherever this expectation exists; for θ ∈ Rd. The cumulant-generating function ΛX(·) is
defined as

ΛX(θ) := logMX(θ).

We denote the Legendre transform of ΛX(·) by IX(·). As an example we compute
the Legendre transform IX(a), a ∈ R, corresponding to ΛX(·) where X is a univariate
Poisson random variable with rate λ (we write X ∼ Pois(λ)). In this case, the MGF is

MX(θ) = exp
(
λ(eθ − 1)

)
.

The optimizing θ in the definition of the Legendre transform exists, and is given by
log(a/λ). Inserting this, we obtain

IX(a) = I(a |λ) := a log(a/λ)− a+ λ. (1.1)
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Cramér’s result corresponds to the light-tailed regime, as formalised by the following
assumption.

Assumption I.1. The MGF MX(θ) is finite; that is, DMX
:= {θ : MX(θ) <∞} = Rd.

This implies that all moments ofX are finite. Under this assumption, it turns out that
IX(·) is a good convex rate function [38, Lemma 2.2.31(a)]. We can now state Cramér’s
famous theorem; the following version is Theorem 4.1 in [44].

Theorem 1.6 (Cramér). Let (Xt)t∈N be a sequence of independent random vectors taking
values in Rd, distributed as a random vector X, and satisfying Assumption I.1. Then the
sequence of sample means Xn := 1

n

∑n
t=1Xt satisfies the LDP with convex rate function

IX(·) defined as the Legendre transform of ΛX(·).

For semi-infinite intervals and i.i.d. sequences (Xt) in R, this result can be strengthened
to the following corollary, [38, Corollary 2.2.19].

Corollary 1.7. For any a ∈ R,

lim
n→∞

1

n
logP(Xn ≥ a) = − inf

x≥a
IX(x).

Let us consider some properties of the rate function for the special case where d = 1.
Obviously, IX(x) ≥ 0 since 0 · x−Λ(0) = 0. By Jensen’s inequality, MX(θ) ≥ exp (θEX)
so that θEX −ΛX(θ) ≤ 0. Hence, it holds that I(EX) = 0. Consequently, in accordance
with our intuition, EX is a minimum of the convex non-negative function I(·), which is
thus non-decreasing for x > EX (and non-increasing for x < EX). Therefore, for a > EX,
Cramér’s theorem actually asserts that

lim
n→∞

1

n
logP

(
Xn ≥ a

)
= −IX(a). (1.2)

For example, for i.i.d. Poisson random variables Xi this limit result holds with rate func-
tion IX(a) as given in (1.1).

Formal proofs of Cramér’s theorem and its corollary can be found in [38, Chapter 2].
Here we only sketch the main ideas as they will be useful later-on in this thesis.

Sketch of proof. We first note that the upper bound of the LDP is essentially a Chernoff
bound: Assuming the setting of the corollary, for θ > 0, we have

P
(
Xn ≥ a

)
= P

(
eθ
∑n
i=1Xi ≥ eθna

)
≤ e−θnaMX(θ)n.

This holds in particular with θ∗ that minimises the upper bound on the right-hand side
(which we assume to exist for the moment). It can further be checked that for a > EX
the Legendre transform is optimised at θ∗ > 0, hence, taking the logarithm and dividing
by n we obtain the upper bound −IX(a) in this case. (Similarly for the case a < EX,
where instead we have θ∗ < 0).

It remains to be shown that under the assumptions of Corollary 1.7 this upper bound
is attained asymptotically as n → ∞. To this end, a change of measure is applied such
that under the alternative measure the event of interest is not rare; then the lower bound
can be derived from central limit arguments. For simplicity assume that X has a density
function p(·) under the original measure. We then wish to determine an alternative density
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q(·) such that under q(·) the sample mean Xn has mean value a. This is found by noting
that the optimising θ∗ satisfies a−M ′X(θ)/MX(θ) = 0, and thus, q(·) needs to satisfy

Eq
[
Xn

]
=

∫ ∞
−∞

xq(x)dx = a =
M ′X(θ∗)

MX(θ∗)
=

E
[
Xeθ

∗X
]

E [eθ∗X ]
.

It is then easy to see that the exponentially tilted (also referred to as exponentially twisted)
measure

q(x) =
eθ
∗x

MX(θ∗)
p(x) (1.3)

solves the equation. It turns out that with this change of measure, to obtain the statement
of Cramér, it suffices that the law of large numbers applies. Using central limit arguments
(Berry-Esseen) a stronger statement can be proven, see Theorem 1.9 below. �

Cramér’s theorem is limited to the independent case. However, an extension to de-
pendent sequences is possible, and an important result in this direction is referred to in
the literature as Gärtner-Ellis theorem. We will need it in Part III of this thesis.

To state the theorem, we define the limiting cumulant-generating function as

ΛX(θ) := lim
n→∞

1

n
logE

(
en θ

′Xn

)
, (1.4)

wherever the limit exists. Note that this reduces to the cumulant-generating function of
X1 if Xi are i.i.d.; therefore (with a slight abuse of notation) we denote both functions
by ΛX(·).

Theorem 1.8 (Gärtner-Ellis). Assume that for every θ ∈ Rd the limit ΛX(θ) as defined
in (1.4) exists as a finite number; and that ΛX(·) is differentiable. Then Xn satisfies the
LDP with rate function IX(·) given by the Legendre transform of ΛX(·).

By the same reasoning as before we obtain that for the specific case d = 1, the
Legendre transform is non-decreasing for x ≥ EX. Theorem 1.8 establishes that the
asymptotic relationship (1.2) holds for more general sequences of random variables; for
example, Xn can be sample means of correlated random variables, provided that the
limiting cumulant-generating function exists and is finite.

Exact asymptotics. Theorems 1.6 and 1.8 provide logarithmic asymptotics for certain
sequences of probability measures. For sequences of sample means Xn, they suggest
approximations of the form

P
(
Xn ≥ a

)
≈ exp (−nIX(a)) . (1.5)

Note, however, that, while such approximations are often useful (and indeed we shall
use them in Part III of this thesis), they can turn out to be inaccurate for moderate
values of n. To illustrate, note that Eq. (1.2) is valid if P

(
Xn ≥ a

)
behaves as (i) 109 ·

e−nIX(a), (ii) n−100e−nIX(a), or (iii) e
√
ne−nIX(a), but obviously in none of these cases the

‘naïve’ approximation (1.5) is accurate; see e.g. [104, p. 40] for a brief exposition on this.
Approximations to the probability itself rather than its logarithm are more scarce in the
literature, and usually referred to as strong, sharp, or exact LD results. An important
result on exact LD asymptotics is due to Bahadur and Rao [13], which we state next. It
requires the following assumption.
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Assumption I.2. The optimising θ in the definition of IX(a) exists (and is denoted by
θX(a) or sometimes θ∗ for short).

In the setting of Theorem 1.8 this assumption holds in fact for any a in the interior of
the essential domain DIX := {x ∈ R : IX(x) < ∞}. It is well-known [38, Lemma 2.2.5]
that if a > EX, then θX(a) > 0; likewise, if a < EX, then θX(a) < 0. Furthermore, the
optimizing θX(a) is easily seen to satisfy I ′X(a) = θX(a) as well as Λ′(θ) = a. These facts
we use repeatedly in Section 4.

Theorem 1.9 (Bahadur-Rao). Fix an a > EX, and assume that Assumptions I.1 and
I.2 apply. Then for some positive and finite constant CX(a), as n→∞,

P(Xn ≥ a)
√
n enIX(a) ∼ CX(a); (1.6)

where f(n) ∼ g(n) denotes that f(n)/g(n)→ 1 as n→∞.

This is Theorem 3.7.4 in [38]. The idea of the proof is similar as that of Cramér’s
theorem: We apply a change of measure such that the event of interest is not rare. Then
instead of the law of large numbers, we apply a stronger limit result due to Berry and
Esseen, which provides bounds on the rate of convergence of the sample mean to a normal
distribution. For details see [19].

The precise form of CX(a) depends on whether X corresponds to a non-lattice or a
lattice random variable. A lattice distribution is a discrete distribution concentrated on
a set of points of the form a+ bn for n ∈ Z, where a ∈ R and b ∈ R+. If X is non-lattice
(for example, it has a normal or a gamma distribution), then

CX(a) =
1

θX(a)
√

2πΛ′′X(θX(a))
, (1.7)

where Λ′′X(θX(a)) denotes the second derivative of ΛX(θ) evaluated at θX(a). If X is a
lattice random variable (for example, it is Poisson), we instead have

CX(a) =
1

1− exp
(
− θX(a)

) 1√
2πΛ′′

(
θX(a)

) . (1.8)

In Section 3.1 we shall also need a local limit version of (1.6): with ξn(·) denoting the
density of

∑n
i=1Xi, from [123] we have

lim
n→∞

ξn(na) enIX(a)
√
n = CX(a)I ′X(a). (1.9)

Further extensions of the Bahadur-Rao result include results on the uniformity of the
convergence by Höglund [65]. A version not necessarily requiring the i.i.d. assumption
has been proven by Chaganty and Sethuraman in [28]. This result was further extended
into a multi-dimensional context by the same authors [29]: there, exact asymptotics are
established of the probability that a vector of sample means is in a given rectangular set.

For later reference in Section 4, we informally state Theorem 3.4 by Chaganty and
Sethuraman [29] (the precise statement is lengthy, and we will therefore only give relevant
details of it when needed): Under a number of technical conditions, it is proved that for
positive constants C and I, a sequence of random vectors Xn ∈ Rd and a matrix A,

P(AXn ≥ 0) ∼ C

nd/2
e−nI , (1.10)
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where for two vectors v,w ∈ Rd we define v ≥ w to hold if and only if vi ≥ wi for all
i ∈ {1, . . . , d}.

Later in this chapter we make use of the presented LD results to obtain asymptotic
expressions for certain rare-event probabilities. In the next section we present a technique
for estimating such probabilities using simulated data.

1.1.2 Rare-event simulation

In this section we give a brief introduction on a well-established rare-event simulation
technique known as importance sampling. For further details see, for example, [10, 130].
Consider a probability space (Ω,F ,P). Let (An) denote an decreasing sequence of subsets
of F , such that %n := P(An)→ 0 exponentially fast; that is, %n satisfies a large deviations
principle of the form

lim sup
n→∞

1

n
log %n = −I, (1.11)

for some constant I > 0. Suppose we want to estimate %n for n large. The crude (naïve)
Monte Carlo estimator is given by

%̂mc
n =

1

r

r∑
i=1

1(i)(An),

where 1(i)(An) denotes the i-th sample of 1(An). While this produces an unbiased esti-
mator of %n, it is intuitive that this is not an efficient estimation procedure when %n is
small: most of the samples are zero, but a single observation of a sample equal to one can
skew the estimator by some orders of magnitude. Thus, r has to be chosen very large for
the obtained estimate to be sufficiently accurate. Mathematically, the relative error —
the ratio of the estimator’s standard deviation to its mean — is given by√

r−1%n(1− %n)

%n

r−1

√
%n
,

which increases to infinity exponentially fast, as n→∞ while r remains fixed.
A popular approach that can achieve considerable efficiency improvements upon crude

Monte Carlo estimation is a method known as importance sampling. The main idea we
have already encountered in the sketch of the proof of Cramér’s theorem: sample the
random variable of interest under an alternative measure Q such that the variance of the
estimator is minimised — typically, this new measure is such that the event An is not rare
any more. For the obtained estimator to be unbiased, the samples from Q needs to be
re-weighed by the likelihood ratio L, which is a version of the Radon-Nikodym derivative
dP
/

dQ.
More formally, consider a new probability measure Q with Q(An ∩ B) > 0 whenever

P(An ∩B) > 0 for any B ∈ F . Then we have

%n =

∫
Ω

1(An)dP =

∫
Ω

1(An)L dQ = EQ
[
1(An)L

]
,

where EQ denotes the expectation taken with respect to Q. An unbiased estimator for
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this quantity is:

%̂isn =
1

r

r∑
i=1

1(i)(An)L(i).

We desire a new measure Q that minimises the variance of this estimator, which is given
by

EQ
[
1(An)L2

]
− %2

n.

Thus, in principle a zero-variance estimator is achieved by choosing Q such that we have

dQ =
1(An) dP

%n
.

This choice, however, is infeasible since Q would depend on %n, which is the unknown
quantity to be estimated. What can often be done is to find an alternative measure that
achieves zero variance asymptotically, on a logarithmic scale. Since the variance is always
non-negative, we have

lim sup
n→∞

1

n
logEQ

[
1(An)L2

]
≥ −2I,

by (1.11). This motivates the following notion of asymptotic efficiency (or logarithmic
efficiency) (see, e.g., [134]):

Definition 1.10. A distribution Q is asymptotically efficient for estimating %n if

lim sup
n→∞

1

n
logEQ

[
1(An)L2

]
≤ −2I.

If the estimator in fact has bounded relative error (at least for large n), then it is
called strongly efficient ; see Definition 1.11. As the name suggests, strong efficiency
implies asymptotic efficiency; see e.g. [135, Lemma 1]).

Definition 1.11. A distribution Q is strongly efficient for estimating %n if the relative
error is bounded by a constant c <∞ in that

lim sup
n→∞

√
EQ [1(An)L2]− %2

n√
r %n

≤ c.

As an example consider %n = P(Xn ≥ a) for a > EX, where we assume that (Xi) is an
i.i.d. sequence satisfying Assumptions I.1 and I.2. Recall from Section 1.1.1 that Xn satis-
fies a LDP with rate function IX(a) = θ∗a−ΛX(θ∗). This suggests that the exponentially
twisted measure we used in (1.3) yields an asymptotically efficient importance-sampling
distribution. For a twisting parameter ϑ ∈ R, we define the exponentially twisted distri-
bution as

Qϑ
(
Xn ∈ dx

)
:= enϑx−nΛX(ϑ) P

(
Xn ∈ dx

)
. (1.12)

It is then easy to check that the resulting importance sampling estimator is asymptotically
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efficient when ϑ = θ∗:

lim sup
n→∞

1

n
logEQθ∗

[
1
{
Xn ≥ a

}
L2
]

= lim sup
n→∞

1

n
log

∫ ∞
a

e2nΛX(θ∗)−2nθ∗xQθ∗
(
Xn ∈ dx

)
≤ lim sup

n→∞

1

n
log enΛX(θ∗)−nθ∗a P

(
Xn ≥ a

)
= −2IX(a).

To see that the inequality holds, recall that for a > EX we have that θ∗ > 0 by [38,
Lemma 2.2.5], and therefore the exponential term is larger if we replace x by a.

In Chapters 2 and 3 we propose efficient importance sampling procedures for estimat-
ing probabilities of certain rare events that are of interest in queueing systems, which are
introduced in the next section.

1.1.3 Simple Markovian queues
The approximation and estimation techniques described in Sections 1.1.1 and 1.1.2 are
often applied in the area of queueing theory. Consider a stochastic system to which
customers or jobs arrive according to a particular stochastic process (usually in continuous
time), which then have to be served before leaving the system again. This kind of problem
is referred to as queueing problem because, under the assumption that the number of
servers is finite, one or several queues may form whenever customers cannot begin their
service immediately because all servers are occupied. Questions of interest to the system
designer are for example the average length of the queue, or the probability that more
than a certain number of customers are in the system at a particular time instance (i.e.,
the probability that the size of the system exceeds a given level). These questions can
be difficult to answer, depending on the assumptions one is willing to impose on the
arrival processes and the service time distribution. Traditionally, it is assumed that the
arrival process is Poisson with constant arrival rate, service times are i.i.d. exponentially
distributed [90, 131]. Using Kendall’s notation, we denote this type of queueing system
as M/M/m, where M stands for ‘Markovian’ and m is the number of servers.

The long-run steady-state behaviour of such Markovian queueing systems is generally
well-understood, and even a transient analysis can be done quite explicitly [96]. However,
the assumption that interarrival and service times are exponentially distributed is rather
restrictive, and it turns out that it is often not very realistic. For example, it has been
found that call arrivals in call centres are typically not stochastically independent, and
that they are often overdispersed , meaning that the variance of the number of arrivals in
an interval of given length is significantly larger than the corresponding mean value [46,
71, 75, 162]. This has led to the idea to use Cox processes [32] instead to model arrivals,
i.e., Poisson processes in which the arrival rate follows some (non-negative) stochastic
process. The perhaps most well-known process of this type is the Markov-modulated
Poisson process that we consider in Chapter 2. A less standard type of Cox process is
studied in Chapter 3. For service times it has been established that they do not necessarily
follow an exponential distribution but may more closely resemble lognormally distributed
data; see [46]. We therefore allow for more general service time distributions in the
subsequent chapters.

A cornerstone model in the theory of queues is the infinite-server queue, which can
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yield reasonable approximations for communication networks, where typically the number
of servers is large. For the infinite-server queueing model the analysis is comparatively
tractable because customers do not interact in that they do not vie for access to the avail-
able servers, and no queue is formed [90]. Nevertheless, exact analysis quickly becomes
difficult when the assumptions of exponential interarrival and service time distributions
are relaxed, and much of the available literature is hence concerned with approximations;
see e.g. [21, 36, 53] and our paper [63], which is presented in Chapter 3. The analysis
complicates even more if the number of servers is assumed to be finite. Approximations
for particular generalisations of the M/M/m model have been considered, for example,
in [161] for the multi-server case, and in [54] for the easier single-server case.

Alternatively (or if no approximations are available), one may opt to estimate related
quantities of interest using computer-simulated data. The simulation of the infinite server
queue is particularly easy; for example, the number of customers in service is simply
given by the difference between arrivals and departures. In case one is interested in the
probability of rare events, however, naive Monte Carlo simulation, although conceptually
simple, comes with the drawbacks we explained in Section 1.1.2. Importance sampling
methods have, for example, been proposed in [127, 145] for infinite-server queues, and
in [133] for finite-server queues. In all of these papers the distributions of the inter-
arrival and service times are assumed to be of renewal type and servers are homogeneous.
We essentially relax these assumptions in our paper [82], which is presented in the next
chapter.

1.2 Organisation and contributions

In the remainder of Part I of this thesis we study the following problems related to the
static control of stochastic systems. In Chapter 2 we consider a multi-server queue with
Markov-modulated Poisson input and server-dependent phase-type distributed service
times. We develop a rare-event simulation technique to estimate the probability that the
number of customers in this system reaches a high value. Relying on explicit bounds on
the probability under consideration as well as the associated likelihood ratio, we succeed in
proving that the proposed estimator is of bounded relative error. Simulation experiments
illustrate the significant speed-up that can be achieved by the proposed algorithm.

In Chapter 3 we study another overdispersed arrival process (meaning that the vari-
ance of the number of arrivals in an interval of given length is significantly larger than the
corresponding mean value). Here, arrivals are assumed to be Poissonian but the arrival
rate is resampled every ∆ time units. To derive distributional properties of this process,
we focus on the evaluation, for n large and α > 0, of

Pn(a) := P
(
Pois

(
nXnα

)
> na

)
, with Xm :=

1

m

m∑
i=1

Xi

for i.i.d. random variables X1, . . . , Xm. Relying on elementary techniques, we derive for
α < 1

3 and α > 3 the exact asymptotics of Pn(a); for α ∈ [ 1
3 ,

1
2 ) and α ∈ [2, 3) we find a

partial solution in terms of an asymptotic lower bound. For the special case that the Xi

are gamma distributed we establish the exact asymptotics across all α > 0. In addition, we
set up an asymptotically efficient importance sampling procedure that produces reliable
estimates at low computational cost. We then focus on the infinite-server queue with this
overdispersed arrival process. Using a scaling similar to the one featuring in the definition
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of Pn(a), we focus on the asymptotics and simulation of the probability Qn(a) that the
number of clients present exceeds na. We then propose a number of staffing algorithms
based on the proposed approximation methods, and compare them numerically. Our
experiments show the striking feature that the staffing level may decrease in the service
times’ variability.

In Chapter 4, relying only on the classical Bahadur-Rao approximation for large de-
viations of univariate sample means, we derive strong large deviation approximations for
probabilities involving two sets of sample means. The main result concerns the exact
asymptotics (as n→∞) of

P
(

max
i∈{1,...,dX}

Xi,n ≤ min
i∈{1,...,dY }

Y i,n

)
,

with the Xi,ns (Y i,ns, respectively) denoting dX (dY ) independent copies of sample means
associated with the random variable X (Y ). Assuming EX > EY , this is a rare event
probability that vanishes essentially exponentially, but with an additional polynomial
term. We point out how the probability of interest can be estimated using importance
sampling in an asymptotically efficient way. To demonstrate the usefulness of the result,
we show how it can be used to compare the order statistics of the sample means of the
two populations. This has applications, for instance, in queueing or packing problems.



CHAPTER 2

Efficient simulation of tail probabilities in a queueing
model with heterogeneous servers

The multi-server queue is a well-studied object in operations research with widespread
applications, for example in the modelling of call centres [71] and healthcare systems
[57]. In many situations, the system needs to be designed in such a way that the service
level offered is sufficiently high. This is usually translated into the requirement that the
probability of the backlog exceeding some critical value should be below a given threshold
value.

For the case of homogeneous servers (meaning that the service times at the various
servers have a common distribution), a strand of research focuses on evaluating the prob-
ability that the number of customers waiting exceeds some high level K. A key result in
this area concerns the situation in which the service-time distribution has a finite moment
generating function around zero (implying that all moments exist): it was proven by Sad-
owsky [133] that for such GI/GI/m queues the tail of the probability of interest decays
effectively exponentially, cf. also the earlier paper by Takahashi [146] for the setting with
phase-type interarrival times and phase-type service times. In addition, [133] provides a
fast (importance-sampling based) simulation procedure to estimate this probability with
provable optimality properties. More specifically, it was shown that the estimator is log-
arithmically efficient; this entails that the number of runs needed to obtain an estimate
with a given precision grows sub-exponentially in the level K.

In the above literature it was assumed that the servers are homogeneous; this implies,
for example, that each service entity serves customers at the same average speed. In many
practical situations, however, this assumption is overly restrictive as has been recognised
in the work of e.g. [8, 74] (as well as in other references which deal with the problem of
routing in systems with heterogeneous servers). Not much is known, however, about the
tail distribution of such heterogeneous multi-server systems.

Another aspect that is hardly covered in the importance-sampling literature concerns
the incorporation of overdispersion, while for call centre arrival data the variance of the
number of arrivals in an interval of given length often turns out to be significantly larger
than the corresponding mean value; for references see Section 1.1.3. This phenomenon
is better captured by a Cox process, the perhaps most well-known example of which is
the Markov-modulated Poisson (MMP) process. For an MMP process the arrival rate is

19
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λi when an independently evolving continuous-time, finite-state Markov chain (typically
referred to as the background process) is in state i. For results on queues with Markov-
modulated input we refer to e.g. [9, Chapter XI].

Motivated by the above considerations, the object of study in this chapter, which is
based on Kuhn and Mandjes [82], is the multi-server queue with MMP input and server-
dependent phase-type service times. The main contribution is that we devise efficient
simulation techniques for the purpose of estimating the tail distribution of the station-
ary number of customers in the system. In more detail, our work extends the existing
literature on importance sampling for multi-server queues are as follows.

◦ In our set-up we allow the servers to be heterogeneous, whereas [133, 146] assume
server-homogeneity. We remark that [133] considers light-tailed service-time distri-
butions, whereas we focus on the subclass of phase-type distributions. It is known,
however, that general non-negative distributions can be approximated arbitrarily
closely by phase-type distributions so that in practical terms hardly any generality
is lost; see e.g. [20, 154] and [9, Theorem III.4.2]. (The focus is still on light-tailed
distributions as for heavy-tailed distributions the number of phases needed to ade-
quately model the tails may be excessively large.)

◦ In addition, we allow for the arrival process to be overdispersed. We focus on the
case of MMP arrivals, but, as we will point out, other types of arrival processes can
be treated with similar techniques (such as the renewal processes that were studied
in [133]).

◦ We show that our proposed importance-sampling estimator is strongly efficient,
(or, equivalently, has bounded relative error). This means that the number of runs
needed to obtain an estimate with given precision remains bounded (i.e., is smaller
than some constant that does not depend on K). Recall that in [133] just log-
arithmic efficiency was proven (implying that the number of runs needed grows
sub-exponentially).

In summary, our model can be viewed as a generalization of that of [133] in that we allow
for heterogeneous servers as well as overdispersed arrival processes; the (minor) sacrifice
that we make is that we assume the service times to be of phase-type, rather than just
light-tailed. In more detail, the results obtained are the following.

(i) In the first place, for the queue under study we propose efficient simulation algo-
rithms for the estimation of the probability that the backlog (that is, the number
of customers or jobs waiting in the queue) during a busy cycle (during which the
system is non-empty) exceeds a given level K. The procedure can be modified for
the estimation of related quantities such as the fraction of customers or jobs entering
the system while the backlog is larger than K, or the fraction of customers lost in
the corresponding model with a waiting room of finite size K.
The algorithms are based on importance sampling, that is, the model is simulated
under an alternative measure, under which the event under consideration is not rare.
We identify an efficient change of measure by solving a particular eigensystem. As
it turns out, this change of measure provides us with upper and lower bounds on the
probability of interest which are both exponential in the threshold K (and which
match up to a multiplicative constant). This property implies that our importance-
sampling estimator is strongly efficient.
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(ii) As the eigensystem to be solved can become prohibitively large when the dimension
of the background process and/or the dimensions of the phase-type distributed ser-
vice times grow large, we show how the eigensystem can be decoupled in order to
identify the change of measure in a computationally more efficient way.

(iii) Finally, we point out how the change of measure can be found for various variants
of the arrival and service processes.

The organization of this chapter is as follows. In Section 2.1 we introduce the model
and formulate our objectives in greater detail. In Section 2.2 we propose the change
of measure that is to be used in the importance-sampling based procedure. We then
establish bounds on the probability of interest, which we use to prove that the importance-
sampling algorithm has bounded relative error. In Section 2.3 we show that the same
change of measure can be obtained when considering the arrival and service processes
separately, thus drastically reducing the computational effort needed to compute the
change of measure. Section 2.4 contains illustrative numerical experiments that give an
impression of the typically achievable speed-up. We conclude in Section 2.5 by discussing
how the importance sampling algorithm can be adapted to estimate related quantities,
and how it can be useful in static control.

2.1 Framework

2.1.1 Model

In this chapter we primarily focus on the following MMP/Ph/m queue with heterogeneous
servers. We now introduce the arrival process and service processes used.

Arrival process. Consider the following MMP arrival process. The transition rate matrix
of the (finite-state) background process (It)t≥0 is Q = (qij)

d
i,j=1; define qi := −qii =∑

j 6=i qij . When the background process (assumed to be irreducible) is in state i arrivals
occur according to a Poisson process with rate λi ≥ 0. Let the mean arrival rate be
λ := π′λ, with π the invariant probability measure of the background process and λ :=
(λ1, . . . , λd)

′.

Service processes. There are m heterogeneous servers. Service times at server ` ∈
{1, . . . ,m} are i.i.d. samples distributed as the non-negative random variable B(`). We
let B(`) be of phase-type [9, Chapter III] with initial distribution α(`) concentrated on
the transient states, and transition rate matrix

T (`) =
(
t
(`)
ij

)D(`)+1

i,j=1
=

(
S(`) s(`)

0 0

)
, (2.1)

for some D(`) ∈ N. We impose the usual requirement that t(`)ij ≥ 0 for i ∈ {1, . . . D(`)}
and j ∈ {1, . . . D(`) +1} with i 6= j, and tD(`)+1,j = 0 for j ∈ {1, . . . , D(`) +1}; in addition
we define

t
(`)
i := −t(`)ii =

D(`)+1∑
j=1,j 6=i

t
(`)
ij ,

so that the row sums are zero. In words, the above means that the service time at server
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` stays in phase i for an exponentially distributed amount of time with mean (t
(`)
i )−1,

and then jumps to state j 6= i with probability t(`)ij /t
(`)
i .

Thus, the evolution of the system is recorded by the following trivariate process:

(i) The state of the background process (It)t≥0 taking values in I := {1, . . . , d}.

(ii) The state vector (J t)t≥0 of the phase-type distributions of the customers in service;
with † indicating that the corresponding server is idle, this takes values in

D := {1, . . . , D(1), †} × · · · × {1, . . . , D(m), †}.

We will sometimes use the suggestive notation t(`)i,† := t
(`)

i,D(`)+1
.

(iii) The number of customers in the system, (Nt)t≥0, taking values in N = {0, 1, . . .}.
We stress that this number includes the customers in service: when Nt = m + n,
then all servers are occupied, and n customers are waiting.

Observe that (It,J t, Nt)t≥0 is a continuous-time Markov chain on the state space
I ×D ×N. Throughout the queue is assumed to be stable, i.e., we impose the condition

λ <

m∑
`=1

1

EB(`)
,

where EB(`) can be evaluated in terms of α(`) and T (`) as in [9, Prop. III.4.1]. This
stability criterion can be interpreted as: the average number of clients arriving to the
multi-server queue per unit of time should be strictly majorised by the average number
of clients that can be served (by the m queues together) per unit of time.

Since servers are heterogeneous, we shall assume that the free server with the lowest
index serves the next customer arriving or waiting in the queue. In practice, one may
wish to prioritise faster servers; a service policy of this type can be achieved by labelling
servers in increasing order according to their average service times.

2.1.2 Objective and methodology

Our first objective is to estimate the probability that the backlog, max{Nt−m, 0}, exceeds
a given level K ∈ N during a busy cycle, which in this chapter we define – somewhat
unconventionally – as an uninterrupted period during which the system has been non-
empty. Such a period is initiated by the arrival of a customer to an empty system, and
ends by the departure of the last customer (leaving all servers idle). Notice that in our
model busy cycles are not i.i.d., as the state of the background process at the beginning
of the busy cycle has impact on its evolution (as opposed to for instance the situation
with renewal-type arrivals that was studied in [133]). We denote by Fi the event that a
busy cycle started when the background process was in state i. We focus on estimating
the probability %i(K) that in a busy cycle the number of customers in the queue exceeds
the value K conditional on Fi.

In practice, the probability %i(K) is usually required to be small, which makes esti-
mating it by crude Monte Carlo simulation inefficient [10, Chapter VI]. We are therefore
interested in an estimation procedure that relies on importance sampling [10, Section
V.1] in order to limit the required simulation effort. Importance sampling is based on
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imposing a ‘change of measure’ with respect to the original measure P. More concretely,
the simulation is performed under a different probability measure Q, and the simulation
output is corrected by the ‘likelihood ratios’ dP/dQ evaluated at the observed outcome in
order to retain an unbiased estimation procedure. The challenge is to find an alternative
measure Q that effectively reduces the variance of the estimator. This typically means
that Q should be such that the event under consideration becomes more likely to occur,
but in addition it is required that the likelihood ratio dP/dQ on the event of interest
should have a low variance. This is made explicit in [10, Section VI.1], where various
efficiency measures for importance-sampling estimators are discussed.

Compared to the efficient simulation of tail probabilities in an M/M/m queue, a
number of complications arises in our set-up. In the first place, as mentioned above, busy
cycles are not independent. Furthermore, since servers are heterogeneous, one needs to
keep track not only of the number of busy servers but also of their indices and current
phases. In addition, the arrival rate is not fixed but depends on the state of the background
processes.

Observe, however, that during periods in which Nt is larger than m, the service rate
of the system does not change with Nt; one could say it is ‘level-homogeneous’. This
motivates that we split each busy cycle into subintervals in which Nt ∈ {m+1,m+2, . . .}
(i.e., the queue is not empty; we refer to these intervals as fully busy periods), and periods
in which Nt ∈ {1, . . . ,m} (i.e., the queue is empty; we call these intervals partially busy
periods). Thus, during a busy cycle the system alternates between partially and fully
busy periods until the system becomes idle again.

Based on the above, we can decompose %i(K) as follows. With %i(K,n) the probability
that the number of customers attainsm+K for the first time in the n-th fully busy period
(conditional on Fi), we can write

%i(K) =

∞∑
n=1

%i(K,n).

With this decomposition in mind, we first consider the following approach to estimate
%i(K), which will be detailed in Section 2.2. During the fully busy periods, in which the
system is level-homogeneous, we use an alternative probability measure Q under which
the queueing system is unstable (so that the rare event under study will occur frequently).
During partially busy periods, in which the system is not level-homogeneous, we use the
original measure P. To establish particular efficiency properties, the number of fully
busy periods (per busy cycle) in which Q is applied should be bounded by an arbitrary
constant C ∈ N; we return to this subtlety in Section 2.2. Based on the insights gained
in Section 2.2 we then show in Section 2.3 how to obtain a change of measure that can
be applied throughout the entire busy cycle.

2.2 Importance sampling procedure and its
efficiency properties

In this section we describe an importance sampling routine for estimating the quantity
%i(K). As this probability relates to the event that a given level is reached before the
number of customers returns to 0, it suffices to track the evolution of the embedded
discrete-time Markov process, i.e., of the continuous-time Markov chain (It,J t, Nt)t≥0
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observed at its transition epochs. With a mild abuse of notation we refer to the embedded
process as

(In,Jn, Nn)n∈N ∈ I ×D × N, (2.2)

where n enumerates the epochs at which any of the three processes makes a transition.
Note that at each transition epoch n of this embedded process typically only one of the
state vector components changes, the exception being the occurrence of a departure (in
which case Jn may change, and Nn decreases by one).

Define σk to be the first time that (Nn)n∈N reaches level k. Assuming that a busy cycle
starts with the arrival of a first customer, the backlog exceeds K within that cycle if and
only if σK := σm+K+1 < σ0. The objective of this section is to find an efficient algorithm
for estimating the probability %i(K) that in a busy cycle the number of customers in the
queue exceeds the value K given that the background process is in i ∈ I at the start of
the busy cycle; that is,

%i(K) = P(σK < σ0 |Fi)

where Fi corresponds to the event that I0 = i, J
(1)
0 is sampled according to α(1), J (2)

0 =

· · · = J
(m)
0 = †, and N0 = 1 (recall from Section 2.1.1 that the first customer is attended

to by the server with the lowest index).
The remainder of this section is organised as follows.

◦ First, in Section 2.2.1, we focus on a fully busy period; we conveniently shift time,
such that the start of the busy period corresponds to time 0. We fix a state (i, j) ∈
I ×D , and consider the probability

qi,j(K) := Pi,j(σK < σm
∣∣N0 = m+ 1) (2.3)

:= P(σK < σm
∣∣ I0 = i,J0 = j, N0 = m+ 1).

Observe that qi,j(K) can be interpreted as the probability that the backlog exceeds
K within a fully busy period given that such a period has started when the back-
ground process and the service times were in state (i, j). Relying on the fact that
during the fully busy period the system is level-homogeneous, we define a change
of measure for estimating qi,j(K). We then propose an importance sampling algo-
rithm for estimating %i(K) which applies this change of measure during the first
C ∈ N fully busy periods. (In Section 2.3 we will see how the rates can be twisted in
general, without the restriction of changing the measure only during the fully busy
periods.)

◦ In Section 2.2.3 we investigate efficiency properties of the proposed estimators. In
the first place, we show that the importance sampling procedure for estimating
qi,j(K) has bounded relative error. In addition, the probabilities qi,j(K) and %i(K)
are proven to be ‘sufficiently similar’ that the procedure for estimating %i(K) has
bounded relative error as well.

◦ Section 2.2.4 presents a numerical example, in which the new measure Q is com-
puted. It gives rise to a decomposition property, formalised in Section 2.2.5, which
drastically reduces the computational efforts required to evaluate the measure Q.
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2.2.1 Change of measure

In this subsection we focus on the estimation of qi,j(K) as defined in (2.3), with fixed i and
j. Observe that in order to decide whether or not σK < σm, we consider a time interval
during which the value of Nn has not dropped below m+1. In other words, the transition
matrix of (In,Jn, Nn) does not depend on Nn during that interval. It is essentially this
property that enables the following construction of the alternative measure, which mimics
the construction in [105] for the easier case of the Markov fluid queue.

Consider a discrete-time Markov chain (In,Jn, Nn) ∈ I ×D×Z that is characterised
by the following transition probabilities. Define

ϕi,j := λi +

m∑
`=1

t
(`)
j`

+ qi.

Let e` be a vector of dimension m with a one on position ` and zeros otherwise. Then
the probability of moving from (i, j, n) to (i, j, n + 1) is λi/ϕi,j (this corresponds to an
arrival); the probability of moving from (i, j, n) to (i′, j, n) is qii′/ϕi,j (this corresponds
to a transition of the background process); the probability of moving from (i, j, n) to
(i, j + (k − j`)e`, n) is t(`)j`,k/ϕi,j (this corresponds to a transition in the phase of one of
the service times, without a departure); and the probability of moving from (i, j, n) to
(i, j+(k−j`)e`, n−1) is t(`)j`,k/ϕi,j with t

(`)
j`,k

:= t
(`)
j`,†α

(`)
k (this corresponds to a transition in

the phase of one of the service times, but now with a departure). The crucial observation
is that during the fully busy period, (In,Jn, Nn) behaves as (In,Jn, Nn).

We now point out how the alternative measure Q is constructed. Let ξi,j denote the
net increase of the number of customers Nn from an epoch that (In,Jn) is in (i, j) until
(In,Jn) arrives at a given reference state (i∗, j∗) (we show below that the choice of the
reference state does not affect the resulting new measure Q). Let xi,j ≡ xi,j(θ) := Eeθξi,j

denote the moment generating function (MGF) of ξi,j . Relying on the usual ‘Markovian
reasoning’, the MGFs satisfy

xi,j =
λi
ϕi,j

xi,je
θ +

d∑
i′=1,i′ 6=i

qii′

ϕi,j
xi′,j +

m∑
`=1

D(`)∑
k=1,k 6=j`

t
(`)
j`,k

ϕi,j
xi,j+(k−j`)e`

+

m∑
`=1

D(`)∑
k=1

t
(`)
j`,k

ϕi,j
xi,j+(k−j`)e`e

−θ;

(2.4)

the first term on the right hand side corresponds to an arrival (hence the factor eθ), the
second to a jump of the background process, the third to a phase-transition of one of the
service times (but not a departure), and the fourth to a departure and simultaneously
the start of a new service (hence the factor e−θ). The system of equations (2.4) can be
regarded as an eigensystem of the form Ax = x with eigenvalue 1; the matrix A ≡ A(θ)
is irreducible and non-negative. By Perron-Frobenius all positive eigenvectors of such
a matrix lie in the eigenspace corresponding to the largest eigenvalue. The vector x of
MGFs is one such eigenvector. In the sequel we denote by θ∗ the value of θ such that the
largest eigenvalue of A is equal to 1.

We now explain why θ∗ can be interpreted as the Cramér root [10, Section VI.2a]
related to the random variable ξ ≡ ξi∗,j∗ . Recall that ξ is the net increase of the number
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of customers between two subsequent visits of (In,Jn) to the reference state (i∗, j∗). The
alternative measure obtained by an exponential twist of the original measure P should be
such that the MGF of ξ evaluated in θ under Q matches the MGF of ξ evaluated in θ+θ∗

under P: in self-evident notation,

EQ eθξ = E e(θ+θ∗)ξ,

with θ∗ such that E eθ
∗ξ = 1; see again [10, Section VI.2a]. Thus, the vector of MGFs x

and θ∗ are found from (2.4) by equating xi∗,j∗ to 1. It is readily verified, however, that
the choice of the reference state has no impact, as Eq. (2.4) is linear in x.

Inspired by the above eigensystem, we now propose the following new measure Q
corresponding to an exponential twist of the distribution of ξ, to be used to estimate
qi,j(K): when (In,Jn) = (i, j),

λ◦i = λi eθ
∗
, q◦ii′ = qii′

xi′,j
xi,j

,
(
t
(`)
j`,k

)◦
= t

(`)
j`,k

xi,j+(k−j`)e`
xi,j

,(
t
(`)
j`,k

)◦
= t

(`)
j`,k

xi,j+(k−j`)e`
xi,j

e−θ
∗
.

(2.5)

In the remainder of this subsection we evaluate the likelihood ratio that results from
this change of measure when estimating qi,j(K); as it turns out, this has a surprisingly
simple form. To this end, we consider an arbitrary path of the process (In,Jn) starting
when the fully busy period commences (that is, we have I0 = i, J0 = j, and N0 =
m + 1), and ending at time τ = min{σK , σm}, visiting states (in, jn), where n denotes
the n-th transition epoch of the process (2.2). Let N+ denote the n ∈ S := {1, . . . , τ}
corresponding to arrivals, N the n ∈ S corresponding to transitions of the background
process, N

(`)
	 the n ∈ S corresponding to a phase-transition of the service time at server

` (not being a service completion), and N
(`)
− corresponding to a service completion at

server `. The likelihood (under P) of such a path is thus given by, with i = i0 and j = j0,

∏
n∈N+

λin
ϕin,jn

∏
n∈N 

qin,in+1

ϕin,jn

m∏
`=1

∏
n∈N

(`)
	

t
(`)
jn,jn+1

ϕin,jn

m∏
`=1

∏
n∈N

(`)
−

t
(`)
jn,jn+1

ϕin,jn
. (2.6)

The likelihood of the same path under the new measure Q has the same form, except that
all probabilities in (2.6) are replaced by their counterparts under Q, where, due to (2.4)
and the definition of the new rates,

ϕ◦i,j := λ◦i +

m∑
`=1

(
t
(`)
j`

)◦
+ q◦i = λ◦i +

m∑
`=1

D(`)+1∑
k=1,k 6=j`

(
t
(`)
j`,k

)◦
+

d∑
i′=1,i′ 6=i

q◦ii′ = ϕi,j .

It follows that the likelihood ratio over the path takes the form

L =
∏
n∈N+

λin/ϕin,jn
λ◦in/ϕ

◦
in,jn

∏
n∈N 

qin,in+1/ϕin,jn
q◦in,in+1

/ϕ◦in,jn
×

×
m∏
`=1

∏
n∈N

(`)
	

t
(`)
jn,jn+1

/ϕin,jn(
t
(`)
jn,jn+1

)◦
/ϕ◦in,jn

m∏
`=1

∏
n∈N

(`)
−

t
(`)
jn,jn+1

/ϕin,jn(
t
(`)
jn,jn+1

)◦
/ϕ◦in,jn

.
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Because ϕi,j = ϕ◦i,j , by (2.5) this reduces to the ‘telescopic product’

L =
∏
n∈N+

e−θ
∗ ∏
n∈N 

xin,jn
xin+1,jn+1

m∏
`=1

∏
n∈N

(`)
	

xin,jn
xin+1,jn+1

m∏
`=1

∏
n∈N

(`)
−

xin,jn
xin+1,jn+1

eθ
∗

= e−θ
∗Σ+

xi0,j0
xiτ ,jτ

eθ
∗Σ− , (2.7)

where Σ+ is the number of arrivals in S , and Σ− the number of departures. Observe
that at the end of each fully busy period we either have Σ− − Σ+ = −K if τ = σK , or
Σ− − Σ+ = 1 if τ = σm. We find the following identities.

Corollary 2.1. Let I0 = i, J0 = j, and N0 = m+ 1. For any K ∈ N,

L1{τ = σK} = e−θ
∗K xi,j

xiτ ,jτ
, L1{τ = σm} = eθ

∗ xi,j
xiτ ,jτ

.

Remark 2.2.1. It is reassuring to note that the proposed change of measure satisfies
Juneja’s ‘equi-probable cycle’ condition, which should hold for an asymptotically optimal
change of measure [72]. Namely, if (In,Jn, Nn)n∈N visits a specific state multiple times,
the contribution to the likelihood ratio of the interval between two such subsequent visits
is equal to one.

2.2.2 Importance sampling algorithm

In the previous subsection we found an alternative measure Q to be applied during the first
C ∈ N fully busy periods, whereas during the partially busy periods P should be used. In
Algorithm 1 we provide pseudo code for a single run of the resulting importance sampling
procedure. The truncation at C is needed in Section 2.2.3 to prove that the procedure
has bounded relative error. In practice, however, this truncation can be neglected since
C can be chosen arbitrarily large without compromising the estimator’s performance; see
Section 2.4 for a numerical comparison of the performance of the estimation algorithm
for various values of C.

2.2.3 Bounds and relative error

In this subsection we derive bounds on %i(K) in terms of the probability qi,j(K), which
we then use to prove that the proposed importance sampling estimation procedure leads
to bounded relative error.

The partially busy period before each fully busy period commences either when 1
customer is in the system (at the beginning of the busy cycle), or when m customers
are in the system (when we just exited a fully busy period). Accordingly, we define, in
self-evident notation,

pi := max
i

P (σm+1 < σ0 |Fi) , pi,j := Pi,j(σm+1 < σ0 |N0 = m).
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Algorithm 1 One run of the importance sampling algorithm that applies the change of
measure only during the first C fully busy periods.
1: Set N = 1, L = 1, c = 0. Set i as the initial state of the background process. Generate
j1 ∼ α(1), and set j` = † for ` = 2, . . . ,m.

2: while N ∈ {1, . . . ,m+K} do
3: if N ≤ m then
4: Set all rates to the original rates. Let ϕi,j = λi +

∑
`: j`>0 t

(`)
j`

+ qi. Set p to

be the vector with entries λi, qii′ for all i′ 6= i, and t(`)j`,k for all ` such that j` 6= † and
k ∈ {1, . . . , D(`), †}. Generate the next event from the discrete distribution p/ϕi,j .

5: if Arrival then
6: N ← N + 1
7: if N > m then
8: c← c+ 1
9: if c ≤ C then

10: L← Lxi,j
11: end if
12: end if
13: else if Transition of the background process then
14: i← i′, where i′ corresponds to entry qii′ of p
15: else if Phase transition at server ` to k ≤ D(`) then
16: j` ← k
17: else if Phase transition at server ` to † then
18: j` ← †, and N ← N − 1
19: end if
20: else if N > m then
21: if c ≤ C then
22: Set all rates as in (2.5).
23: end if
24: Update ϕi,j , and set p as for the partially busy period but including rates t(`)j`,k.

Generate the next event from the discrete distribution p/ϕi,j .
25: if Phase transition at server ` with departure then
26: j` ← k, where k corresponds to entry t(`)j`,k of p, and N ← N − 1
27: if N = m and c ≤ C then
28: L← L eθ

∗
/xi,j

29: end if
30: else if Other transition then
31: Proceed as for the partially busy period.
32: end if
33: end if
34: end while
35: if N > m+K and c ≤ C then
36: L← L e−Kθ

∗
/xi,j

37: end if
38: return L1{N > m+K}
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Observe that the number of fully busy periods in a busy cycle is bounded from above by
a geometric random variable G with success probability

p+ := max

{
max
i
pi, max

i,j
pi,j

}
= max

i,j
pi,j < 1. (2.8)

In every one of these fully busy periods, level m + K + 1 is reached with a probability
that is bounded above by

q+(K) := max
i,j

qi,j(K).

Supposing that G = k, in each of the k attempts the level m + K + 1 can be reached.
The union bound then yields the following upper bound: uniformly in i ∈ I ,

%i(K) ≤
∞∑
k=1

pk+(1− p+)k q+(K) =
q+(K)

p+
.

Now focus on establishing a lower bound based on the probability of reaching m+K + 1
in the first fully busy period. To this end, we define

p− := min
i

P(σm+1 < σ0 |Fi), q−(K) := min
i,j

qi,j(K).

Then it follows directly that, uniformly in i ∈ I ,

%i(K) ≥ p−q−(K).

In order to make the bounds on %i(K) more explicit, we now show how qi,j(K) as
defined in (2.3) can be bounded. These bounds are derived by using the change of
measure Q that we identified above. Denoting, as before, the likelihood ratio in the fully
busy period by L, we have

qi,j(K) = EQ
i,j

[
L1{σK < σm} |N0 = m+ 1

]
= EQ

i,j [L |E (K), N0 = m+ 1] Qi,j (E (K)|N0 = m+ 1) ,

with E (K) := {σK < σm}, and where the subscript i, j denotes conditioning on the initial
states I0 = i and J0 = j as before. Using Eq. (2.7) (or Corollary 2.1), we thus conclude

η−e−θ
∗K ≤ EQ

i,j [L |E (K), N0 = m+ 1] ≤ η+e−θ
∗K , (2.9)

with the constants η− and η+ defined by

η− := min
i,i′∈I ,j,j′∈D

xi,j
xi′,j′

, η+ := max
i,i′∈I ,j,j′∈D

xi,j
xi′,j′

.
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Since I and D are finite, and recalling that x is componentwise positive, η− and η+ are
positive and finite.

Due to the fact that under Q the queueing system is unstable, we have that, as
K →∞, we have

Qi,j (E (K)|N0 = m+ 1) ↓ Qi,j (E (∞)|N0 = m+ 1) > 0.

Furthermore, note that (2.9) holds for any fixed (i, j), thus, in particular, we can take
the minimum or the maximum over such states. We have thus shown that there exist
positive and finite numbers κ− and κ+ such that

κ−e−θ
∗K ≤ q−(K) ≤ q+(K) ≤ κ+e−θ

∗K .

Combining this with the bounds on %i(K) established above, we have established the
following result.

Proposition 2.2. For any K ∈ N, i ∈ I , and j ∈ D , uniformly in i ∈ I ,

p−κ−e−θ
∗K ≤ %i(K) ≤ κ+

p+
e−θ

∗K .

Proposition 2.2 provides us with a lower and upper bound on %i(K), which are valid
across all K ∈ N, and which differ just by a multiplicative constant. We now use these
bounds to assess the estimator’s efficiency properties. The probability %i(K) is estimated
by using Q during the first C fully busy periods, and the original measure P otherwise.
Denoting this ‘composite measure’ by QC , we rely on the identity

%i(K) = EQC [L1{σK < σ0} |Fi],

with the event Fi as defined above; cf. [10, Section V.1a]. The relative error of an
estimator is defined by the ratio of the estimator’s standard deviation to its mean. Noting
that the estimator is unbiased, we obtain that its per-sample standard deviation can be
written as

ν◦ =
√
EQC [L21 {σK < σ0} |Fi]− %i(K)2.

Thus, the relative error based on n simulation runs is

ν◦√
n%i(K)

=

√
EQC [L21 {σK < σ0} |Fi]

n%i(K)2
− 1

n
≤

√
EQC [L21 {σK < σ0} |Fi]

n%i(K)2
. (2.10)

Recall that the number of times a fully busy period is reached is bounded from above by
a geometric random variable with success probability p+. Invoking Corollary 2.1, we thus
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obtain, for any i ∈ I ,

EQC
[
L21

{
σK < σ0

}
|Fi

]
≤ e−2θ∗K

C∑
k=1

e2θ∗kpk+(1− p+)η2k
+ . (2.11)

For any finite C the right-hand side in (2.11) is finite. (As an aside, observe that C may
be chosen as ∞ if e2θ∗p+η

2
+ < 1, as then the geometric series converges.) Combining

this with the lower bound %i(K) ≥ p−κ−e−θ
∗K , the bounded relative error follows: the

expression in the left-hand side of (2.10) is bounded above by a finite expression that does
not depend on K.

Theorem 2.3. For arbitrary C ∈ N, the estimator for %i(K) based on QC has bounded

relative error.

Note that the upper bound given in (2.11) is smallest when C = 1, but this obviously
does not imply that the left-hand side of (2.11) is minimised for C = 1. In Section 2.4 we
empirically study the impact of the choice of C.

