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Intrinsic and effective rate constants have an important role in the theory of diffusion-limited reac-
tions. In a previous paper, we provide detailed microscopic expressions for these intrinsic rates
[A. Vijaykumar, P. G. Bolhuis, and P. R. ten Wolde, Faraday Discuss. 195, 421 (2016)], which are
usually considered as abstract quantities and assumed to be implicitly known. Using these microscopic
expressions, we investigate how the rate of association depends on the strength and the range of the
isotropic potential and the strength of the non-specific attraction in case of the anisotropic poten-
tial. In addition, we determine the location of the interface where these expressions become valid
for anisotropic potentials. In particular, by investigating the particles’ orientational distributions, we
verify whether the interface at which these distributions become isotropic agrees with the interface
predicted by the effective association rate constant. Finally, we discuss how large the intrinsic asso-
ciation rate can become, and what are the consequences for the existence of the diffusion limited
regime. Published by AIP Publishing. https://doi.org/10.1063/1.5009547

I. INTRODUCTION

Association and dissociation of pairs of particles play a
central role not only in cellular processes such as the bind-
ing of a ligand to a receptor, an enzyme to its substrate, or
a protein to DNA in gene regulation but also in the self-
assembly of colloids, in micro-emulsion formation or in the
phase behavior of polymer solutions. During association, par-
ticles come into contact via diffusion and bind with a rate
depending on the intrinsic association rate constant. When
dissociating, a bound particle pair separates with an intrin-
sic dissociation rate, after which the particles diffuse away
from each other. Theories of diffusion-influenced reactions
express the experimentally important effective rate constants
in terms of diffusion constants, cross section, interaction poten-
tial of the particles, and the intrinsic association and dissoci-
ation rate constants.1 The latter are often assumed as a priori
given.

While simulation techniques exist that can compute asso-
ciation and dissociation rate constants for arbitrarily complex
interaction potentials,2,3 these are typically effective rate con-
stants, resulting from both the diffusion process and the bind-
ing rate upon contact due to the interaction potential. Since the
effective rate is also what is often measured in experiments,
few studies have focused on the dependence of intrinsic rate
constants on the interaction potential, the cross section, and
the particles’ diffusion constants.

Knowledge of the effective association and dissocia-
tion rates is sufficient for describing the dynamics of dilute

a)Electronic mail: p.t.wolde@amolf.nl
b)Electronic mail: p.g.bolhuis@uva.nl

systems when the association and dissociation can be reduced
to a two-body problem. Yet, it should be realized that, in
general, association-dissociation reactions present a compli-
cated non-Markovian many-body problem due to non-trivial
spatio-temporal correlations between the reactions, such as
rebinding events. In dilute systems, it is often possible to inte-
grate out the dynamics at the molecular scale and describe
association-dissociation as a Markovian process with effec-
tive rates describing the long time dynamics.4,5 However,
the evidence is accumulating that even in dilute systems,
molecular-scale spatio-temporal correlations can dramatically
influence the system’s macroscopic scale behavior. For exam-
ple, it has been predicted6,7 and shown by experiments8 that
in cellular systems which rely on multi-site protein modifi-
cation, enzyme-substrate rebindings at the microscopic scale
can dramatically change the macroscopic behavior at the cel-
lular scale. Also in chemical sensing, either by living cells or
man-made sensors,9–14 the accuracy of sensing is affected by
the microscopic dynamics of the ligand binding to and hop-
ping between multiple receptors. In these cases, the effective
rate constants are not sufficient for describing the dynam-
ics: instead, this requires knowledge of diffusion constants,
the cross sections, and the intrinsic rate constants. Also for
the modeling of reactions in spatially heterogeneous cellular
systems as well as in confined geometries or reduced dimen-
sions, knowledge of the intrinsic rate constants is required.
In addition, in recent years, much effort has been devoted
to understanding how the accuracy of sensing is set by the
diffusion-limited arrival of the ligand at the receptor.5,9–13,15–17