2.2.4 Numerical example

In this subsection we present a small numerical illustration. Consider a two-server system,
with d = 2 and D(1) = D(2) = 3. The arrival rates, initial probabilities and transition
rate matrices are

Q =

(
−0.5 0.5
0.1 −0.1

)
, α(1) =


0.5
0.3
0.2
0

 , T (1) =


−0.9 0.2 0.1 0.6
0.5 −1.5 0.5 0.5
0.2 0.2 −0.8 0.4
0 0 0 0

 ,

λ =

(
0.1
0.5

)
, α(2) =


0.5
0.2
0.3
0

 , T (2) =


−1 0.2 0.2 0.6
1 −2 0.5 0.5

0.2 0.2 −1 0.6
0 0 0 0

 .

We order the states lexicographically and solve the eigensystem (2.4) by first using bi-
section to find a value of θ such that the largest eigenvalue of the matrix A defining the
eigensystem equals one. One thus obtains θ∗ = 0.86. We normalise the eigenvector cor-
responding to this eigenvalue such that its first entry is one, and call the resulting vector
x.

For example, for states i = 1, i′ = 2, j = (1, 1), j′ = (2, 3), we then have xi,j = 1,
xi,j′ ≈ 1.09, xi′,j ≈ 1.99, xi′,j′ ≈ 2.17 (rounded to two decimal digits). We observe the
remarkable property that (up to the rounding error) xi′,j′/xi′,j = xi,j′/xi,j . Generally, it
turns out that the obtained MGFs x are such that

xi,j
xi,j′

=
xi′,j
xi′,j′

and
xi,j
xi′,j

=
xi,j′

xi′,j′
, for any i 6= i′, j 6= j′;
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indicating that there is a certain decoupling among the servers as well as between servers
and arrivals. The decoupling means that under Q (as was the case under the original
measure P), (i) the transition rates of the background process do not depend on the
phases the customers in service are in, (ii) the service-time distribution at any particular
server does not depend on the state of the background process nor the phases the other
customers are in.

2.2.5 The structure of A

The observed decoupling can be formally established as follows. Note that if the states
(i, j1, . . . , jm) are ordered lexicographically, then the matrix A defining the eigensystem
given in (2.4) can be decomposed as

A ◦ϕ1 = Λ eθ ⊗ ID +Q⊗ ID + Id ⊗R =
[
Λ eθ +Q

]
⊕R, (2.12)

where ◦ denotes the Hadamard product, ϕ is the column vector with entries ϕi,j , 1 is
a row vector of ones, Λ := diag{λ}; D :=

∏m
`=1D

(`); ID is the D × D-identity matrix;
⊕ and ⊗ denote the Kronecker sum and product, respectively; Q denotes the matrix
Q−Q ◦ Id; and the ‘remainder term’ R is of dimension D ×D and depends on T (`) and
T

(`)
but not on λ or Q. Because the eigenvalues of a Kronecker sum are given by the sums

of the eigenvalues of each Kronecker summand [95, Theorem 13.16], this decomposition
shows that the eigensystem can be split up into a part corresponding to arrivals and a
part corresponding to services.

Let us now consider the remainder term R, which corresponds to the service processes.
We note that R contains D− :=

∏m−1
`=1 D(`) block matrices of size D(m) × D(m) which

have the following structure.

(i) The block matrices on the diagonal are of the form

T (m) + T
(m)

e−θ + ID(m)e−θ
m−1∑
`=1

t
(`)
j`,j`

.

(ii) Off-diagonal block matrices are either of the form
[
t
(`)
j`,j′`

+ t
(`)
j`,j′`

e−θ
]
ID(m) with ` <

m, or they are zero.

As it turns out, R can thus be decomposed as

R =

m⊕
`=1

(
T (`) + T

(`)
e−θ
)
.

Inserting this expression in (2.12) we see (e.g. from [95, Theorem 13.16]) that the MGF
x that we found as an eigenvector of A can be computed as the Kronecker product of
eigenvectors of m + 1 decoupled eigensystems, corresponding with the arrivals and the
services for each of the m servers. In this way, while the dimension of A is dD, the
measure Q can be found by solving a system of dimension just d +

∑m
`=1D

(`); in the
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above example this would yield a reduction of dimension 18 to dimension 8. We detail
such an alternative approach in the next section.

2.3 Efficient computation of change of measure

As mentioned above, an intrinsic problem of the change of measure defined in Section 2.2
is that the underlying eigensystem may become prohibitively large, and as a result the
computation of Q becomes problematic. Already for the small example of Section 2.2.4
the length of the vector x is 18; if one has 10 servers with 3-dimensional phase-type
distributions, and if d = 4, the dimension of the matrix A is as high as 4 · 310 = 2.36 · 105.
This explains why we explore an alternative approach to compute Q, in which the twist of
the arrival processes and the service times do not interrelate. In the above example with
10 servers, this means that the alternative measure can be found by solving a system
of dimension 34. The ‘catch’ is that the decoupling-based approach requires function
evaluations that are more involved, and thus for low-dimensional problems the approach
of Section 2.2 may be preferred; see also Section 2.4, where we discuss simulation examples.

2.3.1 Preliminaries

We first recall a few auxiliary results. Consider a sequence of i.i.d. positive random
variables (Rn)n∈N (with a bounded MGF around 0), and its associated counting process

R(t) := sup

{
n ∈ N :

n∑
i=1

Ri ≤ t

}
.

Define the associated limiting logarithmic MGF (ll-MGF):

R(θ) := lim
t→∞

1

t
logEeθR(t).

Let c be some number larger than ER (with R being distributed as R1). Consider a
(stable) queue that drains at a constant rate c, where unit-sized jobs arrive with interar-
rival times (Rn)n∈N. From e.g. [41] we have the logarithmic decay rate of the probability
P(W > u) that the stationary workload W exceeds u,

lim
u→∞

1

u
logP(W > u) = −θ,

obeys R(θ) − cθ = 0. There is however a second way to compute the decay rate, viz. as
the solution of r(−cθ)eθ = 1, with r(θ) := EeθR; see e.g. [54]. Note that both lead to the
same (c, θ)-pairs. A minor computation yields that

R(θ) = −r−1(e−θ). (2.13)
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We have thus expressed the ll-MGF R(·) in terms of the MGF of R. For instance for R
having an exponential distribution with mean µ−1, this yields R(θ) = µ(eθ − 1), as it
should (recall that in this case R(t) is Poisson with mean µt). See [42] for more background
on this type of inversion result.

Let A (θ) be the ll-MGF corresponding with the interarrival times (An)n∈N, and
B(`)(θ) the ll-MGF corresponding with the service times (B

(`)
n )n∈N (in case there would

always be jobs to serve). Then by [54, Proposition 2] the decay rate of the probability
P(Q > K) that the stationary number of customers Q exceeds K, i.e.,

lim
K→∞

1

K
logP(Q > K) = −θ∗,

is the solution θ∗ of

A (θ) +

m∑
`=1

B(`)(−θ) = 0

where, with A(t) and B(`)(t) defined analogously to R(t),

A (θ) := lim
t→∞

1

t
logEeθA(t), B(`)(θ) := lim

t→∞

1

t
logEeθB

(`)(t).

Invoking (2.13) we conclude that θ∗ solves

A (θ) =

m∑
`=1

(
b(`)
)−1

(eθ), (2.14)

where, with S(`) and s(`) as in Eq. (2.1),

b(`)(θ) = α(`)
(
−θID(`) − S(`)

)−1

s(`) (2.15)

is the MGF associated with server ` (see, e.g., [20, Theorem 4.3]).

Regarding the arrival times this means that we have to find an MMP process such that
its ll-MGF is A ◦(θ∗) = A (θ + θ∗) − A (θ∗). As can be found in e.g. Kesidis, Walrand,
and Chang [73], A (θ) equals Ξ(Q + (eθ − 1) diag{λ}), where Ξ(M) denotes the largest
eigenvalue of M .

Regarding the service times, (2.14) implies that we should construct Q such that under
this new measure the ll-MGF of the service times at server ` equals

(
B(`)

)◦
(θ∗) = −

(
b(`)
)−1

(eθ+θ
∗
) +

(
b(`)
)−1

(eθ
∗
). (2.16)

We now point out how the corresponding changes of measure can be performed.



35 2.3. Efficient computation of change of measure

2.3.2 Twist of the arrival process

As mentioned, A (θ) equals Ξ(Q+ Λ(eθ − 1)), and hence we wish to find Λ◦ := diag{λ◦}
and Q◦ such that

Ξ
(
Q◦ + Λ◦(eθ − 1)

)
= Ξ

(
Q+ Λ(eθ+θ

∗
− 1)

)
−A (θ∗),

where it is noted that the right hand side of the previous expression can alternatively be
written as, with Id denoting the d× d-identity matrix, Ξ

(
Q+ Λ(eθ+θ

∗ − 1)− IdA (θ∗)
)
.

Suppose we observe an auxiliary system with the Markov-modulated Poisson process
being the input, but served at a constant rate c (larger than the mean input rate of the
MMP process). As we argued in the previous section, the decay rate θ∗ of the auxiliary
system can be evaluated by solving A (θ) = cθ. Alternatively, we can find a system of
equations that θ∗ should satisfy, similar to the approach in Section 2.2.1. Let zi denote
the MGF of the net increase in the number of customers in the auxiliary system during a
period in which the background process transitions from i to an arbitrary reference state.
Then (θ∗, zi) should satisfy

zi =
∑
j 6=i

qi,j
qi

zj

∫ ∞
0

qi e−qite−θcteλi(e
θ−1)dt =

∑
j 6=i

qij
qi − λi(eθ − 1) + cθ

zj ,

which can be rewritten as

(
− λi(eθ − 1) + cθ

)
zi =

d∑
j=1

qijzj .

Inserting cθ∗ = A (θ∗), we conclude that for θ = θ∗ there exists a componentwise positive
vector z such that (

− (eθ
∗
− 1)Λ + IdA (θ∗)

)
z = Qz. (2.17)

Now let Z denote diag{z}. Observe that any eigenvalue of Q+ (eθ+θ
∗ − 1) Λ− IdA (θ∗),

is eigenvalue of

Z−1
(
Q+ (eθ+θ

∗
− 1) Λ− IdA (θ∗)

)
Z

= Z−1QZ + (eθ+θ
∗
− 1) Λ− IdA (θ∗)

= Z−1QZ + (eθ
∗
− 1) Λ− IdA (θ∗) + (eθ − 1)Λ◦

(with Λ◦ := Λeθ
∗
) as well. Now note that, by virtue of (2.17),

Q◦ := Z−1QZ + (eθ
∗
− 1) Λ− IdA (θ∗)

is a generator matrix. We have thus found that the desired change of measure is

λ◦i := λie
θ∗ , q◦ij := qij

zj
zi
, q◦i := qi − λi(eθ

∗
− 1) + A (θ∗). (2.18)
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2.3.3 Twist of the service times

We start by pointing out that realizing the desired change of measure such that the ll-
MGF becomes (2.16) amounts to exponentially twisting the service times at server ` by
some ζ∗` that we specify below. We wish to find service times (with MGF b

(`)
(·)) such

that (2.16) equals −(b
(`)

)−1(eθ). Observe that (under the usual regularity conditions)
f−1(yu) = g−1(y)+v (for all y) is equivalent to g(x) = f(x+v)/u (for all x). This means
that we have to identify a b(·) such that

b
(`)

(ζ) =
b(`)
(
ζ + (b(`))−1(eθ

∗
)
)

eθ∗
,

which corresponds to exponentially twisting the service times at the `-th server with twist
ζ∗` := (b(`))−1(eθ

∗
).

We proceed by explaining how the change of measure can be found for each server.
Consider a generic server with phase-type distributed service times B, parametrised by
the initial distribution α, the transition matrix T , and the dimension D+ 1. The twisted
measure should satisfy

EQeζB =
Ee(ζ+ζ∗)B

Eeζ∗B
, (2.19)

where ζ∗ = b−1
(
eθ
∗)

as argued above. Consider all paths (i0, i1, . . . , iτ+1) of the underly-
ing Markov process, starting from i0 (sampled according to α) and ending at iτ+1 = D+1.
Let hj be the time spent between states ij and ij+1. Then the right hand side of (2.19)
can be written as, with Eeζ

∗B = b(ζ∗) = eθ
∗
,

e−θ
∗ ∑

all paths

∫ ∞
0

∫
hj :
∑τ
j=0 hj=h

αi0
ti0i1
t0

t0

× e−ti0h0 · · ·
tiτ iτ+1

tiτ
tiτ e

−tiτ hτ e(ζ+ζ∗)hdh0 · · · dhτ dh,

whereas the left hand side reads

∑
all paths

∫ ∞
0

∫
hj :
∑τ
j=0 hj=h

α◦i0t
◦
i0i1e

−t◦i0h0 · · · t◦iτ iτ+1
e−t

◦
iτ
hτ eζhdh0 · · · dhτ dh.

We wish to identify α◦ and T ◦ such that both expressions match. To this end, solve the
following eigensystem:

−ζ∗yi =

D+1∑
j=1

tijyj for i = 1, . . . , D, eθ
∗
yD+1 =

D∑
i=1

αiyi.

Then define
α◦i :=

αi
eθ∗

yi
yD+1

, t◦ij := tij
yj
yi
, t◦i := ti − ζ∗. (2.20)
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The following two observations are crucial:

◦ (α◦, T ◦) corresponds to a phase-type distribution. To this end, note that, by defi-
nition of the vector y, the new initial distribution α◦ is non-negative and sums to
1. In addition, ∑

j 6=i

t◦ij =
∑
j 6=i

tij
yj
yi

= ti + ζ∗ = t◦i .

◦ It is an easy verification that for the above defined (α◦, T ◦) both MGFs match, as
desired.

Thus, the proposed twist of the service times corresponds to a valid change of measure.

Note that the twisted rates we found in this and the previous subsection take the
same form as those in Section 2.2.1, the only difference being the MGFs involved. The
counterpart to the likelihood ratio given in Eq. (2.7) is

L =

(
e−θ

∗Σ+
zi0
ziτ

)
×

(
eθ
∗Σ−

m∏
`=1

y
(`)
j0

y
(`)
jτ

)
,

where, with a slight abuse of notation, zi0 and ziτ correspond to the first and last state of
the background process, and y(`)

j0
and y(`)

jτ
correspond to the first and last phase of server

`, respectively, given that we observe a path of length τ as defined in Section 2.2.1. In
line with the Kronecker decomposition found in Section 2.2.5, we thus see that xi,j =

zi
∏m
`=1 y

(`)
j`

.

Remark 2.3.1. Recall that in the set-up of Section 2.2 we did not quite find the change
of measure of the individual service times, as we only identified the twisted version of
t
(`)
j`,k

:= t
(`)
j`,†α

(`)
k rather than the twisted version of t(`)j`,† and α

(`)
k individually. In this

section we showed how to twist the rates for each server independently. In other words,
we can now use the twisted rates found in this section throughout the entire busy cycle,
i.e., also outside of fully busy periods. Note that outside of the fully busy period the
(total) rates of leaving state (i, j), that is, the counterparts to ϕi,j and ϕ◦i,j defined in
Section 2.2.1, are not equal so that the corresponding terms in the likelihood ratio do
not cancel. This means that to evaluate the likelihood ratio, it needs to be continuously
updated when the process is not in a fully busy period as it does not have a clean form
of the type (2.7).

Remark 2.3.2. There is one important situation in which all expressions simplify consid-
erably: that of no modulation and identical servers. In fact, in this case the interarrival
times do not need to be exponential, but any renewal sequence works. To see this, sup-
pose the interarrival times have MGF a(·) and the service times (at each of the servers)
have MGF b(·). Then (2.14) reeds

−a−1(e−θ) = mb−1(eθ),
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which is solved by θ∗ := − log a(−mα), where α is such that

log a(−mα) + log b(α) = 0,

which coincides with Eq. (1.7) in [133].

2.4 Simulation examples

In this section we investigate a number of numerical examples, to assess the efficacy of
the proposed procedure, and to learn about various aspects of the rare-event behaviour
of the multi-server queue under study.

We start by evaluating the impact of heterogeneity among servers on the speed of
decay and the the relative error of the estimation procedure. We consider a two-server
system with Erlang distributed service times. The service times of Server 1 are distributed
with shape parameter 3 and rate parameter µ1 while the service times of Server 2 are
distributed with shape parameter 3 and rate parameter µ2; the initial phase is distributed
as α = (0.5, 0.2, 0.3) in both cases. The arrival process is Poisson with rate 0.1 (i.e., not
modulated). We estimate ρ1(K) using the change of measure proposed in Section 2.2.1
during practically all fully busy periods; that is, we employ the algorithm stated in the
appendix with C chosen very large.

Figure 2.1 shows that the convergence of each scaled logarithmic importance sampling
estimator (calculated from 107 samples) to its corresponding limit −θ∗ appears to be
faster when servers are more heterogeneous. For µ1 and µ2 fixed, it turns out that
the corresponding relative error values are roughly independent of K (in line with our
theoretical findings). More precisely, we obtained that for µ1 = µ2 = 1 the relative error
of a generic sample is approximately 2 (across a wide range of K-values, independently
of n), for µ1 = 1, µ2 = 2 it is 2.82, for µ1 = 1, µ2 = 3 it is 3.96, and for µ1 = µ2 = 2
it is 7.7. Thus, as one would expect, the deviation from the mean is larger when servers
are more heterogeneous. The comparison of the two homogeneous examples suggests that
faster service tends to have a negative impact on the relative error performance.

Furthermore, we can check numerically that, as it should be, the twisted rates are the
same as those obtained in the way we described in Section 2.3. We now detail how we
computed the change of measure using that approach. The underlying idea is that we
determine θ∗ by solving (2.14); once θ∗ has been determined, we can twist the arrival
and service processes as in (2.18) and (2.20), respectively. In order to solve (2.14), the
following steps need to be performed:

◦ In the first place it requires the evaluation of A (θ) and (b(`))−1(eθ) (for ` = 1, . . . ,m)
which typically cannot be done in closed-form so that we have to resort to numerics.
Here, we used a bisection procedure. To determine A (θ) for every θ the eigenvalues
of a d-dimensional matrix need to be found; to determine (b(`))−1(eθ) the inverse of
the function b(`)(ζ) as defined in (2.15) is to be evaluated.

◦ In the second place a numerical solver needs to be used to solve (2.14). We again
used bisection to perform this step.
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Figure 2.1: Ratio of log(ρ̂1(K))/K and its limit −θ∗ for a two-server system with service times
that are Erlang-distributed with shape parameter 3 and rate parameters µ1 and µ2, respectively.
The horizontal line indicates a ratio of one.
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Figure 2.2: Ratio of log(ρ̂1(K))/K and its limit −θ∗ for (A) the example from Section 2.2.4,
and (B) a large-scale example with 10 servers. The horizontal line indicates a ratio of one.

For a small example as the ones just discussed, the method of Section 2.2 may be
preferred for its conceptual simplicity. For examples of a larger dimension on the other
hand, the method of Section 2.2 for computing the change of measure quickly becomes
slow or even infeasible due to memory constraints, and the method of Section 2.3 is to be
preferred.

We now discuss such a large-scale example, which is too large to be efficiently solved us-
ing the method of Section 2.2. We again assume that service times have an Erlang distribu-
tion with shape parameter 3. In a system with 10 servers, we set α(`) = (0.5, 0.2, 0.3), and
choose the Erlang rate parameter as `/3, for ` = 1, . . . ,m. We set d = 4, λ = (1, 2, 3, 4),
and let Q have off-diagonal entries 0.1 (and diagonal entries −0.3). Recall that the dimen-
sion of the matrix A defining the eigensystem (2.4) is as large as 2.36 · 105. Despite this
dimension, it turns out that with the methodology of Section 2.3 the change of measure
can be computed in less than a second. In Figure 2.2 we show the ratio of the scaled
logarithmic importance sampling estimator and its limit −θ∗ obtained in 105 simulation
runs for (A) the small example from Section 2.2.4, and (B) the large-scale example with
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Figure 2.3: Depicted is log(ρ̂1(K))/K obtained for the example of Section 2.2.4. The horizontal
dotted line indicates the limit value −θ∗. The change of measure is evaluated using the method-
ology developed in Section 2.3, and applied either throughout the entire busy cycle, only during
fully busy periods (C = ∞), or never (crude MC), yielding the (scaled logarithmic) upper 95%
confidence bounds that are indicated by the dashed lines.

10 servers; in both cases the change of measure is evaluated as described in Section 2.3,
and applied during all fully busy periods.

In the approach we have developed, we use the alternative measure Q only during (a
number of) fully busy periods. As mentioned in Remark 2.3.1, thanks to the decoupling of
servers that we described in Section 2.3, the twisted rates can also be applied throughout
– during the entire busy cycle – rather than only during fully busy periods. Considering
again the example of Section 2.2.4, we compare the sample confidence interval obtained
under crude Monte Carlo estimation to that achieved when the change of measure is
applied either throughout, or only during fully busy periods (with C = ∞). Figure 2.3
shows the scaled logarithmic unbiased estimate of %1(K) averaged over 105 runs. The limit
−θ∗ is indicated by the horizontal line. The dashed lines indicate the scaled logarithmic
upper bounds of the 95% standard normal confidence intervals. As one would expect, the
change of measure significantly improves the accuracy of the estimation procedure for a
fixed number of runs. In addition, we observe that when the change of measure is applied
throughout (rather than only during fully busy periods) the confidence is noticeably more
narrow.

We now investigate the impact of the choice of C for the same example. In Figure 2.4
we compare the relative errors obtained for various values of C in 107 runs, where C
denotes the number of fully busy periods during which the change of measure is applied.
The values obtained when the twisted rates are used either never (crude Monte Carlo)
or throughout the entire busy cycle are also shown. The relative error obtained for the
crude Monte Carlo estimator (corresponding to C = 0) increases exponentially asK grows
large. For large C indeed we see that relative error is independent of K. For smaller C
instead, the relative error does increase with K until it drops sharply for K large enough.
It appears that for small K if the event did not occur in the first period, then it may still
occur afterwards even though the original measure is used, which causes a large variance.

Note that for large K the relative error corresponding to C = 1 appears to be the
smallest, in alignment with the upper bound we found in Section 2.2.3. For an expla-
nation, recall that each fully busy period during which the change of measure is applied
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Figure 2.4: Logarithmic relative error values obtained for crude Monte Carlo (MC) estimation of
ρ1(K) compared to the values obtained under importance sampling when the change of measure
is applied during the first C > 0 fully busy periods or throughout; the rates are chosen as in
Section 2.2.4.

contributes to the likelihood ratio by a factor between eθ
∗
ζ− and eθ

∗
ζ+ (cf. Corollary

2.1), and thus potentially increases the variance of the estimator (where it should be kept
in mind that ζ− < 1, ζ+ > 1, and θ∗ > 0). In this sense, each additional fully busy
period may have a negative impact on the quality of the estimator. Choosing a good
value for C amounts to finding a proper balance between increasing the likelihood of the
event of interest and minimizing the possible additional contribution to the variance of
the likelihood ratio.

In the experiments that we performed, if the change of measure is applied throughout,
then the relative error is remarkably low at about 0.99, substantially lower than when
it is applied only during fully busy periods. We see a similar improvement in terms of
estimation accuracy for the other examples discussed in this section when Q is applied
throughout.

2.5 Discussion and concluding remarks

In this chapter we developed an algorithm for estimating the probability that the num-
ber of customers in a multi-server queueing system reaches a high value. The input is
Markov-modulated Poisson, whereas the service-times have server-dependent phase-type
distributions. We have identified explicit bounds on the probability under consideration
as well as the associated likelihood ratio, which help quantifying the relative error. In
particular we have proven that the relative error of our estimator is bounded. We also
develop a technique to efficiently compute the alternative measure to be used in our
importance-sampling based algorithm, which remains tractable even when the dimension
of the system (in terms of the number of servers and the dimensions of the phase-type
distributions) is large.

A couple of experiments provide us with indications of the significant speed-up that
can be achieved by the proposed algorithm relative to naïve simulation. The focus is on
estimating %i(K), i.e., the probability that the backlog (that is, the number of customers
or jobs waiting in the queue) during a busy cycle exceeds a given level K (with the
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background process being in state i at the beginning of the busy cycle). The method,
however, directly extends to a procedure for estimating the fraction of customers or jobs
entering the system while the backlog is larger than K. To this end, first note that this
quantity can be written as the ratio of the mean number of customers that entered the
system while the backlog is larger than K during a busy cycle, and the mean total number
of customers that entered during a busy cycle. Then the idea is to estimate the numerator
and denominator of the ratio separately. The denominator does not contain a rare event,
and hence can be estimated using the original measure. The numerator does involve a
rare event, but simulating under Q (corresponding to a positive drift) would mean that
terminating the busy cycle would become a rare event. Following e.g. [56], this issue
can be remedied by applying a measure-specific dynamic importance sampling approach,
where Q is switched off as soon as K has been reached. Along the same lines, one could
set up a procedure to estimate the fraction of customers lost in the corresponding model
with a waiting room of finite size K, as was done for a similar system in [103].

The proposed procedures could be used as an aid in devising staffing rules. The
probability of delay is commonly used as a performance metric in the literature on staffing;
see the recent survey [37]. We remark, however, that the fraction of lost customers –
which can be estimated as described above – may be a better criterion for staffing in,
for instance, call centers, where a moderate delay can be acceptable as long as the call is
not lost. The most simple approach would be to use bisection to estimate the required
number of servers based on simulation such that the performance metric of choice is fixed
to a desired level. If instead the number of servers is given, a similar procedure could be
used to determine the size of the waiting room.

In this chapter we considered specific arrival and service processes, but we anticipate
that importance sampling procedures for related processes can be developed with the
same techniques. As we argued, the MMP is suitable for modelling overdispersion, but
there are various other processes that could be used to this end, such as the Cox processes
advocated in [79].



CHAPTER 3

Infinite server queue with mixed Poisson arrivals

In the previous chapter we analyzed a queueing model with an overdispersed arrival
process, focussing on the MMP process, for which the arrival rate parameter changes at
random time instances according to a Markov process. While the MMP model is tractable
and often used, it seems reasonable to assume that in practice arrival data is collected
in discrete time instances and thus, arrival rates are re-estimated after a fixed number
of such instances. In line with this assumption, in this chapter we consider a different
type of Cox process that was advocated in [64], for which the arrival rate is resampled (in
an i.i.d. manner), say every ∆ units of time, whereas during the resulting time intervals
the arrival rate is assumed constant. We denote these i.i.d. arrival rates by (Xi)i∈N. The
content of this chapter, with the exception of Section 3.2.2, is taken from Heemskerk,
Kuhn and Mandjes [63].

Number of arrivals. We start by studying the tail asymptotics of the total number of
arrivals in a time interval of given length. We do so in a scaling regime that was proposed
in [64], in which the arrival rates and sampling frequency are jointly inflated as follows.
In the first place, it is natural to assume that arrival rates are large, as these represent the
contributions of many potential clients; this can be achieved by letting these arrival rates
be nX1, nX2, . . . for i.i.d. (Xi)i∈N and some large n. In addition, the sampling frequency
is set to nα (assumed to be integer) and hence the size of each time slot is assumed to
be ∆ = n−α. Here the parameter α can be tuned; evidently, the larger α, the more
frequently the arrival rate is resampled.

The focus is thus on the probabilities Pn(a) and pn(a), where

Pn(a) := P
(
Pois

(
nXnα

)
≥ na

)
, with Xm :=

1

m

m∑
i=1

Xi,

and pn(a) denotes the corresponding probability that the mixed Poisson random variable
Pois

(
nXnα

)
equals na (assumed to be integer). We consider the situation that a is larger

than ν := EXi, which entails that the event under consideration is rare and that we are
in the framework of large deviations theory.

It is observed that an important role is played by the time-scale parameter α > 0. If

43
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α is large, since the arrival rate is resampled relatively frequently, it is anticipated that
the mixed Poisson random variable behaves as a Poisson random variable with parameter
nν. If on the contrary α is small, one would expect that detailed characteristics of the
distribution of the Xi s matter. For α = 1 both effects play a role. This intuition underlies
nearly all results presented in this chapter.

Number of customers in an infinite-server queue. In the second part of this
chapter we focus on the infinite-server queue, where the arrival process is the overdispersed
process we introduced above, and the service times are i.i.d. samples from a (non-negative)
distribution with distribution function G(·). The number of clients in this infinite-server
queue, under the arrival process described above, is studied in [64]. As it turns out,
one can prove the (plausible) property that the number of clients in the system at time t
(which we, for simplicity, assume to be a multiple of ∆), has a mixed Poisson distribution,
i.e., a Poisson distribution with random parameter. This parameter is given by

t/∆∑
i=1

Xi ∆ fi(t,∆),

where fi(t,∆) denotes the probability that a call arriving at a uniformly distributed
epoch in the interval [(i − 1)∆, i∆) is still in the system at time t. Evidently, for small
∆ this probability essentially behaves as F (t − i∆), with F (·) := 1 − F (·) denoting the
complementary distribution function.

We renormalize time such that t ≡ 1 (which can be done without loss of generality),
and again impose the scaling along the lines of [64]: the arrival rates are nXi and the
interval width n−α. Then the number of clients in the system at time 1 is Poisson with
random parameter

nα∑
i=1

(nXi)n
−α fi(1, n

−α) = n1−α
nα∑
i=1

Xi ωi(n
α), (3.1)

where ωi(n) := fi(1, n
−1) ≈ F (1 − i/n). A clearly relevant object of study concerns the

probability that the number of clients in the system exceeds some threshold na:

Qn(a) := P

(
Pois

(
n1−α

nα∑
i=1

Xi ωi(n
α)

)
≥ na

)
;

qn(a) denotes the corresponding probability that the mixed Poisson random variable
equals na. To ensure that the event under consideration is rare, a is assumed to be larger
than

ν

nα

nα∑
i=1

ωi(n
α) ≈ ν

nα

nα∑
i=1

G(1− i/nα) ≈ ν
∫ 1

0

G(x)dx.

A related question of practical interest concerns staffing: how many servers should be
allocated to ensure a given service level. Approximating the many-server model by its
infinite-server counterpart, a staffing rule could be: find the smallest a such that Qn(a)
(or qn(a)) is below some desired (typically small) ε. The resulting procedure has evident
applications in the context of call centres, but also has the potential to be applied in cloud
computing or in the design of data centres. As we focus on the LD setting, the technique
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we develop is specifically useful in the regime in which the performance requirements are
strict (in the sense that the probability of service degradation should be kept low).

The contributions and organisation of this chapter are as follows. In Section 3.1 we
focus on the evaluation of the probabilities Pn(a) and pn(a). We first briefly present
the logarithmic asymptotics. In Section 3.1.1 we use elementary techniques to derive the
exact asymptotics, however, as it turns out, these only apply when the time scales of the
arrival process and the resampling are sufficiently separated: we address the cases α < 1

3
and α > 3 (with a partial solution for α ∈ [ 1

3 ,
1
2 ) and α ∈ [2, 3) in terms of an asymptotic

lower bound). In Section 3.1.2 it becomes clear why such elementary techniques do not
work across all values of α: for the important special case of the Xi s corresponding to
i.i.d. gamma distributed random variables [71] we find the exact asymptotics for all α > 0,
and in the range ( 1

2 , 2) \ {1} these turn out to have a rather intricate shape.
Section 3.1.3 focuses on rare-event simulation as a means to find an accurate approx-

imation at relatively low computational cost: we propose an importance-sampling based
technique, which we prove to be asymptotically efficient.

In Section 3.2 we shift our attention to the probabilities Qn(a) and qn(a). Again, loga-
rithmic asymptotics and efficient simulation procedures can be found, and in addition we
manage to identify the exact asymptotics for the case α = 1. By a series of numerical ex-
amples it is illustrated how the resulting approximation can be used for staffing purposes.
We performed extensive experiments, and make the striking observation that increasing
the variability of the service times (e.g. Pareto service times rather than exponential ones)
often leads to less conservative staffing rules.

3.1 Tail probabilities of the arrival process

We start by introducing the framework that we consider throughout the chapter. In our
set-up we let (Xi)i∈N be a sequence of i.i.d. random variables distributed as a generic
random variable X, where ν := EXi. Assume that Assumptions I.1 and I.2 apply, and
that X is non-lattice. Then by the Bahadur-Rao result presented in Section 1.1.1 we have
the following exact asymptotics for Xn: when a > ν,

lim
n→∞

P
(
Xn ≥ a

)
enIX(a)

√
n = CX(a)

with CX(a) as given in (1.7).
In our analysis the tail asymptotics of Poisson random variables play a crucial role.

We note that the Bahadur-Rao asymptotics entail that for the probabilities

ψn(a |x) := P (Pois (nx) ≥ na) , (3.2)

it holds that
lim
n→∞

ψn(a |x)en I(a | x)
√
n = C(a |x), (3.3)

for a > x, where C(a |x) is given by (1.8), that is,

C(a |x) :=
1

1− exp (θ?)

1√
2πΛ′′(θ?)

=
1

1− a/x
1√
2πa

.

As before, I(· |x) denotes the rate function associated with a Poisson random variable
with parameter x, that is, recalling (1.1), we have I(a |x) = a log(a/x)− a+ x.
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Let us first present the logarithmic asymptotics of Pn(a) (the same logarithmic asymp-
totics hold for pn(a)). Here we merely state the results as the proof is exactly as in [64,
Section 4.1]. We distinguish between the cases α > 1 and α < 1; the former case we refer
to as the fast regime as the Xi’s are sampled relatively frequently, whereas the latter case
is the slow regime. For completeness, the logarithmic asymptotics for the intermediate
case α = 1, though standard, are included as well.

◦ In the fast regime nα is substantially larger than n, and hence the rare event will
be essentially due to Xnα being close to ν, and the Poisson random variable with
parameter (roughly) nν exceeding na. Accordingly, following the argumentation in
[64], one obtains

lim
n→∞

1

n
logPn(a) = −I(a | ν).

This result entails that Pn(a) decays essentially exponentially.

◦ In the slow regime, assuming the support of Xi is unbounded, the rare event will
be a consequence of the joint effect of (i) Xnα being close to a, and (ii) the Poisson
variable with parameter (roughly) na attaining a typical value; the first event is
rare, but the second is not. In this regime, we thus have

lim
n→∞

1

nα
logPn(a) = −IX(a);

observe that this corresponds to subexponential decay.

◦ For α = 1, the random variable Pois
(
nXnα

)
can be written as the sum of n i.i.d.

contributions, each of them distributed as Z := Pois(X). Noting that

logE exp (θZ) = ΛX(eθ − 1),

a straightforward application of Cramér’s theorem [38] yields that the decay is
exponential:

lim
n→∞

1

n
logPn(a) = − sup

θ

(
θa− ΛX(eθ − 1)

)
=: IZ(a). (3.4)

We derive the exact asymptotics of Pn(a) and pn(a) in the next section.

3.1.1 Exact asymptotics

In this section we show that for a range of values of α the exact asymptotics of Pn(a)
and pn(a) can be found by relying on elementary probabilistic techniques. We focus on
the fast regime in Section 3.1.1.1, and on the slow regime in Section 3.1.1.2. We conclude
with the exact asymptotics for the intermediate case α = 1, which follow directly from
the Bahadur-Rao result.
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3.1.1.1 Fast regime

In this section we assume that α > 1. We start by proving an upper bound for Pn(a). In
self-evident notation, we have

Pn(a) =

∫ ∞
0

ψn(a |x)P
(
Xnα ∈ dx

)
, (3.5)

with ψn(a |x) as defined in (3.2). For any δ, Eq. (3.5) is majorised by∫ ν+nδ

ν−nδ
ψn(a |x)P

(
Xnα ∈ dx

)
+ P

(∣∣Xnα − ν
∣∣ ≥ nδ) ; (3.6)

we determine an appropriate value for δ later-on. The first term in (3.6) is evidently
bounded from above by ψn(a | ν +nδ). Motivated by (3.3), we will show that, as n→∞,

ψn(a | ν + nδ) en I(a | ν)
√
n→ C(a | ν), (3.7)

whereas the second term in (3.6) turns out to be asymptotically negligible.

To verify that (3.7) holds, note that C(a | ν)/C(a | ν +nδ)→ 1 when δ < 0, which fol-
lows by a standard continuity argument. We therefore proceed by considering n I(a | ν)−
n I(a | ν + nδ), which behaves as

n
(
a log

a

ν
+ a− ν

)
− n

(
a log

a

ν + nδ
+ a− (ν + nδ)

)
= na log

(
1 +

nδ

ν

)
+ n1+δ =

(a
ν

+ 1
)
n1+δ +O(n1+2δ)→ 0

if δ < −1. Thus, for such δ we have established (3.7).

Now consider the second term of (3.6), and, more specifically,

P
(∣∣Xnα − ν

∣∣ ≥ nδ) en I(a | ν)
√
n, (3.8)

for n→∞. Due to a Chernoff bound, we have

P
(
Xnα ≥ ν + nδ

)
≤ exp

(
−nα sup

θ

(
θ(ν + nδ)− logE eθXi

))
= e−n

αIX(ν+nδ),

and hence (3.8) is majorised by

e−n
αIX(ν+nδ) en I(a | ν)

√
n+ e−n

αIX(ν−nδ) en I(a | ν)
√
n.

Now realize that IX(ν + nδ) = 1
2I
′′
X(ν)n2δ + O(n3δ) and similarly for IX(ν − nδ). Thus,

the expression from the previous display vanishes when α + 2δ > 1, or, equivalently,
δ > (1− α)/2, where (1− α)/2 < 0 since α > 1.

We note that the requirements δ < −1 (corresponding to the first term) and δ >
(1 − α)/2 (corresponding to the second term) are both fulfilled when α > 3. Thus, we
have shown that for α > 3 an asymptotic upper bound for Pn(a) is given by (3.7).

Let us now turn to the corresponding lower bound. The probability of interest ma-
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jorises

ψn(a | ν − nδ)
∫ ν+nδ

ν−nδ
P
(
Xnα ∈ dx

)
.

As above, we can check that for δ < −1,

ψn(a | ν − nδ) en I(a | ν)
√
n→ C(a | ν),

and, by the Bahadur-Rao result (1.6),∫ ν+nδ

ν−nδ
P
(
Xnα ∈ dx

)
∼ 1− 2 exp

(
−1

2
I ′′X(ν)nαn2δ

)
→ 1,

when δ > −α/2. This can be realized when α > 2 (and is hence fulfilled when α > 3 as
well). This proves the lower bound.

Combining the upper and lower bounds, we thus find the following result.

Proposition 3.1. For α > 3, as n→∞,

Pn(a) ∼ e−n I(a | ν)C(a | ν)√
n

.

For α ∈ (2, 3],
lim inf
n→∞

Pn(a) en I(a | ν)
√
n ≥ C(a | ν).

Remark 3.2. This result is in accordance with the intuition we gave at the beginning of
the section – in the fast regime the asymptotics of Pn(a) depend on the distribution of the
Xi only through their mean ν. This also gives an indication as to why the asymptotics for
α closer to 1 may be more delicate to deal with. One can imagine that for more moderate
values of α the result may not be precise enough, and that also large deviations coming
from Xnα may play a role in that regime. This is confirmed in Section 3.1.2, where we
consider an example with Xi ∼ Exp(λ). It turns out that the exact asymptotic expression
for α ∈ (1, 2) is indeed more intricate than the expression provided in Theorem 3.1. ♦

Remark 3.3. Along the same lines the asymptotics for pn(a) can be found. They turn
out to be, for α > 3, as n→∞,

pn(a) ∼ e−n I(a | ν)C(a | ν)√
n

(
1− e−I

′(a | ν)
)
.

This is in line with the result of Proposition 3.1: informally,

pn(a) = Pn(a)− Pn(a+ 1/n)

≈ C(a | ν)√
n

e−n I(a | ν) − C(a+ 1/n | ν)√
n

e−n I(a+1/n | ν)

≈ C(a | ν)√
n

e−n I(a | ν)
(

1− e−I
′(a | ν)

)
,

for large n, based on elementary Taylor arguments. ♦
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3.1.1.2 Slow regime

We now consider the slow regime, i.e., α < 1. We have to distinguish between two cases.

◦ In Case I we assume that Xi may have outcomes larger than a with positive prob-
ability:

b+ := sup{b : P(Xi > b) > 0} > a;

as a consequence IX(a) < ∞. Recall that in this case, for nα substantially smaller
than n, it can be argued that Pn(a) essentially behaves as P(Xnα ≥ a).

◦ In Case II we consider the opposite situation: b+ < a. Then the intuition is that
the rare event under consideration is the consequence of large deviations of both
random components: of (i) Xnα being close to b+, and (ii) the Poisson variable with
parameter (roughly) nb+ attaining the atypical value na.

We present here only the analysis for Case I; the derivation for Case II relies on the
same ideas but is more intricate, details can be found in [63]. As in the fast regime, we
start by establishing an upper bound. Note that Pn(a) is majorised by

P
(
Xnα ≥ a− nδ

)
+ ψn(a | a− nδ).

Due to the Bahadur-Rao result, the first term is asymptotically equivalent to

n−α/2CX(a− nδ)e−n
αIX(a−nδ),

which behaves as n−α/2CX(a)e−n
αIX(a) when δ < −α (as a direct consequence of the

standard expansion IX(a − nδ) = IX(a) − nδI ′X(a) + O(n2δ)). In addition, again using
the Chernoff bound, we have

en
αIX(a) ψn(a | a− nδ) ≤ en

αIX(a) exp

(
−n
(
a log

a

a− nδ
+ nδ

))
. (3.9)

Observe that the exponent in the second factor of the right hand side of (3.9) behaves
as n2δ+1. We conclude that (3.9) vanishes if 2δ + 1 > α, or, equivalently, δ > (α − 1)/2
(note that (α − 1)/2 < 0). In order to simultaneously meet δ < −α and δ > (α − 1)/2,
we need to have α < 1

3 .
We now turn to the lower bound. The probability of interest is bounded from below

by
ψn(a | a+ nδ)P

(
Xnα ≥ a+ nδ

)
.

The first factor is bounded from below by 1 minus a term that decays as exp(−n1+2δ)
(which goes to 1 when δ > − 1

2 ), whereas the second behaves as n−α/2CX(a)e−n
αIX(a)

when δ < −α. In other words, there is an appropriate δ for all α < 1
2 . We have thus

arrived at the following result.

Proposition 3.4. Assume b+ > a. For α < 1
3 , as n→∞,

Pn(a) ∼ e−n
α IX(a)CX(a)

nα/2
.

For α ∈ [ 1
3 ,

1
2 ),

lim inf
n→∞

Pn(a) en
α IX(a)nα/2 ≥ CX(a).
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Remark 3.5. Note that here, in contrast with Proposition 3.1, the rate function is that
of X rather than the Poisson random variable. As expected, when α is small, the rare
event is typically a result of a large deviation of Xnα . However, for values of α closer to 1
the same reasoning as in Remark 3.2 applies, and we do not expect a simple asymptotic
expression as given in Proposition 3.4 to hold for all α ∈ ( 1

3 , 1) (as will be confirmed in
Section 3.1.2, which covers the special case in which the Xi are exponentially distributed).
♦

Remark 3.6. As in Remark 3.3, the asymptotics for pn(a) can be found as well. As it
turns out, as n→∞,

pn(a) ∼ e−n
α IX(a)CX(a)I ′X(a)

n1−α/2 .

This is consistent with the result stated in Proposition 3.4:

pn(a) = Pn(a)− Pn(a+ 1/n)

≈ CX(a)

nα/2
e−n

α IX(a) − CX(a+ 1/n)

nα/2
e−n

α IX(a+1/n)

≈ CX(a)

nα/2
e−n

α IX(a)
(

1− e−n
α−1I′X(a)

)
≈ CX(a)I ′X(a)e−n

α IX(a)nα/2−1,

for large n. Note that the asymptotic expansion of Pn(a) has a polynomial factor n−α/2,
whereas pn(a) has a polynomial factor nα/2−1. So in this case Pn(a) and pn(a) are not
(asymptotically) off by a constant, but by a constant multiplied by nα−1. ♦

3.1.1.3 Intermediate range

We finally consider the case α = 1. The random variable Pois(nXnα) is distributed as
the sum of n i.i.d. contributions, each of them distributed as Z := Pois(X). Assuming
that maximum in the definition (3.4) of IZ(a) is attained at θ∗Z , the Bahadur-Rao result
yields, as n→∞,

Pn(a) ∼ e−nIZ(a)CZ(a)√
n

,

where now

CZ(a) :=
1

1− eθ
?
Z

1√
2πΛ′′Z(θ?Z)

=
1

1− eθ
?
Z

1√
2π
(
eθ
?
ZΛ′X

(
eθ
?
Z − 1

)
+ e2θ?ZΛ′′X

(
eθ
?
Z − 1

))
=

1

1− eθ
?
Z

1√
2π
(
a+ e2θ?ZΛ′′X

(
eθ
?
Z − 1

)) .
Based on the same arguments as in Remark 3.3 we infer that

pn(a) ∼ 1√
2πn

(
a+ e2θ?ZΛ′′X

(
eθ
?
Z − 1

)) e−nIZ(a) .
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3.1.2 Example with gamma arrival rates

In this section we consider the special case that the Xi s are i.i.d. samples from the gamma
distribution. The use of this specific mixed Poisson distribution for call center staffing
purposes is advocated in e.g. [71]. In the analysis, this can be reduced to the case where
the Xi s are exponentially distributed with parameter λ (i.e., mean λ−1), see Remark 3.8.

To start the exposition, we note that if the Xi s are exponential with parameter λ,
then

∑nα

i=1Xi has a gamma distribution with parameters nα and λ. The objective of this
section is to evaluate the asymptotics of pn(a) across all values of α; later we comment
on what the corresponding Pn(a) looks like. We assume throughout that a is larger than
λ−1. The computations are facilitated by the fact that an exact expression for pn(a) is
available. It takes a routine calculation, which we include for completeness, to compute
pn(a):

pn(a) =

∫ ∞
0

(n1−αx)na

(na)!
e−(λ+n1−α)x λn

α

(nα − 1)!
xn

α−1 dx

=
(n1−α)na

(na)!

λn
α

(nα − 1)!

∫ ∞
0

e−(λ+n1−α)xxna+nα−1 dx

=
(na+ nα − 1)!

(na)!(nα − 1)!

(n1−α)naλn
α

(λ+ n1−α)na+nα∫ ∞
0

(λ+ n1−α)n
α

(na+ nα − 1)!
e−(λ+n1−α)xxna+nα−1 dx

=

(
na+ nα − 1

na

)(
n1−α

λ+ n1−α

)na(
λ

λ+ n1−α

)nα
.

Remark 3.7. We recognize here the probability that a negative binomially distributed
random variable with success probability p := n1−α/(λ+ n1−α) attains na successes
before nα failures have occurred. This can be understood as follows. Note that a Poisson
random variable with parameter xT represents the number of Exp(x) “success clocks”
expiring within a period of length T . In our case the rate of the success clocks is x = n1−α

and the length of the period corresponds to the time it takes for n exponential “failure
clocks” of rate λ to expire, that is, we have T =

∑nα

i=1Xi. Thus, pn(a) is the probability
that na success clocks expire before the nαth failure clock expires and the period ends. The
success probability is indeed given by p as it is the probability that the next Exp(n1−α)
success clock expires before a Exp(λ) failure clock. ♦

Remark 3.8. In the above setup we considered exponentially distributed Xi s. Note,
however, that our analysis only relies on

∑nα

i=1Xi having a gamma distribution, and thus
can easily be extended to the practically relevant case [71] that the Xi s are i.i.d. samples
from a gamma distribution. It is noted that the gamma distribution has two parameters
(as opposed to the exponential distribution), and therefore allows for more modelling
flexibility (e.g., the mean and variance can be fitted). ♦

As a first step in deriving the exact asymptotics of pn(a), we approximate the bino-
mial coefficients by applying Stirling’s formula, which says that n! ∼

√
2πnnne−n. As a
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consequence we find that(
na+ nα − 1

na

)
∼ 1√

2π

√
na+ nα − 1
√
na
√
nα − 1

(na+ nα − 1)na+nα−1

(na)na(nα − 1)nα−1

Applying this in the expression for pn(a) then yields

pn(a) =

(
na+ nα − 1

na

)(
n1−α

λ+ n1−α

)na(
λ

λ+ n1−α

)nα
∼ 1√

2π

√
na+ nα − 1
√
na
√
nα − 1

(na+ nα − 1)na+nα−1

(na)na(nα − 1)nα−1

×
(

n1−α

λ+ n1−α

)na(
λ

λ+ n1−α

)nα
=

1√
2π

√
nα − 1

√
na
√
na+ nα − 1

(
na+ nα − 1

aλ(nα + n
λ )

)na
×
(

λ(na+ nα − 1)

(λ+ n1−α)(nα − 1)

)nα
. (3.10)

In order to determine the asymptotic behaviour of this expression for large n, we again
consider the three regimes separately. We do so by evaluating the three factors in (3.10).

3.1.2.1 Fast regime

We start by examining the case α > 1. For the first factor we have

1√
2π

√
nα − 1

√
na
√
na+ nα − 1

∼ 1√
2π

1√
na

.

The middle factor can be addressed as follows. For ease we analyse its logarithm:

na log

(
na+ nα − 1

aλ(nα + n/λ)

)
= −na log(aλ) + na log

(
1 + n1−αa− n−α

)
− na log

(
1 + n1−α/λ

)
(3.11)

For the last factor we similarly obtain

nα log

(
λ(na+ nα − 1)

(λ+ n1−α)(nα − 1)

)
=nα log(1 + n1−αa− n−α)− (3.12)

nα log

(
1 +

1

λ
n1−α − 1

λ
n1−2α − n−α

)

Define k := (α − 1)−1 and k+ := bkc. The logarithms can be expanded relying on
their standard Taylor series form, but it can be argued that the resulting infinite series
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can be truncated. For instance,

na log
(
1 + n1−αa− n−α

)
= na

∞∑
k=1

(−1)k+1

k
(n(1−α)a− n−α)k

∼ na
k+∑
k=1

(−1)k+1ak

k
n(1−α)k.

Likewise,

na log
(
1 + n1−α/λ

)
∼ na

k+∑
k=1

(−1)k+1λ−k

k
n(1−α)k.

We thus find that (3.11) asymptotically equals

−na log(aλ) + na

k+∑
k=1

(−1)k(λ−k − ak)

k
n(1−α)k.

For the last factor, note that from k+ + 1 on all terms vanish, leaving us with

nα log(1 + n1−αa− n−α) ∼ nα
k++1∑
k=1

(−1)k+1ak

k
n(1−α)k − 1,

nα log(1 + n1−α/λ− n1−2α/λ− n−α) ∼ nα
k++1∑
k=1

(−1)k+1λ−k

k
n(1−α)k − 1.

After a bit of rewriting, we conclude that (3.12) equals

n

k+∑
k=0

(−1)k(ak+1 − λ−(k+1))

k + 1
n(1−α)k.

Defining

ξ0 := −a log(λa) + a− 1

λ
, ξk := (−1)k

(
λ−k

(
a

k
− 1/λ

k + 1

)
− ak+1

(
1

k
− 1

k + 1

))
,

we conclude that in case α > 1,

pn(a) ∼ 1√
2πan

eξ0n exp

 k+∑
k=1

ξkn
(1−α)k+1

 .

In particular, if α > 2, then the last factor equals 1 (the empty sum being defined as
0). It is not hard to check that this result agrees with what has been found for α > 3 in
Section 3.1.1.
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3.1.2.2 Slow regime

If α < 1, then the first factor behaves as

1√
2π

√
nα − 1

√
na
√
na+ nα − 1

∼ 1√
2π

1

a
nα/2−1 .

For the logarithm of the middle factor we now have

na log

(
na+ nα − 1

aλ(nα + n/λ)

)
= na log

(
1 +

1

a
(nα−1 − n−1)

)
− na log

(
1 + λnα−1

)
.