However, the limit derived is only tight if the ligand-receptor
association reactions are indeed diffusion limited, mean-
ing that the intrinsic rate constant is much larger than the
diffusion-limited rate constant. Last but not least, knowledge of
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intrinsic rates is essential for simulation techniques that model
(bio)chemical networks of chemical reactions via reaction-
diffusion, in which particles move by diffusion, and react at
contact with a given intrinsic rate constant.6,18–25

In Ref. 24, we derived microscopic expressions for these
intrinsic rates that can be evaluated by focusing on a single dis-
sociation reaction using a rare-event sampling technique. We
demonstrated that these expressions not only hold for generic
isotropic potentials but also for anisotropic potentials, pro-
vided the cross section where the intrinsic rates are calculated
is sufficiently far from contact that the particles’ orientational
distributions are isotropic.

In this work, we use the technique introduced in Ref. 24 to
study the intrinsic and effective rate constants as a function of
the parameters of both isotropic and anisotropic (patchy) inter-
action potentials. For the isotropic potential, we use the poten-
tial introduced in Ref. 26, which can accurately describe the
phase behavior of small globular proteins such as lysozyme.
For this potential, we investigate how the intrinsic and effec-
tive rate constants vary with the strength and the range of the
interaction potential. For the anisotropic potential, we use the
potential introduced in Ref. 24, which provides an effective
coarse-grained model for proteins with patchy binding sites.
The particles experience a repulsive force based on the distance
between their centres of mass and a strong specific attractive
force if their patches are aligned. In addition, particles also
experience a weaker, isotropic attractive force, which models
the non-specific binding in proteins. Besides the bound and
unbound states, this isotropic non-specific attraction facilitates
an intermediate weakly bound state, in which the particles
are not bound to a specific patch but are likely to remain
close to each other, increasing the chances that they rebind
to a patch. We compute for this system how the intrinsic and
effective rate constants vary with the non-specific attraction
strength. Since the expressions for the rates derived in Ref. 24
are valid for the anisotropic potential only at cross sections
sufficiently far from contact, we also determine the interface
where the orientational distributions become isotropic as a
function of the non-specific attraction strength. While previous
work has considered association and dissociation for isotropic
interactions,1,14,27,28 as well as association for anisotropic
interactions,2,29 these above issues have not been considered
before.

The article is organized as follows: In Sec. II, we present a
brief derivation of the expressions for the rate constants using
rare-event sampling techniques, followed by a short descrip-
tion of the particle model and the interaction potential and the
methods that are used to perform the simulations. In Sec. III,
we evaluate these rates for the isotropic potential, varying its
range and strength. Not surprisingly, the intrinsic and effective
association rates increase with the interaction strength, while
the corresponding dissociation rates strongly decrease. More
interestingly, the intrinsic and effective association rates fall as
the interaction range decreases, while the corresponding dis-
sociation rate constants increase. We then determine the cross
section beyond which these expressions hold for anisotropic
potentials and calculate the anisotropic rates as a function
of the non-specific attraction strength. The results show that
non-specific binding can significantly speed up association

and slow down dissociation. We end with the conclusion in
Sec. IV where we discuss the question how deep the associ-
ation process can be in the diffusion limited regime. For the
potentials studied here, the intrinsic association rate is about a
factor 10 higher than the effective rate constant, which means
that the overall association speed is more limited by diffusion
than by the binding rate at contact but certainly is not entirely
dominated by it.

II. METHODS
A. Intrinsic and effective rate constants

In this section, we briefly recapitulate the derivation that
led up to the expressions for the intrinsic rate constants.24 The
central quantities in a reaction-diffusion system, as shown in
Fig. 1, are as follows: (i) the relative diffusion constant, D,
which is the diffusion constant associated with the interparticle
vector of the two associating species A and B: D = DA + DB,
where DA and DB are the diffusion constants of the respec-
tive particles;6,30 (ii) the cross section σ, this cross section
is the “contact distance” at which the particles can associate
with each other; (iii) the intrinsic association rate, ka, at which
the particles can go from the contact state to the bound state;
(iv) the intrinsic dissociation rate, kd, at which the particles
can unbind from the bound state to the contact state; (v) the
interaction potential U(r).