(3.13)

With k̃ := α(1− α)−1 and k− := bk̃c, we obtain that this factor asymptotically equals

na

k−+1∑
k=1

(−1)k+1(a−k − λk)

k
n(α−1)k − 1

= na

k−∑
k=0

(−1)k(a−(k+1) − λk+1)

k + 1
n(α−1)(k+1) − 1 .

For the last factor we find

nα log

(
λ(na+ nα − 1)

(λ+ n1−α)(nα − 1)

)
= nα log (λa) + nα log

(
1 +

1

a
nα−1 − 1

a
n−1)

)
− nα log

(
1 + λnα−1 − λn−1 − n−α

)
where

nα log

(
1 +

1

a
nα−1 − 1

a
n−1

)
∼ nα

k−∑
k=1

(−1)k+1

k
a−kn(α−1)k ,

nα log
(
1 + λnα−1 − λn−1 − n−α

)
∼ nα

k−∑
k=1

(−1)k+1

k
λkn(α−1)k − 1 .

Combining the above we conclude

pn(a) ∼ 1√
2πa

n
α
2−1 eζ0n

α

exp

 k−∑
k=1

ζkn
(α−1)k+α

 , (3.14)

where

ζ0 := log(λa) + 1− λa , ζk := (−1)k
(
λk
(

1

k
− aλ

k + 1

)
− a−k

(
1

k
− 1

k + 1

))
.

It can again be verified that this result coincides for α < 1
3 with the one derived in

Section 3.1.1.
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3.1.2.3 Intermediate regime

For completeness, we also include the result for the case α = 1. We find

pn(a) ∼ 1√
2π

1√
na(a+ 1)

exp

(
−n
(
a log

(
a

1 + λ

1 + a

)
+ log

(
1

λ

1 + λ

1 + a

)))
. (3.15)

It is noted that the asymptotics of Pn(a) and pn(a) could have been found by applying
the Bahadur-Rao result directly:

Pn(a) ∼ 1

1− eθ?
1√

2πnΛ′′Z(θ?Z)
e−nIZ(a) =

1

1− a 1+λ
1+a

1√
2πna(a+ 1)

e−nIZ(a) .

and
pn(a) = Pn(a)− Pn

(
a+

1

n

)
∼ 1√

2πna(a+ 1)
e−nIZ(a) ,

where it can be verified that IZ(a) coincides with the exponent found in (3.15).

3.1.2.4 Example

In Figure 3.1 we illustrate the accuracy of the approximation, by displaying the ratio of
the approximation p̃n(a) and the exact expression for pn(a). As expected, we observe
that this ratio tends to 1 as n grows.

0 10 20 30 40
1

1.01

1.02

1.03

N

p̃
n

(a
)/ p n

(a
)

(a) Fast regime, α = 5.

0 50 100 150

0.92

0.94

0.96

0.98

1

N

p̃
n

(a
)/ p n

(a
)

(b) Slow regime, α = 1
5
.

Figure 3.1: Ratio of approximation p̃n(a) and exact value pn(a), whereXi is exponentially
distributed with parameter λ = 2.5 and a = 1.

3.1.3 Importance sampling

In the previous sections we found exact asymptotics for the rare-event probabilities pn(a)
and Pn(a) for (i) a specific range of α, and (ii) for the specific case that the Xi are
exponentially distributed. To facilitate numerical evaluation (which we need, for example,
if (i) and (ii) do not apply), we propose in this section importance sampling estimators
for pn(a) and Pn(a). We establish asymptotic efficiency properties, thus guaranteeing fast



Chapter 3. Infinite server queue with mixed Poisson arrivals 56

computation even for large n. As before, we distinguish the cases α < 1 and α > 1; the
case α = 1 can be addressed by using a classical importance sampling procedure.

3.1.3.1 Fast regime

Recall that in this regime a rare event is typically the result of a large deviation of the
Poisson random variable, while the sample mean X1, . . . , Xnα will typically be close to
ν (under their true distribution, which we shall indicate by a subscript ν). In view of
this, we propose a somewhat unconventional importance sampling estimator (cf. the more
classical estimator (3.19) that we will come across in the slow regime). Based on r ∈ N
runs, Pn(a) can be unbiasedly estimated by

P̂ is
n (a) =

1

r

r∑
i=1

P
(
Pois

(
nX

(i)

Nα

)
= Z(i)

)
P
(
Pois(na) = Z(i)

) 1
{
Z(i) ≥ na

}
, (3.16)

where Z(1), . . . , Z(r) are independent samples from Pois(na), and X
(1)

nα , . . . , X
(r)

nα are in-
dependently sampled under the original measure.

Observe that the contribution from the ith run depends on X
(i)

nα as well as Z(i). It is
therefore easier to analyse the corresponding estimator for pn(a),

p̂isn (a) :=
1

r

r∑
i=1

P
(

Pois
(
nX

(i)

nα

)
= Z(i)

)
P
(
Pois(na) = Z(i)

) 1
{
Z(i) = na

}
,

which does not depend on values of Z(i) that are larger than na (as Z(i) equals na almost
surely). We later comment on efficient estimation of Pn(a).

The contribution due to the likelihood ratio of the ith run is

L
(
X

(i)

nα

)
:=

(
X

(i)

nα

a

)na
e
n
(
a−X(i)

nα

)
.

The variance of the estimator (with respect to the joint distribution of Z ∼ Pois(na) and
Xnα) can be evaluated to be

1

n
E
[(
L
(
Xnα

)
1 {Z = na}

)2]− pn(a)2 =
1

n
E
[
L2
(
Xnα

)
1 {Z = na}

]
− pn(a)2 , (3.17)

with Z distributed as each of the Z(i), and Xnα as each of the X
(i)

nα .

Proposition 3.9. The estimator p̂isn (a) is asymptotically efficient for estimating pn(a);
that is

lim sup
n→∞

1

n
logE

[
L2
(
Xnα

)
1 {Z = na}

]
≤ −2I(a | ν) .
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Proof. First, note that

E
[
L2
(
Xnα

)
1 {Z = na}

]
= Eν

[(
Xnα

a

)2na

e2n(a−Xnα )

]
P(Z = na)

≤ Eν

[(
Xnα

a

)2na

e2n(a−Xnα )

]
.

Define F (n)
ε :=

{
Xnα ∈ (ν − ε, ν + ε)

}
, where ε > 0. Then

Eν

[(
Xnα

a

)2na

e2n (a−Xnα )1
{
F (n)
ε

}]
≤
(
ν + ε

a

)2na

e2n(a−ν+ε) . (3.18)

On the other hand, we have

Eν

[(
Xnα

a

)2na

e2n (a−Xnα )1
{(
F (n)
ε

)c}]
= Eν

[
e−2nI

(
a
∣∣Xnα)1{(F (n)

ε

)c}]
≤ P

([
F (n)
ε

]c)
.

where the last inequality is due to I(a |x) ≥ 0 for any x. Invoking Chernoff’s bound, we
note that

P
([
F (n)
ε

]c)
≤ 2 exp (−nαjε) , where jε := inf

x6∈(ν−ε,ν+ε)
IX(x) > 0.

We conclude that for α > 1,

lim sup
n→∞

nα

n

1

nα
logP

([
F (n)
ε

]c)
≤ lim sup

n→∞
−n

α

n
jε = −∞ .

Combining this with (3.18), we conclude that

lim sup
n→∞

1

n
logE

[(
L
(
Xnα

)
1 {Z = na}

)2] ≤ 2a log

(
ν + ε

a

)
+ 2(a− ν + ε).

The desired result follows when taking ε ↓ 0.

Formally, this result on asymptotic efficiency for p̂isn (a) does not imply asymptotic
efficiency for P̂ is

n (a). In practice, however, we can use

P̂ is
n (a) =

K∑
k=na

p̂n(k/n),

with K sufficiently large, to estimate Pn(a).

3.1.3.2 Slow regime

In the slow regime, assuming that b+ ≥ a, the rare event is typically caused by a large
deviation of Xnα . Suppose that X

(1)

nα , . . . , X
(n)

nα are independently sampled according to
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the original measure Pν (where the subscript indicates that the expectation of each of the
sample means X

(i)

nα involved is ν). In this case we suggest the estimator

P̂ is
n (a) =

1

r

r∑
i=1

Pν
(
X

(i)

Nα ∈ dY (i)
)

Pa
(
X

(i)

Nα ∈ dY (i)
) 1{Pois

(
NY (i)

)
≥ Na

}
, (3.19)

where Y (1), . . . , Y (r) ∼ Pa. The measure Pa corresponds to the exponentially twisted
version such that the mean becomes a (rather than ν).

For each run we have the likelihood ratio, with x = (x1, . . . , xnα),

L(x ) =

nα∏
i=1

MX(θa) e−θaxi ,

where we recall that MX(·) is the moment-generating function of X and θa is the unique
solution to

Ea[X] = Eν
[
X

eθX

MX(θ)

]
=
M ′X(θ)

MX(θ)
= a .

In this case we have seen before that n−α logPn(a)→ −IX(a) as n→∞.

Proposition 3.10. The estimator P̂ is
n (a) is asymptotically efficient for estimating Pn(a);

that is
lim sup
n→∞

1

nα
logEa

[(
L(X )1

{
Pois

(
nXnα

)
≥ na

})2] ≤ −2IX(a) .

Proof. Note that

Ea
[(
L(X)1

{
Pois

(
nXnα

)
≥ na

})2]
= M(θa)2nα Ea

[
e−2θan

αXnα1
{

Pois
(
nXnα

)
≥ na

}]
.

On F (n)
ε :=

{
Xnα ∈ (a− ε,∞)

}
we have

Ea
[
e−2θan

αXnα1
{

Pois
(
nXnα

)
≥ na

}
1
{
F (n)
ε

}]
≤ e−2θan

α(a−ε),

while outside of F (n)
ε we have

Ea
[
e−2θan

αXnα1
{

Pois
(
nXnα

)
≥ na

}
1
{[
F (n)
ε

]c}]
≤ Pa (Pois (n(a− ε)) ≥ na) ,

where we used that θa > 0 because a > ν [38, Lemma 2.2.5]. By virtue of the Chernoff
bound,

Pa (Pois (n(a− ε)) ≥ na) ≤ e−nI(a | a−ε), where I(a | a− ε) > 0.
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This implies that

lim sup
n→∞

1

nα
logEa

[
e−2θan

αXnα1
{

Pois
(
nXnα

)
≥ na

}
1
{[
F (n)
ε

]c}]
≤ lim sup

n→∞
− n

nα
I(a | a− ε) = −∞.

We let first n→∞ and then ε ↓ 0, to conclude that

lim sup
n→∞

1

nα
logEa

[(
L(X)1

{
Pois

(
nXnα

)
≥ na

})2]
≤ 2 logMX(θa)− 2θaa = −2IX(a) ,

as claimed.
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(a) Fast regime, α = 2.
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(b) Slow regime, α = 0.5.

Figure 3.2: Logarithmic importance sampling (IS) and crude Monte Carlo (MC) estima-
tors for Pn(a), where Xi is exponentially distributed with parameter λα (where λ2 = 1,
λ0.5 = 2.5) and a = 2, averaged over n = 107 samples. The upper bounds of the sample
confidence intervals are indicated by dashed lines; the width of the intervals is inflated by
a factor 103 for better visibility.

3.1.3.3 Numerical example

We provide a numerical example with exponentially distributed Xi. Specifically, we con-
sider Xi ∼ Exp(1), a = 2, and α ∈ {0.5, 2}. Figure 3.2 shows the logarithm of P̂ is

n (a) as
well as the corresponding crude Monte Carlo estimators, as a function of n. We generated∑nα

i=1Xi by drawing from the gamma distribution with parameters nα and 1/λ. This al-
lowed us to include values of n for which nα /∈ N in Fig. 3.2b. The dotted lines in the
figures indicate the upper bounds of the standard normal 95% confidence intervals evalu-
ated using sample standard deviations (multiplied by a factor 103 to make them visible).
It can be seen that for the importance sampling estimator the width of the confidence
interval hardly depends on n. In contrast, for the Monte Carlo estimator the width of
the confidence interval increases significantly.
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3.2 Tail probabilities of the system size process

In this section we investigate the asymptotic behaviour of Qn(a) (qn(a)), the probability
that the number of clients in the system exceeds (equals) some threshold na. We consider
the scaled system previously studied in [64].

Define

Sn :=

n∑
i=1

Zi, with Zi
d
= Pois (Xi ωi(n)) ,

where ωi(n) is the probability that a call arriving at a uniform epoch in the interval
[(i − 1)/n, i/n) is still present at time 1. Suppose the arrival rates Xi are i.i.d. with
distribution Pν such that EXi = ν, and the service times are i.i.d. with distribution
function G. Then it can be verified that

ωi(n) = n

∫ i/n

(i−1)/n

G(1− x)dx;

because the Xi are i.i.d., we can reverse time, and hence replace G(1−x) in the previous
display by G(x). As mentioned in the introduction (viz. Eqn. (3.1)), under the scaling of
[64], the probability that the number of clients in the system exceeds some threshold na
is given by

Qn(a) = P
(
Pois(nXωnα) ≥ na

)
, (3.20)

where

Xωn := n−1
n∑
i=1

Xi ωi(n);

for details see [64]. The corresponding probability mass function is denoted by

qn(a) := P
(
Pois(nXωnα) = na

)
.

Note that if α = 1, we have Qn(a) = P(Sn ≥ na), and qn(a) = P(Sn = na). We shall also
use the notation

ωn := n−1
n∑
i=1

ωi(n).

Assume that the distribution function G associated with the distribution of the service
times is twice differentiable. Then using exactly the same techniques as in [64, Section
4.1] we can show that that Qn(a) satisfies a large deviations principle,

lim
n→∞

n−min{1,α} log (Qn(a)) = −Jα(a),

where the rate function is given by

Jα(a) :=


I
(
a
∣∣∣ ν ∫ 1

0
G(x)dx

)
if α > 1,

supθ

{
θa−

∫ 1

0
ΛX

((
eθ − 1

)
G(x)

)
dx
}

if α = 1,

supθ

{
θa−

∫ 1

0
ΛX

(
θG(x)

)
dx
}

if α < 1.

(3.21)
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We will assume that the suprema in the definition of Jα for α < 1 and α = 1, respectively,
are attained at θ∗ ≡ θ∗α.

In the remainder of this section, we first determine the exact asymptotics for the
special case α = 1. That is, we assume that the arrival rates are resampled every 1/n
time units, and we are interested in the number of customers present at time 1 (that is,
after n time periods of length 1/n). As it turns out, the case α 6= 1 is considerably harder
to deal with, and therefore left for future research. We conclude this section by a set of
numerical experiments.

3.2.1 Exact asymptotics

Let in this section α = 1, and

θ? = arg sup
θ

{
θa−

∫ 1

0

ΛX
(
G(x)(eθ − 1)

)
dx

}
.

It is immediately verified that

E
[
eθSn

]
=

n∏
i=1

MX

(
ωi(n)(eθ − 1)

)
. (3.22)

The idea is now to construct a measure Q under which the event of interest is not rare so
that a central limit theorem applies. Concretely, we choose Q to be an θ?-twisted version
of the original measure such that Sn has moment generating function (cf. (3.22))

EQ
[
eθSn

]
=

n∏
i=1

MX

(
ωi(n)(eθ+θ

?

− 1)
)/ n∏

i=1

MX

(
ωi(n)(eθ

?

− 1)
)
. (3.23)

As a consequence, qn(a) = EQL1{Sn = na}, with the likelihood ratio

L := e−θ
?Sn

n∏
i=1

MX

(
ωi(n)(eθ

?

− 1)
)
.

It thus follows that

qn(a) = e−θ
?na

(
n∏
i=1

MX

(
ωi(n)(eθ

?

− 1)
))

Q(Sn = na).

We now point out how to evaluate the middle factor in the previous display (i.e., the
product), namely, we check that asymptotically this middle factor behaves as

exp

(
n

∫ 1

0

ΛX
(
τG(x)

)
dx

)
, (3.24)

with τ := eθ
? − 1. The logarithm of the middle factor is

n∑
i=1

ΛX
(
τωi(n)

)
=

n∑
i=1

ΛX

(
τn

∫ i/n

(i−1)/n

G(x)dx

)
,
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where, by a Taylor expansion of G,

n

∫ i/n

(i−1)/n

G(x)dx = G

(
i− 1

n

)
+

1

2n
G ′
(
i− 1

n

)
+O

(
1

n2

)
.

As a consequence, from a Taylor expansion of ΛX(·) we have

n∑
i=1

ΛX
(
τωi(n)

)
=

n∑
i=1

ΛX

(
τG

(
i− 1

n

))
+

τ

2n

n∑
i=1

G ′
(
i− 1

n

)
Λ′X

(
τG

(
i− 1

n

))
+O

(
1

n

)
,

where, as n→∞,

τ

2n

n∑
i=1

G ′
(
i− 1

n

)
Λ′X

(
τG

(
i− 1

n

))
→ τ

2

∫ 1

0

G ′(x) Λ′X
(
τG(x)

)
dx

=
1

2

(
ΛX
(
τG(1)

)
− ΛX

(
τG(0)

))
,

provided that G(·) is twice differentiable on [0, 1] (recognize the left Riemann sum ap-
proximation). Now recall the trapezoidal rule version of the Riemann sum approximation,
that holds for any Riemann-integrable f(·):

1

n

n∑
i=1

f(i/n) =

∫ 1

0

f(x)dx+
1

2n
(f(1)− f(0)) +O

(
1

n2

)
.

Since ΛX is Riemann integrable on [0, 1], this can be applied to yield

n

∫ 1

0

ΛX
(
τG(x)

)
dx

=

n∑
i=1

ΛX

(
τG

(
i

n

))
− 1

2

(
ΛX
(
τG(1)

)
− ΛX

(
τG(0)

))
+O

(
1

n

)

=

n∑
i=1

ΛX

(
τG

(
i− 1

n

))
+

1

2

(
ΛX
(
τG(1)

)
− ΛX

(
τG(0)

))
+O

(
1

n

)
.

We have thus arrived at

qn(a) ∼ e−θ
?na exp

(
n

∫ 1

0

ΛX
(
G(x)(eθ

?

− 1)
)
dx

)
Q(Sn = na).

We are left to evaluate Q(Sn = na). We do so by first proving the claim that, under Q,
Sn obeys a central limit theorem: as n→∞,

Sn − na√
n
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converges to a zero-mean normal random variable. Recall from (3.23) that we have

logEQ eθSn =

n∑
i=1

ΛX

(
ωi(n)(eθ+θ

?

− 1)
)
−

n∑
i=1

ΛX

(
ωi(n)(eθ

?

− 1)
)
.

In order to establish that Sn satisfies the anticipated central limit theorem, we prove that
Ψn(θ) := logEQ eθSn/

√
n − θa

√
n → 1

2σ
2θ2, for some σ2 > 0. This is done as follows.

Observe that we can write the logarithmic moment generating function Ψn(θ) as

n∑
i=1

ΛX

(
ωi(n)

(
eθ
?

− 1 +
(

eθ
?

(eθ/
√
n − 1)

)))
−

n∑
i=1

ΛX

(
ωi(n)(eθ

?

− 1)
)
− θa

√
n.

By applying a Taylor expansion to eθ/
√
n − 1, this can be written as (neglecting higher

order terms)

n∑
i=1

ΛX

(
ωi(n)

(
eθ
?

− 1 +

(
eθ
?

(
θ√
n

+
θ2

2n

))))

−
n∑
i=1

ΛX

(
ωi(n)(eθ

?

− 1)
)
− θa

√
n.

This can be expanded to, up to terms that are o(1) as n→∞,

n∑
i=1

[
Λ′X

(
ωi(n)(eθ

?

− 1)
)
ωi(n)eθ

?

(
θ√
n

+
θ2

2n

)
+

1

2
Λ′′X

(
ωi(n)(eθ

?

− 1)
)
ωi(n)2e2θ? θ

2

n

]
− θa

√
n.

(3.25)

Now note that, similar to what we have seen before,

1

n

n∑
i=1

Λ′X

(
ωi(n)(eθ

?

− 1)
)
ωi(n) eθ

?

=

∫ 1

0

Λ′X
(
G (x) (eθ

?

− 1)
)
G(x) eθ

?

dx+O

(
1

n

)
,

where the integral equals a by the definition of θ?. We conclude that (3.25) converges to
1
2σ

2θ2 as n→∞, where the corresponding variance is given by

σ2 :=

∫ 1

0

Λ′X
(
G(x)(eθ

?

− 1)
)
G(x) eθ

?

dx+

∫ 1

0

Λ′′X
(
G(x)(eθ

?

− 1)
)
G 2(x) e2θ?dx

=a+

∫ 1

0

Λ′′X
(
G(x)(eθ

?

− 1)
)
G 2(x) e2θ?dx.

We have thus established that, under Q, Sn satisfies the claimed central limit theorem.



Chapter 3. Infinite server queue with mixed Poisson arrivals 64

It directly implies that, by applying the usual continuity correction idea, Q(Sn = na)
behaves inversely proportionally to

√
n in the sense that

√
nQ(Sn = na) ∼

√
nP
(

(0, σ2) ∈
(
− 1

2
√
n
,

1

2
√
n

))
→ 1√

2πσ
.

Upon combining the above, we conclude that the following asymptotic relationship holds.

Proposition 3.11. As n→∞, if G(·) is twice differentiable on [0, 1],

qn(a) ∼ q̃n(a) := e−θ
?na exp

(
n

∫ 1

0

ΛX
(
G(x)(eθ

?

− 1)
)
dx

)
1√

2πnσ
.

Similar to Remark 3.3, we can convert the asymptotics of qn(a) into those of Qn(a).
More precisely, it can be argued that Qn(a) has the same asymptotics as qn(a), except
that the expansion for qn(a) should be divided by 1 − e−θ

?

(which is smaller than 1).
Note also that for the case G(·) ≡ 1 we indeed recover the expression that we provided
in Section 3.1.1.3. Furthermore, it is easily verified that if P(Xi = λ) = 1 (so the arrival
rates are deterministic), the approximation we obtained in Proposition 3.11 coincides with
that of the transient distribution of an M/G/∞ queue. With %(1) := λ

∫ 1

0
G(x)dx, recall

that the number of customers present at time 1 is Poisson with mean %(1). By applying
Stirling’s approximation, and using that θ∗ = log(a/%(1)),

qn(a) = (n%(1))
na

e−n%(1) 1

(na)!
∼
(
%(1)

a

)na
en(a−%(1)) 1√

2πna
= q̃n(a).

3.2.2 Importance sampling

To complement the asymptotic results, in this section we consider importance sampling
algorithms for efficient estimation of Qn(a). We proceed similarly as in Section 3.1.3.

3.2.2.1 Fast regime

For α > 1, similar to the estimator proposed in Section 3.1.3.1 we now consider

Q̂is
n (a) =

1

r

r∑
i=1

P
(
Pois

(
n1−α∑nα

j=1X
(i)
j ωj(n

α)
)

= Z(i)
)

P
(
Pois(na) = Z(i)

) 1
{
Z(i) ≥ na

}
=

1

r

r∑
i=1

P
(
Pois

(
nX(i)ωnα

)
= Z(i)

)
P
(
Pois(na) = Z(i)

) 1
{
Z(i) ≥ na

}
,

where Z(i) are samples from Pois(na), and X(i)
j are i.i.d. random variables distributed as

Pν .
In parallel to the procedure for estimating Pn(a) in Section 3.1.3.1, we prove asymp-

totic efficiency for

q̂isn (a) =
1

r

r∑
i=1

P
(
Pois

(
nX(i)ωnα

)
= Z(i)

)
P
(
Pois(na) = Z(i)

) 1
{
Z(i) = na

}
. (3.26)
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Proposition 3.12. For α > 1, the estimator q̂isn (a) defined in (3.26) is asymptotically
efficient for estimating qn(a); that is

lim sup
n→∞

1

n
logE

[
L2
(
Xωnα

)
1 {Z = na}

]
≤ −2 I

(
a
∣∣ ν ∫ 1

0

G(x)dx

)
.

Proof. The proof follows closely that of 3.9. First, note that

E
[
L2
(
Xωnα

)
1 {Z = na}

]
≤ Eν

[(
Xωnα

a

)2na

e2n(a−Xωnα )

]
.

Define F (n)
ε :=

{
Xωnα ∈ (νωnα − ε, νωnα + ε)

}
, where ε > 0. Then

Eν

[(
Xωnα

a

)2na

e2n (a−Xωnα )1
{
F (n)
ε

}]
≤
(
νωnα + ε

a

)2na

e2n(a−νωnα+ε). (3.27)

Since G is monotone and thus Riemann-integrable on [0, 1], we have

lim
n→∞

ωnα =

∫ 1

0

G(x)dx.

Hence, from (3.27) we obtain that for n large enough

Eν

[(
Xωnα

a

)2na

e2n (a−Xωnα )1
{
F (n)
ε

}]
(3.28)

≤

(
ν
∫ 1

0
G(x)dx+ ε

a

)2na

e2n(a−ν
∫ 1
0
G(x)dx+ε).

On the other hand, we have

Eν

[(
Xωnα

a

)2na

e2n (a−Xωnα )1
{(
F (n)
ε

)c}]
= Eν

[
e−2nI

(
a
∣∣Xωnα)1{(F (n)

ε

)c}]
≤ P

([
F (n)
ε

]c)
,

where the last inequality holds because I(a|x) ≥ 0 for any x. Invoking Chernoff’s bound,
we note that

P
([
F (n)
ε

]c)
≤ 2 exp

(
−

nα∑
i=1

Ji,ε

)
, where Ji,ε := inf

x6∈(νωnα−ε, νωnα+ε)
IXωi(x) > 0.

We conclude that for α > 1,

lim sup
n→∞

nα

n

1

nα
logP

([
F (n)
ε

]c)
≤ lim sup

n→∞
−n

α

n
Jεnα = −∞,

where we used that Jεnα := n−α
∑nα

i=1 Ji,ε is bounded since ωi(nα) ∈ [0, 1]. Combining
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this with (3.28), we conclude that

lim sup
n→∞

1

n
logE

[(
L
(
Xωnα

)
1 {Z = na}

)2]
≤ 2a log

(
ν
∫ 1

0
G(x)dx+ ε

a

)
+ 2

(
a− ν

∫ 1

0

G(x)dx+ ε

)
.

The desired result follows when taking ε ↓ 0.

3.2.2.2 Slow regime

In this section we assume that Xi takes values greater than a with positive probability,
and we focus on the case α < 1. In this regime we expect Qn(a) to behave as

P
(
nXωnα ≥ na

)
= P

(
Xωnα ≥ a

)
.

We therefore propose to twist the distribution of Xiωi with twisting parameter

θ∗ := arg max
θ

{
θa−

∫ 1

0

ΛX
(
θG(x)

)
dx

}
,

that is, under the twisted measure Xi has probability density

eθ
∗ωi

MX(ωiθ∗)
fX(x).

The corresponding importance sampling estimator is

Q̂is
n (a) =

1

r

r∑
i=1

L(Xi)1
{
Xiωnα ≥ na

}
, (3.29)

where X(i)
j are drawn from the twisted distribution of Xj with twisting parameter θ∗ωj ,

whence the likelihood ratio is given by

L(X) =

nα∏
j=1

e−θ
∗ωiXjMX(θ∗ωj).

Proposition 3.13. For α < 1, the estimator Q̂is
n (a) as defined in (3.29) is asymptotically

efficient for estimating Qn(a); that is

lim sup
n→∞

1

nα
logEQ

[(
L(X)1

{
Pois

(
nXωnα

)
≥ na

})2] ≤ −2Jα(a).

Proof. The proof follows closely that of Proposition 3.10. Note that

EQ

[(
L(X)1

{
Pois

(
nXωnα

)
≥ na

})2]
=

nα∏
i=1

MX (ωiθ) EQ

[
e−2θ∗nαXωnα1

{
Pois

(
nXωnα

)
≥ na

}]
.
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On F (n)
ε :=

{
Xωnα ∈ (a− ε,∞)

}
we have

EQ

[
e−2θ∗nαXωnα1

{
Pois

(
nXωnα

)
≥ na

}
1
{
F (n)
ε

}]
≤ e−2θ∗nα(a−ε)

while outside of F (n)
ε we have

EQ

[
e−2θan

αXnα1
{

Pois
(
nXωnα

)
≥ na

}
1
{[
F (n)
ε

]c}]
≤ Q (Pois (n(a− ε)) ≥ na) ,

where we used that θ∗ > 0 by [38, Lemma 2.2.5]. By virtue of the Chernoff bound,

Q (Pois (n(a− ε)) ≥ na) ≤ e−nI(a | a−ε), where I(a | a− ε) > 0.

This implies that

lim sup
n→∞

1

nα
logEQ

[
e−2θan

αXωnα1
{

Pois
(
nXωnα

)
≥ na

}
1
{[
F (n)
ε

]c}]
≤ lim sup

n→∞
− n

nα
I(a | a− ε) = −∞.

We let first n→∞ and then ε ↓ 0, to conclude that

lim sup
n→∞

1

nα
logEQ

[(
L(X)1

{
Pois

(
nXnα

)
≥ na

})2] ≤ 2

nα
log

nα∏
i=1

MX(θ∗ωi)− 2θ∗a ,

The claim then follows because as in Section 3.2.1 we can check that

Jα(a) ∼ sup
θ

{
θa− 1

nα
log

nα∏
i=1

MX (ωiθ)

}
.

3.2.2.3 Intermediate regime

We now focus on the intermediate case with α = 1. Under the original distribution, the
arrival rate parameters Xi have probability density fX ; given Xi = xi, the number of
arrivals, Si, is Poisson distributed with parameter xi; and given Si = si, the number of
customers in the system at time 1, Zi, has a binomial distribution with parameters si
and ωi. This can be seen from the components of the moment-generating function of
Zi

d
= Pois(Xωi), which is given by

MZi(θ) = E
[
eθZi

]
= MX

(
ωi
(
eθ − 1

))
=

∫ ∞
0

fX(x)e−x ex(eθωi+1−ωi)dx

=

∫ ∞
0

fX(x)

∞∑
n=0

e−xxn

n!

(
ωie

θ + 1− ωi
)n

dx.

(3.30)

Now we consider importance sampling with exponential twisting. Let θ∗ be the value of
θ that optimizes J1(a). The twisted moment generating function for the random variable
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Zi is

E
[
e(θ+θ∗)Zi

]
E [eθ∗Zi ]

.

The numerator can be evaluated as∫ ∞
0

fX(x)

∞∑
n=0

e−x
xn

n!

(
eθ
∗+θωi + 1− ωi

)n
dx

=

∫ ∞
0

fX(x)

∞∑
n=0

e−x
xn

n!
qn
(

1

q

(
eθ
∗+θωi + 1− ωi

))n
dx

=

∫ ∞
0

fX(x)e(q−1)x
∞∑
n=0

e−qx(qx)n

n!

(
eθ
∗
ωi
q

eθ + 1− eθ
∗
ωi
q

)n
dx

where q := eθ
∗
ωi + 1 − ωi. This suggests that the rate parameter Xi should be twisted

with twisting parameter q − 1 =
(
eθ
∗ − 1

)
ωi; given X = x, the number of arrivals

S should be simulated as a Poisson random variable with parameter qx; and finally,
given S = s we have that Zi should be sampled from a Binomial distribution with
parameters s and

(
eθ
∗
ωi
)
/q. By a similar computation as in (3.30) we can check that

under the twisted measure Zi is distributed as Pois(X̃ωie
θ∗), where X̃ has probability

density e(q−1)xfX(x)/MX(q − 1). We thus propose the following algorithm.

1. Find θ∗ that maximises J1(a).

2. Set L = 1. For each i = 1, . . . , n:

(a) Generate Xi from the twisted distribution with density

e

((
eθ
∗
−1
)
ωi
)
x

MX ((eθ∗ − 1)ωi)
fX(x).

(b) Given Xi = xi, generate Zi ∼ Pois(xiωie
θ∗).

(c) Update the likelihood ratio L→ L · `i(Zi), where

`i(Zi) =
P (Pois(Xiωi) = Zi)

P
(

Pois(X̃ωieθ
∗) = Zi

) . (3.31)

This can be evaluated in closed form, see the computation below.

3. Evaluate Sn =
∑n
i=1 Zi.

4. Carry out steps (1) − (3) r times and evaluate the estimator for P(Sn ≥ a) as the
sample average over 1 {Sn ≥ a}L:

Q̂is
n (a) =

1

r

r∑
j=1

1
{
S(j)
n ≥ a

}
L(j).
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The likelihood ratio increments (3.31) can be evaluated as

`i(z) =

∫∞
0

(xωi)
ze−xωifX(x) dx∫∞

0
(yωieθ

∗)ze−yωieθ
∗ exp(((eθ∗−1)ωi)y)

MX((eθ∗−1)ωi)
fX(y) dy

=

∫∞
0

(xωi)
ze−xωifX(x) dx

1

MX((eθ∗−1)ωi)

∫∞
0

(eθ∗ωiy)
z

e−ωiyfX(y)dy

= e−θ
∗zMX

((
eθ
∗
− 1
)
ωi

) ∫∞
0

(ωix)ze−ωixfX(x) dx∫∞
0

(ωiy)ze−ωiyfX(y)dy

= e−θ
∗zMX

((
eθ
∗
− 1
)
ωi

)
.

Let E∗ denote the θ∗-twisted expectation. Note from the above computation that `i(z)
is the same likelihood ratio as obtained from the one-step algorithm where we simply
twist Zi by θ∗, and thus, the proposed importance sampling estimator is asymptotically
optimal:

Proposition 3.14. The estimator Q̂n(a) is asymptotically efficient for estimating P(Sn ≥
na); that is

lim sup
n→∞

1

n
logE∗

[
(L(Z)1 {Sn ≥ na})2

]
≤ −2J1(a),

where

L(Z) =

n∏
i=1

`i(Zi),

with Z denoting the vector (Z1, . . . , Zn).

Proof. Recall first that

J1(a) ∼ sup
θ

{
θa− 1

n
log

n∏
i=1

MX

(
ωi

(
eθ
∗
− 1
))}

; (3.32)

this follows by applying the Taylor series approximation as in Section 3.2.1. Now it is
readily checked that

1

n
logEQ

[
(L(Z)1 {Sn ≥ na})2

]
=

1

n
logEQ

[
e−2θ∗Sn

n∏
i=1

M2
X

(
ωi

(
eθ
∗
− 1
))

1 {Sn ≥ na}

]

≤ 1

n
log

[
e−2θ∗na

n∏
i=1

M2
X

(
ωi

(
eθ
∗
− 1
))]

.

Invoking (3.32), we see that the upper bound is asymptotically equivalent to −2J1(a) by
definition of θ∗.



Chapter 3. Infinite server queue with mixed Poisson arrivals 70

3.2.3 Application example

We consider the following numerical example, which illustrates how Proposition 3.11 can
be useful in devising staffing rules for instance for call centres. Per time slot of length 5
min. (which we refer to as ∆) a new arrival rate is sampled from a given distribution with
a mean such that on average λ clients arrive in the time slot of length ∆. The service
times have a fixed mean E.

Let us assume the system starts empty, say at 9 am. Suppose we wish to determine
an appropriate staffing rule for slot 100, i.e., between 10:39 am and 10:40 am (evidently,
any other slot can be dealt with analogously). Then we choose n = 100 (recall the way
we normalized time), and after scaling we have E[nXi∆] = λ (as n∆ = 1). Suppose the
service facility wishes to maintain a rather strict quality level; its objective is to choose
the number of servers in slot 100 to be bnac (or, alternatively, dnae), where a is the
smallest number such that Qn(a) drops below ε.

For the service times we consider the following three distributions:

◦ In the first place, we assume that the service times are exponential with mean service
time E, that is, G(x) = e−x/E .

◦ A second choice is to assume that the service times are deterministically equal to
E, that is we define G(x) = 1{x < E}.

◦ A third choice is to assume that the service times have a Pareto(2) distribution with
mean E, that is, G(x) = (1 + x/E)−2.

As indicated in the introduction, in practice arrival rates for modeling call centers are
typically not constant over time, but may be fluctuating around some mean value [71].
We assume that arrival rates follow a Poisson distribution in Section 3.2.3.1. In Section
3.2.3.2 we consider discrete arrival rates alternating between two values (corresponding
to busy and quiet periods), motivated by applications in cloud computing, where the
workload of virtual machines exhibits such bursty behavior [168].

3.2.3.1 Poisson arrival rates

In this example we take Xi ∼ Pois(λ). We then have

ΛX(θ) = λ
(
eθ − 1

)
; Λ′X(θ) = Λ′′X(θ) = λ eθ.

To compute θ∗ and σ2, we evaluate∫ 1

0

ΛX
(
G(x)(eθ − 1)

)
dx =

∫ 1

0

λ
(
exp

(
G(x)(eθ − 1)

)
− 1
)

dx

and ∫ 1

0

λ exp
(
G(x)(eθ

?

− 1)
)
G 2(x) e2θ?dx

by numerical integration. Inserting the resulting quantities into the formula provided in
Proposition 3.11, we can compute the approximation Q̃n(a) as q̃n(a)(1− e−θ

∗
)−1 for var-

ious a. Consider Figure 3.3 for a comparison of Q̃n(a) with the corresponding estimators
Q̂mc
n (a) that are obtained by crude Monte Carlo estimation of the probability Qn(a) as

defined in (3.20).
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Figure 3.3: Comparison of crude Monte Carlo estimators Q̂mc
n (a) and the approximation

Q̃n(a) as provided in Proposition 3.11. Parameters are chosen as a = 0.2, λ = 0.1, E = 1.

We then proceed to find the value of a, denoted by a(ε), for which we have |Q̃n(a)−ε| <
10−9 using a bisection method. The results are displayed in Table 3.1; together with
M1, the expected number of customers present at time 1; the Monte Carlo estimates
Q̂mc
n

(
a(ε)

)
; and the values of Q̃n(a) and Q̃n(a), where a and a are such that the number

of servers is integer-valued: na = bna(ε)c and na = dna(ε)e. Surprisingly, the results
we obtain for a(ε) and M1 suggest that the number of servers required decreases as
the variability of the service distribution increases: a relatively small number of servers
suffices when service times are Pareto(2), whereas a large number of servers is required
for deterministic service times.

At first sight, this outcome may seem counter-intuitive: one would perhaps have
expected that unsteady service times would imply that more servers are needed. It is,
however, easy to see that this conclusion is not necessarily valid (and in fact false for the
example at hand). While it is true that customers arriving at an early slot can be served
in time by the ‘deterministic servers’ with probability 1, customers arriving in later slots
can never complete their service in time. For ‘random servers’ instead, customers arriving
early may not finish their service in time but on the other hand customers arriving late
still have a chance of completing their service.

In our example, this is reflected in the values of ωi(n): bearing in mind that we fixed
the value of the mean service time E, the arrival rates in the system with Pareto service
times are thinned less in early slots but more in later slots, compared to deterministic
service times (see Figure 3.4). That Pareto service times turn out to be better is a result of
the fact that the Pareto service times are smaller than E with large probability, and hence
the regime in which the Pareto servers outperforms the deterministic servers matters more
than the regime in which the deterministic servers are better. Formally, we have that the
sum of ωi(n) is smallest in the case of Pareto servers, and hence, Sn =

∑n
i=1 Pois

(
Xiωi(n)

)
has the smallest exceedance probability in that case.

To further investigate this issue, it is instructive to compute the variance of the steady-
state number of clients in the system for the three models for the infinite-server queue.
To this end, we can use the formulae that were provided in [64, Eq. (2.31)] for the special
case of exponential service times, noting that they can analogously be derived for more
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Table 3.1: Values of a(ε) needed to achieve |Q̃n
(
a(ε)

)
−ε| < 10−9 with n = 100, expected arrival

rate λ = 2, and mean service time E. The Monte Carlo estimates Q̂n
(
a(ε)

)
are also provided

(based on 109 runs) together with ci, the width of the standard normal 95% confidence interval,
as well as the values of the approximation Q̃n(a) with a (a, respectively) such that na = bnac
(na = dnae, respectively). The inferred number of servers is na, which should be larger than the
expected number of customers M1 at time 1.

G ε E a (ε) na dM1e 1
ε

[
Q̂mc
n (a (ε))± ci

2

]
1
ε

(
Q̃n(a), Q̃n(a)

)

E
xp

on
en
ti
al 10−3

0.05 0.2516 26 10 0.5568± 0.0015 (1.1009, 0.6033)

0.5 1.2602 127 87 0.7215± 0.0017 (1.0053, 0.7802)

1 1.7537 176 127 0.8099± 0.0018 (1.0784, 0.8780)

10−4

0.05 0.2885 29 10 0.8436± 0.0057 (1.7277, 0.9039)

0.5 1.3460 135 87 0.8380± 0.0057 (1.1858, 0.8921)

1 1.8587 186 127 0.9122± 0.0059 (1.2238, 0.9702)

D
et
er
m
in
is
ti
c

10−3

0.05 0.2782 28 10 0.8382± 0.0018 (1.4983, 0.9133)

0.5 1.4809 149 100 0.7645± 0.0017 (1.0185, 0.8279)

1 2.6636 267 200 0.8353± 0.0018 (1.0565, 0.9070)

10−4

0.05 0.3223 33 10 0.6146± 0.0049 (1.1319, 0.6547)

0.5 1.5857 159 100 0.8463± 0.0057 (1.1407, 0.9036)

1 2.8048 281 200 0.8590± 0.0057 (1.0869, 0.9136)

P
ar
et
o(
2) 10−3

0.05 0.2350 24 10 0.6630± 0.0016 (1.3845, 0.7229)

0.5 1.0074 101 67 0.8559± 0.0018 (1.2375, 0.9268)

1 1.4250 143 100 0.8224± 0.0018 (1.1252, 0.8894)

10−4

0.05 0.2688 27 10 0.5721± 0.0057 (1.8616, 0.9194)

0.5 1.0818 109 67 0.7223± 0.0053 (1.0613, 0.7633)

1 1.5167 152 100 0.8642± 0.0058 (1.1959, 0.9164)

general service time distributions. We obtain

Var

(
n∑
i=1

Zi

)
= VarX

n∑
i=1

ω2
i (n) + EX

n∑
i=1

ωi(n).

In case the service times are typically considerably smaller than 1, this behaves as

n VarX

∫ 1

0

G 2(x)dx+ nEX
∫ 1

0

G(x)dx

≈ n VarX

∫ ∞
0

G 2(x)dx+ nEX
∫ ∞

0

G(x)dx.

(3.33)

In this decomposition the second part can be interpreted as the variance that one would
obtain if the arrival process were Poisson with a constant (non-random) rate EX, whereas
the first part is the contribution due to overdispersion. In our example, because X has a
Poisson distribution, EX = λ = VarX.
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Figure 3.4: Values of ωi(n), the probability that a customer arriving in the i-th time slot
is still in the system at time 1, where n = 100, E = 0.5.

The mean number in the system in stationarity is

M∞ := nEX
∫ ∞

0

G(x)dx = nλE, (3.34)

which shows that this term depends on the service-time distribution only through its
mean E.

It thus follows that the second term in the right-hand side of (3.33) equals nλE. We
now consider the first (overdispersion-related) term. In the exponential case,∫ ∞

0

G 2(x)dx =

∫ ∞
0

e−2x/Edx =
E

2
;

in the deterministic case, ∫ ∞
0

G 2(x)dx =

∫ E

0

dx = E;

and in the Pareto(2) case,∫ ∞
0

G 2(x)dx =

∫ ∞
0

(1 + x/E)−4dx =
E

3
.

These computations confirm that the variability in the number of clients in the system
is highest when the service times are deterministic, and lowest when they are Pareto(2).
This entails that – as we saw from the results in Table 3.1 – if there is overdispersion
(i.e., VarX > 0), the Pareto(2) case allows for a relatively conservative staffing policy,
whereas in the deterministic case comparatively many servers are required.

The table also shows that the required number of servers given by na is, for obvious
reasons, larger than M1, the expected number of customers at time 1. At the same time,
na can be substantially lower than the expected number of customers in the system in
stationarity (i.e., M∞, as defined in (3.34)), due to the fact that the system has not
necessarily reached stationarity at time t = 1 (recall that the system starts empty at time
0).
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Figure 3.5: Comparison of crude Monte Carlo estimators Q̂mc
n (a) and the approximation Q̃n(a)

as provided in Proposition 3.11. Parameters are chosen as E = 0.5, p = 0.75, λ1 = 1 and λ2 = 5,
with a = 1.6 for deterministic, a = 1.4 for exponential and a = 1.2 for Pareto service times.

3.2.3.2 Bursty arrival rate parameters

In a second example we assume that the arrivals are Poisson and usually occur with a
certain rate λ1, but occasionally occur with some larger rate λ2 (corresponding to peak
times in the network). Queueing networks with such “bursty” arrival behavior are of
interest in the context of cloud computing, see for example [121, 168].

Specifically, we assume that P(Xi = λ1) = p and P(Xi = λ2) = 1 − p =: p, where p
is typically substantially larger than 1

2 . A routine calculation shows that the cumulant-
generating function is

ΛX(θ) = log
(
peθλ1 + peθλ2

)
,

with derivatives

Λ′X(θ) =
λ1pe

θλ1 + λ2pe
θλ2

peθλ1 + peθλ2
, Λ′′X(θ) =

pp(λ1 − λ2)2eθ(λ1+λ2)

(peθλ1 + peθλ2)
2 .

As before, we evaluate the approximation provided in Proposition 3.11 numerically. The
obtained approximations and the corresponding Monte Carlo estimates are depicted in
Figure 3.5. The counterpart to Table 3.1 is Table 3.2, where the parameters are chosen
as in Section 3.2.3.1 (we put λ1 = 1, λ2 = 5 and p = 0.75 so that the mean arrival rate is
2 as before). Compared to the previous example, it seems that here the required number
of servers is overall somewhat larger due to the greater variance of the Xi. The ordering
of the service time distributions in terms of the required number of servers remains the
same as before: the queueing system with deterministic service times requires the largest
number of servers.
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Table 3.2: Parameters are chosen as in Table 3.1, with arrival rate parameters p = 0.75, λ1 = 1
and λ2 = 5 (so that the expected arrival rate is 2).

G ε E a (ε) na dM1e 1
ε

[
Q̂mc
n (a (ε))± ci

2

]
1
ε

(
Q̃n(a), Q̃n(a)

)

E
xp

on
en
ti
al 10−3

0.05 0.2662 27 10 0.7501± 0.0017 (1.4061, 0.8115)

0.5 1.2991 130 87 0.9002± 0.0019 (1.2266, 0.9787)

1 1.8061 181 127 0.8576± 0.0018 (1.1182, 0.9307)

10−4

0.05 0.3056 31 10 0.7199± 0.0053 (1.4107, 0.7615)

0.5 1.3942 140 87 0.8089± 0.0056 (1.1124, 0.8601)

1 1.9234 193 127 0.8230± 0.0056 (1.0742, 0.8717)

D
et
er
m
in
is
ti
c

10−3

0.05 0.3012 31 10 0.6173± 0.0015 (1.0539, 0.6640)

0.5 1.5438 155 100 0.8215± 0.0018 (1.0708, 0.8934)

1 2.7487 275 200 0.9035± 0.0019 (1.1232, 0.9827)

10−4

0.05 0.3484 35 10 0.8783± 0.0058 (1.5388, 0.9209)

0.5 1.6632 167 100 0.8187± 0.0056 (1.0669, 0.8690)

1 2.9094 291 200 0.9316± 0.0060 (1.1532, 0.9905)

P
ar
et
o(
2) 10−3

0.05 0.2461 25 10 0.7264± 0.0017 (1.4490, 0.7888)

0.5 1.0381 104 67 0.8755± 0.0018 (1.2856, 0.7069)

1 1.4671 147 100 0.8651± 0.0018 (1.1606, 0.9393)

10−4

0.05 0.2817 29 10 0.5315± 0.0045 (1.1255, 0.5649)

0.5 1.1200 113 67 0.6948± 0.0052 (1.0002, 0.7408)

1 1.5688 157 100 0.9138± 0.0059 (1.2335, 0.9709)

3.3 Conclusion

In this chapter we considered an infinite-server queue with doubly stochastic Poisson
arrivals, where the arrival rate is resampled every n−α time units. Among the main
contributions of the paper are exact (non-logarithmic, that is) asymptotic expressions for
Pn(a), the tail distribution of the number of arrivals at a given time (for α > 3 or α < 1

3 );
as well as for Qn(a), the tail probability that more than na customers are present in the
system (for the case α = 1).

As we saw for the specific example of exponentially distributed arrival rates, the
asymptotic expression for Pn(a) can have a rather intricate shape for α ∈

[
1
2 , 2
]
. We do,

however, believe that it is possible to derive the asymptotics for the cases α ∈
[

1
3 ,

1
2

)
and

α ∈ (2, 3] by using more precise bounds based on the Berry-Esseen inequality.
In numerical examples we showed how the approximation for Qn(a) can be useful when

determining the required number of servers such that at a specific time t (e.g. a certain
time of the day) a specific performance target is met. In the future, we aim to extend this
staffing rule to one that achieves the desired performance level during an extended period
of time, rather than at a single time point. We expect that more refined techniques are
needed then, since the staffing level at a certain point in time has impact on the number
of customers that are present in the subsequent time interval (although we feel that the
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procedure we have developed in this paper may serve as a reasonably accurate proxy).
Finally, we believe that it is possible to extend the results of the chapter by relaxing

the assumption that the arrival rates be independent and identically distributed. Instead,
one could consider the situation in which the arrival rates in subsequent time intervals
depend on each other in a Markovian way. Another interesting topic relates to the infinite-
server model in which the random rate of the arrival process changes continuously; in this
context we could for instance consider a Coxian arrival process with a shot-noise rate.



CHAPTER 4

Sample-mean related rare-event probabilities

The problem we consider in this chapter is more generic compared to the setting of
Chapters 2 and 3; we will point out possible applications later-on. The content of this
chapter has appeared in Kuhn, Mandjes and Taimre [88].

Let the sequence (Xi)
n
i=1 ((Yi)ni=1, respectively) consist of i.i.d. samples, all of them

distributed as a random variable X (Y , respectively); in addition, the sequences are
assumed to be mutually independent. In a broad range of applications, it is relevant to
quantify the behaviour of the probability, for n ∈ N,

α1(n) := P
(
Xn ≤ Y n

)
,

with Xn and Y n denoting the sample averages

Xn :=
1

n

n∑
j=1

Xj , Y n :=
1

n

n∑
j=1

Yj .

We throughout assume that EX > EY , which entails that α1(n) corresponds to a rare
event, and therefore vanishes as n grows large. The logarithmic asymptotics of α1(n)
easily follow from Cramér’s theorem. Furthermore, recall from Section 1.1.1 that the
Bahadur-Rao result states that

α1(n) ∼ C√
n

e−nI ,

for positive constants C and I.

A natural next question concerns the context in which there are d independent copies
of each of the sample means. More specifically, with X1,n up to Xd,n (Y 1,n up to Y d,n,
respectively) being i.i.d. copies of Xn (Y n, respectively), we wish to identify the exact
asymptotics of

αd(n) := P (En) , with En :=

{
max

i∈{1,...,d}
Xi,n ≤ min

i∈{1,...,d}
Y i,n

}
.

77
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Some straightforward bounds on αd(n) can easily be found. It is for instance clear that
a necessary condition for En is that Xi,n ≤ Y i,n for all i ∈ {1, . . . , d}, and hence the
independence of the individual sample means implies the following obvious asymptotic
upper bound (in self-evident notation):

αd(n) .
Cd

nd/2
e−ndI , (4.1)

as n→∞ (with C and I as above). The main result of this chapter is that we show that
(4.1) is not tight: we prove that, for some C̃d > 0, as n→∞,

αd(n) ∼ C̃d

nd−
1
2

e−ndI (4.2)

(where obviously C̃1 = C). The proof relies on careful use of the Bahadur-Rao approxi-
mation for all sample means involved.

The exact asymptotics of αd(n) do not follow from results that have appeared in the
literature before, as we point out now. We first observe that the setting introduced above
can be cast in a more general framework, involving d2 sample means. Indeed, with

Zn = (X1,n, . . . , Xd,n, Y 1,n, . . . , Y d,n)T ∈ R2d,

we can write αd(n) = P(AZn ≥ 0), for an appropriately chosen d2 × 2d matrix A with
entries in {0,±1}. Asymptotics of probabilities of the type P(AZn ≥ b) are derived (for
b ∈ Rd2), under specific conditions, by Chaganty and Sethuraman in [29]; they typically
have the form of a product of a constant, the polynomial function n−d

2/2, and a function
that decays exponentially in n. Later on in this chapter, however, we will verify that
for the event of our interest the conditions imposed in [29] are not met. (Indeed, the
polynomial decay term in our asymptotic form (4.2) is 1/nd−1/2, rather than the 1/nd

2/2

that one would obtain in the setting of [29].)

We extend the asymptotics of αd(n) in several ways. In the first place, in Theorem 4.1
we actually establish a slightly more general version of the above asymptotic equivalence,
in which the number of sample means Xi,n, say dX , does not necessarily coincide with
the number of sample means Y i,n, say dY . This result is then easily extended to the case
where we consider sample means Xi,pin and Y j,qjn where pi n, qj n ∈ N, see Eq. (4.19).
We also provide an importance sampling procedure for estimating such probabilities fast
and accurately, and we prove that the underlying algorithm is optimal in the sense that
it is asymptotically efficient.

In addition, we apply our main result to derive probabilities of practical relevance.
More concretely, we obtain an asymptotic expression for the false rejection probability
in log-likelihood ratio testing, as well as for the probability of observing at least k ∈
{1, . . . , d} unordered pairs (where the pair (i, j) is said to be unordered if Xi,n < Y j,n).
The latter can be formulated in terms of a comparison of order statistics, and may, for
example, be understood as the probability that at least k jobs cannot be served, or that
at least k items cannot be packed; see Section 4.3.2.

This chapter is organised as follows. In Section 4.1 we define the problem we wish
to consider in more detail. Section 4.2 provides the decay rate of αd(n), and we explain
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why this decay rate cannot be obtained from [29]. The result is illustrated by numerical
examples, and in this context we also devise an efficient simulation procedure. In Section
4.3 we apply our main result to compare the order statistics of the sample means, again
illustrated by an example. We conclude in Section 4.4.

4.1 Problem formulation

We define the set-up considered in our main result (stated and proved in the next sec-
tion). We let (Xi,j)

n
j=1 (with i ∈ {1, . . . , dX}) be independent sequences of i.i.d. random

variables Xi,j , all of them distributed as the generic random variable X. Similarly, for
i ∈ {1, . . . , dY } we define the i.i.d. sequences (Yi,j)

n
j=1 with Yi,j ∼ Y . All sequences are

assumed to be mutually independent.
Define the sample averages

Xi,n :=
1

n

n∑
j=1

Xi,j , i ∈ {1, . . . , dX}, Y i,n :=
1

n

n∑
j=1

Yi,j , j ∈ {1, . . . , dY } ,

where we assume EX > EY . In this chapter we focus on the non-lattice case. The lattice
case is more delicate to deal with, and therefore ruled out (as in e.g. [28]). Throughout
the chapter we assume that Assumptions I.1 and I.2 are fulfilled for X and Y . We further
impose the following assumption.

Assumption I.3. The distributions of the random variables X and Y are continuous.

We now introduce a number of functions and quantities that are useful in Section 4.2.
In the first place it turns out to be convenient to define

adX ,dY := arg min
a∈R

JdX ,dY (a) =: a∗, JdX ,dY (a) := dX IX(a) + dY IY (a) =: J(a) . (4.3)

For better readability, we will use the abbreviated notation a∗ and J(a) respectively where
no confusion can arise. Note that a∗ is guaranteed to exist due to the strong convexity
of the Legendre transforms [38, Exercise 2.2.24], and can be seen to lie between EY and
EX. Note that since a∗ minimises J(a), it satisfies

dY θY (a∗) = dY I
′
Y (a∗) = −dXIX(a∗) = −dXθX(a∗) , (4.4)

where I ′X(a∗) < 0 and I ′Y (a∗) > 0, as a consequence of EY < a∗ < EX; this ’symmetry’
will be useful, particularly in Section 4.2.2. In addition we will need the function

KdX ,dY (a) :=
(
− CX(a)

)dX
CY (a)dY dY I

′
Y (a) := K(a) ,

with CX(a) and CY (a) as defined in (1.7). Note here that CX(a) < 0 and CY (a) > 0; to
see this, bear in mind that θ−X(−a) = −θX(a).

For our exact asymptotics to hold, we further impose the following regularity condi-
tion.

Assumption I.4. KdX ,dY (a) is continuous at a∗, and CX or CY are differentiable in a
neighbourhood of a∗.
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4.2 Exact asymptotics

In this section we provide in Theorem 4.1 the strong large deviations approximation of

αdX ,dY (n) := P (En) , with En :=

{
max

i∈{1,...,dX}
Xi,n ≤ min

i∈{1,...,dY }
Y i,n

}
.

The result and its proof are presented in Section 4.2.1. In Section 4.2.2 we explain why this
result cannot be obtained using the seeming sufficiently general result [29, Theorem 3.4].
In Section 4.2.3 we provide two numerical examples featuring normal and exponential
random variables, and point out how these could be estimated efficiently relying on the
importance sampling simulation methodology.

4.2.1 Main result

We first state the main result in Theorem 4.1. It says that αdX ,dY (n) decays (roughly)
exponentially, where the decay rate is given by J(a∗) (with a∗ as defined in (4.3)). The
polynomial term is of the power −(dX + dY )/2 + 1/2.

Theorem 4.1. Suppose that X and Y satisfy Assumptions I.1–I.3, and in addition As-
sumption I.4 applies. Then,

lim
n→∞

αdX ,dY (n) enJ(a∗) n(dX+dY )/2−1/2 = K(a∗)

√
2π

J ′′(a∗)
. (4.5)

Proof. Assume first that CY is differentiable (which we can do, due to Assumption I.4).
Then our starting point is the obvious identity (that is due to conditional independence)

αdX ,dY (n) =

∫ ∞
−∞

(
P
(
Y 1,n ≥ a

))dY P
(

max
i∈{1,...,dX}

Xi,n ∈ da

)
. (4.6)

If instead CX is differentiable, we can start from

αdX ,dY (n) =

∫ ∞
−∞

(
P
(
X1,n ≤ a

))dX P
(

min
i∈{1,...,dY }

Y i,n ∈ da

)
,

then proceed analogously. We prove a lower and an upper bound of (4.6), which asymp-
totically coincide.

Lower bound: The first step is to just consider the contribution of a ∈ (a∗ − ε, a∗ + ε)
in (4.6), where we choose ε such that (a∗ − ε, a∗ + ε) is fully covered in the interval
(EY,EX). The Bahadur-Rao result [13], which holds due to Assumptions I.1 and I.2,
entails that for any δ > 0 there is an n0 such that αdX ,dY (n) majorises for any n ≥ n0,

(1− δ)
∫ a∗+ε

a∗−ε

(
CY (a)√

n
e−nIY (a)

)dY
P
(

max
i∈{1,...,dX}

Xi,n ∈ da

)
; (4.7)

recall that the convergence in the Bahadur-Rao result holds uniformly [65, 123]. We
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proceed by applying integration by parts. To this end, first define

g(a, n) := (1− δ)
(
CY (a)√

n
e−nIY (a)

)dY
P
(

max
i∈{1,...,dX}

Xi,n ≤ a
)

∼ (1− δ)
(
CY (a)√

n
e−nIY (a)

)dY (
−CX(a)√

n
e−nIX(a)

)dX
;

where the asymptotic equality ‘∼’ again follows from the Bahadur-Rao result.

Applying integration by parts, we find that Expression (4.7) asymptotically equals the
sum of three terms:

g(a∗ + ε, n)− g(a∗ − ε, n)− (1− δ)
∫ a∗+ε

a∗−ε

(
−CX(a)√

n
e−nIX(a)

)dX
(4.8)

dY

(
CY (a)dY −1C ′Y (a)− nCY (a)dY I ′Y (a)

ndY /2

)
e−ndY IY (a)da.

Recall that by e.g. [38, Lemma 1.2.15] the decay rate of the sum of three terms equals
the largest of the decay rates that correspond to the individual terms. By definition of
a∗ and the function J(·), for any ε > 0,

lim
n→∞

1

n
log g(a∗ ± ε, n) < −J(a∗); (4.9)

later-on we will see that the last term in (4.8) has decay rate −J(a∗), and hence this
means that these terms can be asymptotically neglected.

We therefore focus on the last term in (4.8), which can be checked to asymptotically
equal

(1− δ)
∫ a∗+ε

a∗−ε

(
− CX(a)

)dX
CY (a)dY

n(dX+dY )/2−1
dY I

′
Y (a) e−nJ(a)da.

Now define the convex functions hX(a) := IX(a)− IX(a∗) and hY (a) := IY (a)− IY (a∗),
which both equal 0 at a∗. We thus find, for n sufficiently large,

αdX ,dY (n) enJ(a?) ≥ (4.10)

(1− δ)
∫ a∗+ε

a∗−ε

(
− CX(a)

)dX
CY (a)dY

n(dX+dY )/2−1
dY I

′
Y (a) e−n

[
dXhX(a)+dY hY (a)

]
da.

We now study dXhX(a) +dY hY (a) around a = a∗. Setting up a Taylor expansion of J(a)
around a∗, we can find a positive function ψ(a) = o(a2) such that

dXhX(a)+dY hY (a) ≤ 1

2
J ′′(a∗)(a−a∗)2+ψ(a−a∗), J ′′(a∗) :=

d2

da2
J(a)

∣∣∣∣
a=a∗

> 0 , (4.11)

where we used that J(a) is convex and minimal in a∗. Defining

κ(a∗, ε) := inf
a∈(a∗−ε,a∗+ε)

KdX ,dY (a) = inf
a∈(a∗−ε,a∗+ε)

(
− CX(a)

)dX
CY (a)dY dY I

′
Y (a).

and applying the above upper bound (4.11) on dXhX(a) + dY hY (a), it follows that the
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right-hand side of (4.10) majorises

1− δ
n(dX+dY )/2−1

κ(a∗, ε)

∫ ε

−ε
e−n[ 12J

′′(a∗)a2+ψ(a)]da. (4.12)

To further evaluate the integral in (4.12), we now apply the transformation b =
√
nJ ′′(a∗) a

(such that db =
√
nJ ′′(a∗) da), so that the expression given in (4.12) reads

1− δ
n(dX+dY )/2−1/2

κ(a∗, ε)√
J ′′(a∗)

∫ ε
√
nJ′′(a∗)

−ε
√
nJ′′(a∗)

e−b
2/2−nψ(b/

√
nJ′′(a∗))db.

As n → ∞, relying on ‘dominated convergence’, and recalling that ψ(a) = o(a2), the
integral in the previous display converges to a constant:∫ ε

√
nJ′′(a∗)

−ε
√
nJ′′(a∗)

e−b
2/2−nψ(b/

√
nJ′′(a∗))db→

∫ ∞
−∞

e−b
2/2db =

√
2π.

Combining this with (4.10), we have thus found the asymptotic lower bound, as n→∞,

lim inf
n→∞

αdX ,dY (n) enJ(a∗) n(dX+dY −1)/2 ≥ (1− δ)κ(a∗, ε)

√
2π

J ′′(a∗)
.

Recall that δ > 0 and ε > 0 were chosen arbitrarily. We thus obtain the lower bound by
letting δ ↓ 0 and ε ↓ 0:

lim inf
n→∞

αdX ,dY (n) enJ(a∗) n(dX+dY −1)/2 ≥ K(a∗)

√
2π

J ′′(a∗)
, (4.13)

where K(a∗) := limε→0 κ(a∗, ε) (where we use I.4).

Upper bound: The upper bound follows by showing that in (4.6) the contributions
corresponding to a ≤ a∗ − ε (say α−dX ,dY (n)) and a ≥ a∗ + ε (say α+

dX ,dY
(n)) are asymp-

totically negligible; the contribution corresponding to the interval (a∗ − ε, a∗ + ε) (say
α◦dX ,dY (n)) can be analysed as in the lower bound, in that it can be verified that, under
the assumptions imposed,

lim sup
n→∞

α◦dX ,dY (n) enJ(a∗) n(dX+dY −1)/2 ≤ K(a∗)

√
2π

J ′′(a∗)
.

Let us focus on α−dX ,dY (n), i.e., the contribution corresponding to (−∞, a∗ − ε] (as the
contribution due to the interval [a∗ + ε,∞) can be dealt with precisely analogously); our
objective is to prove that its exponential decay rate is strictly smaller than −J(a∗). For
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all δ > 0 we can find an n0 such that for n ≥ n0, α−dX ,dY (n) is majorised by

(1 + δ)

∫ EY

−∞
P
(

max
i∈{1,...,dX}

Xi,n ∈ da

)
(4.14)

+ (1 + δ)

∫ a∗−ε

EY
e−ndY IY (a) P

(
max

i∈{1,...,dX}
Xi,n ∈ da

)
;

here a Chernoff bound argument is used in the second probability.

We start by considering the first term in (4.14). Suppressing the factor (1 + δ) for the
moment, it can be written as

P
(

max
i∈{1,...,dX}

Xi,n ≤ EY
)

=
(
P
(
Xi,n ≤ EY

))dX ≤ e−ndXIX(EY ).

Now observe that

dXIX(EY ) = dXIX(EY ) + dY IY (EY ) > dXIX(a∗) + dY IY (a∗) = J(a∗).

We conclude that the decay rate of the first term of (4.14) is strictly smaller than −J(a∗).

We now focus on the second term in (4.14). Using integration by parts, we obtain
that this is smaller than

(1 + δ)

[
e−ndY IY (a∗−ε)P

(
X1,n ≤ a∗ − ε

)dX (4.15)

+

∫ a∗−ε

EY
ndY I

′
Y (a)e−ndY IY (a)P

(
X1,n ≤ a

)dX
da

]
. (4.16)

Since the event {X1,n ≤ a} is rare for a ≤ a∗ − ε < EX, we can apply the Bahadur-Rao
result to P

(
X1,n ≤ a∗ − ε

)dX . Then, for large n, the first term in (4.15) behaves as

e−ndY IY (a∗−ε)
(
−CX(a∗ − ε)√

n
e−nIX(a∗−ε)

)dX
= e−nJ(a∗−ε)ndX/2(−CX(a∗ − ε))dX .

Taking the logarithm and dividing by n we see that for large n the decay rate is −J(a∗−ε),
which is smaller than −J(a∗).

Now consider the second term in (4.15), which is asymptotically equal to∫ a∗−ε

EY
n1−dX/2dY I

′
Y (a)

(
− CX(a)

)dX
e−nJ(a)da. (4.17)

Since the Legendre transform J(·) is convex, it follows that J(a) ≥ J ′(a∗ − ε)(a − a∗ +
ε) + J(a∗ − ε) for any a, and thus (4.17) is at most

e−nJ(a∗−ε)
∫ a∗−ε

EY
n1−dX/2dY I

′
Y (a)

(
− CX(a)

)dX
e−nJ

′(a∗−ε)(a−a∗+ε)da.

Taking the logarithm and dividing by n, we obtain that the decay rate of the second term
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in (4.15) is majorised by

−J(a∗ − ε) + lim sup
n→∞

1

n
log

∫ a∗−ε

EY
dY I

′
Y (a)

(
− CX(a)

)dX
e−nJ

′(a∗−ε)(a−a∗+ε)da .

Since J is convex and takes its minimum in a∗, the derivate at a∗− ε is negative: J ′(a∗−
ε) < 0. On (−∞, a∗ − ε] we also have a − a∗ + ε ≤ 0, and hence the exponential is at
most 1. Hence,

lim sup
n→∞

1

n
log

∫ a∗−ε

EY
dY I

′
Y (a)

(
− CX(a)

)dX
e−nJ

′(a∗−ε)(a−a∗+ε)da

≤ lim sup
n→∞

1

n
log

∫ a∗−ε

EY
dY I

′
Y (a)

(
− CX(a)

)dX
da = 0.

We conclude that the decay rate of the second term in (4.15) is smaller than −J(a∗ − ε).
Combining the above findings, we have established that the asymptotic exponential

decay rate of α−dX ,dY (n) is strictly smaller than −J(a∗) (i.e., the decay rate of α◦dX ,dY (n)).
As we mentioned above, an analogous procedure can be followed for the probability

α+
dX ,dY

(n). Combining all the above elements, it now follows that an asymptotic upper
bound on αdX ,dY (n) is given by

lim sup
n→∞

αdX ,dY (n) enJ(a?) n(dX+dY −1)/2 ≤ K(a∗)

√
2π

J ′′(a∗)
. (4.18)

The lower bound (4.13) and the upper bound (4.18) together yield the desired result
(4.5).

The result can be easily adapted to the situation in which the individual sample means
correspond to different numbers of samples. We find that, for pin, qin ∈ N, as n→∞,

P
(

max
i∈{1,...,dX}

Xi,npi ≤ min
i∈{1,...,dY }

Y i,nqi

)
(4.19)

∼ (−CX(a∗))
dX CY (a∗)dY

n(dX+dY −1)/2

q∏dX
i=1

√
pi
∏dY
j=1

√
qj
I ′Y (a∗)

√
π

J ′′p,q(a
∗)

e−nJp,q(a
∗),

where now a∗ = arg mina Jp,q(a) with p :=
∑dX
i=1 pi, and q :=

∑dY
i=1 qi. This more general

asymptotic relation may be useful in applications, for example those we mention in Section
4.3.

4.2.2 Comparison with earlier results

In this subsection we compare the main result, as derived in the previous section, with
related results from the literature. If dX = dY = 1, then the asymptotics of (4.2) could
also be obtained by applying the Bahadur-Rao result from [13] directly. Therefore, we
first verify that indeed our expression coincides with that of Bahadur and Rao in this
case.

As mentioned earlier, the event of interest can be written in terms of dXdY inequal-
ities involving the sample means Xi,n and Y j,n, which suggests that we can analyse the
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probability αdX ,dY (n) using the asymptotic equivalence (1.10) derived in [29]. In case
dX > 1 and dY > 1, however, we show that one of the conditions imposed in [29] is not
fulfilled, entailing that our result is thus new for this case. (If either dX = 1 or dY = 1,
then the result from [29] does apply.)

The case dX = dY = 1. Consider first the case where d := dX = dY = 1. Define the
sample mean Zn := n−1

∑n
j=1(Yj −Xj), and note that from the Bahadur-Rao approxi-

mation stated in (1.6) we have

α1,1(n) = P
(
Zn ≥ 0

)
∼ CZ(0)√

n
e−nIZ(0) . (4.20)

In order to compare this with (4.5), we first check that θZ(0) = θY (a∗) = −θX(a∗), where
the latter equality holds by (4.4). We thus have that θY (a∗) solves a∗ − Λ′Y (θ) = 0 as
well as −a∗ + Λ′X(−θ) = 0. In conclusion, θY (a∗) is the unique solution to Λ′Z(θ) =
Λ′Y (θ)−Λ′X(−θ) = 0, and hence θY (a∗) = θZ(0). With this relationship it is now readily
checked that J(a∗) = IZ(0). Note that

J ′′(a) = a [θ′′X(a) + θ′′Y (a)] + 2 [θ′X(a) + θ′Y (a)]

−
[
θ′′X(a)Λ′′X

(
θX(a)

)
+ θ′′Y (a)Λ′′Y

(
θY (a)

)
+ θ′X(a)2Λ′′X

(
θX(a)

)
+ θ′Y (a)2ΛY

(
θY (a)

)]
.

Because θ′(a) = 1/Λ′′
(
θ(a)

)
and Λ′

(
θ(a)

)
= a, this reduces to

J ′′(a) =
1

Λ′′X
(
θX(a)

) +
1

Λ′′Y
(
θY (a)

) .
We then obtain

K(a∗)

√
2π

J ′′(a∗)

= − 1

θX(a∗)
√

2πΛ′′X
(
θX(a∗)

) 1

θY (a∗)
√

2πΛ′′Y
(
θY (a∗)

)θY (a∗)

√
2π

J ′′(a∗)

=
1

θY (a∗)
√

2π
[
Λ′′X
(
θX(a∗)

)
+ Λ′′Y

(
θY (a∗)

)] = CZ(0) .

Thus, we conclude that (4.5) reduces to (4.20) if d = 1.

The case dX > 1 and dY > 1. Now we consider the case that both dX > 1 and dY > 1
and show that our result does not fall in the framework of [29]. As was already briefly
pointed out in the introduction, we can rewrite αdX ,dY (n) as P(AZn ≥ 0), where

Zn = (X1,n, . . . , XdX ,n, Y 1,n, . . . , Y dY ,n)T,

and A an appropriately chosen matrix of dimension dXdY × (dX + dY ). In [29, Theorem
3.4] it is proved that, conditional on certain assumptions being satisfied, for positive
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constants C and I,

P(AZn ≥ 0) ∼ C

n(dX dY )/2
e−nI .

In Theorem 4.1 we showed that the polynomial factor in the asymptotics is of the form
n−(dX+dY )/2+1/2 rather than n−(dX dY )/2; in this section we show that this seeming in-
consistency is due to the fact that [29, Condition (B)] is not met. Observe that if dX = 1
or dY = 1 the powers match; we therefore consider the situation that both dX and dY
are strictly larger than 1.

Let us first define the multivariate cumulant-generating function. To this end, we
write W ij,n = Y j,n − Xi,n, with i ∈ {1, . . . , dX} and j ∈ {1, . . . , dY }; observe that the
probability of our interest equals P(W n ≥ 0), whereW n is the dXdY -vector with entries
Wij,n. Then the corresponding multivariate moment generating function is given by

M(θ) :=

dY∏
j=1

E
[
eYj

∑dX
i=1 θi,j

] dX∏
i=1

E
[
e−Xi

∑dY
j=1 θi,j

]
,

and hence the multivariate cumulant function equals

Λ(θ) := logM(θ) =

dY∑
j=1

ΛY

(
dX∑
i=1

θi,j

)
+

dX∑
i=1

ΛX

(
−

dY∑
i=1

θi,j

)
.

Let θ∗ solve Λ′(θ) = 0; it is readily checked that all dX dY entries of θ∗ are equal (say,
have value τ), and solve the equation Λ′Y

(
dXτ

)
= Λ′X

(
− dY τ

)
. Then [29, Condition

(B)] states that the determinant of the Hessian of Λ(θ∗) should be different from 0.
An elementary computation yields that the elements of this Hessian are given by, with
k, k ∈ {1, . . . , dX} and `, ` ∈ {1, . . . , dY },

∂2Λ(θ)

∂θk,`∂θk,`
= r`1{` = `}+ sk1{k = k},

where

r` := Λ′′Y

(
dX∑
i=1

θi,`

)
, sk := Λ′′X

− dY∑
j=1

θk,j

 .

Let R(θ) := diag{r} and S(θ) := diag{s}; in addition, E is a dX × dX all-ones matrix,
and F a dY × dY all-ones matrix. Then we can write the Hessian compactly by

H(θ) = R(θ)⊗ E + F ⊗ S(θ) ,

where ⊗ denotes the Kronecker product. Let ek be the k-th dX -dimensional unit row
vector (i.e., e ∈ RdX such that the k-th entry is 1 and all other entries 0). Likewise, f `
denotes the `-th dY -dimensional unit row vector. Then define, for arbitrary k 6= k and
` 6= ` (which is possible as dX ≥ 2 and dY ≥ 2),

v := (ek ⊗ f `)− (ek ⊗ f `)− (ek ⊗ f `) + (ek ⊗ f `).

It is then an elementary computation to conclude that vH(θ∗) = 0, and hence H(θ∗) is
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singular. We conclude that [29, Condition (B)] does not apply.
The intuitive reason for the violation of the condition is that some of the dX dY

restrictions are essentially redundant. For example, if dX = dY = 2, then Y 1,n−X1,n > 0
will usually occur by a realisation in which Y 1,n ≈ X1,n, and similarly for Y 1,n−X2,n > 0
and Y 2,n − X1,n > 0. Thus, informally speaking, these three conditions boil down to
requiring that Y 1,n ≈ X1,n ≈ Y 2,n ≈ X2,n. As a consequence, the fourth constraint,
i.e., Y 2,n − X2,n > 0, is already ensured to hold by the first three conditions with high
likelihood. With this line of reasoning it also becomes intuitively clear that we should
have n−(dX+dY )/2+1/2 as a pre-factor, as we obtained in (4.5). Informally, [29, Condition
(B)] ensures that none of the restrictions imposed by W n ≥ 0 is redundant.

The case dX = 1 or dY = 1. We finally show that in case dX = 1 or dY = 1 the result
from [29] does apply. This can be seen as follows. Let us assume that dX = d ≥ 1 and
dY = 1 (the opposite case works analogously). Then by Sylvester’s theorem it follows
that

|H(θ)| = |S(θ)|
∣∣I + S(θ)−1rE

∣∣ .
Note that S(θ)−1rE is a matrix with rows (r/sk, . . . , r/sk). Furthermore, |S(θ)| =∏d
k=1 sk. It can then be checked that

|H(θ)| =
∑
x∈χ

d∏
i=1

xi ,

where χ denotes the set of all combinations of length d from {r, s1, . . . , sd} (hence, |χ| =
d + 1). Now, inserting r = Λ′′Y

(
dτ
)
and sk = Λ′′X

(
− τ
)
, we obtain that the determinant

of H(θ∗) is non-zero:

|H(θ∗)| = dΛ′′X
(
− τ
)d−1

Λ′′Y
(
dτ
)

+ Λ′′X
(
− τ
)d
.

Invoking (4.4) we note that dτ = θY (a∗) = −dθX(a∗). Thus, the result from [29] states
that

αd,1(n) ∼ 1

(2πn)d/2

(
dΛ′′X

(
θX(a∗)

)d−1
Λ′′Y
(
θY (a∗)

)
+ Λ′′X

(
θX(a∗)

)d)−1/2

e
n
[
dΛX

(
θX(a∗)

)
+ΛY

(
θY (a∗)

)]
.

This can be checked to be equivalent to the expression given in Theorem 4.1, using that

J ′′d,1(a∗) =
d

Λ′′X(θX(a∗))
+

1

Λ′′Y (θY (a∗))
.

4.2.3 Examples and importance sampling

In this subsection we compute the asymptotic expressions we derived for two examples
with Gaussian and exponentially distributed random variables, respectively. For the pur-
pose of comparing these asymptotically accurate approximations to the value of αdX ,dY (n)
as obtained by simulation, we point out how to set up a provably asymptotically efficient
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importance sampling procedure for general random variables satisfying Assumptions I.1
and I.2.

1. Gaussian. In this example we let X ∼ N (µX , σ
2
X), Y ∼ N (µY , σ

2
Y ) and fix n. We

have
Λ−X(θ) = −θµX +

1

2
σ2
Xθ

2 ,

so that θ−X(−a) = −(a− µX)/σ2
X = −θX(a). It follows directly that

I−X(−a) =
1

2

(
a− µX
σX

)2

= IX(a) .

A similar procedure can be followed for Y . Furthermore, note that J(a) = dXIX(a)+
dY IY (a) is minimised by

a∗ =
dXµXσ

2
Y + dY µY σ

2
X

dXσ2
Y + dY σ2

X

;

indeed, as we remarked earlier, this quantity lies in the interval (µY , µX)), We thus
arrive at the following expression for the decay rate of αdX ,dY (n):

J(a∗) =
dXdY

2

(µY − µX)2

dY σ2
X + dXσ2

Y

.

For dX = dY = 1 and σX = σY this is just the Kullback-Leibler divergence between
X and Y . Moreover, note that

θ−X(−a∗) = − dY (µY − µX)

dXσ2
Y + dY σ2

X

, θY (a∗) =
dX(µX − µY )

dXσ2
Y + dY σ2

X

,

and hence

−CX(a∗) = − dXσ
2
Y + dY σ

2
X

dY (µY − µX)
√

2πσ2
X

, CY (a∗) =
dXσ

2
Y + dY σ

2
X

dX(µX − µY )
√

2πσ2
Y

(which can both be checked to be positive). With I ′Y (a∗) = θY (a∗), we thus obtain

K(a∗) =
(
− CX(a∗)

)dX
CY (a∗)dY dY I

′
Y (a∗) .

2. Exponential. The logarithmic MGF of an exponential random variable with param-
eter λ is, for θ < λ, given by Λ(θ) = log λ− log(λ−θ), so that (with θ(a) = λ−1/a,
assuming a 6= 0), I(a) = λa− 1− log(λa). For exponential X and Y with λX < λY
we thus have

J(a) = a (dXλX + dY λY )− (dX + dY )
(

log(a) + 1)
)
− dX log(λX)− dY log(λY ) ,

which is minimal at
a∗ =

dX + dY
dXλX + dY λY

.
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We obtain

θ−X(−a∗) = −dY (λX − λY )

dX + dY
, θY (a∗) =

dX(λY − λX)

dX + dY

(thus, indeed θ−X(−a∗) < λX and θY (a∗) < λY , and hence the MGFs are defined
at these points). We have

CX(a∗) =
dXλX + dY λY√
2πdY (λX − λY )

, CY (a∗) =
dXλX + dY λY√
2πdX(λY − λX)

and J(a∗) = −(dX + dY ) log(a∗)− dX log(λX)− dY log(λY ).

Our asymptotic results describe how αdX ,dY (n) behaves as n→∞, but do not provide
any error bound for a given n0 ∈ N. We therefore now describe an importance sampling
algorithm that can be used to efficiently estimate αdX ,dY (n) for moderate n by means of
simulation.

Let fX(·) be the density of X, and fY (·) the density of Y . Now associate the ex-
ponentially twisted measure Q with the system in which the Xi,k and Yj,` are sampled
according to the densities

gX(x) =
eθX(a∗)x

MX(θX(a∗))
fX(x), gY (x) =

eθY (a∗)y

MY (θY (a∗))
fY (x) .

Recall that a∗ minimises J(a), and therefore solves −dXθX(a) = dY θY (a) (where it is
used that I ′X(a) = θX(a) and I ′Y (a) = θY (a)). It is readily checked that EX > EY
implies that θX(a) < 0 and θY (a) > 0.

The usual change-of-measure argument entails that, in self-evident notation,

αdX ,dY (n) = EQ
[
L1{En}

]
, where L :=

(
dX∏
i=1

n∏
k=1

LX(Xi,k)

) dY∏
j=1

n∏
`=1

LY (Yj,`)

 ,

with the per-sample likelihood ratios defined by

LX(x) = MX(θX(a∗))e−θX(a∗)x, LY (y) = MY (θY (a∗))e−θY (a∗)y .

To prove asymptotic efficiency of the resulting estimator, we need to show that

lim sup
n→∞

1

n
logEQ(L2 1{En}) ≤ lim sup

n→∞

2

n
logEQ(L1{En}) = −2J(a∗) .

To this end, we first rewrite EQ(L2 1{En}) as(
MX(θ(a∗))

)2ndX (
MY (θ(a∗))

)2ndY
EQ

[
e−2θX(a∗)

∑dX
i=1

∑n
k=1Xi,ke−2θY (a∗)

∑dY
j=1

∑n
`=1 Yj,`1{En}

]
.

The next step is to bound, on the event En, the exponential term. To this end, note that,
on En, for all i ∈ {1, . . . , dX} and j ∈ {1, . . . , dY }, we have that

∑n
k=1 Yi,k ≥

∑n
`=1Xj,`.
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Summing this inequality over all i and j and dividing by dXdY we obtain, on En,

1

dX

dX∑
i=1

n∑
k=1

Xi,k ≤
1

dY

dY∑
j=1

n∑
`=1

Yj,` .

It now follows that, recalling that −dXθX(a∗) = dY θY (a∗),

−θY (a∗)

dY∑
i=1

n∑
k=1

Yi,k = −dY θY (a∗)
1

dY

dY∑
i=1

n∑
k=1

Yi,k

≤ −dY θY (a∗)
1

dX

dX∑
j=1

n∑
`=1

Xj,`

= dXθX(a∗)
1

dX

dX∑
j=1

n∑
`=1

Xj,` = θX(a∗)

dX∑
j=1

n∑
`=1

Xj,` ,

from which we conclude that, for any n ∈ N,

EQ

[
e−2θX(a∗)

∑dX
i=1

∑n
k=1Xi,ke−2θY (a∗)

∑dY
j=1

∑n
`=1 Yj,`1{En}

]
≤ 1 .

This yields the desired inequality:

lim sup
n→∞

1

n
logEQ

[
L2 1{En}

]
≤ 2dX ΛX(θX(a∗)) + 2dY ΛY (θY (a∗))

= −2a∗
[
dXθX(a∗) + dY θY (a∗)

]
+ 2dX ΛX(θX(a∗)) + 2dY ΛY (θY (a∗))

= −2J(a∗) .

We have thus found the following result.

Proposition 4.2. The measure Q yields an asymptotically efficient procedure for esti-
mating αdX ,dY (n).

In the remainder of this section we examine the accuracy of approximation by the
exact asymptotics of αdX ,dY (n). With the proposed importance sampling procedure, and
inserting the explicit expressions we found for Gaussian and Exponential random vari-
ables, we can compare the asymptotic formula given by Theorem 4.1 to the probabilities
as estimated by simulation. Some examples are provided in Fig. 4.1. The two examples
indicate that the approximation tends to be more accurate if (i) dX and dY are smaller or
(ii) if the means of X and Y differ more. if the means of X and Y differ more. The former
could be a consequence of the fact that we used a number of additional approximation
steps compared to Bahadur and Rao in order to extend their result. The latter may be
due to the fact that in this case the event is more rare in which case the applied large
deviations approximations are more accurate.

4.3 Further refinements and applications

Motivated by specific practical applications, we now study two variants of our main result.
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(a) Gaussian random variables, µY = 1, σ = 2.
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(b) Exponential random variables, λX = 2.8.

Figure 4.1: Ratio of the asymptotic expression (4.5) and simulated probabilities
αdX ,dY (n). The dotted horizontal line indicates a ratio of 1.

4.3.1 At least one unordered sample mean pair

It is directly seen that Theorem 4.1 allows us to conclude that

P
(

min
i∈{1,...,dX}

Xi,n ≤ max
i∈{1,...,dY }

Y i,n

)
∼

dX∑
i=1

dY∑
j=1

P
(
Y j,n −Xi,n ≥ 0

)
(4.21)

because the decay rate corresponding to events
{
Y j,n−Xi,n ≥ 0

}
is − infa J1,1(a), which

is larger than the rate functions corresponding to any number of intersections of such
events given that those correspond to infa Ji,j(a) for i + j > 2. Then the asymptotic
relation (4.21) follows from the inclusion-exclusion principle. It is thus evident that

P
(

min
i∈{1,...,dX}

Xi,n ≤ max
i∈{1,...,dY }

Y i,n

)
∼ dXdY P

(
X1,n ≤ Y 1,n

)
∼ e−nJ1,1(a1,1) 1√

n
dXdYK1,1(a1,1)

√
2π

J ′′1,1(a1,1)
.

This probability has applications in LLR testing. Specifically, it allows to derive the
exact asymptotics of the false selection probability we consider in the anomaly identifica-
tion problem in Chapter 9.

For a more specific example, suppose dX signals are sent from an echo sounding system,
and in return dX + dY echoes are received, dY of which have to thus to be identified as
noise. If this echo sounding experiment is carried out n times, the probability of wrongly
discarding a signal as noise can be evaluated as a probability of the form (4.21).

If we relax the assumption that the distributions of X and Y are known (for example,
replace the MGFs of X and Y by their maximum likelihood estimators), one may also
think of applications in ordinal optimisation problems such as stochastic bandit problems,
see e.g. [51, 52].
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4.3.2 At least k unordered sample mean pairs

Denote the order statistics of the sample means of X and Y by X(i),n and Y (j),n; we
assume that these order statistics have been put in decreasing order. We here focus on
the evaluation of the probability 1 − P

(
X(1),n > Y (1),n, . . . , X(d),n > Y (d),n

)
, or, more

generally (as we can put k = 1)

βd,k(n) := P
(
∃i ∈ {1, . . . , d− k + 1} : X(i),n ≤ Y (k+i−1),n

)
, (4.22)

which is the probability that for every bijection mapping the set of indices of Xn to the
set of indices of Y n there exist at least k unordered pairs (the pair (i, j) is unordered if
Xi,n < Y j,n).

For a potential application of this type of probability, think of the following static
control problem. We have d ships with n containers, and dnc items that need to be packed
onto these ships. We assume that the items are separated into d loads (for example, they
came from d trucks) of n batches of c items. The expected capacity of each container is
µX – the actual capacity is random (for example, it might be that the containers arrive
more or less empty than expected). The total observed capacity of ship i is nXi,n. The
items have an expected size of µY /c, so that each batch of c items has an expected size of
µY . The total size of load j is nY j,n. After observing nXi,n and nY j,n each of the d loads
needs to be brought to a ship and packed into the containers. In this case the question of
whether the full load can be packed (if the batches are assigned carefully) boils down to
whether or not there exists a perfect matching of order statistics. More generally we can
ask for the probability that at least k loads cannot be packed, which is given by (4.22).
This could, for example, be used as a performance criterion which can be set to a desired
level in order to estimate the required number of ships assuming all other parameters are
fixed.

For another application, suppose that we want to assign memory space/server capac-
ities to serve d batches/queues of jobs in an open-loop (static) manner. Suppose there
are np ∈ N jobs in each batch. (As we remarked in (4.19) it is easy to adapt our results
for the case where one of the populations has sample size pn instead of n.) The expected
job size/duration is µY . The size of the jobs in batch i amounts to npY i,np. Each batch
has to be assigned to one of d server pools, each with n servers with expected capacity
EX. The actual service capacity of server pool j amounts to nXj,n. Clearly a quantity of
interest is of the form (4.22), which can be interpreted as the probability that at least k
job batches cannot be served. This may be a useful performance criterion in the context
of staffing; see also the discussion in Section 2.5.

The main result of this subsection is as follows. It states that the asymptotics of
βd,k(n) are essentially determined by those of αdX ,dY (n).

Proposition 4.3. Assume that Assumptions I.1–I.4 hold, and in addition that i∗ defined
by

i∗ := arg min
i∈{1,...,d−k+1}

Jd−i+1,k+i−1(Ai), (4.23)

with Ai := ad−i+1,k+i−1, is unique. Then,

βd,k(n) ∼
(

d
k + i∗ − 1

)(
d

d− i∗ + 1

)
αd−i∗+1,k+i∗−1(n) . (4.24)
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Proof. First, we note that we can write

P
(
X(i),n ≤ Y (i+k−1),n

)
=

(
d

k + i− 1

)(
d

d− i+ 1

)
P
(

min
j∈{1,...,k+i−1}

Y j,n > max
j∈{i,...,d}

Xj,n,

min
j∈{1,...,k+i−1}

Y j,n ≥ max
j∈{k+i,...,d}

Y j,n,

max
j∈{i,...,d}

Xj,n ≤ min
j∈{1,...,i−1}

Xj,n

)
.

The probability on the right-hand side can be computed as∫ ∞
−∞

∫ ∞
a

P
(

max
j∈{k+i,...,d}

Y j,n ≤ b
)
P
(

min
j∈{1,...,k+i−1}

Y j,n ∈ db

)
P
(

max
j∈{1,...,i−1}

Xj,n ≥ a
)
P
(

max
j∈{i,...,d}

Xj,n ∈ da

)
.

(4.25)

We again prove a lower and an upper bound which asymptotically coincide.

Lower bound: A lower bound for (4.25) is given by∫ Ai∗+ε

Ai∗−ε

∫ Ai∗+ε

a

P
(

max
j∈{k+i,...,d}

Y j,n ≤ Ai∗ − ε
)
P
(

min
j∈{1,...,k+i−1}

Y j,n ∈ db

)
P
(

max
j∈{1,...,i−1}

Xj,n ≥ Ai∗ + ε

)
P
(

max
j∈{i,...,d}

Xj,n ∈ da

)
,

which asymptotically equals∫ Ai∗+ε

Ai∗−ε

∫ Ai∗+ε

a

P
(

min
j∈{1,...,k+i−1}

Y j,n ∈ db

)
P
(

max
j∈{i,...,d}

Xj,n ∈ da

)
.

This can be rewritten as∫ Ai∗+ε

Ai∗−ε
P
(

min
j∈{1,...,k+i−1}

Y j,n ≥ a
)

P
(

max
j∈{i,...,d}

Xj,n ∈ da

)
−
∫ Ai∗+ε

Ai∗−ε
P
(

min
j∈{1,...,k+i−1}

Y j,n ≥ Ai∗ + ε

)
P
(

max
j∈{i,...,d}

Xj,n ∈ da

)
.

This lower bound holds for any i; we pick i = i∗. The above expression is asymptotically
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equal to, with d := d− i∗ + 1 and k := k + i∗ − 1,

αd,k(n)− CY (Ai∗ + ε)k

nk/2
e−nkIY (Ai∗+ε)

×
[
CX(Ai∗ − ε)d

nd/2
e−ndIX(Ai∗−ε) − CX(Ai∗ + ε)d

nd/2
e−ndIX(Ai∗+ε)

]
= αd,k(n)− CY (Ai∗ + ε)k

nk/2
e−nJd,k(Ai∗+ε)

×
[
CX(Ai∗ − ε)d

nd/2
end
[
IX(Ai∗+ε)−IX(Ai∗−ε)

]
− CX(Ai∗ + ε)d

nd/2

]
where αd,k(n) is as in Section 4.2.

Recall that the exponential term in αd,k(n) is Jd,k(Ai∗). Since Ai∗ minimises Jd,k (a),
we have that exp(−nJd,k(Ai∗)) asymptotically dominates exp(−nJd,k(Ai∗ +ε)). Further-
more, recall that Ai∗ < EX, and therefore IX(Ai∗ + ε) − IX(Ai∗ − ε) < 0. We thus
conclude that the lower bound is asymptotically equal to αd,k(n).

Upper bound: We can simply replace probabilities by one to obtain that∫ ∞
−∞

∫ ∞
a

P
(

min
j∈{1,...,k+i−1}

Y j,n ∈ db

)
P
(

max
j∈{i,...,d}

Xj,n ∈ da

)
is an upper bound for (4.25). Since this is equal to∫ ∞

−∞
P
(

min
j∈{1,...,k+i−1}

Y j,n ≥ a
)

P
(

max
j∈{i,...,d}

Xj,n ∈ da

)
,

the results of Section 4.2 state that an upper bound is given by αd−i+1,k+i−1(n), which
thus coincides with the lower bound. We thus find, asymptotically,

P
(
X(i),n ≤ Y(k+i−1),n

)
∼
(

d
k + i− 1

)(
d

d− i+ 1

)
αd−i+1,k+i−1(n) . (4.26)

It now follows that

βd,k(n) .
d−k+1∑
i=1

(
d

k + i− 1

)(
d

d− i+ 1

)
αd−i+1,k+i−1(n) .

Asymptotically what matters is the dominating summand given by i∗ as defined in (4.23);
as n → ∞ the other summands are asymptotically negligible (under the uniqueness
assumption that we imposed). Since every single summand is a lower bound for βd,k(n),
we then have the asymptotic relation (4.24).

If there is no unique optimiser i∗, we have proven the asymptotic upper bound

βd,k(n) ≤
∑
i∈I

(
d

k + i− 1

)(
d

d− i+ 1

)
αd−i+1,k+i−1(n) , (4.27)

where I denotes the set of optimising i ∈ {1, . . . , d−k+1}. Furthermore, every summand
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of the right-hand side is an asymptotic lower bound.

One may now wonder whether the upper bound in (4.27) is asymptotically tight.
Observe that the inequality in (4.27) is essentially a Bonferroni inequality, and one might
expect that probabilities of intersections of the corresponding events are asymptotically
negligible, in which case by the inclusion-exclusion principle the upper bound would be
asymptotically tight (similar to the argument we gave in Section 4.3.1). The following
heuristic argument indicates, however, that this reasoning is not valid in this case, and
this is confirmed numerically in the example provided below.

In our example we consider the simplest case possible: we suppose that d = 2 and
k = 1. We define the events

Ei,j :=
{
Xi,n ≤ Y j,n

}
, Fi,j :=

{
X(i),n ≤ Y (j),n

}
,

where i, j ∈ {1, 2}. We have

β2,1(n) = P (F1,1 ∪ F2,2) = P (F1,1) + P (F2,2)− P (F1,1 ∩ F2,2) .

It is directly verified that

P(E1,1 ∩ E1,2) = P(E2,1 ∩ E2,2),

P(E1,1 ∩ E2,1) = P(E1,2 ∩ E2,2),

P(E1,1 ∩ E2,2) = P(E1,2 ∩ E2,1).

Furthermore, relying on arguments similar to those used in Section 4.2.2, it follows that
some events essentially imply each other, in that

P(E1,1 ∩ E2,1 ∩ E2,2) ≈ P(E1,1 ∩ E2,2) , P(E1,2 ∩ E2,1 ∩ E2,2) ≈ P(E1,2 ∩ E2,1) , . . .

and analogously for other probabilities of this form. Based on these findings, and applying
elementary set theory, we have that P (F1,1) + P (F2,2) behaves as[

2P(E1,1 ∩ E1,2)− P(E1,1 ∩ E2,2)
]

+
[
2P(E1,1 ∩ E2,1)− P(E1,1 ∩ E2,2)

]
, (4.28)

whereas P (F1,1 ∩ F2,2) ≈ P(E1,1 ∩ E2,2). We conclude that this probability is thus not
negligible compared to (4.28), and as a consequence (4.27) is not asymptotically tight.

Gaussian example. We consider again the example with X and Y both being normally
distributed, as introduced in Section 4.2.3. First, assume that σX 6= σY . Define the
differentiable function h : R→ R by

h(x) :=
1

2

(d− x+ 1)(k + x− 1)(µY − µX)2

(k + x− 1)σ2
X + (d− x+ 1)σ2

Y

.

As can be checked by an explicit calculation, we have that h′′(x) < 0, and hence h(·)
is concave. Note that for i ∈ {1, . . . , d − k + 1} we have Jd−i+1,k+i−1(Ai) = h(i). We
conclude that Jd−i+1,k+i−1(Ai) is concave as a function of i ∈ {1, . . . , d − k + 1}, and
thus takes its minima at the boundaries, that is, for i ∈ {1, d− k+ 1}. A straightforward
calculation reveals that Jd−i+1,k+i−1(Ai) is minimised at i∗ = 1 if σY > σX , and at
i∗ = d− k + 1 otherwise.
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Figure 4.2: Ratio of the asymptotic bounds (4.29) and simulated probabilities βd,k(n),
where d = 3, k = 2, for Gaussian random variables with µX = 1, µY = 0.8, σ = 2. The
dotted horizontal line indicates a ratio of 1.

Now consider the case σX = σY . Then the function h(·) simplifies:

Jd−i+1,k+i−1(Ai) =
(d− i+ 1)(k + i− 1)

2σ2

(µY − µX)2

d+ k
.

As before, this concave function can attain its minimum value only at the boundary points
i ∈ {1, d − k + 1}, but note that at these points the function value is the same. Hence,
from (4.27) we have(

d
k

)
αd,k(n) ≤ βd,k(n) ≤

(
d
k

)[
αd,k(n) + αk,d(n)

]
. (4.29)

Numerical experiments such as Fig. 4.2 indicate that these bounds are not tight.

4.4 Conclusion

We have derived exact asymptotics for the rare event probability that all sample means
of a population Y exceed all sample means of an independent population X while EX >
EY . The proof heavily relies on Bahadur-Rao type asymptotics that describe the tail
distribution of the sample mean of i.i.d. random variables. Our result is new: it seemingly
fits in the framework of [29], but careful inspection shows that the conditions imposed
in [29] are not met in our situation (and we do obtain another asymptotic form than
suggested in [29], with the polynomial factor being 1/nd−1/2, rather than 1/nd

2/2). We
also provide an asymptotically efficient importance sampling procedure for estimating the
probability of our interest.

We then showed that this result yields an expression for the exact asymptotics of the
probability that there exists a sample mean from Y that exceeds a sample mean from
X, which is relevant in log-likelihood ratio testing. We also used our result to derive the
probability that there are at least k unordered sample means in every possible matching
of sample means between X and Y ; we explained that this probability may be of practical
interest for example in particular queueing or packing problems.
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CHAPTER 5

Introduction

The static control strategies we considered in Part I of this thesis did not take into
account updated information about the current state of the system. In this part we turn
to dynamic control policies that are designed to exploit such updated state information.

An important class of control problems typically solved by dynamic control policies is
that of the multiarmed bandits. The term refers to a sequential decision model in which,
in each time slot, a decision maker decides to activate k out of d competing projects.
In this thesis we focus on the Markovian formulation (for a survey on alternative bandit
models we refer to [23]): it is assumed that the state processes of these projects can be
modelled as discrete time Markov chains, and only if a project is activated, it transits
from one state to the next according to some known transition kernel. The decision maker
then receives a certain reward (possibly negative), which depends on the new state of the
project. His objective is to make decisions in such a way that he maximises the average
or discounted reward that he can expect to accumulate over an infinite time-horizon.

Obviously, we do not need to apply the bandit model for selecting ‘projects’ in the
most literal sense of the word: we can think of many alternative application possibilities
such as the problem of selecting a location where to drill for oil, or that of deciding which
drug to give to test patients in a clinical trial. The name ‘bandit problem’ refers to the
interpretation of the ‘projects’ as arms of a slot machine (a so-called ‘bandit’), and the
decision maker is then a gambler who can play k arms at a time, yielding a certain reward
depending on the state of these arms.

In the classical Markovian multiarmed bandit problem the states of unplayed (‘pas-
sive’) arms remain frozen, and the current states of all arms are known to the gambler.
An important generalisation has been proposed by Whittle [163], who assumed that all
arms evolve to a new state, irrespective of whether they are being played or not, yet the
action of playing the arm may affect the transition kernels of the underlying Markov state
processes. This generalisation is referred to as the restless multiarmed bandit (RMAB)
problem.

In this thesis we will only consider one particular variant of the RMAB where – in the
spirit of partially observable Markov decision processes (POMDPs) [143] – it is assumed
that the gambler can only observe the state of a certain arm when he chooses to activate
it, in which case he receives a state-dependent reward. We will refer to this kind of
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partially observable RMAB as reward-observing RMAB (RORMAB).
A clever gambler will certainly try to use the information gained from each play to

make better decisions in the future. If the problem is reward-observing, the gambler then
faces a trade-off between exploiting those arms that he believes will yield a high reward
at the next decision time, and exploring other arms in order to collect information about
their current state. This is incorporated in the concept of a policy, that is, a strategy that
specifies the decision to be made at time t given the information that is available to the
decision maker at that time. In the RORMAB setting the available information consists
of the history of observed states (or functionals thereof), and we shall assume that we
have knowledge of a stochastic model describing the state evolution of the arms.

An index policy maps the information available for each arm to some real-valued pri-
ority index, where the index value of a certain arm does not depend on the characteristics
of any other arm but on the history of this arm only. At every decision time the policy
then activates those k arms that correspond to the k largest indices. A policy is optimal
if it maximises the expected total reward accumulated over time. No generally optimal
solution is known to the RMAB but in many cases index policies have been found to
perform well, they are computationally simple due to the decoupling of arms, and often
turn out to be optimal (at least in some asymptotic sense) under certain conditions.

We more formally define the aforementioned bandit problems in Section 5.1.1. Index
policies are discussed in Section 5.1.2. Both sections closely follow our exposition in [89].
The further organisation of this part of the thesis is provided in Section 5.2.

5.1 Background

5.1.1 Markovian bandit models
In this section we formulate the RMAB and the RORMAB problem. Consider d inde-
pendent processes

(
Xi(t)

)
t
, where Xi(t) denotes the state of arm i at time t ∈ N0, taking

values in a state space Si. We assume that for each arm i we have fitted a stochastic model
describing its evolution. At every point in time the decision maker may choose whether
or not to play arm i. We denote the action of playing arm i by ai(t) = 1 (active), while
ai(t) = 0 (passive) refers to the action of not playing. We require that exactly k arms
have to be activated at each decision time, i.e., the action vector a(t) :=

(
a1(t), . . . , ad(t)

)
satisfies

∑d
i=1 ai(t) = k. Based on the decisions a(t), each of the processes evolves as

Xi(t+ 1) =

{
Ai
(
Xi(t), Ui(t)

)
, if ai(t) = 1,

Pi
(
Xi(t), Ui(t)

)
, if ai(t) = 0,

(5.1)

where {Ui(t), i = 1, . . . , d} are independent i.i.d. (driving) sequences of uniform [0, 1]
random variables, and Ai and Pi map Si×[0, 1] to Si. This means that the state processes
evolve according to different Markovian transition kernels, depending on whether the
action applied to the arm is active or passive. We assume that the state-dependent
reward is given by R

ai(t)
i

(
Xi(t)

)
, where Rai (·) is a known deterministic function from

the underlying state space to R, which may be dependent on the arm i and the action
a ∈ {0, 1}. In the upcoming chapters R0

i (·) is taken to be zero everywhere; that is, an
arm that is not played does not yield a reward.

A policy π is a mapping from the observation space O ⊂ Rd × · · · × Rd to the action
space {0, 1}d and may be parametrised by time, that is, πt

(
Y (0), . . . ,Y (t − 1)

)
→ a(t)
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Table 5.1: Bandit models defined based on the state updating rule (5.1), and the mode
of observation. The state update given ai(t) = 1 is in all cases given by Ai

(
Xi(t), Ui(t)

)
.

X0
i (t+ 1) if ai(t) = 0 Yi(t) if ai(t) = 1 Yi(t) if ai(t) = 0

RMAB Pi
(
Xi(t), Ui(t)

)
Xi(t) Xi(t)

MAB Xi(t) Xi(t) Xi(t)
RORMAB Pi

(
Xi(t), Ui(t)

)
R1
i

(
Xi(t)

)
fi
(
Xi

(
t− ηi(t)

)
, ηi(t)

)

where Yi(s) denotes the i-th entry of Y (s) and corresponds to the observation of arm i
obtained at time s (typically, it is assumed that Yi(s) is determined by ai(s) and Xi(s),
see below). The aim is to find a policy that maximises the accumulated rewards over an
infinite time horizon as evaluated by the total expected discounted reward criterion

V π(x) := lim
T→∞

Eπx

[
T∑
t=0

βt
d∑
i=1

R
ai(t)
i

(
Xi(t)

)]
, (5.2)

where β ∈ (0, 1), and the subscript x := (x1, . . . , xd) indicates conditioning on Xi(0) = xi;
or the average expected reward criterion

Gπ(x) := lim inf
T→∞

1

T
Eπx

[
T−1∑
t=0

d∑
i=1

R
ai(t)
i

(
Xi(t)

)]
. (5.3)

Assuming that the suprema exist, the corresponding optimal value functions are defined
as

V (x) := sup
π
V π(x), G(x) := sup

π
Gπ(x). (5.4)

A policy is optimal if it achieves the supremum. If every set in the state space can be
reached from any other state (that is, if the MDP is unichain, see [126]), the optimal
average reward is the same for all initial states [17, Prop. 5.2.3]. Under fairly general
conditions [126], the optimal policy turns out to be stationary and Markovian in the
sense that the optimal decision only depends on the set of observations collected last:
π∗t
(
Y (0), . . . ,Y (t)

)
≡ π∗

(
Y (t)

)
. In the following we will only consider such policies.

Take fi(·) to be a deterministic function from Si × N to Si. Further define

ηi(t) := min {s ∈ N | ai(t− s) = 1}

to be the number of time steps ago arm i was last observed. (We assume that we are aware
of the actions we took in the past so that at time t ηi(t) is deterministic.) Depending on
the specific form of the observations, reward functions, and the state updating mappings
given in (5.1), we distinguish bandit models as summarised in Table 5.1.

RORMAB. In Chapters 6 and 7 we will focus on the RORMAB model, for which
state information of an arm is only obtained whenever that arm is played. Assuming
that the states Xi(t) are sequentially correlated, the decision maker can use the previous
observation Xi

(
t − ηi(t)

)
to make predictions about the current state of arm i. Thus,

the relevant information at time t (prior to making the decision) can be summarised and



101 5.1. Background

represented by I(t) :=
(
I1(t), . . . , Id(t)

)
, where for i = 1, . . . , d,

Ii(t) =
(
ηi(t), Xi

(
t− ηi(t)

))
. (5.5)

Based on Ii(t), the controller’s belief about the state of arm i at time t is summarised by
Fi(x) := P

(
Xi(t) ≤ x | Ii(t)

)
, the conditional distribution of arm i given the information

collected up to that time. For the state processes we consider in this thesis, this probability
distribution is characterised by scalar- or vector-valued sufficient statistics. That is, for
arm i there exists a parameter ϑi(t) that fully specifies the probability distribution of
Xi(t) given the information Ii(t). For example, in the ‘Gilbert-Elliott’ model we consider
in Chapter 6, Fi(·) is a Bernoulli distribution with success probability ϑi(t). In the
second model we study in Chapter 6, Fi(·) is a normal distribution, hence, ϑi(t) is a
two-dimensional vector specifying the conditional mean and conditional variance. Using
the terminology common in literature on POMDPs [126], we refer to ϑi(t) as the belief
state of arm i at time t — indeed ϑi(t) represents our belief concerning the state of the
arm.

In summary, as time evolves from t to t + 1, given the current belief state ϑ :=
(ϑ1, . . . , ϑd) and a channel selection policy π, the following chain of actions takes place:

ϑ a

∑
iR

ai
i

(
Xi

)

π

observe state,

collect reward
update belief

5.1.2 Index policies

For the classical multiarmed bandit problem it is known that if k = 1, then an optimal
policy is given by the so-called Gittins index policy [50, 49]. If k > 1, then optimality holds
under additional conditions as was proven in [119]. In contrast, finding an optimal policy
for the RMAB in its full generality is typically intractable. However, for a relaxed version
of the problem where we only require that k arms are activated on average, Whittle [163]
found that an index policy similar to the Gittins index describes an optimal solution.
This Whittle index policy reduces to the Gittins index under the additional assumption
that passive arms do not change states.

Under the constraint that exactly k arms are played at each time slot, the Whittle
index policy is usually not optimal. However, in a number of application examples the
Whittle index was shown to be optimal [3, 99] or asymptotically optimal [116, 157].
Weber and Weiss [160] proved, that in the general RMAB setting, the Whittle index
policy is asymptotically optimal as k and d tend to infinity, under the assumptions that
the ratio of k and d remains fixed, and that the differential equation describing the fluid
approximation to the index policy has a globally stable equilibrium point.

In this section we explain the idea behind the use of index policies and specifically
the Whittle index, a generalisation of the well-studied Gittins index [48, 163]. Whittle
proposed this type of index as a heuristic solution to RMAB problems. We first de-
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scribe index policies in general before we turn to Whittle’s optimisation problem and the
associated Whittle index policy.

Index policies are defined in terms of functions ι1, . . . , ιd such that ιi maps the current
state of arm i to a certain priority index, irrespective of the current state of any other
arm.

Definition 5.1. Let x := (x1, . . . , xd) denote the vector of states in a system with d
arms. An index policy πι activates those k arms that correspond to the k largest indices,

πι
(
x
)

= arg max
a:
∑d
i=1 ai=k

d∑
i=1

ιi
(
xi
)
ai .

Ties are broken uniformly at random, but in compliance with the requirement that k
arms have to be selected.

For an intuitive justification as to why index policies may work well in large systems,
consider the following: Pick an arbitrary arm and suppose we want to decide whether
to activate it or leave it passive, based on the current state. Generally, we would make
our decision dependent on the states of the remaining arms: we care about the reward
we can expect from a certain arm relative to the reward that other arms would yield.
In this way, our decision policy is highly influenced by the proportion of arms that are
in a certain state. In a large system with many arms, however, this proportion can be
expected to remain relatively stable over time (assuming the underlying Markovian state
processes are stationary). In this sense, the larger the system, the less important it is for
us to consider other arms when making a decision as we always find ourselves in roughly
the same situation for decision making. In conclusion, in a system with many arms, little
is lost if we make decisions for each arm solely based on its current state, disregarding the
current state of any other arm in the system. We will return to this idea in Section 7.3.1.

The question remains how to define the index functions ιi. A simple example is the
myopic index. In the context of the RORMAB, where states are actually belief states, it
is defined by ιMi (ϑi) = Eϑi

[
Raii (Xi)

]
. Thus, under the myopic policy the decision maker

exploits those arms that promise the largest immediate rewards. However, as one may
expect, it turns out that such a ‘greedy’ policy is usually not optimal (see our numerical
examples in Chapters 6–7). It may be favourable to give some priority to exploring other
arms in order to decrease the decision maker’s uncertainty with respect to their current
state.

Going back to the more general RMAB, this motivates us to consider the more so-
phisticated Whittle index, which takes the possible need for exploration into account.
To derive his heuristic, Whittle relaxed the constraint that exactly k arms have to be
selected at each time point, and replaced it by the requirement that k arms are selected
on average. Since the latter constraint is weaker, the optimal total expected (discounted
or average) value of the MDP under this constraint is an upper bound for the optimal
total expected value that can be achieved in the original problem. We shall see that this
relaxation allows to formulate the decision making problem as a Lagrange optimisation
problem, from which Whittle obtained a rule for determining ιi

(
xi
)
.

Whittle’s optimisation problem. For ease of exposition we consider an MDP with
a finite state space S = S1 × · · · × Sd. Recall that for the models considered in this
thesis it will be assumed that r0

i (·) ≡ 0. For brevity we focus on this setting when stating
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Whittle’s optimisation problem below. Furthermore, we focus now on the average reward
case. The discounted reward case can be dealt with similarly, see [111]. Under suitable
regularity conditions, the optimal average value is independent of the initial state of the
system (see e.g. [18]); here we assume that we are in such a setting.

Recall the definition of the average reward criterion, Eq. (5.3). For a time horizon T
(where we let T →∞) we sum up the rewards that are obtained from the selected arms
at each time point. Equivalently, we could group selected arms according to their states,
and keep track of how many arms were selected while being in a specific state, over the
whole time horizon. That is, rather than considering each time step t separately and
adding up rewards as obtained at each time step, we can consider how many arms were
in a certain state when selected, and multiply this proportion with the reward that is
obtained from an arm in that state. If we do so for all states, then the total is equivalent
to the value of the average reward as T →∞.

This is the viewpoint we are taking in this subsection; it is inspired by the exposition
in [111]. Define pi(x) as the expected long-run fraction of time that arm i is selected
when it currently is in state x ∈ Si; that is,

pi(x) := lim
T→∞

1

T
Eπ
[
T−1∑
t=0

1
{
i ∈ a(t), Xi(t) = x

}]
.

Subject to Whittle’s relaxation, we can then formulate the optimisation problem as the
linear programming (LP) problem:

GW = max
p

d∑
i=1

∑
x∈Si

ri(x) pi(x), subject to
d∑
i=1

∑
x∈Si

pi(x) = k , (5.6)

where ri(x) denotes the reward that is obtained from selecting arm i when its state is
x (as before ri(·) is a known, deterministic function). Formulating this as an equivalent
Lagrangian optimisation problem we obtain:

L(λ) := max
p

d∑
i=1

∑
x∈Si

ri(x) pi(x)− λ

(
d∑
i=1

∑
x∈Si

pi(x) − k

)

= max
p

d∑
i=1

∑
x∈Si

(
ri(x)− λ

)
pi(x) + λk

=

d∑
i=1

Li(λ) + λk ,

(5.7)

with
Li(λ) := max

pi

∑
x∈Si

(
ri(x)− λ

)
pi(x) . (5.8)

Since in (5.7) there is no longer a common constraint for the arm, each arm can be
optimised separately through (5.8). By strong LP duality we know that there exists a
Lagrange multiplier λ∗ that yields L(λ∗) = GW . LP complementary slackness ensures
that (assuming λ∗ 6= 0) any optimal solution to (5.7) must satisfy the relaxed constraint,
and is therefore also optimal for Whittle’s relaxed problem (5.6). It was observed by
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Whittle [163] that we can interpret the Lagrange multiplier as a cost for selecting an arm
(or equivalently, as a subsidy for not selecting an arm). That is, imposing a cost of λ∗ on
the selection of an arm causes the controller to select k arms on average under a policy
that optimises GW .

Indexability and theWhittle index. In accordance with [163], we make the following
reasonable regularity assumption.

Assumption II.1. Arm i is indexable, that is, the set of states for which it is optimal
to select arm i, S∗i (λ), say, decreases monotonically from Si to ∅ as the cost λ increases
from −∞ to ∞. This property holds for every arm in the system.

While this assumption is intuitively appealing and does seem to hold in many cases,
one can construct examples for which it is not valid [157, 163]. Proving that a particular
bandit problem is indexable can be surprisingly difficult [48]. Indexability implies that
for each arm i there exists a function of the current state, λi(x), such that it is optimal
to select the arm whenever λi(x) > λ and to leave it passive otherwise (the decision
maker is indifferent when λ = λi(x)). In this sense, λi(x) measures the “value” of arm
i when it is in state x. Furthermore, applying this policy to all arms in the case where
λ = λ∗ (that is, selecting arm i whenever λi(x) > λ∗) results in a policy that is optimal
for Whittle’s relaxed problem (5.6)1. This motivates choosing the index function ιi(·) as
ιWi (x) := λi(x) (as was proposed in [163]).

Now, how do we find λi(·)? Recall that the decision maker is indifferent when λ =
λi(x), and that we are interested in the case where the cost λ is chosen to be the optimal
cost λ∗ that causes the decision maker to select k arms on average. Furthermore, we saw
that the Lagrangian (5.7) can be solved by considering arms one by one (in accordance
with the intuition described at the beginning of this section, where it is argued that not
much is lost by decoupling arms provided the system is large enough). In fact, (5.8) is
the Lagrangian corresponding to a one-arm sub-problem in which there is only a single
arm which can be selected or not, and where playing the arm yields the state-dependent
reward as before but also costs a certain amount λ. Now the optimal λi(x) is the one
that makes us indifferent between playing or not playing the arm when it is in state x.
In summary, we define the Whittle index as follows (cf. [163]).

Definition 5.2. The Whittle index of arm i when in state x is the largest cost λ in (5.8)
such that it is still optimal to play the arm in the one-arm sub-problem:

ιWi (x) = sup {λ : x ∈ S∗i (λ)} .

Intuitively, the Whittle index can perhaps best be thought of as an opportunity cost,
to be paid for losing the opportunity to select one of the other arms in the constrained
system with multiple arms. Naturally, we then prioritise arms with higher opportunity
cost.

Computing the Whittle index. As stated in Definition 5.2, the Whittle index is
derived from the optimal policy for the one-arm sub-problem. Thus, the computational

1When λi(x) = λ∗, one needs to decide for the action to be taken in state x in an appropriately
randomised fashion that ensures that the relaxed constraint is satisfied [160, 163].
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complexity of the Whittle index increases only linearly with the number of arms: we need
the optimal policy for at most d non-identical one-arm sub-problems. In contrast, the
complexity of computing the optimal policy for the full system increases exponentially
(the latter problem is in fact PSPACE hard [120]).

It is well-known [126] that in great generality the optimal average reward G is constant
(independent of the initial state), and satisfies Bellman’s optimality equation. For the
one-arm sub-problem associated with arm i and applying the average reward criterion,
this optimality equation reads as,

G+ h(x) = max

{
ri(x)− λ+ E

[
h
(
Ai(x, U)

)]
, E

[
h
(
Pi(x, U)

)]}
, (5.9)

with x ∈ Si and U a uniform (0, 1) random variable. Here, ri(x) − λ is the expected
immediate reward obtained from deciding to use the arm, corrected by the opportunity
cost λ. The bias function h accounts for the transient effect caused by starting at initial
state x rather than at equilibrium.

In contrast, the optimality equation under the total expected β-discounted reward
criterion is

V (x) = max

{
ri(x)− λ+ β E

[
V
(
Ai(x, U)

)]
, β E

[
V
(
Pi(x, U)

)]}
. (5.10)

The optimal policies for these one-arm sub-problems are then to choose the action
that maximises the right-hand side of (5.9) and (5.10), respectively. They can be found
from dynamic programming algorithms such as (relative) value or policy iteration. Then
the Whittle index for state x can be effectively computed by solving (5.9) or (5.10) for
an increasing sequence of λ and finding the maximal λ (namely λi(x)) for which playing
the arm is still optimal. Assuming continuity, this means that the Whittle index is the
value of λ for which both arguments of the maximum are equal.

We remark that Whittle originally defined λ as a subsidy for not playing an arm and
consequently added λ on the right-hand side of the optimality equation rather than sub-
tracting it on the left. These two interpretations are, of course, equivalent, and we merely
chose to define λ as opportunity cost in this section because this interpretation seemed
more natural to us. In the upcoming chapters we will write the optimality equations in
the traditional way.

5.2 Organisation and contributions

As mentioned in the introduction, a possible application of the RORMAB is as a model
for the problem of selecting transmission channels in a wireless network. We will deal
with bandit models for this application more closely in Chapters 6 and 7.

The literature on RORMAB modelling of the channel selection problem has so far
mostly focussed on the Gilbert-Elliot (GE) model, in which channels are assumed to
evolve as a two state Markov chain, and the Gaussian autoregressive (AR) channels of
order 1, where the state of the channel is given by the logarithmic signal-to-noise ratio.
In Chapter 6 we unify the presentation of both types of models under the umbrella of our
newly defined RORMAB. We investigate a mixed-channel model in a number of numerical
examples, and provide a literature survey on the subject of wireless channel selection with
RORMABs. The content of Chapter 6 has appeared in [89].
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In Chapter 7, which is based on our work [83, 84], we focus on the AR channel
model in more detail. We establish structural properties for the Whittle index policy,
which motivate a parametric index policy that is computationally much simpler than the
Whittle index but can still outperform the myopic policy. Furthermore, we examine the
many-arm behaviour of the system under the parametric policy, identifying equations
describing its asymptotic dynamics. Based on these insights we provide a simple heuristic
algorithm to evaluate the performance of index policies; the latter is used to optimise the
parametric index.



CHAPTER 6

Reward-observing bandits for channel selection

Communication devices are often configured to transmit on several alternative channels,
which may differ in their type (e.g. WiFi versus cellular) or in their physical frequencies.
Further, due to physical transmitter limitations, a device can only use a limited number
of channels at any given time. Thus, the question arises which channels to select for
transmission so as to maximise the throughput that is achieved over time.

To illustrate the problem, we consider the scenario depicted in Figure 6.1. At every
discrete time instance, the transmitter has the choice to use either channel 1 or channel 2.
The channels cannot be used in parallel, for instance, due to hardware limitations and/or
energy constraints. The selected channel then yields an immediate reward that depends
on the condition of the channel (e.g. the reward may be measured as the number of bits
successfully transmitted). Consequently, an observation of the state of that channel is
also obtained. The unselected channel on the other hand is not observed in this time
instance.

Channel 1

Channel 2

Sele
ct 1

Channel state feedback

Figure 6.1: A transmitting device needs to choose whether to transmit on Channel 1 or Chan-
nel 2. Transmitting on a channel results in immediate channel state feedback.

107
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Ideally, the transmitter would choose channels in a way that achieves the largest
throughput over time. However, the nature of communication channels is often stochastic
and thus the transmitter does not know the current state of each channel with certainty.
A good prediction of the channel state can be obtained when there is strong dependence
between the current state of a channel and its state in the (recent) past. Such chan-
nel memory can for example be caused by other users interfering on the same channel,
multipath of physical signals, or other persistent disturbances.

In utilising channel memory, to make wise channel selection decisions, the transmitter
needs to balance a trade-off between exploitation and exploration: On the one hand,
based on the controller’s belief regarding the current state of each channel, it may make
sense to choose the channel expected to transmit the highest number of bits over the
next time slot. On the other hand, it may be sensible to check the condition of the other
channel so as to decrease uncertainty regarding its current state. How should channels
be selected, based on the information available, so as to maximise the long-run expected
throughput?

A first step towards answering this control problem is to devise suitable channel mod-
els; that is, models that capture channel behaviour reasonably well and at the same time
are simple enough to be mathematically tractable. To capture such a dependence, chan-
nel states are often modelled as Markov processes. One such very simple process is the
so-called Gilbert-Elliot channel (GE), where there are two possible states, 0 (“bad”) and 1
(“good”), and transitions between states occur in a Markovian manner. As mentioned in
Section 5.1.1, in this case the belief state of arm i is summarised by the success probability
of a Bernoulli distribution. The application of the GE model in channel selection and
specifically opportunistic spectrum access is motivated by its ability to capture bursty
traffic of primary users [40]. Due to its simplicity it has been very popular in modelling
channel selection problems (refer to the literature review in Section 6.3).

Another class of models, which has only recently come to attention in the context
of wireless channel selection [11, 83], are Gaussian autoregressive processes of order 1
(which we denote by AR). It has been found that Gaussian autoregressions model the
logarithmic signal-to-noise ratio of a channel reasonably well; for details see [2]. Since
states are normally distributed, the objectives of exploitation and exploration naturally
correspond to the conditional mean and the conditional variance of a channel, which at the
same time contain all relevant information concerning its state and thus fully describe the
belief state of the arm. The evolution of this vector-valued belief state can be described
by a simple linear recursion perturbed by Gaussian noise.

The virtue of both the GE and the AR model is that they are quite tractable, yet
allow the capture of the exploration–exploitation trade-off that the controller faces. The
models are simple in the sense that the belief which the controller maintains about the
state of the channel is neatly summarised by sufficient statistics. In the GE case, this
sufficient statistic is given by the conditional probability of being in the good state, given
the information that is available to the controller at the time. In the AR case, it is
sufficient to keep track of the conditional mean and variance of the state, which quantify
the expected gain from exploitation and the need for exploration, respectively.

An optimal policy for the channel selection problem needs to balance this exploration–
exploitation trade-off. Note that the above described channel selection problem can be
regarded as a RORMAB. Recall from Chapter 5 that the Whittle index is a computation-
ally more tractable alternative to the dynamic programming solution to the problem, and
that one may hope that in a system with many channels its performance is near-optimal.

While the chapter does not contain new results, it is unique in that it provides a unified
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treatment of both the GE and the AR approaches for channel models, and considers also
the channel selection problem in the mixed case where some of the channels are modelled
as GE while the others are AR. This is of interest in networks where some but not all of
the channels may be subject to user interference.

The remainder of this chapter is structured as follows. In Section 6.1 we formulate
the RORMAB problem, and present the GE and AR models in a unified manner. In
Section 6.2 we show how to use channel models to evaluate the Whittle index numerically,
and use it as a solution strategy for an example channel selection problem. In the latter
section we also provide a number of performance comparisons. Section 6.3 contains a
literature survey, and points out some open problems.

6.1 Models and framework

In this section we formulate the RORMAB problem within the context of wireless chan-
nel selection. We consider channels X1(t), . . . , Xd(t), operating as independent Markov
processes in discrete time t ∈ N0. We assume that the models and their parameters are
known but do not have to be the same for each channel. At every decision time exactly
k channels are selected; channels that are not selected are not observed and do not yield
a reward. The reward obtained from channel i is ai(t)Ri(Xi(t)), where Ri(·) is a known
deterministic function. Throughout this chapter we focus on the average reward criterion
(5.3), which we feel is more natural in the context of channel selection.

Because the channel states are sequentially dependent due to the channel memory,
the controller can use information about the previous state of a channel to make predic-
tions about the current state. The accuracy of the prediction depends on the age of the
information, i.e. the number of time steps ago that a channel was last observed. Recall
that this number is denoted by ηi(t), so that the available information about channel i at
time t is Ii(t) as defined in (5.5). We denote the belief states by ϑi(t) as before.

Using the tower property of conditional expectations it can be proven formally [18, 143]
that a POMDP with partially observable states Xi(t) and rewards Ri

(
Xi(t)

)
is equivalent

to a fully observable MDP with states ϑi(t) and rewards ri
(
ϑi(t)

)
:= Eϑi(t)

[
Ri
(
Xi(t)

)]
in the sense that the best throughput that can be achieved is the same for both, and it is
achieved by the same optimal policy. This justifies that we consider the MDP with states
ϑi(t) in the remainder of this chapter.

Belief state evolution. For RORMABs, the decisions determined by a policy π affect
the updating of the belief state based on the observation update mapping Oi(·) and the
belief propagation operator Ti(·) as follows:

ϑi(t+ 1) =

{
Oi
(
Xi(t)

)
, if ai(t) = 1,

Ti
(
ϑi(t)

)
, if ai(t) = 0.

(6.1)

The observation update mapping Oi(·) determines how the belief state of channel i is
updated when that channel is selected for transmission. In this case we observe Xi(t), and
hence its realisation can be used by the observation update rule when implementing the
controller. Further, for analytical, modelling and simulation purposes, when ai(t) = 1,
the distribution of Xi(t) is determined by the known value ϑi(t), so that Xi(t) can be
replaced by a generic random variable stemming from this distribution.



Chapter 6. Reward-observing bandits for channel selection 110

The belief propagation operator Ti(·) defines the update of the belief state of a channel
when it is not selected for transmission. Because in this case no new observation is
obtained, the update is deterministic.

Since a channel may remain unobserved for several consecutive time slots, it is useful
to also consider T ki (·) (the k-step operator obtained by applying Ti(·) k times) as well
as attracting fixed points of the operator Ti(·). As we describe below, in both the GE
and the AR model, the k-step operator has an explicit form and converges to a unique
attracting fixed point; this is useful for understanding the dynamics of the model.

We now specify the observation update and belief propagation operations in the con-
text of each of the two channel models.

6.1.1 Gilbert-Elliot channels

In this case Xi(t) is a two state Markov chain on the state space {0, 1}, where 0 represents
a “bad” state and 1 is a “good” state of the channel. The transition matrix can be
parametrised as

Pi =

[
p00
i p01

i

p10
i p11

i

]
=

[
1− γi ρi γi ρi
γi ρi 1− γi ρi

]
,

where we denote x := 1 − x. One standard parametrisation of this Markov chain uses
transition probabilities p01

i , p
10
i ∈ [0, 1] (and sets p00

i = p01
i , p11

i = p10
i ). Alternatively

we may specify the stationary probability of being in state 1, denoted by γi ∈ [0, 1],
together with the second eigenvalue of Pi, denoted by ρi ∈

[
1−min(γ−1

i , γi
−1
)
, 1
]
. Then

ρi quantifies the time-dependence of the chain. If ρi = 0, the chain is i.i.d., otherwise
there is memory. Specifically, when ρi > 0 there is positive correlation between successive
channel states and when ρi < 0 that correlation is negative. The relationship between
these parametrisations is given by γi = p01

i /(p
01
i + p10

i ), and ρi = 1 − p01
i − p10

i . The
parametrisation with transition probabilities p`ki ∈ [0, 1] is standard. As opposed to
that, our alternative parametrisation in terms of γi and ρi has not been used much in
the literature. Nevertheless, we find it captures the behaviour of the model in a useful
manner, especially when carrying out numerical comparisons.

As the Bernoulli distribution is fully specified by the success probability, it suffices to
keep track of this parameter. That is, we have

ϑi(t) = ωi(t) := P
(
Xi(t) = 1 | Ii(t)

)
,

and hence the belief state space of channel i, denoted by Si, is given by the interval [0, 1].
Now the observation update operation is defined by:

Oi(x) =

{
p01
i , if x = 0 ,

p11
i , if x = 1 .

That is, if the observed channel was “bad” (x = 0), then the chance of a good channel is
given by the entry p01

i , and otherwise (x = 1) by p11
i . The belief propagation operation is

Ti(ω) = ωp11
i + ωp01

i = ρi ω + γi ρi .

This follows by evaluating the probability of {Xi(t + 1) = 1} based on ωi(t) and the
probability transition matrix Pi. It is a standard exercise for two state Markov chains
(recurrence relations) to show that the k-step transition probability, and thus the k-step
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belief propagation operator, takes the form

T ki (ω) = γi + ρki (ω − γi).

Note that γi is a fixed point of this operator, and the sequence T ki (ω) converges to this
fixed point. Further note that if ρi > 0, this sequence is monotonic whereas if ρi < 0, it
oscillates about γi as it converges to it. The case of ρi = 0 is not of interest in terms of
decision making because in that case there is no channel memory.

6.1.2 Gaussian autoregressive channels

In this case the channel states follow an AR process of order 1, that is,

Xi(t) = ϕiXi(t− 1) + εi(t) ,

with
{
εi(t) : t ∈ N0

}
denoting an i.i.d. sequence of N

(
0, σ2

i

)
random variables. We

assume |ϕi| < 1, in which case the processes are stable in the sense that as time evolves
they converge to a stationary version. Note that if ϕi ∈ (0, 1), the states are positively
correlated over time; for ϕi ∈ (−1, 0) the correlation is negative. The case ϕi = 0 may
be neglected as it corresponds to observations being independent. Linear combinations of
independent Gaussian random variables are still Gaussian, and hence, their conditional
distribution at time t is fully described by the conditional mean µi(t) and the conditional
variance νi(t). That is, the sufficient statistic (vector) for the state of channel i is:

ϑi(t) =
(
µi(t), νi(t)

)
,

where µi(t) and νi(t) denote the conditional mean and variance at time t defined as

µi(t) :=E
[
Xi(t)

∣∣Xi

(
t− ηi(t)

)
, ηi(t)

]
(6.2)

=ϕ
ηi(t)
i Xi

(
t− ηi(t)

)
,

νi(t) := Var
(
Xi(t)

∣∣Xi (t− ηi(t)) , ηi(t)
)

(6.3)

=σ2
i

ηi(t)−1∑
h=0

ϕ2h
i = σ2

i

1− ϕ2ηi(t)
i

1− ϕ2
i

.

Hence, the observation update operation is:

Oi(x) =
(
ϕi x, σ

2
i

)
.

while, the belief propagation operation is given by

Ti(µi, νi) =
(
ϕi µi, ϕ

2
i νi + σ2

i

)
. (6.4)

It is easy to show by recursion of the mean and the variance that the k-step belief prop-
agation is:

T ki (µi, νi) =

(
ϕki µi, ϕ

2k
i νi +

1− ϕ2k
i

1− ϕ2
i

σ2
i

)
. (6.5)
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The belief state space in this case is Si = R× [νmin
i , νmax

i ) where νmin
i = σ2

i and νmax
i =

σ2
i /(1 − ϕ2

i ). The attracting fixed point of Ti(·) is the mean-variance pair (0, νmax
i ).

It is further interesting to note that the second coordinate of the belief state can only
attain values in a countable subset of [νmin

i , νmax
i ) (see Eq. (6.3)). This is because when

the channel is selected, the conditional variance decreases to the value νmin
i , and thus,

νi in (6.5) is always proportional to σ2
i , where the factor is given by a geometric series

in ϕ2
i . Observe further that, since νi < νmax

i and because |ϕi| < 1, it always holds that
the variance increases when updated with Ti(·), that is, the decision maker’s uncertainty
regarding the state of the channel indeed grows as long as no new observation is obtained.

6.1.3 Mixed model example
Having specified the GE and AR channel models, we now consider a mixed model example,
which is also used for numerical illustration in Section 6.2. Research in this field to date
seems to have focussed on problems with channels of the same type (mostly GE, some
AR); it is therefore interesting to investigate a mixed channel model example, where a
proportion q ∈ [0, 1] of the channels is GE and the others are AR. This can occur in
examples where the dominating phenomena of some of the channels is user interference
(GE channels), while for other channels the key feature is slow-fading behaviour (AR
channels).

Our model parameters are αi, γi for i = 1, . . . , q d (GE channels) and ϕj , σ2
j for j =

q d+ 1, . . . , d (AR channels); we assume that q d is an integer.
In order to be able to compare GE and AR channels, we consider the following reward

functions:

Ri(xi) =
xi − γi√
γi (1− γi)

, and Rj(xj) =

√
1− ϕ2

j

σj
xj , (6.6)

where xi is a value observed in GE channel i and xj is the value observed in AR channel
j. Note that these functions are chosen in such a way that the steady state values of
rewards from both channels have zero-mean and unit-variance, hence making the channels
equivalent in this sense.

The state space of the MDP with (joint belief) states ϑ = (ϑ1, . . . , ϑd), with scalars
ϑi, i = 1, . . . , q d, and 2-dimensional vectors ϑj , j = q d+ 1, . . . , d, is given by:

Θ := [0, 1]q d ×
d∏

j=qd+1

R× [νmin
j , νmax

j ).

An optimal policy π for this MDP is not known in closed form. It can be computed
approximately with the aid of dynamic programming algorithms, on a discretised and
truncated state space. This is feasible with sufficient accuracy only if d is very small (and
indeed this is carried out as part of the numerical examples provided in Section 6.2 for
d = 2).

6.2 Numerical comparison

In this section we compare the performance of the Whittle index policy to that of the
myopic policy and, for small d, to the optimal policy. To evaluate the Whittle indices,
we usually need the optimal policy associated with Whittle’s one-armed sub-problem.
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We obtain the latter from relative value iteration (on a discretised state space) using the
optimality equation (5.9). This can be written more explicitly using the reward functions
from (6.6) as

G+ h(ω) = max

{
Ri(ω)− λ+ ω h

(
p11
i ) + ω h(p01

i ) , h
(
ωp11

i + ωp01
i

)}
(6.7)

when the channel is GE (so that ϑ = ω, and ri(ϑ) = Ri(ω) since Ri(·) as defined in (6.6)
is affine), and

G+ h(µ, ν) = max

{
Rj(µ)− λ+

∫ ∞
−∞

h(ϕy, σ2)φµ,ν(y) dy, h
(
ϕµ, ϕ2ν + σ2

)}
(6.8)

when the channel is AR (in which case ϑ = (µ, ν), and rj(ϑ) = Rj(µ) since Rj(·) is linear).
Here φµ,ν denotes the normal density with mean µ and variance ν. Note that in the case
of GE channels, the Whittle indices are in fact available in closed form, [99]. Still, for the
purposes of exposition, we carry out relative value iteration in this section numerically.

Figure 6.2 shows the optimal switching curve for a small mixed system with one AR
and one GE channel. To the left of the curve, where ω is large in comparison to µ, the
optimal policy is to select the GE channel. To the right of the curve selecting the AR
channel is optimal. The curve shifts with the age of the AR channel: the more time has
passed since the AR channel has last been observed, the more inclined the transmitter
should be to select that channel in order to update the available information regarding
its state. In other words, it is indeed optimal to give some priority to exploration if AR
channels are present in the system. Note, however, that for ‘older’ channels this effect is
less pronounced because in that case the resulting change in the conditional variance ν is
smaller (recall the belief propagation of ν defined by (6.4)).
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Figure 6.2: Optimal switching curves for a system with d = 2 channels: an AR channel with
ϕ = 0.8 and σ = 2, and a GE channel with ρ = 0.5 and γ = 0.8. This figure shows the switching
curves on the ω, µ plane, one curve per age η ∈ {1, 2, 3}.

Figure 6.3 shows a comparison of the rewards that are obtained per channel on average
under different policies. Here, k = d/2 channels are selected at a time in a system with
d channels, where half of the channels are GE and the other half are AR. All of the
AR channels are with ϕ = 0.8 and σ = 2 (as in Figure 6.6). The GE channels on the
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other hand are heterogeneous, with γ = 0.8 and ρi ∈ [0.2, 0.8] evenly spaced such that
0.8 = ρ1 > · · · > ρd/2 = 0.2. Depicted are the average rewards per arm obtained under
the Whittle and the myopic index policy, and, as an upper bound, we also computed the
average rewards that could be obtained in a fully observable system under the myopic
policy. Due to the high computational complexity, the optimal policy is only evaluated
for d = 2.
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Figure 6.3: Comparison of Whittle and myopic index policies for increasing number of channels
d when half of the channels are GE and the other half is AR. For d = 2, the average reward
obtained under the optimal policy is indicated by a black dot. We compare to the average
reward that could be obtained if both arms were observed at each time point (that is in the fully
observable or ‘omniscient’ setting).

All policies seem to approach a certain steady performance in terms of average reward
per arm rather quickly as the number of channels grows large while the ratio k/d remains
fixed. The achieved average reward level demonstrates the significant improvement in
throughput that can be achieved by utilising the channel memory: the average reward is
increased by more than 30% compared to the zero average reward that is obtained when
channel memory is not used.

Figure 6.3 also confirms that some degree of exploration is favourable: In this example
the Whittle index policy improves the average reward per arm by about 5% with respect
to the myopic policy. This is in contrast to scenarios where all channels are GE and
stochastically identical. In the latter case it can be shown that the Whittle and the
myopic index policy are equivalent. We give further details in (i) below.

From a practical perspective an increase of 5% may appear small, however, it can be
crucial in systems that are nearing fundamental limits. For example, for wireless devices
with limited battery life such an increase may effectively correspond to a decrease of a
few percent in power consumption, which may be significant in increasing the operational
time of the device.

Next, we investigate the Whittle indices ιW (ω) obtained for GE channels with various
parameter combinations (Figure 6.4). We observe the following properties of ιW (ω):

(i) The index function ιW (ω) increases monotonically; the larger the conditional prob-
ability that the channel is in a good state, the more priority should be given to that
channel. This implies that the Whittle index is equivalent to the myopic policy in
systems with identical channels, as we mentioned above.

(ii) ιW (ω) is affine within the ranges
[
0,min{p01, p11}

]
and

[
max{p01, p11}, 1

]
. Further,

it changes slope at γ.
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These properties have been proven in [99] for GE channels with reward function r(ω)
given by the identity function.

We further note that the Whittle indices are overall smaller if γ is larger because in
this case the rewards are smaller (as Rj defined by (6.6) is decreasing in γ).

ρ = 0.5, γ = 0.8, ρ = 0.2, γ = 0.8, ρ = 0.5, γ = 0.5, ρ = 0.2, γ = 0.5
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Figure 6.4: Whittle indices for GE chan-
nels parametrised by α and γ.
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Figure 6.5: Difference between Whittle
and myopic index function.

In Figure 6.5 we show the difference between the Whittle and the myopic index func-
tion. It can be seen that the index functions are basically identical on

[
0,min{p01, p11}

]
and

[
max{p01, p11}, 1

]
: In these regions exploration is not essential as it is rather certain

that the state will evolve towards γ. Accordingly, we see that ιW and ιM do differ around
γ, and on a larger interval to the left of γ.
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Figure 6.6: Contour plot of ιW (µ, ν)− ιM (µ) (the difference of Whittle and myopic indices), for
an AR channel with ϕ = 0.8, σ = 2.

Figure 6.6 depicts the difference between Whittle and myopic indices as obtained for
an AR channel. Both indices increase with µ because the expected immediate reward is
larger. Note that for increasing age the Whittle indices increase relative to the myopic
indices. Again this suggests that exploration pays off. Furthermore, for high ages the
difference between the Whittle and the myopic indices is largest around zero, which
corresponds to the unconditional mean reward of the channel. Similarly to the GE case,
this may be explained by noting that exploration is more important if µ is close to the
unconditional mean as it is less clear in which direction the belief state will evolve. If
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µ is far away from the unconditional mean on the other hand, then it is likely that the
updated conditional mean will be closer to the unconditional mean. However, when the
age is close to zero, then due to the positive correlation of the channel it is also important
that µ was large just an instance ago. Thus, while for small ages the Whittle indices
are generally close to the myopic indices, the largest difference can be seen for positive µ
(however not too far away from the unconditional mean of the channel).

6.3 Literature survey

There is a vast body of literature on MDP as well as topics related to (restless) multiarmed
bandits. Here, we focus on the RORMAB formulation of the basic channel selection
problem as formulated in this chapter, with GE or AR channels. Other (approximate)
solutions to this MDP problem have been put forward [67], but are not considered here.

GE Channels. The GE model was proposed in [47] for the purpose of modelling
burst-noise telephone circuits. It was the first non-trivial channel model with memory.
Since the 1990’s, the model and its generalisations have been used for modelling flat-
fading channels in wireless communication networks. Its application in the context of
Opportunistic Spectrum Access (OSA) is motivated by the bursty traffic of primary users
[70, 173]. For an account on the history of the GE model we refer to [132].

Due to its simplicity, the GE model is mathematically tractable and has been analysed
extensively in the context of channel selection in wireless networks. We survey a number
of papers that model the problem as a RORMAB with GE channels. Unless otherwise
stated, channels are assumed to be independent and stochastically identical.

One of the first papers in this context appears to be [78]. The paper is motivated
by the problem of allocating bandwidth of a shared wireless channel between a base
station and multiple homogeneous mobile users. Thus, from an engineering perspective,
the set-up slightly differs from the problem considered in this chapter; the model and the
mathematical analysis, however, apply directly to the channel selection scenario (where
simply “users” are replaced by “channels”).

In [78], the noisiness of the link for the users is modelled using the GE model. At any
point in time a user may either be connected to the base station or not. The current state
of a user is only observed when a packet is transmitted to that user. Rewards are given
by the number of successful transmissions. The analysis is with respect to the discounted
reward criterion over an infinite time horizon. The authors show that the myopic policy is
generally optimal for the case of d = 2 users. For the case d > 2 and positively correlated
channels it is proven that the myopic policy is optimal if the discount factor is small
enough (Condition (A) in [78]). Furthermore, in the positively correlated scenario the
myopic policy is seen to be equivalent to a “persistent round robin” policy where the link
is dedicated to each user in a cyclic fashion according to their initial probability of being
in a good state, and packets are transmitted to the same user until a packet fails to be
transmitted correctly.

Following this work, the GE channel model has been analysed extensively in a surge
of research on OSA, which goes back to [77]. The aim of this branch of research is to find
secondary user policies that efficiently exploit transmission opportunities created by the
bursty usage patterns of licensed primary users in wireless networks.

One of the first to formulate the RORMAB with GE channels in the context of OSA
were Zhao et al. in 2005 [171]. The authors compare the transmission rate achieved by
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the myopic policy to the optimal policy using numerical examples.
This work was the starting point of a sequence of papers analysing the performance

of the myopic policy. In [169], optimality is proven for the case of choosing one out of two
channels, with respect to expected total discounted rewards over finite as well as infinite
time horizon.

The scenarios in which the myopic policy is optimal are then generalised in a sequence
of papers. Javidi et al. [68] consider the case of selecting 1 out of d channels and prove
optimality of the myopic policy under the discounted reward criterion for positively cor-
related channels provided the discounted factor satisfies a certain inequality with respect
to the transition probabilities. Under the additional ergodicity criterion

|p11 − p00| < 1, (6.9)

the myopic policy is further shown to be optimal under the average reward criterion (cf.
(5.3)). The work of [68] is extended in [98] to the case of selecting d−1 out of d channels.

In [170] for the case of choosing 1 out of d channels the result of [78] is confirmed that
the myopic policy is a persistent round robin scheme if channels are positively correlated.
It is further shown that if correlation is negative, then the myopic policy is a round robin
scheme, where the circular order is reversed in every time slot (and as for the positively
correlated case, the user switches to the next channel as soon as the currently used channel
signals has transitioned to the bad state). For the case d = 2, the myopic policy is shown
to be optimal in general, as had already been established in [78]. Furthermore, it is shown
that the performance of the myopic policy is determined by the stationary distributions
of a higher-order countable-state Markov chain. The stationary distribution is known
in closed form for the case d = 2. For the case d > 2, lower and upper bounds are
established.

For negatively correlated channels and the case of selecting 1 out of d channels, the
finite and infinite horizon discount-reward optimality of the myopic policy is proven in
[7], provided that either d ∈ {2, 3} or the discount factor is less than half. These results
also hold under average rewards under the additional ergodicity condition (6.9). For the
finite-horizon discounted reward criterion, the results of [7] are generalised in [4] to the
case of selecting k channels.

In 2014, Liu et al. [101] provide a unifying framework of the optimality conditions for
the myopic policy that resulted from the OSA-motivated research of the channel selection
problem with GE channels. The problem formulation in [101] is more general as it allows
one to sense k out of d (identically distributed) channels but select only l ≤ k of those
channels for transmission based on the outcome of the sensing. The authors provide a
set of unifying sufficient conditions under which the myopic policy is optimal. It is shown
that the optimal policy is not generally myopic if l < k. (This is intuitive because the
user is allowed to explore channels without having to use them.)

The Whittle index policy has also been studied both for the bandwidth allocation
problem that was put forward in [78], and also in the context of OSA. As opposed to [78],
a paper by Niño-Mora [112] handles the problem of bandwidth allocation when users are
heterogeneous. The author proves that the problem is indexable and provides closed-form
expressions for the index function.

For the basic RORMAB with GE channels, Liu and Zhao [99] prove that the Whittle
index and the myopic policy are equivalent for positively correlated identical channels,
thus, yielding the optimality of the Whittle index in this case. In [117], the indexability
and closed-form expression for the Whittle index in the case of discounted rewards are
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derived for a more general model where the achievable transmission rate (the reward) for
a channel in the bad state is, in general, non-zero and any rate above this achievable rate
leads to outage.

Apart from the index policies proposed in this line of research, algorithms for ap-
proximating an optimal policy have also been investigated. See, for example, [58, 60],
where algorithms for the more general model with correlated channels are proposed and
investigated regarding their performance.

In the context of GE channels a number of generalisations of the basic model considered
in this chapter have been considered. For example, a paper by Niño-Mora [113] allows
for non-identical channels with sensing errors/measurement noise. Imperfect sensing was
also considered in [100, 159]. In [117] the authors consider a problem where in both
states, good and bad, transmission may fail with a certain non-zero probability, and it
is only observed whether transmission was successful or not. Another recent paper with
imperfect sensing is [110]. In this paper the focus is on stability issues of queues associated
with channel (server) selection in the context of imperfect sensing.

The paper [109] deals with random delay of feedback arrivals. Correlated channels
were considered in [58, 59, 60]. Action-dependency of channel model parameters is taken
into account in [153]. A very substantial paper is [157], which considers an RMAB in con-
tinuous time, and allows for non-identical channels, a time-dependent number of channels,
and multiple actions. In this paper, a more general class of index policies is considered,
which includes the Whittle index if the bandit problem is indexable. Asymptotic opti-
mality for this class is proven for systems with many channels.

AR Channels. The AR channel model has only recently come to attention in the
context of channel selection, and consequently the mathematical analysis is still at its
infancy. The first to propose the application of this model for channel selection were
Avrachenkov et al. [11] in 2012. This is motivated by empirical studies [2], showing
that the AR model captures the signal-to-noise ratio (SNR) behaviour of the channels
reasonably well.

In [11], the authors compare the performance of the myopic and an ad-hoc randomised
policy to the optimal policy by means of numerical examples. It is concluded that the
myopic policy is “nearly optimal” when all channels are similarly correlated, with respect
to the long-run average reward criterion. In contrast, the randomised policy appears to
perform better when there is a significant difference in the magnitude of the correlation
of the channels.

Subsequently, the authors show how to model the problem when two transmitters are
present that can possibly interfere with each other. In this case the SNR is replaced by
the signal-plus-interference-to-noise-ratio (SINR) to model the states of the channels. The
scenario is formalised as a competitive MDP (also called a stochastic game) – an MDP in
which the instantaneous rewards for each player and the transition probabilities among
the states are controlled by the joint actions of the players in each state. Then, similar
to the single user case, a randomised and a myopic policy are suggested (now based on
the SINR).

We also note that a related body of literature deals with the problem of optimal
sensing of Kalman filters. A key paper in this line of research is [115]. A related paper
is [114] as well as the recent [34] which appears to provide an indexability proof using a
new novel method. It is possible that ideas put forward in these papers dealing with the
Whittle index and simple Gaussian processes may be fruitful for the RORMAB problem
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with AR channels. This avenue of research remains to be explored.
In the next chapter we present present the results of our own research on the AR

channel model as published in [83, 84].



CHAPTER 7

Reward-observing bandits with Gaussian
autoregressive arms

In this chapter we focus on the RORMAB for channel selection with Gaussian AR channels
as introduced in Chapter 6. The content of this chapter has appeared in Kuhn, Mandjes
and Nazarathy [83, 84].

We first briefly describe the type of results presented in this chapter. Considering the
discounted reward case, we find structural properties of the one armed sub-problem asso-
ciated with the Whittle index. We establish convexity and monotonicity properties and
show numerically the existence of a switching curve and the monotonicity of the related
Whittle index. These properties motivate a simple parametric index which quantifies the
virtue of exploration compared to exploitation in terms of variance and mean. For this
index we investigate the mean-field behaviour of the system in the average reward case. In
particular, we put forward a deterministic measure-valued recursion that approximately
describes the distribution of belief states when the number of arms is large. We merge
these ideas into a performance evaluation and optimisation procedure.

The organisation of this chapter is as follows. In Section 7.1 we formulate the decision
problem. Sections 7.2 and 7.3 present our contributions with respect to the structural
and asymptotic analysis of the problem. We conclude in Section 7.4.

7.1 Model and framework

The AR model features independent state processes X(t) :=
(
X1(t), . . . , Xd(t)

)
, which

satisfy the AR(1) recursion

Xi(t) = ϕXi(t− 1) + εi(t),

with
{
εi(t)

}
t∈N0

denoting an i.i.d. sequence of N
(
0, σ2

)
random variables. The param-

eters ϕ, σ are assumed to be known. We restrict our exposition to the case ϕ ∈ (0, 1),
whence the processes are stable and observations are positively correlated over time. (The
case ϕ < 0 appears to be more difficult and is excluded from this discussion.)

We are in the partially observable setting, that is, the state of an arm is only observed

120
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when that arm is activated, while at every time slot all arms evolve to the next state.
Recall that the belief state is fully characterised by the conditional mean and variance
defined in (6.2) and (6.3). We denote the joint (belief) state space of (µi, νi) by Θ :=
Θ1 ×Θ2 so that (µ,ν) ∈ Θd.

The aim is to find a policy π so as to maximise the accumulated rewards over an infinite
time horizon as evaluated by the total expected discounted reward criterion defined in
(5.2), which we repeat here for convenience:

V π(µ,ν) := lim
T→∞

Eπµ,ν

[
T∑
t=0

βt
d∑
i=1

Xi(t) ai(t)

]
. (7.1)

(As before, β ∈ (0, 1) is the discount factor, and the subscript indicates conditioning on
X(0) ∼ N

(
µ,diag(ν)

)
.) Similarly, the average expected reward criterion now reads

Gπ(µ,ν) := lim inf
T→∞

1

T
Eπµ,ν

[
T−1∑
t=0

d∑
i=1

Xi(t) ai(t)

]
. (7.2)

Note that Xi(t) in (7.1) and (7.2) can be replaced by µi(t) by the tower property of
conditional expectations.

Lemma 7.1. The function V π is well-defined in the sense that the limit in (5.2) exists
and is finite. Furthermore, the optimal value function supπ V

π is finite.

Proof. For each arm i we have

Eµi,νi |Xi(t)| ≤Eµi,νi

ϕt |Xi(0)|+
t−1∑
j=0

ϕji |εi(t− j)|


≤
√

2νi
π

+ |µi|+
√

2

π

1

1− ϕ
=: B(µi, νi),

which is finite, and thus,

sup
π

∞∑
t=0

βtEπµi,νi

[
d∑
i=1

|Xi(t)ai(t)|

]
≤ dmaxiB(µi, νi)

1− β
<∞,

whence supπ V
π(µ,ν) is finite, and

∑∞
t=0 β

t
∑d
i=1 |Xi(t)ai(t)| converges almost surely to

a finite limit. The variables ZT :=
∑T
t=0 β

t
∑d
i=1Xi(t)ai(t) thus converge almost surely

as T → ∞ and are dominated by the absolute sum which has finite mean. Hence, by
dominated convergence

Eπµ,νZT → Eπµ,ν

[ ∞∑
t=0

βt
d∑
i=1

Xi(t)ai(t)

]
.

In view of computational tractability we restrict our exposition to policies from the
class of index policies.
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7.2 Index policies

Recall that an index policy is a policy of the form

πι(µ,ν) = arg max
a:
∑d
i=1 ai=k

{
d∑
i=1

ι (µi, νi) ai

}
.

Without loss of generality the index function can be written as

ι(µ, ν) = µ+ q(µ, ν) (7.3)

for some known function q : Θ → R. For the myopic index we have q ≡ 0. As the
resulting policy does not account for information growing obsolete (giving full priority to
exploitation), the performance of the myopic policy deteriorates as β ↑ 1. We therefore
focus on the Whittle index that was introduced in Section 5.1.2.

7.2.1 Whittle index

In this section we show how to obtain the Whittle index when the underlying states are
AR, and provide structural results. Our focus is on the discounted reward criterion (7.1).

In Definition 5.2 we defined the Whittle index for arm i as the largest cost such that
it is still optimal to play the arm in the one-arm sub-problem. Equivalently (and this is
the more classical interpretation), we may define it to be the smallest subsidy for which
it is optimal to leave the arm passive:

Definition 7.2. Let Pλ denote the passive set associated with the one-armed problem
with subsidy λ, that is,

Pλ := {(µ, ν) | a = 0 is optimal action}.

The Whittle index associated with this arm and state (µ, ν) is given by

ω(µ, ν) = inf {λ | (µ, ν) ∈ Pλ} .

As before, we shall assume that indexability holds, as confirmed through extensive
numerical experimentation (see, for example, Figure 7.1). The discount-optimal value
function V λ := supπ V

λ,π for the one-armed sub-problem with subsidy can be obtained
using value iteration (see Proposition 7.3).

First we introduce the operator Tv := maxa∈{0,1} Tav, where

Tav (µ, ν) :=

{
λ+ β v(ϕµ, ϕ2ν + σ2), a = 0,

µ+ β
∫∞
−∞ v (ϕy, σ2)φµ,ν(y) dy, a = 1,

with φµ,ν denoting the normal density with mean µ and variance ν.

Proposition 7.3. For V λ0 ≡ 0 the iteration

V λn = TV λn−1 (7.4)



123 7.2. Index policies

converges to a unique function V λ : Θ→ R as n→∞ that satisfies the Bellman equation,

V λ = TV λ.

This V λ is the discount-optimal value function for the one-arm bandit problem with
subsidy λ. An optimal policy for this problem maps (µ, ν) to action a if V λ(µ, ν) =
TaV

λ(µ, ν).

Proof. Define b(µ) := 1 + µ2. Then, because |max{m,µ}| ≤
(
1 + |m|

)
b(µ), the absolute

value of the expected immediate reward under both actions (passive, active) is bounded
by
(
1 + |m|

)
b(µ) for any belief state in Θ. Furthermore,∫ ∞

−∞
b(ϕy)φµ,ν(y)dy ≤

(
1 + ϕ2νmax

)
b(µ)

and hence, b is an upper bounding function in the sense of [16, Definition 7.1.2]. The
implication of this is that the space V of measurable functions v : Θ → R with finite
weighted supremum norm defined by

‖v‖b := sup
µ,ν

|v(µ, ν)|
b(µ)

<∞

contains the optimal value function V . We apply [16, Theorem 7.2.1]. To verify the main
condition of the latter, define the operator Q by

Qv(µ, ν) := max

{
βv(ϕµ, ϕ2ν + σ2), β

∫ ∞
−∞

v(ϕy, σ2)φµ,ν(y)dy

}
.

Take b(µ, ν) = b(µ) as defined above and observe that

Qnb(µ, ν) ≤ βn
(

1 + ϕ2νmax + ϕ2n
(
ν + µ2

) )
,

whence Qnb→ 0 as n→∞. Noting that the further regularity conditions of [16, Theorem
7.2.1] are satisfied, we obtain that with initial choice V0 ≡ 0 the value iteration converges
to an optimal value function, and an optimal policy exists; namely, it is optimal to take
the action that maximises the right-hand side of the Bellman equation. The uniqueness
of the value function can be seen as follows. Let v and w be two fixed points of T . Then

Tnv(µ, ν) = T
(
Tn−1v(µ, ν)

)
= · · · = v(µ, ν),

for every n ∈ N. Because Qn → 0 we know that for every (µ, ν) there exists nµ such that

|Tnµv(µ, ν)− Tnµw(µ, ν)|
b(µ, ν)

≤ α sup
µ,ν

|v(µ, ν)− w(µ, ν)|
b(µ, ν)

for some α ∈ (0, 1). Hence,

‖v − w‖b = sup
µ,ν

|Tnµv(µ, ν)− Tnµw(µ, ν)|
b(µ, ν)

≤ α‖v − w‖b,

which implies that v ≡ w.
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Structural properties. Let us first consider monotonicity properties of the optimal
value function V λ.

Lemma 7.4. Let ϕ ∈ (0, 1). Then V λ(·, ν) is convex, continuous on open intervals,
non-decreasing, and not constant; and V λ(µ, ·) is non-decreasing.

Proof. The proof is by induction on (7.4), and consists of three parts. Part (a) refers
to the convexity assertion, which implies continuity on open intervals. In Part (b) we
prove the monotonicity properties of V λ(·, ν) for fixed ν, whereas in Part (c) we show
monotonicity of V λ(µ, ·) with µ fixed.

(a) Suprema, expectations, compositions of convex and increasing functions as well as
linear combinations with non-negative weights of convex functions are convex. Then the
result follows from (7.4) by induction.

(b) For V λ0 ≡ 0, we have that V λ1 (·, ν) is non-decreasing and thus we may assume
that V λn (·, ν) is non-decreasing for some n. If µ1 ≤ µ2, then by a stochastic ordering of
Yµi,ν ∼ N (µi, ν) it holds that

E
[
V λn
(
ϕYµ1,ν , σ

2
)]
≤ E

[
V λn
(
ϕYµ2,ν , σ

2
)]
.

It follows by induction that V λn is non-decreasing in µ for all n ∈ N, and thus their limit
V λ is non-decreasing in µ. Furthermore, since a lower bound for V λ is given by the value
obtained when always playing active, µ/(1 − ϕβ), which is strictly increasing in µ, it is
evident that V λ cannot be constant in µ.

(c) Let V λ0 ≡ 0. Then V λ1 (µ, ·) is constant and thus non-decreasing. Assume that
V λn (µ, ·) is non-decreasing. We prove below that E

[
V λn
(
ϕYµ,ν , σ

2
)]

is non-decreasing in
ν. Then it follows by induction that V λn is non-decreasing in ν for every n, and thus, so
is V λ.

For brevity we assume that V λ(·, ν) is differentiable (otherwise the arguments need
to be formulated in terms of subdifferentials). Define g(y) := V λn (ϕ

√
νy + µ, σ2); this

is increasing and convex as it is a composition of a convex and a monotone increasing
function. Applying Jensen’s inequality we obtain

∂

∂ν
E
[
V λn
(
ϕYµ,ν , σ

2
)]

=
ϕ

2
√
ν

∫ ∞
−∞

y
∂

∂x
V λn
(
x, σ2

)∣∣∣
x=ϕ
√
νy+µ

φ0,1(y) dy

=
1

2ν

∫ ∞
−∞

y g′(y)φ0,1(y) dy

≥ 1

2ν

∫ ∞
−∞

(
g(y)− g(0)

)
φ0,1(y) dy ≥ 0

because g is convex (and thus g(b) − g(a) ≤ g′(b)(b − a) for all a, b in R, the domain of
g).

Figure 7.1 and similar numerical experiments1 suggest that the passive set Pλ and the
active set Pcλ are separated by a switching curve (defined on the countable space Θ2).

1To execute the value iteration we truncate Θ1 to [−6σ, 6σ], and consider λ ∈ [−2σ, 2σ]. Discretisation
is done in steps of size 0.01, which is preserved when truncating Θ2.
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Figure 7.1: Switching curves: below the curve the optimal action is passive, above it is active.
Parameters are chosen as β = 0.8, ϕ = 0.9, σ = 2. Note that the state space of ν is countable
within [σ2, σ2/(1− ϕ2)).

Conjecture 7.5. A policy that achieves the optimal value function V λ is a thresh-
old policy: There exists a switching curve (sequence) ζλ : Θ2 → Θ1 such that Pλ =
{(µ, ν) |µ ≤ ζλ(ν)}.

Let µ1 ≤ µ2, then Conjecture 7.5 implies that (µ1, ν) ∈ Pω(µ2,ν). Hence, we have
ω(µ2, ν) ∈ {m | (µ1, ν) ∈ Pm} and thus, ω(µ1, ν) ≤ ω(µ2, ν) by definition of the Whittle
index as an infimum.

Numerical evidence such as provided in Figure 7.1 suggests that the switching curve is
in fact strictly decreasing, i.e. it is optimal to give some priority to exploration. Assuming
this is the case, one would expect that ω(µ, ·) is monotone non-decreasing, which would
imply that the Whittle index policy assigns comparatively larger indices to arms that
have not been activated for a longer time. In accordance with this observation, Figure 6.6
in Chapter 6 showed that the correction term q(µ, ν) is positive and increases in ν. Fur-
thermore, we confirmed numerically that the slope of ζλ(ν) increases as β increases as in
this case exploration becomes more beneficial.

7.2.2 Parametric index
As no closed form for the Whittle index is available, the Whittle indices have to be
computed and stored for every belief state in Θ, while the evaluation of the optimal value
function for the one-armed problem with subsidy is computationally expensive. Therefore,
instead of finding the index for the one-armed problem with subsidy that is optimal (the
Whittle index), we propose to find the index that is optimal when restricting to a family
of parametric functions. A simple example is obtained by picking a function q(µ, ν) that
is proportional to ν, the most obvious measure for the decision maker’s uncertainty. This
yields the parametric index

ι(µ, ν) = µ+ θν, (7.5)

where θ ≥ 0 because the Whittle index function is non-decreasing in ν. The correction
term θν allows to adjust the priority the decision maker wants to give to exploration. We
denote the associated policy by πθ.

The parametric index can be related to the Whittle index as follows. Numerical exper-
iments (such as Figure 7.1 for discounted, and related experiments for average rewards)
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suggest that the optimal switching curve may be well approximated by a linear function,
the slope of which is negative but does not depend on λ. The position of the curve on the
other hand does depend on λ. Such an approximation is given by ζλ(ν) ≈ −θν + λ + c
with θ ≥ 0, c ∈ R. As ζλ(ν) takes some value µ ∈ R, solving for λ (which may correspond
to the Whittle index) suggests using an index of the form (7.5), where without loss of
generality we take c = 0.

In the next section we show that we can explicitly describe the asymptotic dynamics
of the system induced by πθ.

7.3 System with many arms

We investigate the behaviour of the system with many arms as d → ∞ and kd/d → r.
In Section 7.3.1 we outline the main idea that is based on the intuition that the limiting
proportion of belief states remains stable in an equilibrium system with infinitely many
arms. In Section 7.3.2 we relate the equilibrium system to a single arm process, and use
this connection to propose an algorithm for performance evaluation. This algorithm is
used to optimise πθ in Section 7.3.3.

7.3.1 Limiting empirical distribution

Consider the system with d arms as before, and to simplify the exposition suppose for
now that the system is stationary. Let Ii(t) denote the process of indices associated with
arm i, that is, Ii(t) := ι

(
µi(t), νi(t)

)
. Note that the index processes Ii(t) and Ij(t),

i, j = 1, . . . , d, are generally dependent because the belief states of both arms depend on
the action that was chosen, which in turn depends on the index of all arms in the system
(as they are coupled by the requirement that those k arms with the largest indices are
activated). Let us now focus on a single arm i in this system and suppose that its belief
state evolves from ϑ at time t to another belief state ϑ̃ at time t + 1. While d is small,
this certainly changes the proportion of arms with current belief state ϑ considerably.
However, if d is very large, we should be able to find another arm j whose new belief
state at time t is (in close proximity to) ϑ. It thus seems reasonable to expect that, as we
add more arms to the system, it approaches a mean-field limit in which the proportion of
arms associated with a certain belief state remains fixed. Thus, in the limit, the action
chosen for a certain arm is independent of the current belief state of any other arm, as
there is always the same proportion of arms associated with a certain belief state in the
system.

Let us now more formally investigate the proportion of arms that are associated with
a certain belief state at time t. We focus on parametric index functions as defined in
(7.5). The empirical measure

Md(C, t) :=
1

d

d∑
i=1

1
{(
µi(t), νi(t)

)
∈ C

}
(7.6)

quantifies the proportion of arms in the d-dimensional system whose belief state falls into
C ∈ B(Θ) at time t, where B(Θ) denotes the Borel σ-algebra on Θ. It is related to the
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measure on indices,

M̃d(B, t) :=
1

d

d∑
i=1

1
{
Ii(t) ∈ B

}
(7.7)

with B ∈ B(R), through

M̃d(B, t) = Md

({
(µ, ν) ∈ Θ |µ+ θν ∈ B

}
, t

)
. (7.8)

We examine the dynamics of Md(C, t). To this end we enumerate the elements in Θ2,
that is, ν(h) = σ2(1 − ϕ2(h+1))/(1 − ϕ2), h = 0, 1, 2 . . . , so that h + 1 is the number of
time steps since an arm was played last. As before, we refer to h as the age of an arm.
Then (7.6) can be written as, with B ∈ B(R),

∞∑
h=0

Md
h(B, t) :=

∞∑
h=0

1

d

∑
i: νi(t)=ν(h)

1
{
µi(t) ∈ B

}
. (7.9)

Many-arms asymptotics. As motivated at the beginning of this section, it is rea-
sonable to believe that the limiting proportion of arms associated with a certain be-
lief state evolves deterministically, and thus, that the dynamics of the limiting system
can be described by non-random measures mh(·, t). For brevity we write mh(x, t) for
mh

(
(−∞, x], t), and denote by Φµ,ν the normal distribution function with mean µ and

variance ν. We define mh(·, t) by the recursion

mh

(
x, t+ 1

)
(7.10)

=


∑∞
h=0

∫∞
`h(t)

Φz,ν(h)

(
x
ϕ

)
mh(dz, t), h = 0,

mh−1

(
min

{
x
ϕ , `h−1(t)

}
, t
)
, h ≥ 1,

where `h(t) := `(t)− θν(h) with `(t) defined as the quantile function of ι
(
ϑ(t)

)
evaluated

at 1− r, that is,

`(t) = inf

{
`
∣∣∣ ∞∑
h=0

m̃h

(
[`,∞), t

)
≤ r

}
. (7.11)

Here, m̃h denotes the measure on indices, i.e.

m̃h(B, t) = mh

({
µ ∈ Θ1 |µ+ θν(h) ∈ B

}
, t
)
, (7.12)

cf. Eq. (7.8). Note that `h(t) is a threshold such that at time t the policy πθ activates all
arms that are of age h and have conditional mean µ(t) ≥ `h(t), h ≥ 0. Obviously, if the
policy is myopic, then `h(t) = `(t) does not depend on the age of an arm and the above
expressions can be simplified. Recursion (7.10) is obtained based on the dynamics of the
belief states. The evolution of m0(·, t) is determined by the evolution of the belief state
of all arms that have been played in the previous time slot. If h > 0 on the other hand,
we use that arms of age h must have been of age h− 1 at the previous decision time;
and since they have not been activated, their mean must have been below the threshold
`h(t− 1).
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For the (pre-limit) empirical processes Md it obviously holds that Md(Θ, t) = 1, as
well as (with h = 0) Md

0 (Θ1, t) = kd/d. These properties carry over to the conjectured
limiting measure.

Lemma 7.6. If the sequence {mh(B, 0)}h satisfies

m0

(
Θ1, 0

)
= r, and

∞∑
h=0

mh

(
Θ1, 0

)
= 1, (7.13)

then the same holds for mh(B, t) for all t > 0.

This is easily proven by induction using (7.10)–(7.12). We believe that (7.10) indeed
describes the mean-field behaviour of the dynamical system: Assuming that Md

h(B, 0)
converges weakly to mh(B, 0) for all h ≥ 0,

Md
h(B, 0)

w−→ mh(B, 0),

as d→∞ while limd→∞ kd/d = r, then, for all t, h ≥ 0, we expect to have

Md
h(B, t)

w−→ mh(B, t).

Long-run equilibrium. Note from (7.10) that for h ≤ t we can express mh(B, t) in
terms of m0(B, t),

mh

(
x, t
)

= m0

(
min

j=1,...,h

{
x

ϕh
,
`h−j(t− j)
ϕh−j

}
, t− h

)
.

Then the fixed-point equation corresponding to (7.10) is given by

m∗0
(
x
)

=

∞∑
h=0

∫ ∞
`∗h

Φz,ν(h)

(
x

ϕ

)
m∗h(dz)

=

∞∑
h=0

∫ minj
`∗h−j
ϕh−j

`∗
h
ϕh

Φϕhz,ν(h)

(
x

ϕh

)
m∗0(dz)

where j = 1, . . . , h. Here, `∗h = `∗ − θν(h) where the steady state `∗ is defined by

`∗ = inf

{
`
∣∣∣ ∞∑
h=0

m̃∗h

(
[`,∞)

)
≤ r

}
, (7.14)

and m̃∗ again denotes the measure on indices, cf. (7.12).
The above system of equations describes possible equilibrium points of the measure

valued dynamical system. It is intricate due to the coupling of `∗, m̃∗ and the measures
mh, h ≥ 0. The virtue of this representation is that its solution can potentially be
described through a single measure, namely m∗0.

For the special case of θ = 0 (myopic) we verified numerically that with arbitrary
initial choice {mh(·, 0)} satisfying (7.13) an equilibrium point satisfying (7.14) is indeed
attracting. Furthermore, when d and t are large enough, the proportion of arms associated
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with a certain belief state in a simulated system with d arms is indeed fixed and well
approximated by the solution to (7.14) when operated under the myopic policy.

7.3.2 The equilibrium index process

We now relate the system with many arms operated under πθ to a special one-armed
process with threshold. For this process the arm is activated whenever the index exceeds
a specified threshold `, i.e. a(t) = 1{µ(t) + θν(t) ≥ `}. Because the evolution of the
belief state and thus the evolution of the index depends on `, we denote the associated
stochastic process of indices by I`(t) := µ(t) + θν(t).

Suppose that ` is picked in such a way that we activate with probability r; denote it
by `. Then a policy π`θ that chooses action ai(t) = 1

{
µi(t) + θνi(t) ≥ `

}
for every arm i

in an unconstrained system with d arms is a policy which activates r d arms on average
(this is essentially the idea behind Whittle’s relaxation [163]). Thus, as d→∞, the policy
π`θ activates approximately a proportion r of arms at every decision time.

We believe that in steady state (as t → ∞ or under stationarity) the equilibrium of
the measure-valued dynamical system is directly related to the one-armed process with
this particular threshold `, and further ` equals `∗ of (7.14). Assume that the index is
parametric, and that I`(t) is stationary. Then we believe that the equation

P
(
I`(t) ≥ `

)
= r (7.15)

has a unique solution `∗, which satisfies Eq. (7.14), and

P
(
I`
∗
(t) ∈ B

)
=

∞∑
h=0

m̃∗h(B), ∀B ∈ B(R).

A practical implication is that in the limit, as d→∞ and t→∞, a parametric index
policy πθ is equivalent to the policy that activates arm i in an unconstrained system
whenever Ii(t) ≥ `∗, where `∗ is defined by (7.15). This motivates the following simple
algorithm for performance evaluation.

Algorithm 2 Performance evaluation.

1: For large T determine ̂̀∗ (e.g. using a bisection method) such that T−1
∑T
t=0 ai(t) = r

is achieved for a policy π̂̀∗θ .
2: Use the sample path of Step 1 to obtain an estimate G for the expected average

reward of the one-armed system.
3: Output Gd := dG as an approximation of the expected average reward of the multi-

armed system with d arms operated under πθ.

The virtue of this algorithm is that the behaviour of the many-armed system is ap-
proximated by simulating a much simpler one-armed problem.

7.3.3 Optimised parametric index

The algorithm can be used to approximate the best parameter values for a parametrised
index policy. We approximate θ∗ := arg maxθ Gd(θ) by θ

∗
:= arg maxθ G(θ), where Gd(θ)

is the average reward obtained under πθ for the problem with d arms, and G(θ) is the
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estimator for G(θ) as obtained from Step 2 of the algorithm. Figure 7.2 depicts the
estimated expected average reward G(θ) as a function of θ. The figure suggests that for
large ϕ, the myopic policy (which corresponds to θ = 0) can be improved significantly.
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Figure 7.2: Expected average reward G(θ) computed by the algorithm as a function of θ. σ = 2,
ϕ ∈ {0.9, 0.925, 0.95, 0.975}, r = 0.4, T = 2× 106.

We now examine the performance of πθ when the parameter is chosen to be θ
∗
. In

contrast to the approximation Gd(θ) that is obtained from the algorithm, we denote the
estimated average reward obtained by Monte Carlo simulation of the d-armed system by
Ĝd(θ). We define θ̂∗d := arg maxθ Ĝd(θ). Accordingly, Ĝd(θ

∗
) and Ĝd(θ̂∗d) are the average

rewards obtained when simulating the system under πθ, where θ is chosen as θ
∗
and θ̂∗d

respectively. In Figure 7.3 we compare these quantities to the average rewards obtained
when simulating the system under the Whittle index and the myopic policy. Unsurpris-
ingly, the Whittle index policy outperforms the other index policies – in fact, we believe it
to be asymptotically optimal. However, the parametrised index does considerably better
than the myopic.

Importantly, we note from Figure 7.3 that θ̂∗d is indeed well approximated by θ
∗
. Thus,

instead of optimising the parameter by simulating the multidimensional d-armed system,
we can approximate the best θ-value directly from the one-armed process with threshold
for any value of d (such that kd = br dc).

7.4 Conclusion

This chapter provides a starting point for a rigorous investigation of the structural prop-
erties and performance of index policies in partially observable restless bandit problems
with AR arms. This incorporates (i) the analysis of the Whittle index as a likely can-
didate for an asymptotically optimal policy as d → ∞ while kd/d → r, and (ii) insights
into the behavior of the system in this asymptotic regime. In addition to our conjec-
tures in Section 7.3, we also believe that some form of asymptotic independence holds
for the index processes as the number of arms grows large. In this context we mention
that Ii, i = 1, . . . , d, are exchangeable [5]. This may yield a path for proving asymptotic
independence. The recursions on measures defining the limiting dynamical system can
perhaps be treated along the lines of [106].

Furthermore, it can be explored whether the ideas in this chapter can be generalised.



131 7.4. Conclusion

5 10 15 20 25 30

1.1

1.15

1.2

d

av
er
ag
e
re
w
ar
d
pe

r
ar
m

ιW

ιθ
∗
d

ιθ
∗

ιM

Figure 7.3: Comparison of average rewards achieved per arm under the Whittle, the parametric
index (7.5) and the myopic policy. The parameter θ is found by optimising (i) the problem with
d arms, and (ii) the one-armed problem (dashed). ϕ = 0.9, σ = 2, r = 0.4, T = 106.

For example, the results obtained in Section 7.2.1 for discounted rewards can be expected
to hold in the average reward case as well. Beyond that, we can extend the treatment to
AR processes of higher order, heterogeneous arms and bandit problems with correlated
arms.



Part III

Testing and Monitoring
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CHAPTER 8

Introduction

In Parts I and II we discussed problems related to the control of stochastic systems
arising in communication networks and other application areas. The performance of the
devised control policies, however, crucially depends on the validity of one’s modelling
assumptions. Therefore, in this part of the thesis we focus on methods for testing and
monitoring stochastic systems.

We distinguish between off-line and on-line testing as follows: Off-line testing problems
are posed in such a way that the question of interest is to be answered as accurately as
possible given a set of available data; time does not play a role in this case. If instead
we assume that new data becomes available as we go, the problem is sequential, and the
objective is to arrive at a conclusion as quickly as possible subject to a constraint on the
number of false positives. This we regard as an on-line (or sequential) testing problem.

In Chapter 9 we consider a network of data streams, and the problem is to identify
the process that stems from a given target distribution, subject to a constraint on the
number of observations. Due to this constraint, the main question to be answered is how
to allocate the samples in such a way that the accuracy of the test result is optimised,
and consequently we treat the problem as an off-line testing problem. In contrast, in
Chapters 10 and 11 we focus on sequential testing problems related to the timely detection
of changes in the parameters of the assumed stochastic model.

In each of these cases we focus on testing procedures which feature a log-likelihood ratio
(LLR) type test statistic. LLR test statistics are widely applied in all areas of statistical
testing because they often turn out to be optimal in the sense that they maximise the
power of the test subject to a constraint on the type I error. We discuss this and further
preliminaries on LLR testing in Section 8.1.1. In Section 8.1.2 we proceed to discuss some
relevant background on change point detection. The further organisation of this part of
the thesis is detailed in Section 8.2.

8.1 Background

We briefly introduce LLR testing in Section 8.1.1, and review some basics on change point
detection with a focus on the cumulative sum (CUSUM) method in Section 8.1.2.
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8.1.1 Sequential LLR testing
In statistics, an important technique to decide whether a certain assumption should be
accepted as true, is the method of hypothesis testing, often with a LLR test statistic (see,
for instance, [97]). We briefly recall the basics of simple (off-line) LLR testing, and give
a quick introduction to sequential analysis based on Chapter 2 in [141].

Let X denote a (discrete or continuous) random variable (possibly multivariate) with
density function fX , and suppose we wish to test H0 : fX = p against H1 : fX = q, where
p and q are two different probability density functions defined on the same domain. A
false alarm (also referred to as false positive or type I error) occurs whenever we falsely
reject H0. The power of the test is defined as the probability of a true positive (rejecting
H0 when it is indeed false). A simple LLR test features the following decision rule:

Reject H0 if L (X) ≥ b,

Accept H0 if L (X) < b,

where L (X) = log
(
p(X)/q(X)

)
denotes the LLR. Then it follows from the Neyman-

Pearson lemma that this LLR test is optimal in the sense that no other test of H0 vs
H1 based on X and with false alarm probability no larger than δ := P0

(
L (X) ≥ b

)
can achieve a power larger than P1

(
L (X) ≥ b

)
(where P0 and P1 denote the probability

measure under H0 and H1).
In sequential testing we do not have to decide based on a fixed data set. Instead,

we can also opt to collect more data, and update the test statistic sequentially whenever
a new observation is obtained. A decision is made as soon as the test statistic exits a
certain interval, that is, at a random time T which is a stopping time with respect to the
natural filtration generated by the observations. As before, a natural choice for the test
statistic is the LLR, which is now sequentially updated to include new observations. This
leads to the following sequential probability ratio test due to Wald [158].

Let (Xt), t ∈ N, denote a sequence of random vectors with joint density functions p
and q under H0 and H1, respectively, and denote their joint LLR by

L1:n := log

(
q(X1, . . . , Xn)

p(X1, . . . , Xn)

)
=

n∑
t=1

`(Xt),

where

`(xt) :=
q(xt |xt−1

1 )

p(xt |xt−1
1 )

(8.1)

denotes the LLR increments, and q(xt |xt−1
1 ) denotes the conditional density evaluated

at xt given xt−1
1 := {x1, . . . , xt−1}. Then the sequential LLR test features the decision

rule

Reject H0 if L1:T ≥ b,

Accept H0 if L1:T ≤ a,

where 0 < a < b <∞ (usually a < 1 < b), and

T := min {n ∈ N : L1:n /∈ (a, b)}

is a stopping time, which we assume to be finite almost surely under both P0 and P1. Sim-
ilarly to its off-line counterpart, the sequential LLR test has strong optimality properties:
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If the observations (Xt) are i.i.d., it minimises EiT for i ∈ {0, 1} among all sequential
tests having no larger error probabilities. A proof of this fact is given in [45, p. 365]; for
an informal, more intuitive, argumentation see [141, Chapter II.4].

In the next section we focus on a particular class of sequential testing problems referred
to as change point detection. We shall see that these can be solved with the aid of LLR-
type test statistics.

8.1.2 Change point detection
The problem of detecting changes in the probability distribution of certain data streams
is an important problem in many application domains, including quality control, target
detection, signal processing, and computer network surveillance; see [151, Section 1.3]. A
comprehensive treatment of the available methodology related to change point detection
is provided in [15] and the more recent book [151]; for a more concise overview we refer
to the surveys [93, 142, 149, 156].

Consider again a sequence of observations (Xt) in discrete time taking values in Rd,
d ≥ 1.

Definition 8.1. Let k ∈ {1, . . . , n} be a point in time such that (Xs)
k−1
s=1 and (Xt)

n
t=k

are independent, and distributed with conditional probability density p
(
xs|xs−1

1

)
and

q
(
xt|xt−1

k

)
, respectively. Then k is called a change point .

We are interested in statistical procedures capable of recognising such a change in
an on-line manner. Note that in this case we are not concerned with a simple binary
hypothesis problem as those of Section 8.1.1. Rather, at any time point n the hypotheses
of interest are

H0 : No change has occurred.

H1 : There is a change point k with k ∈ {1, . . . , n}.

Thus, the alternative hypothesis is the union of hypotheses

H1(k): A change occurred exactly at time k, for a specific k ∈ {1, . . . , n}.

There are two standard formulations of the problem: the Bayesian formulation as
developed by Shiryaev [137, 138, 139], where the change point is assumed to be random
with a known prior distribution; and the minimax formulation due to Lorden [102], where
the change point is regarded as a deterministic parameter. In both cases the objective is
to minimise a certain measure of the detection delay subject to a constraint on the number
of false alarms. The focus in the upcoming chapters is on the minimax formulation.

Let T be a stopping time with respect to the natural filtration F associated with
the observations, that is, Ft := σ(X1, . . . , Xt). We write Pi and Ei, i ∈ {0, 1} for the
probability measure and expectation under Hi. Furthermore, we define Pk1 and Ek1 to be
the probability measure and expectation under H1(k). The following delay criteria have
been considered in the literature: the worst-case expected delay due to [102]

sup
k≥1

ess sup
Fk−1

Ek1
[
(T − k + 1)+

∣∣Fk−1

]
, (8.2)

and the less pessimistic delay criterion

sup
k≥1

Ek1 [T − k |T ≥ k] (8.3)
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due to [124].
The classic criterion for the number of false alarms is the average run length (ARL)

E0T — the expected time until the first false alarm is raised. We propose two alternative
false alarm criteria in Chapter 10.

A common choice for the decision rule defining T is the CUSUM rule.

The CUSUM method. The CUSUM method first proposed by Page [118] is essen-
tially a sequential LLR test where the unknown change point k is replaced by its maximum
likelihood estimator (interestingly Page apparently did not recognise this when he sug-
gested it [142]). Let us consider the LLR test for testing H0 against H1(k). Evidently,
the test statistic to be considered is

Lk:n :=

n∑
t=k

`(Xt).

To handle the fact that H1 equals the union of the H1(k), we have to verify whether
there is a k ∈ {1, . . . , n} such that Lk:n exceeds a certain critical value. As a result, the
statistic for the composite test (that is, H0 versus H1) is

Sn := max
k∈{1,...,n}

Lk:n. (8.4)

Then, for a given threshold b > 0, the CUSUM method raises an alarm at time τ , with

τ := inf {n ≥ 1 : Sn > b} . (8.5)

The name of the test is explained by noting that the test statistic Sn can be rewritten in
terms of the cumulative sums Ck :=

∑k
t=1 `(Xt) as follows,

Sn = Cn − min
k∈{1,...,n−1}

Ck.

This is convenient with respect to computational efficiency.
Lorden [102] proved that if observations are i.i.d. before and after the change point,

then the CUSUM method is asymptotically optimal in the sense that with b chosen such
that E0τ = κ it minimises the worst-case expected delay (8.2) among all procedures
satisfying E0T ≥ κ where κ → ∞. Later Moustakides [108] strengthened this result to
the non-asymptotic case. Asymptotic optimality results for dependent random variables
have also been established under certain conditions starting with an influential paper by
Lai [92]; for details see, for example, [151, Chapter 8]. In Chapter 10 we verify that
Lai’s proofs imply asymptotic optimality for dependent observations with respect to two
alternative false alarm criteria.

Threshold selection. Existing literature on minimax change point detection typically
considers the ARL E0T as a false alarm criterion. Then a threshold is chosen such that
the ARL exceeds a desired (large) constant. To this end, because in general closed form
expressions for the ARL are not available, the latter is in practice often evaluated based
on simulation. As Page already has noticed [118] for the case of independent observations,
it is also possible to express the ARL in terms of iterated Fredholm integral equations
(see [151, Section 8.2.6.1]). Unfortunately, these equations can typically not be solved
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analytically, and while solving them numerically can lead to very accurate results, it is
computationally expensive.

A method that is easier to apply is to select the threshold based on closed-form ap-
proximations to the ARL. Previous results on how to select the threshold usually require
the data points to be independent. Firstly, in this case Wald’s approximations can be
applied; see [141, Chapter II] and [15, Section 5.2.2.2]. These approximations are in
many cases not very accurate since they ignore the excess with which the LLR crosses
the threshold; a corrected approximation method has been developed in [140, 141]. Fur-
thermore, under the independence assumption the conceivable fact is proven that (under
an appropriate scaling) a functional central limit theorem (CLT) holds, meaning that the
cumulative random walk process converges to a Brownian motion. This result enables us
to approximate the test’s false alarm probability (for details see [25, 141]). Apart from
the CLT regime, asymptotic expressions for the false alarm probability have been derived
under a LD scaling as well, see e.g. [24, Chapter VI.E] and [39] (for useful background on
LD theory recall Chapter 1.1.1).

Considerably less work has focused on the case of dependent observations. If the
stochastic process to be tested is linear (in the sense that Wold’s decomposition applies
[22, Section 5.7.1]), then the above methods can still be applied to detect changes in the
i.i.d. sequence of innovations that is obtained by passing the original observations through
a whitening filter. This approach has been advocated, for example, in [15, 128].

However, not every type of change in the sequence of observations results in an equiv-
alent change in the sequence of innovations [15, Chapter 8]. In such cases, if p and q stem
from a parametric family of locally asymptotically normal distributions, one can apply
the following so called local approach (for details see, e.g., [15]). To this end, it needs
to be assumed that H0 and H1 become increasingly similar as the number of observa-
tions grows (with a speed of convergence of order n−1/2, where n denotes the number
of observations. Then a CLT approximation to the Taylor expansion of the LLR with
respect to the (decreasing) magnitude of the change is exploited in order to translate the
original problem to an asymptotically equivalent problem of testing an i.i.d. sequence of
Gaussians against a change in mean.

For further details on asymptotic methods for threshold selection see also Chapter 10.

8.2 Organisation and contributions

In Chapter 9 we consider a network of data streams from which an anomalous process
with known target distribution is to be identified. Motivated by the realisation that in
practice obtaining observations may be expensive, we assume that there is a constraint on
the total number of observations based on which the decision has to be made. Due to this
constraint, the main question to be answered is how to allocate the samples, and we treat
the problem as an off-line testing problem. Using LD asymptotics to approximate the
probability of false identification, we derive a sufficient condition on the sampling budget
such that the error probability is kept below some desired level. Furthermore, we show
how to obtain a sampling allocation that can improve upon equal sampling allocation and
achieves the desired accuracy.

In Chapters 10 and 11 we focus on sequential testing problems related to the timely
detection of changes in the parameters of the assumed stochastic model based on the
CUSUM method. As we mentioned in Section 8.1.2, in the literature on minimax change
point detection the number of false alarms is usually measured by the ARL – the expected
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duration until the first false alarm. However, this is does not in general allow one to
control the number of false alarms at every particular time instance. This motivates the
investigation of two stronger false alarm criteria in Chapter 10. We propose asymptotic
procedures for evaluating these criteria, considering extreme value (EV), CLT, as well as
LD regimes. In numerical comparisons the LD approximations seem to yield the best
performance.

In Chapter 11 we provide a number of examples in which we design change point
detection procedures for correlated data points using the LD approach. We consider
the detection of proportional changes in the mean and variance of autoregressive moving
average (ARMA) processes, as well as detecting changes in the mean value of state space
models.



CHAPTER 9

Anomaly identification with limited sampling budget

In this chapter we consider an off-line testing problem, for which a simple LLR testing
procedure is developed. The content of this chapter is based on Kuhn, Mandjes and
Taimre [87].

Consider a network of d processes which are to be monitored with the objective to
identify the anomalous process (we focus on the case where exactly one such process is
present), that is, the process that stems from a given target distribution G rather than
the reference distribution F . We may, for example, be interested in identifying an idle
channel in a network of communication channels [31], the presence of a certain animal
species in one of a number of monitored habitats, or the drug that is efficient in curing a
certain disease.

It is known that if only a single process is to be monitored and the problem is to
decide as quickly as possible whether or not it stems from a target distribution subject to
a constraint on the error probability, Wald’s sequential probability ratio test, which we
briefly introduced in Section 8.1.1, is optimal [141]. In such a sequential setting, target
identification in networks of multiple processes has been considered in [91, 150] under the
assumption that all processes are observed at every time point.

In practice, it is often the case that obtaining an observation is expensive. For example,
in decentralised sensor networks there is usually a cost associated with the communication
between sensors and the fusion center [14]. In many other application areas observations
can only be obtained from experiments that involve human intervention, in which case
an observation is particularly costly. In medical applications it occurs that only a limited
number of samples are available, e.g. for diagnostic testing. Such considerations motivate
the investigation of how an anomalous process or target can be identified efficiently based
on only a limited number of observations.

In a sequential setting, [14] investigated the question of efficient sampling allocation
in the context of change point detection, where the anomaly is not present initially but
may appear at some unknown time point. In [172] a sequential procedure for sampling
allocation was proposed subject to the constraint that only k < d of all data streams
can be observed at every time point. In contrast, in this chapter we do not consider
a sequential testing problem but instead assume that the decision has to be made as
accurately as possible with a given sampling budget.
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It seems plausible that a good sampling allocation should explicitly take into account
the specific characteristics of each process. For example, processes with a high variance
should be sampled more often; and more samples should be taken from processes that
are more similar to the anomalous process. Motivated by such considerations we are
interested in determining an allocation ρ := (ρ1, . . . , ρd) ∈ (0, 1)d with

∑d
i=1 ρi = 1 such

that the decision can be made with the desired accuracy based on ρin samples from
process i ∈ {1, . . . , d}. (We neglect the minor technical issues arising when ρin is not
integer-valued.)

We assume no prior knowledge as to which of the data streams in the network is
anomalous. In this framework, initially all processes have to be observed for a certain
amount of time so as to collect information about their nature. We therefore first derive
a bound on the number of samples needed to obtain the desired minimal security about
which process is the anomalous one. To do this, we use a LD approximation to the
probability of wrongly identifying a process as anomalous. Then, in a second step, we
show how the remaining sampling budget can be allocated so as to optimise the accuracy
of the identification. This boils down to solving a convex optimisation problem that we
formulate in terms of the LD rate functions.

As is common in the literature on anomaly identification [91, 150] we assume that
we know which behaviour should be characterised as anomalous and which behaviour
is normal, in that we know the distribution of the data streams in both cases. This is
a reasonable assumption for example for the problem of searching the idle channel in a
communication network [172].

In line with [150] we assume that we know that exactly one anomalous process is
present in the network. If k > 1 processes are anomalous (k known), then the algorithm
we propose is still valid, but deriving the LD approximation as we propose in Section
9.2 requires more care (see the analysis in Chapter 4). We remark that if the number of
anomalous processes is unknown, the algorithm cannot be applied in its current form; we
briefly comment on this issue in Section 9.4.

The methodology we apply follows closely the work of [51, 52] on ordinal optimisation.
The authors consider the problem of finding the process with the largest sample mean
from a given set of i.i.d. observations, subject to a constraint on the available sampling
budget.

This chapter is organised as follows. In Section 9.1 we explain the problem and propose
an algorithm for sampling allocation and target identification that provably does better
than a pre-specified accuracy. In Sections 9.2 and 9.3 we explain how the steps of the
algorithms can be carried out. We conclude in Section 9.4.

9.1 Problem formulation and sampling algorithm

Denote the observation of process i at time n by Xi(n). We assume that the sequences(
Xi(n)

)
n
and

(
Xj(n)

)
n
are independent for i 6= j. Unless otherwise stated, the obser-

vations need not be independent over time. Without loss of generality, we assume that
the anomalous process is the process labelled by 1. Suppose that X2(n), . . . , Xd(n) have
a distribution with density f , while X1(n) has a distribution with density g. Using an
off-line LLR test, we declare process i to be anomalous based on a total of N observations
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sampled according to ρ if for all j 6= i, j ∈ {1, . . . , d} we have

Li(Nρi) :=
1

Nρi

Nρi∑
n=1

`i(n) ≥ Lj(Nρj) ,

where the LLR increments are now given by

`i(n) := log
g
(
xi(n)

∣∣xi(1), . . . , xi(n− 1)
)

f
(
xi(n)

∣∣xi(1), . . . , xi(n− 1)
) .

We assume that E
[
`1(1)

]
> E

[
`j(1)

]
, j ∈ {2, . . . , d}, so that the anomalous process is

indeed distinguishable. This assumption was also imposed in [51].
Suppose the total sampling budget is N . Then, since at the beginning of the testing

it is not known which process is from the target distribution g, the naive approach is to
allocate an equal number of samples to each process. Later we will see, however, that we
can easily improve upon this simple approach.

The event of a false selection (FS), i.e. of declaring the wrong process to be anomalous,
based on n samples is given by

FS(n,ρ) :=

{
L1(nρ1) < max

i∈{2,...,d}
Li(nρi)

}
.

Note that this corresponds to the type I error of the testing procedure. We propose the
following “algorithm” for determining the sampling allocation ρ such that FS(N,ρ) is
small and guaranteed to be below a chosen level α.

(A) Fix α. Observe all processes until time min{n/d,N/d}, where n is such that we have
P(FS(n,ρd)) ≤ α for ρd := (1/d, . . . , 1/d).

(B) If n ≤ N , distribute the remaining sampling budget according to the allocation ρ∗
that solves

min
ρ

P
(
FS(N,ρ)

)
s. t.

d∑
i=1

ρi = 1 , ρiN ≥ n/d ∀ i .
(9.1)

Step (A) ensures that we explore all process sufficiently well so that the desired false
selection probability can be achieved. In Step (B) we exploit the information collected
in Step (A) to find the allocation that minimises the false selection probability subject
to the constraint that the total budget spent on process i exceeds the budget we already
allocated in Step (A).

Provided that the LLR increments satisfy the conditions of the law of large numbers,
it is clear that n from Step (A) of the algorithm indeed exists. If the false selection
probability decreases monotonically in n for all n ≥ n, then the false selection probability
achieved using the above algorithm based on N samples is guaranteed to be below α.
This motivates us to investigate the monotonicity of the false selection probability in the
remainder of this section.

If P
(
FS(n,ρ)

)
is not everywhere decreasing in n, we can still ensure that P

(
FS(N,ρ)

)
is no larger than α by deriving n in Step (A) from an upper bound on the false selection
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probability that does decrease monotonically in n; we provide such a bound in Section
9.2.

In the remainder of this section we focus on the case of i.i.d. observations. Denote the
mean and variance of `i(1) by µi and σ2

i , respectively. We introduce the random process

Zj(n) := L1(nρ1)−Lj(nρj) , j ∈ {2, . . . , d} .

Then the false selection probability is everywhere monotonically decreasing in n if

P
(
Zj(n+ 1) ≤ 0

)
≤ P

(
Zj(n) ≤ 0

)
(9.2)

holds for all n ∈ N, j ∈ {2, . . . , d}. The mean of Zj(n) is aj := µ1 − µj > 0 and the
variance is n−1v2

j (ρ), where v2
j (ρ) := σ2

1/ρ1 + σ2
j /ρj . We further define v2

j := σ2
1 + σ2

j .
We can check that (9.2) holds for all n ∈ N in the case of Gaussian random variables

(Lemma 9.1). The distribution function of the standard normal distribution is denoted
by Φ.

Lemma 9.1. For each i assume that Xi(n) are i.i.d. Gaussian random variables. Then
the false selection probability decreases monotonically as a function of n.

Proof. By assumption the processes Zj(n) are Gaussian as a convolution of independent
Gaussian random variables. Then (9.2) is equivalent to

Φ

(
−
√
naj

vj(ρ)

)
≥ Φ

(
−
√
n+ 1aj
vj(ρ)

)
,

which clearly holds for any n ∈ N since aj > 0.

In general, the false selection probability need not be decreasing. We can show, how-
ever, that P(Zj(n) ≤ 0) lies within an interval the center of which is decreasing in n, and
with bounds that become increasingly tight as n grows.

To this end, note that Zj(n) is a sample mean of n independent random variables

Yj(t) :=
`1(t)

ρ1
1{t ≤ nρ1} −

`j(t)

ρj
1{t ≤ nρj} ,

with mean aj(t) > 0 and variance vj(t)2. Then the following lemma readily follows from
the Berry-Esséen theorem [136].

Lemma 9.2. Let Xi(t) be i.i.d. random variables such that aj(t) > 0, v2
j (t) < ∞ for

t ∈ N, and
sup
t∈N

E
[
|Yj(t)− aj(t)|3

]
< B ,

for some B <∞. Then P (Zj(n) ≤ 0) is bounded by

Φ

(
−
√
n
aj
vj

)
± 3B

5v3
j

√
n
. (9.3)

The condition on the absolute third moment is very mild; for example, for i.i.d. Gaus-
sian observations the absolute third moments are bounded by 2v3

j

√
2/π.

In Sections 9.2 and 9.3 we discuss how to carry out Steps (A) and (B) of the algorithm,
respectively.
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9.2 Sufficient sampling budget

In this section, for a given allocation ρ, we derive a bound on the total number of obser-
vations that ensures that the false selection probability is kept below a desired level α.
That is, we want to determine nρ such that

P
(
FS(nρ,ρ)

)
≤ α .

(Such an nρ exists because we assumed that µ1 > µj for j ∈ {2, . . . , d}.)
In special cases, it may possible to compute the false selection probability explicitly by

inducing independence via conditioning on the value of L1(nρ1). In general, however, it is
difficult to evaluate P

(
FS(n,ρ)

)
, and therefore we now show how it can be approximated

using LD results from Section 1.1.1 when the given sampling budget n is large. In this
chapter we write

Λi(θ) := lim
n→∞

1

n
logE

[
eθLi(n)

]
for the limiting cumulant-generating function Λi of the LLR of process i (which we assume
to exist), and accordingly denote its Legendre transform by Ii(x).

Proposition 9.3. The false selection probability can be approximated as

lim
n→∞

1

n
logP

(
FS(n,ρ)

)
= − min

j∈{2,...,d}
Gj(ρ) , (9.4)

where

Gj(ρ) := inf
x
{ρ1I1(x) + ρjIj(x)} . (9.5)

Proof. Using that limn→∞ n−1 log(d− 1) = 0, similar to [38, Lemma 1.2.15] it is readily
obtained that

lim
n→∞

1

n
logP

(
FS(n,ρ)

)
=

max
j∈{2,...,d}

lim
n→∞

1

n
logP (Lj(nρj) > L1(nρ1)) .

(9.6)

From the Gärtner-Ellis theorem (see Theorem 1.8), we have that for x > E`i(1),

lim
n→∞

1

n
logP

(
Li(nρi) > x

)
= −ρiIi(x) .

Let Ij(x) := ρ1I1(x1) + ρjIj(xj). Because Lj and L1 are independent, it follows that
for B ⊂ R2 such that infx∈Bo Ii(x) = infx∈B Ii(x) =: Ii(B) we have

lim
n→∞

1

n
logP

((
L1(nρ1),Lj(nρj)

)′ ∈ B) = −Ij(B) .

Using the properties of the rate functions Ii, we can then argue as in [51, Section 2.2]
that

lim
n→∞

1

n
logP (Lj(nρj) > L1(nρ1)) = −Gj(ρ) .

This, together with (9.6) proves (9.4).
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Let DIi := {x ∈ R : Ii(x) < ∞} denote the essential domain of Ii(·). Recall from
Section 1.1.1 that for each x ∈ Do

Ii
the Fenchel-Legendre transform is strictly convex and

differentiable, and satisfies Ii(x) ≥ 0 with Ii(µi) = 0.
The following lemma can be proven analogously to [51, Lemma 3]. Loosely speaking,

assumption (9.7) of the lemma states that the LLRs can take any value in the interval
[µd, µ1]; in particular, it implies that P

(
Zj(nρj) ≤ 0

)
> 0. It holds for example if the

distribution of `i(t) stems from the normal or the gamma family.

Lemma 9.4 (Glynn and Juneja [51]). Assume that all observations are i.i.d., and that

[µd, µ1] ⊂
d⋂
i=1

Do
Ii . (9.7)

Then for a given allocation ρ and sampling budget n we have

P
(
FS(n,ρ)

)
≤ (d− 1) exp

(
−n min

j∈{2,...,d}
Gj(ρ)

)
. (9.8)

Thus, a lower bound for the minimal value of n can be achieved by putting the upper
bound given in (9.8) equal to α, and solve for n. Note that this will yield a function of n
that depends on the allocation ρ.

In Step (A) of the algorithm proposed in the previous section we assume ρi = 1/d for
all i. We provide an example below.

Example. Suppose the observations of each stream are i.i.d. and normally distributed
with Xi(t) ∼ N (mi, s

2) for i ∈ {1, . . . , d}, where m1 = m̃, whereas mj = m for j ∈
{2, . . . , d}. It is easy to see that the LLR increments are

`i(t) =
m̃−m
s2

(
Xi(t)−

m+ m̃

2

)
,

and hence `i(t) ∼ N
(
µi, σ

2
)
, where

µi :=
m̃−m
s2

(
mi −

m+ m̃

2

)
, σ :=

m̃−m
s

.

Then the LLRs at time n have distribution Li(ρin) ∼ N
(
µi, σ

2/(ρin)
)
. The cumulant

generating function is

Λi(θ) = θ µi +
1

2
σ2 θ2 ,

so that

Ii(x) =
(x− µi)2

2σ2
.

Therefore, we obtain that

Gi(ρ) =
(µi − µ1)2

2σ2(1/ρ1 + 1/ρj)
.
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Consider the allocation ρ = (1/d, . . . , 1/d). From (9.8) we know that if n satisfies

α = (d− 1) exp (−nGj(ρ))

for arbitrary j ∈ {2, . . . , d}, then P
(
FS(n,ρ)

)
≤ α. Solving for n we obtain that under

allocation ρ we can make a decision with the desired accuracy if

n ≥ n :=
2σ2 (1/ρ1 + 1/ρj)

(µj − µ1)2
log

(
d− 1

α

)
.

Figure 9.1 shows the values of n obtained with equal allocation. Naturally, the value
of n decreases as the difference between the anomalous process and the other processes
increases. The achieved false selection probabilities are very conservative. The jumps are
due to the rounding of n/d.

1 2 3 4 5
0

50

100

m1

n

1 2 3 4 5
0

2

4
·10−2

P( FS
(n
,ρ
d
))

Figure 9.1: We plot the obtained values of n as a function of m1 = EX1(t) for a network
with 4 processes under equal allocation (solid line). Other parameters are set asmj = 0 for
j = 2, 3, 4, s = 1, α = 0.01. The dotted line shows the simulated values of P

(
FS(n,ρd)

)
,

with values on the right vertical axis.

9.3 Asymptotically optimal allocation

An asymptotically optimal allocation ρ∗ that (approximately) solves (9.1) if N is large
can be found by minimising the rate function given in (9.4). Note that the rate function
is concave in ρ as a minimum over affine functions. We can formulate the optimisation
problem as follows:

max z s. t. Gj(ρ)− z ≥ 0

d∑
i=1

ρi − 1 = 0 (9.9)

ρiN − n/d ≥ 0 . (9.10)
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From the Karush-Kuhn-Tucker conditions [12] we know that there exists multipliers µj , ηi
and λ such that

d∑
j=2

µj
∂Gj(ρ

∗)

∂ρ1
+ η1N = λ (9.11)

µj
∂Gj(ρ

∗)

∂ρj
+ ηjN = λ , j ∈ {2, . . . , d} (9.12)

1−
d∑
j=2

µj = 0 (9.13)

µj
(
z −Gj(ρ∗)

)
= 0 , j ∈ {2, . . . , d} (9.14)

ηi (n/d− ρ∗iN) = 0 , i ∈ {1, . . . , d} . (9.15)

This yields conditions on the asymptotically optimal allocation, which we formalise in the
following proposition.

Proposition 9.5. Let N > n. If an allocation ρ∗ with
∑d
i=1 ρ

∗
i = 1 and ρ∗i ≥ n/(dN)∀ i

minimises P
(
FS(N,ρ)

)
, then

Gj(ρ
∗) = Gk(ρ∗) (9.16)

for k, j ∈ {2, . . . , d} such that ρ∗k, ρ
∗
j 6= n/(dN). If ρ∗i 6= n/(dN)∀ i, we also have

d∑
j=2

∂Gj(ρ
∗)/∂ρ1

∂Gj(ρ∗)/∂ρj
= 1 . (9.17)

Proof. From (9.13) we have that there exists j ∈ {2, . . . , d} such that µj > 0. Because
∂Gj(ρ

∗)/∂ρj > 0, together with (9.12) this implies that that λ > 0.This means that for
j ≥ 2, if ηj = 0, then µj > 0, in which case by (9.14) we have (9.16). By (9.15), ηj = 0
holds if ρ∗j 6= n/(dN).

The latter also implies that if ρ∗j 6= n/(dN) for all i, then ηi = 0 for all i, in which
case (9.12) implies that µj = λ/

[
∂Gj(ρ

∗)/∂ρj
]
. Substituting this into (9.11) then gives

(9.17).

Note that since we assumed that the processes 2, . . . , d are stochastically identical,
(9.16) implies that ρ2 = · · · = ρd =: ρ̃ (as one would expect). If (9.16) and (9.17) yield
a feasible solution (i.e. an allocation that satisfies (9.9) and (9.10)), then this solution is
optimal because the optimisation problem is concave and thus the Karush-Kuhn-Tucker
conditions are sufficient. Hence, in this case we assign ρ∗1N samples to the process that had
the largest LLR after Step (A) of the algorithm, and ρ∗jN samples to all others. Otherwise,
the optimal solution is ρ∗i = n/(dN) for all i except the process that yielded the largest
LLR with the first n/(dN) observations, which then has allocation 1− (d− 1)n/(dN).

Example. We assume that the observations are i.i.d. Gaussian so that the LLR incre-
ments have distribution N

(
µi, σ

2
i

)
, where processes 2, . . . , d are assumed to be stochas-

tically identical. We compute the allocation ρ∗ obtained based on LD approximations
as suggested above. For illustration purposes, we assume that n = 0. Note that ρ∗i > 0
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because otherwise miniGi(ρ
∗) = 0 while we know that Gi(ρd) > 0 for every i. As in

Example 1 in [51] we obtain from (9.16) and (9.17) that ρ∗ satisfies the conditions

ρ∗1 = σ1

√√√√ d∑
j=2

ρ∗j
2

σ2
j

,

d∑
i=1

ρi = 1 ,

and

(µj − µ1)2

(
σ2

1

ρ∗1
+
σ2
k

ρ∗k

)
= (µk − µ1)2

(
σ2

1

ρ∗1
+
σ2
j

ρ∗j

)
for j, k ∈ {2, . . . , d}. Thus, the asymptotically optimal allocation ρ∗ can be obtained by
solving the resulting system of equations.

Since we assume that processes j ∈ {2, . . . , d} are identically distributed, we readily
obtain

ρj =
σj

σ1

√
d− 1 + σj(d− 1)

, j ∈ {2, . . . , d}

ρ1 =
σ1

σj

√
d− 1 ρj .

Note that the budget allocated to the anomalous process increases as σ1 increases; as one
would expect, one needs to take more samples if the variance is larger.

We now compare the false selection probabilities obtained numerically under ρ∗ with
those achieved under equal allocation, see Fig. 9.2. Naturally, the false selection proba-
bilities overall decrease as m1 and thus the difference between the means of the processes
increases. We further note that P

(
FS(10,ρd)

)
is generally greater than P

(
FS(10,ρ∗)

)
;

the performance gain is more than 10%.
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Figure 9.2: False selection probabilities achieved under equal allocation ρd (solid line) and
under asymptotically optimal allocation ρ∗ (dashed line) as a function of m1 := EXi(t)
for a network with 4 processes under equal allocation. Their ratio is also depicted (dotted
line, values on the right vertical axis). Other parameters are set as mj = 0 for j = 2, 3, 4,
s = 2, N = 10.
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9.4 Conclusion

We proposed an algorithm for identifying a target process in a network of independent
data streams subject to a constraint on the total number of observations. We showed
that the probability of false selection can be decreased substantially compared to equal
allocation of samples.

In future research asymptotically exact approximations such as those developed in
Chapter 4 should be applied instead of the logarithmic asymptotics we used here in order
to improve the accuracy of the results. Note that using Theorem 4.2.1 it is possible
to consider the case where more than one anomalous process is present in the network
(assuming that their exact number is known). Apart from this, the impact of the specific
characteristics of each process on the optimal allocation should be investigated.

The case where the the number of anomalous processes is unknown requires more
substantial modifications of the proposed algorithm and is thus left for future research.
One could think of a procedure in which a process is declared anomalous when the LLR
test statistic exceeds an appropriately specified threshold.



CHAPTER 10

False alarm control beyond average run length

In this chapter, which is based on [85], we turn to sequential testing procedures for
change point detection. More specifically, we consider threshold selection methods for the
CUSUM procedure. As mentioned in Section 8.1.2, the typical false alarm criterion is
the ARL. The ARL criterion is, however, not always informative: in [107], examples are
provided where the ARL is infinite even though the detection delay is finite (see also the
discussion in [148]). More importantly, we stress that a large ARL does not necessarily
ensure that the false alarm probability is low at every particular time instance (see [92]
and [151, Section 6.3.5]). Generally, the ARL does not fully determine the distribution of
the stopping time – although in the case of i.i.d. random variables the CUSUM stopping
time turns out to be approximately exponential for large thresholds [125], this does not
have to hold in general. This means that even if the ARL is controlled to exceed a
certain level, the variance of the stopping time may still be large. In practice, this can
be crucial. For example, in a reliability context, imagine one is monitoring the status
of many network elements in parallel. Then if the false alarm rate is highly variable, it
is not unlikely that false alarms are raised for a large number of elements at the same
time, which could cause the capacity of the technicians to attend to all (including true)
alarms to be exceeded. More generally, this argumentation applies to any scenario where
multiple independent data streams are to be monitored simultaneously.

Consequently, more stringent false alarm criteria are desirable. Perhaps the best
available candidate is a criterion coined maximal local false alarm probability (MLFA) in
[151], which seems to have first appeared in [92]. It is defined as

sup
n≥1

P0(T ≤ n+N − 1 |T > n− 1) ≤ α , (10.1)

where T is a stopping time with respect to the filtration generated by the observations, and
P0 indicates that the probability is evaluated under the null hypothesis that no change
has occurred, α is the desired level of false alarms, and N ≥ 1 is a design parameter.
Asymptotic optimality (for small α/large b) of the CUSUM method under this criterion
has been proven in [147]. For the case of i.i.d. observations, the MLFA can be evaluated
numerically using [151, (8.110)]. The MLFA is, however, difficult to evaluate in closed
form; in their recent book [151] Tartakovsky et al. note that even an upper bound is lacking

149
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for the general non-i.i.d. case. Similar arguments apply to the approach developed in [107]
(see [148]). The difficulty arises from the fact that the distribution of the stopping time
is hard to evaluate in closed form, even if the distribution of the test statistic is known.

In view of the above, one wishes for further understanding of the distribution of the
stopping time as well as simple but effective methods for selecting the threshold such that
the probability of raising a false alarm is kept low in a stronger sense than allowed by the
ARL criterion.

Another issue is that in practice testing the full history of observations may be compu-
tationally expensive, and data points will typically not be stationary over a long period of
time. This motivates one to consider window-limited change point detection where data is
tested in windows of fixed size; for every new observation arriving the oldest observation
is dropped. Window-limited testing has for example been considered in [43, 92, 151, 167],
and, for problems with unknown change size, in [164].

In this chapter we consider two simpler false alarm criteria, which are based on (10.1),
and are consequently stronger than the ARL criterion. These simplifications are motivated
by known results on the behaviour of (10.1). We believe that considering those simplified
criteria is worthwhile from a practical point of view because approximations are available
and thus the selection of the threshold is facilitated.

We now describe our contributions in more detail. As a simplification of (10.1), Lai
[92] considered

sup
n≥1

P0(n ≤ T < n+N) ≤ α (10.2)

as a performance criterion. It has, however, since been shown that the probability in
(10.2) is approximately exponential for small α, if observations are independent or weakly
dependent [125]. Therefore, by the memoryless property of the exponential distribution,
we have

sup
n≥1

P0(n ≤ T < n+N) ≈ P0(T ≤ N) .

In the first part of the chapter we therefore focus on the simple criterion

P0(T ≤ N) ≤ α . (10.3)

We check that CUSUM (with or without windows) is still asymptotically optimal under
this modified false alarm criterion, and investigate methods for selecting the threshold
such that it is satisfied. To do this exactly, one would need closed-form expressions for
the distribution of the stopping time. Since such expressions are not known in general, we
first show how the distribution of the window-limited stopping time can be described in
terms of recursive integral equations. For detection procedures without windows, integral
equations have been derived based on renewal theory [118, 125, 141]; here we follow
a different approach, using results on the maximum of autoregressive processes [165,
166]. We remark that the obtained recursions are not restricted to CUSUM but hold
for a broad class of testing procedures including exponentially weighted moving average
schemes (EWMA, see [129]).

However, while we thus in principle know the exact distribution of the window-limited
stopping time, in general these expressions cannot be solved for the threshold other than
numerically, and the latter is only feasible for the left tail of the distribution (see Sec-
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tion 10.2.2.1 for discussion). We therefore provide non-asymptotic bounds for the dis-
tribution of the CUSUM stopping time when windows are used as well as for testing
without windows. These bounds relate the distribution of the CUSUM stopping time
to the crossing probability of a sum with random increments, and are therefore easier
to evaluate. For example, we can then apply available approximation methods to find a
threshold (function) that ensures the proposed false alarm criterion is satisfied. We com-
pare the use of central limit theorem (CLT), large deviations (LD), as well as extreme
value (EV) approximations. The latter two methods allow one to obtain a threshold
function rather than a constant threshold; this increased flexibility can yield an improved
delay performance (see Section 10.3 as well as the example in [43]).

In the second part of the chapter, we focus on the criterion

sup
n≥1

P0(T = n |T ≥ n− 1) ≤ α . (10.4)

Note that this implies that the false alarm probability is limited at any given time n. This
criterion is the most conservative case of (10.1), where we chose N = 1 because (10.1)
increases monotonically as a function of N . We motivate its application and show how
the aforementioned approximations can be used to select the threshold. We believe that
(10.4) serves better than (10.2) as a simplification of (10.1) because it does not depend
on the design parameter N , and it is stronger than (10.3) (for details see Section 10.3).

The remainder of this chapter is organised as follows. In Section 10.1 we define the
change point detection problem and the CUSUM method. In Section 10.2 we discuss the
first criterion, (10.3). In Section 10.2.1 we check that asymptotic optimality of CUSUM
still holds, before we turn to analyse the distribution of the stopping time with applications
for threshold selection in Sections 10.2.2 (when testing windows of fixed size) and 10.2.3
(when testing the full history of observations). The alternative of limiting the false alarm
probability at any given time via (10.4) is discussed in Section 10.3. We illustrate the
procedures with a simple example with independent Gaussian observations. For two more
detailed examples with dependent multivariate observations we refer to Chapter 11.

10.1 Problem and procedures

We are concerned with testing a sequence of observations (Vt) ∈ Rdv against a change in
the underlying probability distribution. At every point in discrete time a new observation
arrives and is to be included in the test sample. That is, at time t ∈ N we want to test
H0, the null hypothesis of no change before time t, against H1, the alternative that there
was a change point k ∈ {1, . . . , t}. Note that the alternative is essentially a union of
hypotheses H1(k) that a change occurred at a specific time k. In practice, in view of
computational expense, it may often be necessary to test data in windows of fixed size n,
rather than keeping the whole history of observations. In this case we restrict k to the
set {t − n + 1, . . . , t}. Note that testing the full history of observations can equivalently
be regarded as testing with expanding windows: at time t the size of the window to be
tested is t. We take this viewpoint in the remainder of the chapter as it allows to treat
both cases in a more unified manner.

Throughout the chapter we assume that the observations are stationary under H0 and
H1, where observations after the change point are assumed to be independent from obser-
vations before the change point. We further assume that the observations are distributed
with common density p under H0, and with common density q under H1 after the change
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point. We focus on the case of independent observations in Sections 10.2.2.2 and 10.2.3.2
to facilitate the comparison of different approximation methods as a tool for threshold
selection.

We focus on the CUSUM method. Recall from Section 8.1.2 that the CUSUM essen-
tially a sequential LLR test, where the unknown change point is replaced by its maximum
likelihood estimator. A sequence of LLRs can be regarded as a sequence of partial sums
with random increments `(Vt) given by (8.1). We can identify the LLRs corresponding
to H1(1), . . . ,H1(n) with a stochastic process

Y m :=
(
L1:n(m), . . . ,Ln:n(m)

)′
, (10.5)

where

Lk:n(m) :=

n+m−1∑
i=k+m−1

`(Vi) , (10.6)

so that m ≥ 1 corresponds to the number of the first observation within the window
that is to be tested. If no windows are to be considered (i.e., in the case of expanding
windows), then m = 1 is fixed, and the size of the window n increases with time. In this
case, we write Lk:n := Lk:n(1) to simplify the notation. To consider windows of fixed
size n, let m increase with time instead.

We recall that the standard CUSUM testing procedure with expanding windows fea-
tures the stopping time

τ = inf

{
n ≥ 1 : max

k∈{1,...,n}
Lk:n > b

}
. (10.7)

If window-limited testing (with windows of fixed size) is desired, we define the stopping
time to be

ω := inf

{
m ≥ 1 : max

k∈{1,...,n}
Lk:n(m) > b

}
, (10.8)

The threshold is to be selected in such a way that the number of false alarms is kept
at a desired level. The available methods for threshold selection are usually focussed on
evaluation of the ARL, and often it is assumed that observations are independent (for
details see Section 8.1.2). Moreover, these methods are only practical if one is aiming for
a constant threshold. In this chapter we also provide methods for selecting the threshold
as a function bn(k) of k (corresponding to H1(k)) and n (the latter is only needed in
Section 10.3). This greater flexibility can yield performance improvements as discussed
in Section 10.3.

In the next sections we consider the performance criteria as briefly introduced in the
introduction, where we have to distinguish between testing with windows of fixed vs.
expanding size.

Criterion:
Window size:

Fixed Expanding

(10.3)
(Section 10.2)

P0(ω ≤ N) ≤ α
(Section 10.2.2)

P0(τ ≤ N) ≤ α
(Section 10.2.3)

(10.4)
(Section 10.3)

P0(ω = n|τ ≥ n) ≤ α
for all n

P0(τ = n|τ ≥ n) ≤ α
for all n



153 10.2. False alarm before time N

10.2 False alarm before time N

In this section we focus on the criterion

P0(T ≤ N) ≤ α , (10.9)

where T = ω or T = τ , depending on whether or not window sizes are fixed, and for a fixed
quantity N . Note that (10.9) is less conservative than the MLFA defined in (10.1), but
indeed stronger than the traditional ARL criterion. The latter requires that E0T ≥ κ, for
some given (large) constant κ. Given (10.9), for 1 ≤ h ≤ N we have P0

(
T > h

)
≥ 1− α,

which implies that

E0T ≥
N∑
h=1

(1− α) = N(1− α) . (10.10)

Note that N plays the role of the length of the time interval considered in (10.2). In
practice, if the maximum testing period is known to be bounded, then the length of the
testing period seems a natural choice for N . Otherwise, motivated by (10.10), one could
specify κ and α as desired (that is, according to one’s practical requirements on the ARL
and the false alarm probability), and choose N = κ/(1− α).

10.2.1 Asymptotic optimality of CUSUM

For independent observations it is known that if the CUSUM procedure with stopping
time τ satisfies E0τ = κ, then it is optimal with respect to certain delay criteria among all
procedures that satisfy E0τ ≥ κ. However, in practice it is usually not possible to achieve
E0τ = κ because E0τ is not known in closed form. Therefore, asymptotic optimality
results are of interest which establish optimality of CUSUM with τ satisfying E0τ ≥ κ
asymptotically for large κ. (For details see, for example, [151], Chapter 8.) Similarly, we
can prove asymptotic optimality of T ∈ {τ, ω} under (10.9). This amounts to carefully
checking that the proofs given in [92] for the case of (10.2) still go through; we detail the
steps below.

Let T be a stopping time with respect to the natural filtration F associated with the
observations, that is, Ft := σ(V1, . . . , Vt). As before we write Pi and Ei, i ∈ {0, 1} for the
probability measure and expectation under Hi. Furthermore, we define Pk1 and Ek1 to be
the probability measure and expectation under H1(k).

We now verify that CUSUM is asymptotically optimal among all procedures satisfy-
ing (10.9) with respect to the two delay criteria defined in Section 8.1.2. To this end, we
check that the usual asymptotic lower bound on the detection delay still holds (see Prop.
10.1), and that this lower bound is attained for small α in combination with large N
(Prop. 10.2 below).

Proposition 10.1. Suppose that for some finite positive constant I we have

lim
m→∞

P1
1

(
max

1≤t≤m
L1:t ≥ I(1 + δ)m

)
= 0 ∀δ > 0 . (10.11)
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Assume that α := αN ≤ (logN)/N . Then

inf

{
sup
k≥1

ess sup
Fk−1

Ek1
[
(T − k + 1)+ | Fk−1

]
: P0(T ≤ N) ≤ α

}

≥
{

sup
k≥1

Ek1 [T − k |T ≥ k] : P0(T ≤ N) ≤ α
}

≥
(
I−1 + o(1)

)
log
(
N(1− α)

)
.

as N →∞.

Proof. The proof is a small modification of Lai’s proof [92, Theorem 1]. Suppose P0(T ≤
N) ≤ α. To simplify notation, define γN := log

(
N(1− α)

)
. We show that for any δ > 0,

P1
1

(
T − 1 ≥ (1− δ)I−1γN

)
→ 1 (10.12)

as N →∞. This then implies that

sup
k≥1

Ek1 [T − k |T ≥ k] ≥ E1
1[T − 1] ≥

(
I−1 + o(1)

)
γN .

Since {T ≥ k} ∈ Fk−1, we have

ess supEk1
[
(T − k + 1)+ | Fk−1

]
≥ Ek1 [T − k |T ≥ k] ,

and we obtain the statement of the theorem.
To show (10.12), we consider the sets

Cδ :=
{
T < (1− δ)I−1γN , L1:T ≤ (1− δ2)γN

}
,

Cδ :=
{
T < (1− δ)I−1γN , L1:T > (1− δ2)γN

}
.

(i) Show that P1
1(Cδ)→ 0 for every 0 < δ < 1. First, we note that

P1
1(Cδ) =

∫
Cδ

dP1
1

dP0
dP0 =

∫
Cδ

eL1:T dP0 ≤ e(1−δ2)γN P0(Cδ) .

Therefore, for N large enough such that α ≤ (logN)/N ≤ I, we have:

P1
1(Cδ) ≤ e(1−δ2)γNP0(T < (1− δ)I−1γN )

≤
(
N(1− α)

)1−δ2P0 (T ≤ N)

≤ (1− α)1−δ2N−δ
2

logN ,

which tends to zero as N →∞.

(ii) To prove that P1
1(Cδ)→ 0, we note that

P1
1(Cδ) ≤ P1

1

(
max

t≤(1−δ)I−1γN
L1:1+t ≥ I(1 + δ) (1− δ)I−1γN

)
.

The upper bound tends to zero by (10.11).
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It now follows with the same arguments as used to prove Theorem 4.(ii) in [92] that
the lower bound is attained by ω (see Prop. 10.2). Since ω ≥ τ almost surely, this implies
that the bound is also attained by τ , and thus, both are asymptotically optimal.

Proposition 10.2 (Lai (1998) [92]). Assume that the threshold b = bN and the window
size n = nN are chosen such that P0(ω ≤ N) ≤ α, where α = αN → 0 as N → ∞.
Further assume that for some positive constant I and m ∈ N we have

lim inf
N→∞

nNI/bN > 1 , (10.13)

lim
R→∞

sup
k∈{1,...,m}

ess supPk1

(
1

R

m+R∑
i=m

Xi < I
∣∣Fm−1

)
= 0 , (10.14)

Then we have:

sup
k∈N

ess supEk1
[
(ω − k + 1)+ | Fk−1

]
≤
(
I−1 + o(1)

)
bN (10.15)

where o(1)→ 0 as N →∞.

Proof. We can essentially follow the steps in [92]. Let u ∈ N, k ∈ {1, . . . , n}, and define
dN := bbN/Ic. By (10.13), we have that for large N

ess supPk1
(
ω − k + 1 > (u− 1) dN

∣∣Fk−1

)
≤ ess supPk1

(
max

m∈{0,...,(u−1) dN+k−1}
max

l∈{1,...,dN}
Ll:dN (m) ≤ b

∣∣∣Fk−1

)
.

The right-hand side is upper bounded by

ess supPk1

 jdN+k−1∑
i=(j−1)dN+k

Xi < b ∀ 1 ≤ j ≤ u
∣∣∣Fk−1


= ess sup

u∏
j=1

Pk1

 jdN+k−1∑
i=(j−1)dN+k

Xi < b
∣∣∣F(j−1)dN+k−1

 .

By (10.14) we have that, for m ∈ N,

sup
k∈{1,...,m}

ess supPk1

bbN/Ic+m−1∑
i=m

Xi < bN
∣∣Fm−1

→ 0 ,

as N →∞. Hence, for any δ > 0 we can find N sufficiently large such that

Pk1

 jdN+k−1∑
i=(j−1)dN+k

Xi < b
∣∣∣F(j−1)dN+k−1

 ≤ δ .
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Thus, we conclude that, for large N ,

ess supPk1 (ω − k + 1 > (u− 1) dN ) ≤ δu ,

in which case we have

sup
k≥1

ess supEk1
[
(ω − k + 1)+/dN

∣∣Fk−1

]
≤
∞∑
u=0

δu =
1

1− δ
.

Since we can do this for all δ > 0, this implies that

sup
k≥1

ess supEk1
[
(ω − k + 1)+

∣∣Fk−1

]
≤
(
I−1 + o(1)

)
bN ,

as N →∞.

For example, if observations are i.i.d., the conditions (10.11) and (10.14) are satisfied
with I the Kullback–Leibler information number, I = E1

1`(V1), assuming the later is finite.
In summary, we have the following corollary.

Corollary 10.3. If b ∼ log
(
N(1−α)

)
, α ≤ log(N)/N , and (10.11), (10.13), and (10.14)

are satisfied with I > 0, then ω is asymptotically optimal as N →∞ in the sense that it
minimises the detection delay among all stopping times T satisfying P0(T ≤ N) ≤ α.

In order to select a threshold that ensures (10.9), we need to be able to evaluate the
distribution of the stopping time. We focus on ω in Section 10.2.2 and turn to τ in Section
10.2.3. In both sections we first provide results on the distribution of the stopping time,
and then show how the threshold function can be chosen based on approximations to
P0(T ≤ N).

10.2.2 Window-limited testing

First, we show an exact expression for the distribution of the stopping time ω in terms of
iterated integrals. Since these are hard to evaluate in practice, we then propose an EV
approximation that can be used to select the threshold in order to ensure (10.9).

10.2.2.1 Exact expression in terms of iterated integrals

We show that the test statistic of a large class of change point detection procedures
(including the window-limited CUSUM procedure) can be expressed in form of a first
order vector autoregressive process (VAR(1)). We can then obtain the distribution of
the corresponding stopping time using results on the distribution of the maximum of
autoregressive processes [166].

We are interested in finding an expression for

P0(ω ≤ m) = P0

(
∃j ∈ {1, . . . , n} : Hm,j > b(j)

)
, (10.16)

where Hm is the n-vector with j−th element

Hm,j := max
{
Lj:n(1), . . . ,Lj:n(m)

}
= max

{
Y 1,j , . . . ,Y m,j

}
.

(10.17)
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Note that the process Y m follows the recursion

Y m = Ψ(Y m−1) + ϑ1`(Vm+n−1) , (10.18)

where 1 denotes an n-vector of ones. To obtain the window-limited CUSUM procedure,
ϑ is set equal to one, and Ψ is defined as Ψ(y) = Cy, where C = (ci,j)i,j=1,...,n with
ci,i+1 = 1 for i = 1, . . . , n− 1 and ci,j = 0 otherwise. Interestingly, other popular change
point detection methods can also be expressed in this way: for example, to obtain an
exponentially weighted moving average (EWMA, see [129]) procedure based on LLRs,
define Ψ(y) = (1 − ϑ)Cy for ϑ ∈ (0, 1). Thus, while in this chapter we are focussed on
the CUSUM procedure, the result in Prop. 10.4 would allow one to compute the stopping
time for the window-limited case more generally.

Note that (10.18) is a VAR(1) process, albeit with a degenerate noise process. A paper
that gives exact expressions (in terms of iterated Fredholm integrals) for the distribution
of Hm for a VAR(1) process is [166]. We adapt their results to our setting.

Let, for fixed x ∈ Rn,

Qm(x,y) := P (Hm ≤ x, Y m ≤ y) (10.19)

for m ≥ 0. Denote by xj the j-th entry of the vector x. Let min{x,y} be the component-
wise minimum of x and y. Let F be the distribution function of `(Vi).

Proposition 10.4. We have Qm(x,y) = KQm−1(x,y) for m ≥ 0 and fixed x, where K
is defined by

K h(y) =

∫
R
F

(
1

ϑ
min

i=1,...,n

{(
min{x,y} −Ψ(z)

)
i

})
dh(z) . (10.20)

Proof. We adapt the steps in the proof of [166], Theorem 3.1). Note thatHm ≤ x implies
that Y l ≤ x for l ≤ m, so Qm(x,y) = Qm

(
x,min{x,y}

)
. Then for m ≥ 1:

Qm(x,y)

= P0

(
Hm−1 ≤ x, Y m ≤ min{x,y}

)
= P0

(
Hm−1 ≤ x, ϑ1`(Vm+n) ≤ min{x,y} −Ψ(Y m−1)

)
= EF

[
P0

(
Hm−1 ≤ x, `(Vm+n) ≤ 1

ϑ
min

i=1,...,n

{(
min{x,y} −Ψ(Y m−1)

)
i

}∣∣∣ `(Vm+n)

)]
,

where the latter equation follows by invoking the law of total probability and Bayes’ rule,
writing EF for the expectation under F . With K as defined in (10.20) we can write this
as KQm−1(x,y) as claimed.

Thus, for P0 (Hm ≤ x) = Qm(x,∞) we obtain

K h(∞) =

∫
R
F

(
1

ϑ
min

i=1,...,n

{(
x−Ψ(z)

)
i

})
dh(z) . (10.21)

In principle, this allows us to compute (10.16) as

P0(ω ≤ m) = 1− P0 (Hm,i ≤ b(i), i = 1, . . . , n) .
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To evaluate this in practice, at least for small m one can use approximations based on the
eigenvalues of the Fredholm kernel K (see [166]). However, we are aiming for expressions
that can be solved for the threshold function b(·). Therefore, even though P0(ω ≤ m) is
known exactly, we are interested in approximate expressions for the latter that are easier
to evaluate.

10.2.2.2 Approximation for threshold selection

When testing is window-limited, we can apply EV theory to approximate the false alarm
probability (10.9). This provides an easily applicable method to select b, which we outline
in this section for the example of independent Gaussian observations. We remark that EV
results have been applied very recently in [69] in the context of non-parametric change
point detection.

Define
γi,j(h) := Cov0(Y m,i,Y m+h,j), .

By application of the result of [6], we obtain the following corollary.

Corollary 10.5. Assume that observations are i.i.d. Gaussian, and that σ > 1. Then
the process (Hm) defined by (10.17) satisfies

P0

(
Hm,i − (n− i+ 1)µ√

n− i+ 1σ
≤ am xi + cm, i = 1, . . . , n

)

→
n∏
i=1

exp
(
− exp(−xi)) , asm→∞ ,

where

am = (2 logm)−1/2 ,

cm = (2 logm)1/2 − 1

2
(2 logm)−1/2(log logm+ log 4π) .

Proof. It has been shown in [6] that as m → ∞ the limiting distribution of the process
of component-wise maxima of any standard Gaussian process coincides with that of n
independent Gumbel variables, provided that the following conditions hold:

|γi,j(0)| < r for i, j = 1, . . . , n, i 6= j , (10.22)
∞∑
h=1

|γi,j(h)|r <∞ for all i, j = 1, . . . , n . (10.23)

(The former condition was overlooked in [6] as has been noted in [66].)
We apply this theorem to the n-dimensional process M̃m with i−th component

Hm,i − (n− i+ 1)µ

σ
√
n− i+ 1

.

Note that
Lk:n(m)− (n− k + 1)µ

σ
√
n− k + 1
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has a standard normal distribution, so that M̃m is indeed the process of component-wise
maxima of a standard Gaussian process.

To verify (10.22), we note that, for l, k ∈ {1, . . . , n} with l > k,

Cov

(
Lk:n

σ
√
n− k + 1

,
Ll:n

σ
√
n− l + 1

)
=

1

σ
√
n− k + 1

, (10.24)

which is smaller than 1 by assumption.
Finally, (10.23) is satisfied because for k, l ∈ {1, . . . , n}, h ∈ N, we have

Cov

 n∑
i=k

`(Vi),

n+h∑
j=l+h

`(Vj)

 =
(
n−max{k, l + h}+ 1

)+
,

which is zero for h large enough.

Recall that we wish to choose a threshold function that yields

P0(ω ≤ N) = 1− P0(Hm,i ≤ b(i), i = 1, . . . , n) ≤ α .

Thus, for fixed N and n, Corollary 10.2.3.2 suggests we choose

b(β) =

[
− aN log

(
− 1

n
log(1− α)

)
+ cN

]
×
√
n(1− β)σ + n(1− β)µ+ δ ,

(10.25)

where the change point k is written as nβ + 1, β ∈ Bn := {0/n, 1/n, . . . , (n− 1)/n} (this
notation will turn out to be useful particularly in Section 10.2.3.2). The parameter δ is a
design parameter to be chosen based on simulation. Because cN →∞, adding a constant
δ (constant with respect to N) is negligible for large N . Numerical experiments suggest
that for small n the choice δ = 0 seems to work well, but that for larger n a negative δ
should be chosen (possibly as a function of the other parameters). We suggest a choice
for δ in Section 10.2.3.2, for the case of expanding windows.

10.2.3 Testing with expanding windows
We first derive non-asymptotic bounds on the distribution of τ , which can then be used
to apply the CLT, LD, and EV approximations to select the threshold. The latter two
approaches yield a threshold function rather than a fixed threshold, and the achieved false
alarm performance is overall closer to the desired level.

10.2.3.1 Non-asymptotic bounds

The complication in evaluating P0(τ ≤ N) arises from the fact that this involves a double
maximum of a sum with random increments:

P0 (τ ≤ N) = P0

(
max

1≤m≤N
max

1≤k≤m
Lk:m > b

)
.

In this section we provide bounds that circumvent this problem. The upper bounds we
provide below in (10.26) and (10.27) turn out to be very tight, particularly if the size of the
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change is large (see Fig. 10.1). We use these in Section 10.2.3.2. We remark that similar
bounds could be obtained for P0(ω ≤ N); the adaptation to this case is straightforward
and therefore omitted.

First, note that we have

P0 (τ ≤ N) = P0

(
max

1≤m≤N
max

1≤k≤m
Lk:m > b

)
= P0

(
max

1≤m≤N
max

m≤n≤N
Lm:n > b

)
= P0

(
∃m ∈ {1, . . . , N} : max

m≤n≤N
Lm:n > b

)
= P0

(
min

1≤m≤N
τm ≤ N

)
,

where
τm =: inf{n ≥ m : Lm:n > b} .

Therefore, the CUSUM stopping time can be written as

τ = min
m≥1

τm .

Hence, we have

P0 (τ ≤ N) = P0

(
min

1≤m≤N
τm ≤ N

)
= 1− P0

(
min

1≤m≤N
τm > N

)
= 1− P0(τN > N)

N∏
i=2

P0 (τi−1 > N | τi > N) ,

which yields the bounds

1− P0(τN > N) ≤ P0 (τ ≤ N) ≤ 1−
N∏
i=1

P0(τi > N) . (10.26)

We furthermore note that the right-hand side is smaller than

1−
(

min
h∈{1,...,N}

P0(τh > N)

)N
= 1− P0

(
max

h∈{1,...,N}
L1:h ≤ b

)N
.

(10.27)

Approximations to (10.27) are available, based on which we can devise simple yet effective
procedures, see Section 10.2.3.2.

As Fig. 10.1 shows, the upper bounds turn out to be very tight. The lower bounds
are closer when the size of the change is smaller. To see why this should be true, consider
the following heuristic argument. Since the mean µ of the LLR increments is negative,
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Figure 10.1: Comparison of P0(τ ≤ N) and the bounds pro-
vided in (10.26) and (10.27), with N = 50, σ = 1 and threshold
b = 0.5.

let us suppose that all increments were negative. In this case Li:n < b would imply that
Li−1:n < b, and hence τi > N would imply that τi−1 > N . Thus, when µ is small
compared to σ2, then P0(τ ≤ N) ≈ P0(τN ≤ N) = P0(XN > b). One would thus expect
that an alarm is typically raised at the end of the current window, as is confirmed in
numerical experiments (see Fig. 10.4).

We now discuss how the bound (10.27) can be used for threshold selection.

10.2.3.2 Approximations for threshold selection

From the upper bound (10.27) we obtain that a sufficient condition for P0(τ ≤ N) ≤ α is

1− P0

(
max

h∈{1,...,N}
L1:h ≤ b

)N
≤ α ,

or, equivalently,

P0

(
max

h∈{1,...,N}
Lh:N > b

)
≤ 1− (1− α)1/N . (10.28)

Below we discuss different limiting regimes that yield approximations to (10.28). In
this section we assume that observations are independent to facilitate the comparison
of the different methods. We remark, however, that the LD approximations suggested
below can be extended to the case of correlated observations (as was done in [43] for
observations following a Gaussian autoregressive process). We restrict ourselves to a
Gaussian example only for the EV approximation (so that Corollary holds); the LD and
the CLT approximation apply more generally.

EV approximation As opposed to the approach in Section 10.2.2.2, we now consider
the univariate process of partial sums. That is, in this case we are interested in the
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maximum of Lk:N over k ∈ {1, . . . , N}. Therefore, to achieve (10.28), in the case of i.i.d.
Gaussian random variables the threshold function can be chosen as

b(β) =
√
N(1− β)σ

[
−aN log

(
− 1

N
log(1− α)

)
+ cN

]
+N(1− β)µ+ δ

(10.29)

where β ∈ BN . For choosing δ we recall our remark from the previous section that one
may expect that – at least for large changes – a change tends to be detected at the end of
the window, where a single increment is considered. Thus, it seems intuitive to choose δ
such that b

(
(N−1)/N

)
equals the 1−

(
1− (1− α)1/N

)
-quantile of the distribution of the

LLR increments. It is confirmed in numerical experiments that this choice indeed yields
good performance of the resulting testing procedure; see the independent data example
provided at the end of this section as well as the example in Section 11.2.

LD approximation Since we wish the false alarm probability α to be small, we may
regard this as a rare event scenario; this motivates us to invoke LD theory. Change point
detection procedures based on LD approximations have been considered in [24, 43, 81] for
i.i.d. and VARMA models, yielding a threshold function b(·) that depends on the assumed
position of the change point under the alternative hypothesis. We now explain how to
obtain a threshold function from LD approximations. We express the change point k in
terms of N , that is, we write k = Nβ + 1, where β ∈ BN . First, note that

lim
N→∞

1

N
logP0

(
max
β∈BN

1

N
LNβ+1:N > b

)
= max
β∈BN

lim
N→∞

1

N
logP0

(
1

N
LNβ+1:N > b

)
(for details see [43], Section 2). In this case the logarithmic LD asymptotics suggest that
for fixed β the false alarm probability can be approximated by

P0

(
N−1LNβ+1:N > b

)
≈ exp

(
−NI(b)

)
, (10.30)

where I denotes a Legendre transform we specify below. There is, however, no need to
pick a constant b, as in the case of the EV approximation, we can pick a function b(β)
instead, such that (10.30) holds with b replaced by b(β) for all β ∈ BN . That is, we
propose to pick the threshold function b(·) such that it satisfies

1− (1− α)1/N = exp
(
−NI

(
b(β)

))
∀β ∈ BN . (10.31)

This choice entails that raising a false alarm is essentially equally likely irrespective of
the supposed location of the change point within the window, and it is therefore optimal
in terms of type II error performance; see [24], Chapter VI.E.

Now let us make the above more rigorous. The limiting cumulant-generating function
Λ(θ) associated with the distribution of the LLR is:

Λ(θ) = lim
N→∞

1

N(1− β)
logMNβ(θ)

:= lim
N→∞

1

N(1− β)
logE0

(
eθLNβ+1:N

)
;

(10.32)

we assume for now that this function exists and is finite for every θ ∈ R. Define I as the
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Legendre transform of Λ(θ). Provided that Λ(θ) exists for all θ ∈ R, noting that we can
rescale as written out in (10.33), the Gärtner–Ellis theorem (Theorem 1.8) yields

lim
N→∞

1− β
N(1− β)

logP0

(
1

N(1− β)
LNβ+1:N −

b(β)

1− β
> 0

)
= −I

(
b(β)

)
. (10.33)

In accordance with the idea expressed in (10.31), we choose the threshold function b(·)
such that it satisfies

− I(b(β)) = lim
N→∞

1

N
logP0

(
1

N
LNβ+1:N − b(β) > 0

)
=− γ (10.34)

for some positive γ = −N−1 log
(
1− (1− α)1/N

)
, across all β ∈ BN . Then asymptotically

for large N we have that (10.28) is satisfied.

CLT approximation As a third alternative, we consider the approximation of the false
alarm probability based on CLT arguments. Applying a CLT approximation has been
considered in [86] for parametric change point detection (the setting of this chapter), and
in [122] in the context of non-parametric change point detection. Motivated by Donsker’s
theorem, we can approximate the probability in (10.28) by [141], Eq. (3.15),

P0

(
max
t∈[0,N ]

σBt + µ t > b

)
= 1− Φ

(
b− µN
σ
√
N

)
+ e

2bµ

σ2 Φ

(
−b− µN
σ
√
N

)
, (10.35)

where Bt is a standard Brownian motion (Wiener process). Then a fixed threshold b
(rather than a function as before) can be obtained numerically from setting (10.35) equal
to 1− (1− α)1/N .

Remark 10.6. It is known [125] that for independent observations the limiting distribution
of the stopping time is exponential under H0 as b → ∞. This is not contradicting the
use of a CLT approximation because the latter applies in a different limiting regime.
One could also obtain a constant threshold assuming an exponential distribution of the
stopping time. However, we shall see in the independent data example provided below
that a constant threshold cannot be expected to work better than a threshold function.
This is consistent with an example provided in [43], where the constant threshold is
optimised based on simulation and compared to a threshold function obtained from an LD
approximation. For this reason, we refrain from including a second method for selecting
a constant threshold in this discussion.

Independent-data example For illustration we provide an example with independent
data, see Figs. 10.2–10.3. Note that when testing an independent sequence of N (0, ν)
observations against a shift in mean of size θ, then the LLR Lk:n(m) corresponding to
testing against H1(k) is given by

Lk:n(m) =

n+m−1∑
i=k+m−1

`(Vi) =

n+m−1∑
i=k+m−1

m̃

ν2

(
Vi −

m̃

2

)
.

Hence, under H0 the LLR increments are normally distributed with mean value µ =
−(m̃/ν)2/2 and variance σ2 = (m̃/ν)2.
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Application of the EV and CLT approximations is then straightforward. To apply
the LD approximation, we need to compute the limiting log-moment-generating function
Λ(θ) in more explicit terms (this way we also check that it indeed exists and is finite for
all θ). Because the sequence of observations is independent, with k = Nβ + 1, we can
write the associated moment-generating function as

MNβ(θ) = E0

[
exp

(
θ

N∑
t=k

log
q(Vt)

p(Vt)

)]
=

N∏
t=k

exp

[
θ

2
(θ − 1)

(
m̃

ν

)2
]
.

With this expression we can compute a threshold function b(β) from

γ = sup
θ

{
θb(β) + (1− β)

θ

2
(1− θ)

(
m̃

ν

)2
}

= I
(
b(β)

)
. (10.36)

The optimising θ is 1/2 + b(β)/
[
(1 − β) (m̃/ν)

2 ], so that from (10.36) we obtain the
desired closed-form expression for b(·):

b(β) = −1− β
2

(
m̃

ν

)2

+
√

2γ (1− β)
m̃

ν
. (10.37)

It is interesting to compare this to the EV threshold function (10.29): we note that in
both cases (up to scaling by N because the LD test statistic is divided by N) the threshold
function is of the form

b(β) = N(1− β)µ+
√
N(1− β)σ ζ(·),

where ζ(·) is some function of the parameters. This form is intuitively appealing: it makes
sense to select a threshold that exceeds the expected value of LNβ+1:N by some function
of the standard deviation.

Using the three different thresholds, we can evaluate P0(τ ≤ N) by Monte Carlo
simulation. We evaluate the false alarm rate as the relative frequency with which a
false alarm is raised. Figure 10.2 shows that the performance in terms of false alarms
is conservative, as was to be expected because we approximate the upper bound (10.28)
rather than P0(τ ≤ N) itself. Nevertheless, the false alarm rates are close to the desired
level α when the EV approximation is applied, while the LD approximation is more
conservative. The CLT approximation does not seem to adjust enough for different α.
This may be related to the fact that we have to solve for b numerically in this case while
in absolute terms 1 − (1 − α)1/N in (10.28) does not change much with α. Moreover,
it has also been found in Chapter III of [141] that the CLT approximation typically
underestimates the probability of interest. An explanation for this is that in (10.35) it is
assumed that the maximum is taken over a continuous (and thus larger) interval.

Figure 10.3 displays the obtained delay values for various values of α. Here, the delay
is evaluated as the sample average of the difference between the first detection time and
the actual change point. Note the trade-off between the false alarm probability and the
resulting delay for the LD and CLT approximation. Interestingly, the EV approximation
yields a higher delay even though the false alarm probability is higher, suggesting that the
shape of the threshold function does not match the shape of the LLRs LNβ+1:N . (Note
that this is not generally the case: for the state space model example discussed in Section
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11.2 the EV approximation achieves the better delay performance.)
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Figure 10.2: False alarm rates under criterion P0(τ ≤ N) ≤ α, with m̃ = 2, N = 150,
ν = 1. Comparison for various α (indicated by the dotted line).
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Figure 10.3: Delay values under criterion P0(τ ≤ N) ≤ α, with m̃ = 2, N = 150, ν = 1.
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Figure 10.4: Comparison of LLRs LNβ+1:N and the threshold functions devised in Section
10.2.3.2 (the LD threshold is multiplied by N for comparability).
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Figure 10.5: Delay values under criterion P0(τ ≤ N) ≤ α, with α = 0.01, N = 150, ν = 1.
Comparison for various values of the shift size m̃.

To further investigate this issue, we plot a graph of the threshold function as well as the
LLRs, both as a function of β ∈ BN , see Fig. 10.4. Indeed, the distance between the EV
threshold and the LLR is not uniform across β. The shape of the LD threshold, however,
matches the LLRs very well. The figure also suggests that particularly when using the
EV threshold, false alarms usually occur at the end of the window. One may thus wonder
whether one could simply choose a constant threshold equal to the 1−

(
1− (1− α)1/N

)
-

quantile of F , the distribution of the LLR increments. This choice, however, does not
work well, the obtained false alarm rate is usually considerably higher than the desired
level (in this example it is close to 1). The figure shows clearly why a threshold function
is to be preferred with respect to a constant threshold: the CLT threshold is far away
from the actual LLRs, except when β is close to 1. Choosing a function is favourable
particularly in view of the detection delay, provided that it closely mimics the behaviour
of the LLRs.

Figure 10.5 shows a comparison of the delay for various choices of the shift size m̃.
As expected, the delay performance improves as the shift size increases. We remark that,
reassuringly, for different choices of m̃ the resulting false alarm performance is similar to
Fig. 10.2.

10.3 More control over false alarms

The criterion considered in the previous section may not always be restrictive enough,
as is illustrated in Fig. 10.6. This figure shows the alarm rate obtained when testing a
sequence of independent Gaussian observations with expanding windows. We compute
the alarm rate as the relative frequency of the alarms raised – thus, the alarm rate before
the change point corresponds to the false alarm rate we discussed in Section 10.2.3.2,
whereas the alarm rate after the change point is to be interpreted as the rate of detection.
The position of the change point is indicated by the vertical line. The threshold is chosen
such that (10.9) is achieved. It can be seen that at the beginning of the period, where
only a small number of data points are tested, the false alarm rate is too high but because
it then decreases below the desired level, the criterion is still satisfied. This also confirms
once more that one should choose b to be a function, rather than a constant threshold as
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is often assumed. With a constant threshold, as the example shows, P0(τ ≤ N) ≤ α can
only be achieved if P0(τ = 1) ≤ α. This is true more generally; recall that for independent
or weakly dependent observations, it has been shown, for example, in [125, 147] that the
distribution of τ is approximately exponential when the threshold b is large but constant.

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

1

Time

A
la
rm

ra
te

Figure 10.6: Alarm ratios obtained when testing an i.i.d. Gaus-
sian sequence without windows. A constant threshold is chosen
such that E0τ ≥ N(1− α), where N = 1, 000 and α = 0.01.

In view of the above, we propose to choose a threshold function that limits the false
alarm rate for the current window to be α̃ (which can be related to α from before as
outlined below). That is, we require

P0(T = n |T > n− 1) = P0

(
max

k∈{1,...,n}
Lk:n > bn

)
= α̃ (10.38)

to hold, uniformly across all n, where T ∈ {τ, ω}. If T = ω, the above can be simplified
because

P0(ω = 1) = P0(ω = n |ω > n− 1)

for any n. As mentioned in the introduction, in the definition of the MLFA (10.1) we can
choose N = 1 to recover (10.38). In view of Fig. 10.6 this seems a good choice as one
would like to control the false alarm rate at every time instance; it is, however, the least
conservative because the MLFA increases monotonically in N .

To relate (10.38) to (10.3), note that

P0(T ≤ N) =

N∑
n=1

P0(T = n) , (10.39)

and

P0(T = n) = P0(T = n |T > n− 1)P0(T > n− 1)

= P0(T = n |T > n− 1)

(
1−

n−1∑
t=1

P0(T = t)

)
.

Using this recursive equation, it is possible to express each P0(T = n) in (10.39) in terms
of conditional probabilities of the form P0(T = n |T > n−1). One obtains that P0(T = n)
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can be written as

P0(T = n |T > n− 1)

n−1∏
t=1

(
1− P0(T = t |T > t− 1)

)
.

Thus, in principle one can allow for α̃ to depend on the current window size n as well,
and choose a sequence of α̃n such that P0(τ ≤ N) ≤ α is achieved. For example, we can
set

α̃1 =
α

N
, α̃n =

α

N

[
n−1∏
t=1

(1− α̃t)

]−1

. (10.40)

Therefore, the condition (10.38) indeed allows a better control over the false alarm per-
formance as desired.

Approximations for (10.38) are readily available. For example, we can apply EV, LD,
and CLT approximations as in Section 10.2.3.2 with N replaced by n, and 1− (1−α)1/N

replaced by α̃ (we give more details in Section 11.2.2 for the state space model). In order
to ensure (10.38), we now need the threshold function to depend on the current window
size n. Thus, if the window size is fixed, the threshold function is the same for every
window. If windows are expanding, we obtain an adaptive threshold function. In the
latter case, it is all the more important that evaluation of the threshold function is simple
so that this can be carried out on-line as a new observation arrives.

Independent-data example For illustration we consider again the independent data
example from Section 10.2.2.2, yet now false alarm rates are evaluated according to
(10.38). See Fig. 10.7 for an example with stopping time ω, which displays the prob-
ability P0(ω = 1) that is achieved on average, for various choices of α̃. (A comparison of
different shift sizes is not depicted because the false alarm behaviour remains very stable,
as desired.) In comparison to the example in Section 10.2.3.2 we note that the LD and
EV approximations are closer but slightly above the desired false alarm rate; whereas
in Section 10.2.3.2 they were rather conservative. This difference may be explained by
the fact that in Section 10.2.3.2 we approximated an upper bound to P0(τ ≤ N) rather
than the probability itself. When windows are expanding (and the stopping time is τ and
thresholds are adaptive), a very similar false alarm performance is obtained.

In Fig. 10.8 we check that when the threshold is obtained as suggested in the cur-
rent section, with the sequence α̃n defined by (10.40), we indeed obtain a false alarm
performance similar to Fig. 10.2, where the threshold was chosen with the aim of achiev-
ing P0(τ ≤ N) ≤ α. The performance in terms of delay is then as in Fig. 10.3, as a
consequence of the similar false alarm performance.

In summary, Figs. 10.7 and 10.8 together confirm that (10.38) is a stronger false alarm
criterion that allows better control over the false alarms at any given time point.

We provide more involved examples featuring dependent Gaussian processes in Chap-
ter 11.

10.4 Conclusion

In this chapter we considered two false alarm criteria derived from the MLFA (10.1). Both
criteria are more stringent than the traditional ARL, however, the former is less stringent
than the MLFA, whereas the second is a special case.
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Figure 10.7: Comparison of probabilities P0(ω = n|ω > n − 1) obtained with adaptive
thresholds chosen such that (10.38) is achieved with n = 50, m̃ = 1, ν = 1, for various α̃
(indicated by the dotted line).
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Figure 10.8: Comparison of probabilities P0(τ ≤ N) obtained with adaptive thresholds
chosen such that (10.38) is achieved, where the sequence of α̃n is chosen according to
(10.40) such that P0(τ ≤ N) ≤ α holds as in (10.9), with N = 150, m̃ = 1, ν = 1, for
various α (indicated by the dotted line).

We then provided methods for the selection of the threshold such that the false alarm
criteria under consideration hold at least approximately. With respect to numerical meth-
ods for threshold selection these are more easily applicable, and moreover allow the se-
lection of a threshold function rather than a constant threshold. We investigated the
performance of the resulting detection procedures in numerical examples. In terms of
false alarm performance, the EV approximation was usually closest to the desired level.
However, the LD threshold function typically mimicked the shape of the LLRs more
closely, and thus yielded the best trade-off between false alarm and delay performance.
We also saw that a threshold function generally seems to be preferable in comparison to a
constant threshold (and accordingly the EV and the LD threshold functions outperformed
the constant CLT threshold).

A topic for future research is the improvement of the EV approximation: we saw
that a shift of the resulting threshold function yields a good false alarm performance;
however, it should be determined what the optimal size of that shift is, depending on the
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available parameters. Furthermore, the LD approximation requires the evaluation of the
limiting logarithmic moment generating function of the LLR. In this chapter, we only
provided these computations for the case of Gaussian observations. Similarly, for the EV
approximation we assumed Gaussian observations. In future research other distributions
could also be considered in more detail.



CHAPTER 11

Change point detection for Gaussian processes

To illustrate the methodologies we proposed in the previous chapter, we apply the ob-
tained procedures to detect changes in Gaussian processes that are serially correlated
(correlated over time).

First, in Section 11.1, we note that in the case of linear Gaussian processes it is usually
possible to express the LLR of the observations as a function of a sequence of independent
innovations that are obtained by passing the observations through a whitening filter (this
is a common approach, see also, for example, [15]). We present the testing procedure
for detecting a proportional change in the mean and variance of dependent Gaussian
sequences with an LD-based threshold. By this example, we verify that the innovations-
based approach is computationally easier, and achieves similar performance compared to
that of using the observations directly. The content of Section 11.1 is taken from Kuhn,
Ellens and Mandjes [81].

In Section 11.2 we consider a state space model, for which we compare the performance
of the thresholds obtained from LD, EV and CLT approximations using the innovations-
based approach. This model is of interest because it is a special type of hidden Markov
model; for this class of models it has been found in [107] that the ARL can be infinite.
Moreover this example is not straightforward because the size of the change is not fixed,
but rather a function of t−k, where t is the current time and k denotes the change point.
The content of Section 11.2 is based on work by Kuhn, Mandjes and Taimre [85, 86].

11.1 Change in mean and variance

Traditionally, much of the literature on change point detection has focussed on detecting a
change in the mean value. However, in the context of communication networks, an increase
in the number of active users tends to be not reflected by a change in the mean only, but
rather as a change in scale [43] – a change in both the mean and (proportionally) the
corresponding variance. Therefore, to only focus on the detection of mean shifts neglects
an additional indicator that a change has taken place [15, Ex. 4.1.9]. While by now there
exists work on detecting more general types of change (see e.g. [151] and the references
therein); none besides the unpublished work report [43] appear to have focussed on the
change in scale in particular.

171
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In this section, which is based on [81], we apply the LD based testing technique from
Chapter 10 for the detection of such a change in multidimensional and serially correlated
sequences. We focus on Gaussian sequences (Xt), where the observations Xt have a
multivariate normal distribution. While Gaussian models are not generally appropriate
for modelling network traffic, it can be argued that, as networks grow, the behaviour of
the traffic streams should approach that of a Gaussian process [1, 104]. This view has
been confirmed in [155] and more recently in [35] in empirical studies based on network
traffic measurement data.

Let us consider the illustrative example of a link of a communication network. If the
bandwidth consumed by different users is i.i.d., then the mean and variance of the total
bandwidth consumption are both proportional to the number of users. As a consequence,
a change in the number of users can be considered as a change of scale in the sense that
the mean and variance exhibit the same relative (i.e., percentage-wise) change. When
measuring not only at a single link but at various points in the network, then more infor-
mation is available, potentially facilitating earlier detection or a lower risk of false alarms.
In this case, apart from serial correlation also cross-correlation between data sequences
generated by different sensors has to be taken into account, because the same traffic may
be captured by several sensors (and hence we explicitly allow for multidimensional obser-
vations). For large traffic aggregates, using a Gaussian model is justified by central-limit
type of arguments. Based on the above, we conclude that the set-up considered in this
paper can be used to detect changes in load, caused by, for instance, a (legal) increase in
the number of users, or a DDoS (distributed denial of service) attack.

A number of procedures have been proposed that allow for data streams to be either
serially correlated [128] or multidimensional [30]. In [152] a detection method for testing
serially correlated and multidimensional data streams, however, the components of each
multidimensional observation are assumed to be mutually independent. All these papers
focus on detecting a change in mean only.

The more general setting of cross-dependent multidimensional data streams is covered
in Basseville and Nikoforov [15], where testing against a change in mean or variance is
considered separately. For the purpose of testing against a change in mean only it is shown
how to reduce the problem of testing serially correlated Gaussian sequences to that of
testing independent Gaussian sequences using the aforementioned whitening transforma-
tion to obtain the i.i.d. sequence of innovations. For testing against more general types
of changes Basseville and Nikoforov consider the local approach. For threshold selection
the authors suggest the known approximation methods for i.i.d. sequences we listed in
Section 8.1.2.

In this section, we first note that the innovations-based approach can be applied for
testing against a change in scale, and there is therefore no need to turn to the local ap-
proach, which is less easy to apply and requires additional assumptions. We compare
the innovations-based approach, which we sometimes refer to by the letter (A), with the
method of testing the sequence of observations directly (in this we can follow [80] by
merely replacing the scaling factor), denoted as (B). For the former we impose the weak
assumption [22, Section 5.7.1] that the process be linear and invertible, while for the
observations-based approach we need additional assumptions on the underlying correla-
tion structure. We validate the proposed tests in a series of numerical experiments, which
(i) study the trade-off between the detection ratio and the corresponding delay, (ii) assess
the gain of multidimensional testing procedures (over multiple one-dimensional tests),
and (iii) provide a systematic comparison between (A) and (B).

This section is organised as follows. In the next subsection we explain the change
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in scale and the set-up of our LD-based hypothesis test in greater detail. In Section
11.1.2 we compute the LLR test statistics for (A) and (B), respectively, before we derive
the threshold functions in Section 11.1.3. The results of the numerical evaluation are
presented in Section 11.1.4. We conclude in Section 11.1.5.

11.1.1 Observations- vs. innovations-based testing

In this section, we introduce the setting, assumptions and notation, and provide a short
comparison between approaches (A) and (B) in Table 11.1.

We are concerned with testing a stationary multidimensional Gaussian sequence (Xt)
against a change in scale, where after the change both the mean and variance are mul-
tiplied by some constant c. Each Xt is a d-dimensional column vector consisting of the
measurements of d different ‘sensors’ at (discrete) time t. The sequence of innovations
(εt) is defined by

εt := Xt − E (Xt |Xt−1, . . . , X1) . (11.1)

We focus window-limited testing with LD threshold. Recall that the change point k
corresponds to nβ + 1, where (throughout the section) β ∈ Bn. We write Lnβ for the
LLR Lnβ+1:n. For clarity, whenever it matters, we will explicitly spell out whether the
LLR is a function of observations or innovations: we write (A) LX

nβ(·), or (B) L ε
nβ(·).

The threshold function is denoted by (A) bX(β) or (B) bε(β). The alarm is raised at the
stopping time ω defined in (10.8).

We now state the hypotheses to be tested, and the assumptions required when using
(A) or (B).

(A) For the observations based approach, to compute the LLR, we consider the n observa-
tions within each window jointly. The joint distribution of X under H0 is Nnd (0,Σ),
a Gaussian distribution of dimension nd. We write the covariance matrix Σ of the
joint observations as a block Toeplitz matrix of the individual autocovariance matri-
ces Γh = Cov (Xt, Xt−h).

Now we can formulate H0 and H1 more specifically. For all β ∈ Bn we want to test

H0 : X ∼ Ndn (0,Σ) vs. H1(nβ + 1) : X ∼ Ndn (ν, T ) ,

where

ν = (0′ . . . ,0′,ν′, . . . ,ν′)
′
, T =

(
Σ(dnβ) 0
0 c · Σ(dn(1−β))

)
,

with ν = cµ−µ, µ denoting the mean vector before centering, and where m in Σ(m)

denotes the dimension of the matrix. For method (A), we assume that the sequence
before nβ + 1 is independent of the sequence afterwards. This assumption enables
computations, and is reasonable if a change has taken place, and the cause of the
change is ‘external’ (as in the examples mentioned in the introduction).

(B) For the innovations based approach we need to impose further assumptions (see also
Table 11.1). We focus on causal linear processes, i.e., we assume that Xt satisfies
supt E|Xt| <∞ and can be modelled as

Xt =

∞∑
j=0

ΨjZt−j , (11.2)
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Table 11.1: Characteristics of (A) the observations and (B) the innovations based approach

(A) (B)

Suitable test statistic for changes in
mean and variance but also in coeffi-
cients

Suitable for detecting changes in
mean or variance

Computationally expensive Recursive computation of LLR and
reduced dimensionality

How to define the threshold function
in the multidimensional case is un-
clear, unless there is no shift in mean
or data streams are independent

We can compute the threshold func-
tion for the change in scale explicitly

The process does not need to be in-
vertible

Requires invertibility

The observations are well-defined test
statistics

Since innovations are defined in terms
of past observations, initial conditions
are required

with uncorrelated error terms Zt ∼ Nd (0,Ω), and where the Ψj form an absolutely
summable sequence of coefficient matrices [22, Proposition 3.1.1]. Using the lag op-
erator L defined by LZt := Zt−1, LjZt = Zt−j , and defining Ψ(z) := I+

∑∞
j=1 Ψjz

j ,
Eq. (11.2) can be written as Xt = Ψ(L)Zt.
We further need to assume that the process be invertible, i.e., that the i.i.d. sequence
of innovations (εt) can be extracted as a well-defined function of present and past
observations (lie in their closed linear span). If Xt is given by a VARMA(p,q) process

Xt =

p∑
i=1

AiXt−i +

q∑
j=1

BjZt−j + Zt,

then a well-known sufficient condition for invertibility is that |B(z)| has no roots on
the unit disk, where B(z) = I+

∑q
j=1Bjz

j denotes the MA-polynomial [22, Theorem
3.1.2].

In Sections 11.1.2 and 11.1.3, we provide explicit computations for the LLR and the
threshold function, respectively.

11.1.2 Evaluation of the test statisic
We now evaluate the LLR when using approach (A) and (B), respectively. In both cases
we may assume, without loss of generality, that the pre-change process has mean vector
0 (we may subtract the original mean vector to achieve this).

(A) The LLR for testing X ∼ Nnd (0,Σ) against the simple alternative hypothesis X ∼
Nnd (ν, T ) can be computed as

LX
n (X) =

1

2
log |Σ | − 1

2
log |T |+ 1

2
XTΣ−1X − 1

2
(X − ν)′T−1(X − ν).



175 11.1. Change in mean and variance

Filling in ν, Σ, T , the LLR for testing against a change in scale at a specific point
nβ + 1 becomes

LX
nβ(X) = −1

2
dn(1− β) log c+

1

2
X̃ ′
(

Σ(dn(1−β))
)−1

X̃ (11.3)

− 1

2c

(
X̃ − ν(dn(1−β))

)′ (
Σ(dn(1−β))

)−1 (
X̃ − ν(dn(1−β))

)
,

where X̃ := (X ′nβ+1, . . . , X
′
n)′.

(B) Given the invertibility assumption holds, a proportional change in the covariance
matrix of the observations (i.e. covariances are inflated by c) can be detected as
a proportional change in the covariance matrix of the innovations, as it is known
[22, Eq. (11.1.13)] that under H0 the autocovariances of Xt are given by Γh =∑
j ΨjΩΨ′j−h. It has been shown in [15] that (for VARMA processes) the sequence

of innovations is a sufficient statistic for detecting a change in the mean value.

Then, defining ξ = Ψ(L)−1ν, the above hypotheses can equivalently be formulated
as

H0 : εt ∼ Nd (0,Ω) , t = 1, . . . , n vs. H1(nβ + 1) :

{
εt ∼ Nd (0,Ω) , t ≤ nβ,
εt ∼ Nd (ξ, cΩ) , t > nβ.

Since the innovations are independent, the LLR L ε
nβ(ε) for testing H0 against

H1(nβ + 1) can be expressed as the sum of the LLRs at time t > nβ (since the
LLR is zero for t ≤ nβ). Therefore, L ε

nβ becomes

L ε
nβ (ε) =

n∑
t=nβ+1

1

2
log

1

cd
+

1

2
ε′tΩ
−1εt −

1

2c
(εt − ξ)′Ω−1 (εt − ξ) . (11.4)

Note that in this case we can compute the LLR for each new window recursively.
On the other hand, in practice the true innovations after the change points can only
be estimated as the recursion (11.1) requires initial conditions. The effect is minor
if the order of the process is small (see Section 11.1.4).

The LLR test statistics obtained for (A) and (B) are compared with the associated thresh-
old functions as evaluated in the next section.

11.1.3 Threshold selection

In this section we show how to obtain the threshold function as bX(β) for the observations
based or bε(β) for the innovations-based approach. To that end, we need to compute the
limiting cumulant-generating function Λ(θ) in more explicit terms (this way we also check
that it indeed exists and is finite for all θ).

(A) In Section 3 of [43] it is outlined how to compute the MGF Mn(θ) for testing X ∼
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Nnd (0,Σ) against X ∼ Nnd (ν, T ) (for arbitrary ν,Σ, T ):

Mn(θ) =

(
|Σ |
|T |

)θ/2
1

| θT−1Σ + (1− θ)Idn |1/2

× exp

(
−θ

2
ν′T−1ν +

θ2

2
ν′T−1

(
θT−1 + (1− θ)Σ−1

)−1
T−1ν

)
.

Filling in the specific ν,Σ, T for testing against a change in scale, this expression
reduces to

Mnβ(θ) = c−θdn(1−β)/2

(
θ

c
+ 1− θ

)−dn(1−β)/2

× exp

(
ν′snβν

θ2 − θ
2(θ + c− θc)

)
,

where snβ denotes the sum of all d dimensional covariance matrices within the lower
right dn(1− β)× dn(1− β) dimensional block matrix in Σ−1.

Using the expression we obtained for Mn(θ), the limiting log-moment generating
function as defined in (10.32) becomes

Λ(θ) = −1

2
θd(1− β) log(c)− 1

2
d(1− β) log

(
θ

c
+ 1− θ

)
+ lim
n→∞

1

n
ν′snβν

θ2 − θ
2(θ + c− θc)

.

We can evaluate the limit in the specific cases (i)Xt can be modelled as d independent
ARMA processes

Xit = Zit +

p∑
j=1

aijXi,t−j +

q∑
j=1

bijZi,t−j ,

(i.e., the d monitored traffic streams are independent), or (ii) there is no shift in
mean, i.e. ν = 0. The latter may happen, for example, if the number of users stays
constant while the variance of their load changes (e.g. due to application changes).

(i) In the first case, the autocovariance matrices Γh are diagonal, and thus the
expression ν′snβν reduces to

∑d
i=1 ν

2
i ti,nβ , where νi is the size of the mean

shift of Xit, and ti,nβ denotes the sum of the entries of the lower right n(1 −
β) × n(1 − β)-dimensional block matrix of Σ−1

i , the inverse covariance matrix
of Xit. From [43, Lemma 1] we have

lim
n→∞

ti,nβ
n(1− β)

=

 1−
∑p
j=1 aij

σi

(
1 +

∑q
j=1 bij

)
2

=: τi,

and hence, the limiting cumulant-generating function exists and is finite. The
threshold bX(β) can then be evaluated by putting the resulting rate function

sup
θ

{
θbX(β) +

1

2
(1− β)

[
θd log c+ d log

(
θ

c
+ 1− θ

)
− θ2 − θ
θ + c− θc

d∑
i=1

ν2i τi

]}

equal to γ. Defining η = −d (1− c)2
/2
∑d
i=1 ν

2
i τi, we compute the optimising
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θ to be

c

1− c

(η +

√
η2 + c− d+ 1 +

4cη

1− c

(
b(β)

1− β
+

1

2
log c

))−1

− 1

 . (11.5)

The threshold function bX(β) can be evaluated using standard numerical pro-
cedures.

(ii) If there is no shift in mean, then Mn(θ) does not depend on snβ . Hence the
limiting cumulant-generating function always exists, and bX(β) follows from

γ = I (bX(β)) = sup
θ

(
θbX(β) +

1

2
d(1− β)

[
θ log c+ log

(
θ

c
+ 1− θ

)])
.

The optimising θ is

−
(

d(1− β)

2bX(β) + d(1− β) log c
+

c

1− c

)
.

(B) When using the innovations-based approach, we may make use of the fact that inno-
vations are independent, in which case the LLR can be written as a sum of the form∑n
t=nβ+1 `(εt) as given in (11.4). It follows that Λ(θ) exists as a finite number:

Λ (θ) = lim
n→∞

1

n
log [E0 exp (θ`(ε1))]

n(1−β)
= (1− β) logE0 exp (θ`(ε1)) .

The threshold can be found from putting

sup
θ

[
θbε(β) +

1

2
(1− β)

(
θd log c+ d log

(
θ

c
+ 1− θ

)
− θ2 − θ
θ + c− θc

ξ′Ω−1ξ

)]
(11.6)

equal to γ.

The optimising θ is similar to (11.5) (replace η by −d (1− c)2
/2ξ′Ω−1ξ).

As expected, both approaches yield the same threshold function in case there is no shift
in mean. We now know how to compute the LLR and the threshold function either using
the observations- or the innovations-based approach. In the next section we evaluate the
performance of the resulting detection procedures.

11.1.4 Numerical results

In this section we summarise the results of our numerical experimentation. We investigate
the performance of detection methods (A) and (B) with respect to the false alarm rate
and the detection delay, when testing vector autoregressive (VAR) processes against a
change in scale.

We begin in Section 11.1.4.1 with an illustrative example which outlines how the
testing methods (A) and (B) could be applied in practice. Then, in Section 11.1.4.2,
we explain how the performance measures, false alarm rate and detection delay, are
evaluated. Finally, in Section 11.1.4.3, we demonstrate the potential gain from using
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multidimensional detection procedures by comparing the multidimensional procedure to
the corresponding one-dimensional procedure that tests each data stream individually.

11.1.4.1 On-line detection

Let us first explain how to apply the detection methods set up in this paper for on-line
detection of changes in scale in multidimensional Gaussian processes. We assume that
one new observation arrives at a time, and the n most recent observations are being tested
against a change with scaling factor c. As an illustrative example, we run the following
procedure.

• We simulate a VAR(1) process of length N according to

Xt = AXt−1 + Zt, (11.7)

where Zt is Gaussian white noise with Zt ∼ N (0,Ω) for t = 1, . . . , k−1, 0 < k < N ,
and Zt ∼ N (ξ, cΩ) afterwards.

• We consider windows of size n < k, adding one new observation at a time while
deleting the oldest.

• In order to test whether a change in scale with scaling factor c has occurred in
a particular window, we determine whether we have arrived at the stopping time
ω. If approach (B) is used, the innovations are extracted as Xt − AXt−1 for all t,
and thus, the assumed independence between pre- and post-change observations is
neglected. We do so to account for the fact that in practice the true value of εk is
not known as it depends on unknown initial values.

• We repeat the above steps 15, 000 times, and divide the total number of alarms
raised for each window by 15, 000 so as to obtain the alarm ratio for each window.

Two examples are presented in Fig. 11.1. It can be seen that the false alarm rate (the
ratio of alarms before the change point as indicated by the vertical line) is indeed kept at
a low level, whereas the alarm rate increases gradually to 1 after the change has occurred.
It is not surprising that the detection ratio depends on the position of the change point
within the window – the more observations have been affected by the change, the easier
the change can be detected.

The figure shows that method (B) results in a slightly higher detection rate than
method (A). This may be due to the fact that in the test set-up for approach (A) we
neglected the dependence between X1, . . . , Xk−1 and Xk, . . . , XN under H0.

As expected, we also see that if ν 6= 0, i.e., if there is a change in the mean value also,
then both false alarm rate and detection rate improve; the shift in mean is an additional
indicator that a change has occurred (for a formal proof of this intuitive result, see [15,
Ex. 4.1.9]). We focus on the “worst case setting” with ν = 0 when numerically evaluating
the performance measures, false alarm ratio and the detection delay, in Section 11.1.4.2.

11.1.4.2 Performance measures

To evaluate the false alarm rate, we perform the above experiment; however, instead of
shifting windows along a series of length N > n, we now consider a single window of
observations that all correspond to H0. Then every alarm that is raised in 15, 000 runs
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Figure 11.1: Alarm ratios obtained when testing a three-dimensional AR(1) sequence of obser-
vations, simulated according to (11.7) with diagonal coefficient matrix A with diagonal entries
0.5 and diagonal input variance matrix Ω with diagonal entries 1, against a change in scale with
c = 2, α = 0.01, window size n = 50. The first window containing the change is indicated by a
vertical line.

is a false alarm, and hence, the number of change points detected on average gives an
estimate for the false alarm rate. The significance level is set to α ∈ {0.01, 0.05}, and we
pick c = 2 (as no change is simulated, the choice of c has little impact on the test results).

In order to evaluate the detection delay, we simulate a VAR(1) sequence where the
first 49 observations correspond to H0 while all later observations have been affected by
the change. We test windows of size 50, at each point in time adding one new observation
and dropping the oldest (thus, in window i only i out of 50 observations have been affected
by the change). The procedure is stopped as soon as the change has been recognised, i.e.,
when the first alarm was raised. We then take the number of the first window for which
this happened, averaged over 30, 000 runs (to obtain an estimate for the ARL under H1),
and subtract one to obtain the detection delay.

The results of these experiments, where data streams are tested jointly, are presented
in Table 11.2 for a number of two-dimensional examples (next to the results from testing
the streams separately as explained in Section 11.1.4.3). It can be seen that – as expected
– the outcome of the experiments is similar for methods (A) and (B), and the false alarm
rate is generally close to the significance level α as desired. Table 11.2 also shows that the
detection delay is small, and provides quantitative insight into the the trade-off between
the false alarm rate and the detection delay: It suffices if 22% of the observations have
been affected by the change when α = 0.01 while less than 12% need to be affected when
α = 0.05.

These and similar examples suggest that the test performance is affected neither by
the sign (positive or negative) nor by the magnitude of the correlation induced by Ω
because the change size is relative to the size of the covariances if ν = 0. (The effect of
the shift size ν has been investigated in [43] for the case of a change in mean only.) A
higher correlation via A on the other hand seems to have a positive effect on the delay –
the effect of a change is enhanced due to the cross correlation.
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11.1.4.3 A case for multidimensional testing procedures

In this section we demonstrate the merits of multidimensional detection procedures. In
general, the signature of a change in scale is stronger when it affects d > 1 data streams
simultaneously. In fact, in case the d tested data streams are independent, and the
detection probability for each of them is p, then the detection probability when testing
the d streams simultaneously is 1− (1− p)d. For example, if the detection probability for
one data stream is 0.8, then the detection probability for testing three i.i.d. data streams
simultaneously is 0.992. As a consequence, the multidimensional procedure outperforms
a procedure that tests one of the individual data streams.

The more interesting question is whether the multidimensional procedure (testing data
streams jointly) performs better than a one-dimensional approach where each of the d data
streams is tested separately but an alarm is raised as soon as a change has been detected
in any of the streams. In the latter case the significance level is corrected using the
(conservative) Bonferroni method [27], that is, it is put to α/d for each one-dimensional
testing procedure.

The main conclusion we draw from the results presented in Table 11.2 is that indeed
the multidimensional detection procedure outperforms the method of separate testing of
data streams in terms of false alarm rate and detection delay, even if the sequences are
independent. However, it should be noted that this benefit comes at the cost of a longer
computation time.

Furthermore, it can be seen that testing the data streams separately results in a
considerably larger false alarm rate as soon as the data streams are mutually dependent
via the coefficient matrix A; due to the increased correlation, the process Xt makes
larger jumps, but the separate testing does not account for this. It is surprising that the
performance in terms of detection delay is good when streams are tested separately, but
this may be explained by the high false alarm rate.

Cross-correlations in the covariance matrix of the innovations process on the other
hand have a negative impact on the detection delay when testing the streams separately,
whereas the false alarm rate remains low. This is because the fluctuations of the process
Xt are of smaller magnitude if the error terms Zit are cross-correlated. (In the example
given in the table, Zt is generated as Zt = Ω1/2Yt, where the two components of Yt
are independent standard normals. Therefore, Z1t = Y1t and Z2t = 0.5Y1t + 0.866Y2t.
This way it can be seen that jumps of Zt are more moderate than when there is no
cross-correlation in Ω.)

11.1.5 Conclusion

In this section we explained how to set up a testing procedure for detecting a change in
scale in multidimensional serially correlated Gaussian processes, and found appropriate
threshold functions. In the networking context, this type of change may occur for instance
as a change in scale in correlated traffic streams due to an increase in the number of users,
or due to an attack on the network.

We applied the testing procedure to (A) the sequence of observations and (B) the
sequence of innovations. We listed benefits and drawbacks of each approach, and saw that
both performed well in numerical experiments. We also demonstrated the supremacy of
multidimensional detection procedures – compared to one-dimensional testing methods –
for detecting changes that affect multiple data streams simultaneously, even if the data
streams are independent.



Both approaches (A) and (B) were seen to be equivalent in some sense, and indeed they
yielded a comparable performance. Thus, we focus on the innovations-based approach in
the next section, where we consider a specific multidimensional Gaussian model that we
test against a change in mean.
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11.2 Change in mean in state space models

In this section we apply the innovations-based approach for testing against a change in
mean in state space models. State space models are popular for modelling stochastic
networks such as communication or road networks, as they allow to take into account
that observations of the true state of a system may be corrupted by measurement noise
(usually, a Gaussian noise process is assumed). Although they are very general, state
space models are still relatively tractable in that the true system state can be estimated
efficiently by a recursive procedure known as Kalman filtering. For a gentle introduction
to state space models and Kalman filter estimation we refer to [61] and [22, Ch. 8].

State space models can be regarded as a special type of hidden Markov model. As such,
they are a flexible modelling tool that has been found useful, for example, for modelling
economic time series [62], urban traffic flow [144], and ozone data [26]. For the application
to communication networks we assume that the current state of a channel (e.g. measured
by the probability of package loss) is not observed directly, but has to be inferred from
the received package flow. A change in the mean value of the hidden state sequence or a
change in the mean value of the received package flow can deteriorate the performance of
the network if it remains unrecognised. State space models can also be used to model road
networks to account for uncertainty in the measurement of travel times. For example,
in the latter case we may suppose that travel times have to be estimated from flow and
occupancy data. An increase in the unobserved mean travel time can be caused by traffic
congestion; a shift in the mean value of the observations on the other hand could indicate
a bias of the sensors.

This motivates us to investigate procedures for testing against a shift in mean in the
observations and hidden state sequence of state space models with Gaussian noise. Since
the observations are generally not independent, we employ the approach of testing the
innovations, which are in this case conveniently obtained as a by-product from Kalman
filter estimation of the hidden states. Change point detection for state space models has
also been considered in [26, 94] for the case where the size of the mean shift is unknown,
in which case a generalised LLR test can be applied (the latter is due to [164]).

We then show how to apply the EV, LD and CLT approximations for the selection
of the threshold. An interesting complication that arises is that a persistent change in
the mean value of the observations results in a dynamic change in the mean value of
the innovations, which are therefore not identically distributed after the change point.
However, it follows from the stability properties of the Kalman filter that under weak
conditions the magnitude of the shift converges to a constant.

This section is organised as follows. In Section 11.2.1 we define the state space model
with a change in the mean value of both the hidden and the observed sequence. In
Sections 11.2.2 and 11.2.3 the testing procedure is explained; that is, we determine the
LLR test statistic and show how the threshold can be approximated. Section 11.2.4
provides a comparison of the numerical performance of the tests under both types of
limiting regimes with respect to the false alarm probability and the detection delay. We
conclude in Section 11.2.5.

11.2.1 Model and framework

We consider an example from Kuhn, Mandjes and Taimre [86] that features the following
state space model of a sequence of observations (Vt), with a shift in mean at the change



183 11.2. Change in mean in state space models

point k:

Xt+1 = AXt + Yt + Γ1{t≥k} , Vt = BXt + Zt + Υ1{t≥k} .

The dx-dimensional process (Xt) represents the unobserved state of the system, with state
transition matrix A ∈ Rdx×dx that has eigenvalues within the unit circle, in which case
the system is stable [61]. The vectors Γ and Υ model the shift in mean. We assume
that A, B, Q, R, Γ, and Υ, are known, and that the Gaussian white noise processes
Yt ∼ N (0, Q) and Zt ∼ N (0, R) are independent.

Denote V ts := {Vs, . . . , Vt} for s, t ∈ N. The minimum variance estimator X̂t =
E0

[
Xt |V t−1

1

]
for the hidden state Xt can be computed efficiently using the well-known

Kalman filter [for details see e.g. [55]] as

X̂t = AX̂t−1 +Kt−1(Vt−1 −BX̂t−1) , X̂0 = x0 .

where Kt := AΣtB
′(BΣtB

′ + R)−1 is the Kalman gain, and Σt = AΣt−1A
′ + Q −

Kt−1(BΣt−1B
′ + R)K ′t−1 is the state error covariance matrix. As a by-product the

sequence of innovations is obtained,

εt := Vt −B X̂t ,

which represent the new information which is not contained in V t−1
1 . They are indepen-

dent and normally distributed with mean 0 and covariance matrix

Ωt := Cov(εt) = BΣtB
′ +R .

The persistent change in mean in Xt and Vt results in a shift in mean on εt that can be
described by (see [15, Eq. (7.2.110)])

ρ(t, k) = B
[
ψ(t, k)−Aζ(t− 1, k)

]
+ Υ,

where ψ(t, k) = Aψ(t−1, k)+M , ζ(t, k) = Aζ(t−1, k)+Kt ρ(t, k), with initial conditions
ψ(k, k) = 0, ζ(k − 1, k) = 0. Therefore, in order to detect a shift on (Xt) or (Vt), we test

H0 : εt ∼ N (0, Ωt|t−1) versus H1 :

n⋃
k=1

[
H1(k) : εt ∼ N

(
ρ(t, k), Ωt|t−1

)]
with t ≥ k. That is, we have to test whether any of the hypotheses H1(k) holds.

Note that ρ(t, k) depends on both k and t during the transient phase of the Kalman
filter. Provided that Σt converges to some matrix Σ as t grows large, it can be shown
that the Kalman gain Kt converges to K = ΣB′(BΣB′ + R)−1 ([15], Section 3.2.3.2).
Conditions under which this holds are provided in [55], Section 7.3.1.2. The limit Σ (if it
exists) can then be obtained as the solution to the algebraic Riccati equation

Σ−AΣA′ +AΣB′(BΣB′ +R)−1BΣA′ −Q = 0 .
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In this case, as noted in ([15], Eq. (7.2.112)), we have that asymptotically

ρ(t, k)→ B
(
I −A(I −KB)

)−1
Γ

+ (I −B
(
I −A(I −KB)

)−1
AK)Υ =: ρ .

Then it also holds that Ωt → BΣB′ +R =: Ω.

These limiting expressions can be used to obtain approximations for the false alarm
probability as outlined in Section 10.3. Moreover, they yield an approximation to the
LLR test statistic that can be computed in a recursive manner – in Section 11.2.4 we
numerically evaluate the test performance when the approximate LLR is used rather
than the actual LLR.

11.2.2 Evaluation of the test statistic

In this section we evaluate the LLR test statistic Lk:n, for k ∈ {1, . . . , n}, n ∈ {1, . . . , N}.

The joint likelihood of V nk is given by

p
(
V nk
)

=

n∏
t=k

p
(
Vt |V t−1

1

)

=

n∏
t=k

exp
[
− 1

2

(
Vt −BX̂t

)
Ω−1
t

(
Vt −BX̂t

)′]√
(2π)dv

∣∣Ωt∣∣ .

Thus we have that p(V nk ) =
∏n
t=k p(εt), where (abusing notation) p(·) denotes the density

function corresponding to its argument. Hence, we can write the LLR as

Lk:n =

n∑
t=k

ρ(t, k)′Ω−1
t εt −

1

2
ρ(t, k)′Ω−1

t ρ(t, k) . (11.8)

Note that this is not a backward recursion over k because the recursive computation of
ρ(t, k) proceeds forward. However, for large n− k we have

Lk:n ≈
n∑
t=k

`(εt) :=

n∑
t=k

ρ′Ω−1εt −
1

2
ρ′Ω−1ρ . (11.9)

We show numerically in Section 11.2.4 that the test performance remains good if the
LLR (11.8) is replaced by the approximate LLR (11.9). The mean and variance of the
asymptotic likelihood increments (under H0) are

µ = E
[
`(εt)

]
= −1

2
ρ′Ω−1ρ , σ2 = Var

(
`(εt)

)
= ρ′Ω−1ρ . (11.10)

Then the threshold function b can be chosen as outlined in Section 10.3; we provide
explicit computations in the next section.
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11.2.3 Threshold selection

Using the explicit expressions obtained for µ and σ2, defining the threshold function
according to (10.29) is straightforward. We obtain the EV threshold

b(β) =

[
−an log

(
− 1

n
log(1− α)

)
+ cn

]√
n(1− β)ρ′Ω−1ρ− n(1− β)

1

2
ρ′Ω−1ρ+ δ ,

(11.11)

for β ∈ Bn, with an and cn as defined in Corollary 10.2.3.2, and δ chosen to be the (1−α)-
quantile of the N (µ, σ2)-distribution. For the CLT approximation we apply (10.35),
replacing N by n and again using µ and σ as defined in (11.10). To obtain the LD
based threshold, we can again proceed as in Section 10.2.3.2. Because the sequence
of innovations is independent, with k = nβ + 1, we can write the associated moment-
generating function as

Mnβ(θ) = E0

[
exp

(
θ

n∑
t=k

log
q
(
Vt |V t−1

k

)
p
(
Vt |V t−1

k

))] =

n∏
t=k

E0,t

[(
q(εt)

p(εt)

)θ]
,

where, abusing notation, p and q refer to the distribution of their argument under H0 and
H1(k) respectively, and E0,t indicates that the expectation is taken with respect to p(εt).
As in [43, Section 3], we can evaluate this as

n∏
t=k

exp

[
θ

2
(θ − 1)ρ(t, k)′Ω−1

t|t−1ρ(t, k)

]
.

Combining the above, we may take Λ(θ) ≈ θ
2 (θ − 1)ρ′Ω−1ρ as an approximation for the

cumulant-generating function. This can be used to compute a threshold function b(β) as

b(β) = −1− β
2

ρ′Ω−1ρ +
√

2(1− β)ρ′Ω−1ρ γ , (11.12)

where γ = −n−1 log α̃.
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Figure 11.2: Values for the shift size ρ (here ρ1 = ρ2)
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Figure 11.3: False alarm rate per window and delay values with Γ = (0, 0)′, Υ = (2, 2)′

and α̃ = 0.05 (dotted line).
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Figure 11.4: False alarm rate per window and delay values with Γ = (2, 2)′, Υ = (0, 0)′

and α̃ = 0.05 (dotted line).

11.2.4 Numerical results

We now investigate the performance of the procedures defined in Section 11.2.2. In order
to gain insight regarding the impact of cross-correlation, we fix the diagonal entries of A
to be A11 = A22 = 0.5, and vary the off-diagonal entries (both are taken to be equal,
A12 = A21). For various shift sizes, we provide the achieved false alarm and detection
rates when using thresholds obtained based on EV, CLT, or LD approximations. Further,
we fix B = 0.5 I2, Q = R = I2, and α̃ and put either Γ or Υ equal to 0. The resulting
shift sizes are depicted in Fig. 11.2. The values plotted in Figs. 11.3–11.4 were obtained
by averaging the relative frequencies of false and true alarms obtained over 10, 000 runs.
The significance level α̃ is indicated by the horizontal dotted black line.

The LD threshold yields false alarm rates that are consistently close to but slightly
above the specified level α, while the CLT threshold is conservative overall. The best
false alarm performance is achieved by the EV threshold. The delay values depend on
the size of ρ: a larger change is easier to detect (compare to Fig. 11.2). The accuracy of
the CLT approximations seems to improve when ρ is small. In this case ρ(t, k) is closer



to ρ, even when t is small; this may explain why the CLT approximation works better in
this case. Interestingly, the EV approximation works better than the LD approximation
in this example: both the false alarm rates as well as the delay values are better.

11.2.5 Conclusion
Numerical experiments (some of which were presented in this thesis) indicate that both
the EV and the LD approximations work reasonably well while the CLT threshold yields
an overly conservative performance in terms of false alarms (and no significant gain for
the delay).

The fact that the tests performed well in our numerical examples also suggests that the
test performance is rather robust with respect to the use of the LLR approximation (11.9)
rather than the actual LLR (11.8). This is a great advantage with respect to computation
time, and thus important for applying the proposed procedures for on-line testing.
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Table 11.2: False alarm rates and detection delays obtained from testing two-dimensional
VAR(1) sequences, using (A) the observations-based approach and (B) the innovations-based
approach, with c = 2, window size n = 50, mean zero. Streams are tested jointly with signifi-
cance level α, and separately (ignoring interdependence) with significance level α/2. In the latter
case an alarm is raised as soon as a change point is found in any of the d streams. The standard
error is given in parentheses.

Example α Testing
False alarm rate Delay

(A) (B) (A) (B)

A =

(
0.5 0
0 0.5

)
0.01

separately
0.007 0.007 14.278 14.139

(0.0006) (0.0006) (0.075) (0.075)

jointly
0.008 0.007 10.510 10.289

(0.0007) (0.0007) (0.058) (0.058)

Ω =

(
1.0 0
0 1.0

)
0.05

separately
0.031 0.032 7.998 7.818

(0.0014) (0.0015) (0.050) (0.050)

jointly
0.038 0.038 5.992 5.802

(0.0016) (0.0016) (0.040) (0.040)

A =

(
0.5 0.4
0.4 0.5

)
0.01

separately
0.397 0.374 3.264 3.438

(0.0040) (0.0040) (0.036) (0.037)

jointly
0.008 0.007 7.384 6.970

(0.0007) (0.0007) (0.055) (0.054)

Ω =

(
1.0 0
0 1.0

)
0.05

separately
0.552 0.529 1.527 1.625

(0.0041) (0.0041) (0.022) (0.023)

jointly
0.038 0.038 4.105 3.768

(0.0016) (0.0016) (0.037) (0.036)

A =

(
0.5 0
0 0.5

)
0.01

separately
0.006 0.006 15.502 15.340

(0.0006) (0.0006) (0.082) (0.082)

jointly
0.008 0.007 10.509 10.289

(0.0007) (0.0007) (0.058) (0.058)

Ω =

(
1.0 0.5
0.5 1.0

)
0.05

separately
0.031 0.031 8.782 8.634

(0.0014) (0.0014) (0.055) (0.055)

jointly
0.038 0.038 5.992 5.802

(0.0016) (0.0016) (0.040) (0.040)

A =

(
0.5 0.4
0.4 0.5

)
0.01

separately
0.515 0.485 2.674 2.919

(0.0041) (0.0041) (0.035) (0.037)

jointly
0.008 0.007 7.458 7.023

(0.0007) (0.0007) (0.055) (0.055)

Ω =

(
1.0 0.5
0.5 1.0

)
0.05

separately
0.640 0.610 1.295 1.428

(0.0039) (0.0040) (0.023) (0.022)

jointly
0.038 0.038 4.146 3.796

(0.0016) (0.0016) (0.037) (0.036)



Summary

The purpose of the research comprised in this thesis entitled ‘Monitoring and Control of
Stochastic Systems’ was

I to contribute new methods for evaluating performance criteria for stochastic models
as applied in telecommunications, manufacturing or health care;

II to investigate what performance and behaviour of such stochastic systems can be
expected when operating under certain control policies, or subject to certain design
choices; and

III to devise procedures for monitoring and testing in order to verify the underlying
modelling assumptions.

In agreement with these three aspects related to the monitoring and controlling of stochas-
tic systems behaviour, the thesis is divided into three parts, the contents of which are
briefly summarised below.

Part I: Static Control Problems. In Part I, we focus on the evaluation of certain
performance characteristics relevant with regard to the static (open-loop) control and
design choices concerning the system. Specifically, we derive large deviations asymptotics
as well as efficient simulation procedures for the evaluation of probabilities related to
rare events such as network congestion or failure. Control measures derived from such
an analysis are static in the sense that they can be decided on in advance, in an off-line
manner, and will then remain in place as long as the underlying model is considered valid.

First, we consider two particular queuing models which are suitable for instance for
modelling call centres. A common phenomenon occurring in call centres appears to be that
call arrival data is often more volatile than that of a homogeneous Poisson process, which
is the traditional model used for such data. This effect is known as overdispersion. The
models we focus on aim to solve this issue by introducing a ‘second layer’ of randomness:
instead of assuming that the Poisson process has a fixed arrival rate, we allow for the
arrival rate itself to evolve randomly over time. The resulting process is also referred to
as ‘doubly stochastic’ Poisson process.

Performance criteria of interest include, for example, the probability that a certain
(large) number of customers ends up in the queue at a particular time, or the probability
that a certain fraction of customers is lost. For the queuing models we consider, with
overdispersed arrival rates, no exact analytical expressions are known for these perfor-
mance characteristics. Therefore, in this thesis we develop (i) efficient algorithms for the
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estimation of relevant rare-event probabilities based on importance sampling; and (ii) ex-
pressions that are asymptotically accurate, or, as common in the field of large deviations
theory, at least exact on a particular logarithmic scale.

Finally, in Part I we derive asymptotically exact expressions and importance sampling
procedures for more generic performance measures involving the comparison of order
statistics. These are of interest in the context of queuing and packing problems, but also
describe the false selection (type II error) probability for hypothesis testing problems such
as those considered in Part III.

Part II: Dynamic Control Problems. Part II of the thesis is about control problems
that require a dynamic control policy, where decision rules are updated at regular time
instances based on the current state of the network at those times. In particular, we
focus on a class of Markovian decision problems known as restless multi-armed bandits
(RMAB). As an application we consider the problem of selecting transmission channels in
a wireless network so as to maximise the average throughput. We compare the two models
that have been proposed as RMAB models of the channel selection problem. The first
model is simpler and hence better understood; here, each channel is assumed to alternate
randomly between two states (‘good’ and ‘bad’) in a Markovian manner. In the second
model the state of the channel (e.g. the logarithmic signal-to-noise ratio) is assumed to
behave as an autoregressive Gaussian process.

The objective in Part II is to investigate the performance and structural properties
of dynamic control policies, in particular for the latter model, which is less well-studied
so far. In view of computational tractability we focus on the class of index policies. We
investigate the behaviour of some example policies in simulation experiments, provide a
number of structural results, and perform an extensive literature survey regarding the use
of the two models as an RMAB model for channel selection.

Part III: Testing and Monitoring. The performance of any control policy derived
from the analysis of a model crucially depends on the validity of the underlying mod-
elling assumptions. Part III of the thesis is therefore concerned with statistical testing
procedures that can identify a certain type of process or detect persistent changes in the
process behaviour. Motivated by the good optimality properties of such tests, the focus
is on testing procedures that feature a likelihood ratio test statistic.

We first propose a testing procedure for the purpose of deciding which process in a
network of stochastic processes is the one that follows a given target distribution. Because
in practice collecting measurements is often costly, we assume that the decision has to
be made based on a limited number of samples. We exploit large deviations theory to
control the probability of making a false selection.

The remainder of Part III is focussed on the detection of change points, points in time
at which the underlying probability distribution of a process changes. We consider two
novel false alarm (type II error) criteria for such sequential testing procedures. These
criteria are more stringent than the traditional average run length criterion, with which
the average number of false alarms can be controlled but not their variance. We show
how the false alarm performance of the test can be regulated with respect to these criteria
by using large deviations and other asymptotic approximations. As examples we present
and carry out the change point detection procedures for different Gaussian models for the
purpose of detecting changes in the first and second moment of the distribution.
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Samenvatting (in Dutch)

De doelen van het onderzoek omvat in dit proefschrift met de titel ‘Monitoring and Control
of Stochastic Systems’ (Monitoring en Besturing van Stochastische Systemen) zijn:

I het ontwikkelen van methoden ter evaluatie van het gedrag van verschillende stochastis-
che modellen, met toepassingen in met name telecommunicatienetwerken, produc-
tiesytemen en de gezondheidszorg;

II het onderzoeken van de prestatie en het gedrag van zulke stochastische systemen
opererend onder een gegeven besturingsmechanisme; en

III het opzetten van toets- en monitoring-procedures voor de verificatie van onderliggende
modelaannames.

In overeenstemming hiermee is dit proefschrift ingedeeld in drie delen. Deze worden
hieronder kort samengevat.

Deel I: Statische Regelingsproblemen. In Deel I richten we ons op de evaluatie
van bepaalde prestatie-indicatoren die relevant zijn met het oog op statische (‘open-loop’)
besturing van het system. In het bijzonder leiden we asymptotisch accurate uitdrukkingen
af voor kansen op bepaalde ‘grote afwijkingen’ (large deviations), zoals een hoog congestie-
niveau of het falen van netwerk-componenten. Besturingsmechanismes die worden afgeleid
via een dergelijke analyse zijn ‘statisch’ in die zin dat ze vooraf gespecificeerd worden, en
dan van toepassing blijven zolang het onderliggende model van kracht blijft.

Eerst bekijken we twee specifieke wachtrijmodellen die geschikt zijn voor (bijvoor-
beeld) het modelleren van call-centers. Een belangrijk fenomeen in call-centers is dat de
tijden waarop gesprekken binnenkomen veel onregelmatiger verdeeld zijn dan wat men
zou verwachten op basis van een homogeen Poisson proces (het model dat traditioneel
wordt toegepast voor dit type datareeksen). Dit effect wordt overdispersie genoemd. Hier
concentreren wij ons op modellen die dit gedrag beter beschrijven door een tweede vorm
van toevalligheid te introduceren: de vaste parameter van het Poisson proces wordt ver-
vangen door een tweede stochastisch proces. Het resulterende proces wordt dan ook wel
een ‘tweevoudig stochastisch Poisson proces’ (doubly stochastic Poisson process) genoemd.

Interessante prestatie-indicatoren zijn, bijvoorbeeld, de kans dat een bepaald (groot)
aantal klanten op een gegeven tijdstip in de wachtrij belandt. Voor de wachtrijmodellen
die wij hier bekijken zijn geen analytische uitdrukkingen bekend voor deze prestatiemaat.
Derhalve ontwikkelen we in dit proefschrift (i) efficiënte importance-sampling algoritmes
voor het schatten van zulke kansen (in het bijzonder gericht op regimes waarin deze kansen
klein zijn), en (ii) uitdrukkingen die of asymptotisch exact zijn, of, zoals gebruikelijk op
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het gebied van de large deviations theorie, tenminste asymptotisch exact zijn op een
bepaalde logaritmische schaal.

Ten slotte leiden we in Deel I asymptotisch exacte uitdrukkingen en importance sam-
pling procedures af voor een aantal meer generieke prestatiematen die gerelateerd zijn
aan het vergelijken van geordende steekproefelementen. Deze zijn relevant in specifieke
industriële toepassingen, maar houden ook verband met de kans op een zgn. ‘fout-positief’
(‘fout van de eerste soort’) in bepaalde hypothesetoetsen zoals diegene die geanalyseerd
worden in Deel III.

Deel II: Dynamische Regelingsproblemen. Deel II van dit proefschrift behandelt
besturingsproblemen die vragen om dynamische aanpassingen. Hierbij worden de besliss-
ingsregels bijgewerkt op periodieke tijdstippen op basis van de toestand van het system
van dat moment. In het bijzonder bekijken we een type Markov-beslissingsprobleem dat
bekend staat als restless multi-armed bandits (RMAB). Als toepassing beschouwen we
het probleem waarbij communicatiekanalen in een draadloos netwerk zo gekozen moeten
worden dat de gemiddelde doorvoer maximaal is.

Twee modellen die zijn voorgesteld als RMAB modellen voor dit ‘kanaalselectieprob-
leem’ worden vergeleken. Het eerste model is eenvoudiger en beter bestudeerd; in dit
model wordt aangenomen dat een kanaal tussen twee toestanden wisselt (‘goed’ en ‘slecht’)
volgens een Markov proces. In het tweede model wordt aangenomen dat de toestand van
het kanaal (bijvoorbeeld de logaritme van de ‘signaal-versus-ruis ratio’) zich gedraagt als
een autoregressief Gaussisch proces.

Het doel in Deel II is om de prestatie en de structurele eigenschappen van dynamische
regelingen te onderzoeken, in het bijzonder voor het tweede, minder onderzochte, model.
Met het oog op de computationele complexiteit richten we ons op zgn. ‘index-regels’. Het
gedrag van een aantal regels wordt onderzocht aan de hand van simulatie-experimenten.
Daarnaast bespreken we structurele eigenschappen, en presenteren we een uitgebreid liter-
atuuroverzicht ten aanzien van de toepassing van deze twee modellen als RMAB modellen
voor kanaalselectie.

Part III: Toetsen en Surveillance. Cruciaal voor de prestatie van elke besturings-
strategie voor een specifiek model is de geldigheid van de onderliggende aannames van dit
model. Deel III van dit proefschrift behandelt statistische methoden om bepaalde type
processen te kunnen identificeren, en om blijvende veranderingen in het gedrag van het
proces te detecteren. Op basis van de bekende optimaliteits-eigenschappen van dit soort
toetsen, concentreren we ons op toetsen die gebaseerd zijn op de ‘likelihood ratio’.

We ontwikkelen een testprocedure om te bepalen welk proces in een netwerk van
stochastische processen hetgene is die een gegeven ‘doelverdeling’ volgt. Omdat het in de
praktijk vaak duur is om metingen te verzamelen, wordt aangenomen dat een beslissing
moet worden gemaakt op basis van een beperkt aantal metingen. Large deviations theorie
wordt gebruikt om de kans van een verkeerde keuze te kunnen beteugelen.

Daarnaast behandelt Deel III de detectie van zgn. ‘veranderpunten’ (change points),
punten waarop de onderliggende kansverdeling van een proces verandert. We bekijken
twee nieuwe vals-alarm (‘fouten van de tweede soort’) criteria voor zulke sequentiële toet-
sprocedures. Deze criteria zijn strikter en breder toepasbaar dan het gemiddelde-loopduur
(average run length) criterium, waarmee alleen het gemiddelde maar niet de variantie van
het aantal valse alarmen kan worden gecontroleerd. We laten zien hoe prestatie van de
toets (in termen van het aantal valse alarms) afhangt van de onderliggende parameters,
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door gebruik te maken van large deviations en andere asymptotische benaderingen. Als
voorbeelden bekijken we procedures voor de detectie van change points in de context van
verschillende Gaussische modellen, waarbij we ons met name richten op veranderingen in
het eerste of tweede moment van de verdeling.
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