When the interaction potential U(r) is zero beyond the
constant distance σ, the rate at which the particles come into
contact, starting from an equilibrium distribution, is given by
the diffusion-limited rate constant, kD = 4πσD. In this case, the
long-time limit of the time-dependent association rate is given
by the effective association rate given by the Collins-Kimbal
rate constant,27

kon = kD(σ).
ka(σ)

ka(σ) + kD(σ)
. (1)

FIG. 1. Central quantities in a reaction-diffusion system. Particles from an
equilibrium distribution arrive at the contact interface,σ, with a diffusion lim-
ited rate, kD. In the case of particles freely diffusing with a diffusion constant
D, the analytical expression for the diffusion limited rate, kD = 4πσD. From
contact, the particles can go to the bound state with an intrinsic association
rate, ka, and once bound, the particles can unbind with an intrinsic dissociation
rate, kd. R is the inter-particle distance and U(R) is the interaction potential.
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This expression shows that the effective association rate kon

can be interpreted as the rate at which particles come into
contact, kD(σ), multiplied by the probability that, given they
are in contact, they subsequently also react, ka(σ)/(ka(σ) +
kD(σ)). We also emphasize that while kon is independent of
the choice of the contact distance σ, ka and kD do depend on
this choice.

In the same limit U(r = 0) for r > σ, the effective
dissociation rate as derived by Berg28 is given by

koff = kd(σ).
kD(σ)

ka(σ) + kD(σ)
. (2)

The effective dissociation rate koff is thus the rate at which
the bound particles dissociate, kd(σ), times the probability
that they subsequently escape to infinity. While the effective
dissociation rate koff is independent of the choice of σ, the
intrinsic dissociation rate kd(σ) does depend on it.

Dissociation is a rare event when particles are bound to
patches, owing to strong specific attractive forces. Rare event
sampling techniques such as Transition Interface Sampling31

(TIS) or Forward Flux Sampling32,33 (FFS) allow evaluation
of the corresponding low rate constants. The effective dissoci-
ation rate koff can be expressed as koff = Φ0P(∞|r0), where
Φ0 is the flux of trajectories coming from the bound state
and crossing the r0-interface for the first time and P(∞|r0)
is the conditional probability for trajectories starting at the
r0-interface to reach infinity (unbound state), instead of return-
ing back to the bound state. This probability of escaping to
the unbound state from the r0-interface can in turn be writ-
ten as the probability of escaping from the bound state to the
σ-interface first, multiplied by the probability of subsequently
escaping to the unbound state from the σ-interface. It follows
that

koff = Φ0P(σ |r0)P(∞|σ). (3)

Note that this expression is exact31 and applies to any interac-
tion potential. More specifically, it does not require that U(r) is
zero beyond the cutoff distanceσ. The first two terms of Eq. (3)
can be recognized as the definition of the intrinsic dissociation
rate constant

kd = Φ0P(σ |r0), (4)

which makes it possible to write the effective dissociation rate
constant as

koff = kdP(∞|σ). (5)

This expression is also exact, applying even when U(r) is non-
zero beyond σ. However, if the contact distance σ is chosen
beyond the cutoff distance where the potential becomes zero,
then we can combine Eq. (5) with Eq. (2) to express the escape
probability in terms of the intrinsic association rate and the
diffusion-limited rate constant

P(∞|σ) =
kD(σ)

ka(σ) + kD(σ)
. (6)

Rearranging leads to an expression for the intrinsic association
rate

ka(σ) = kD(σ)
1 − P(∞|σ)

P(∞|σ)
. (7)

P(∞|σ) could in principle be obtained by performing a sin-
gle TIS/FFS simulation for the dissociation reaction. Hence,
by putting σ beyond the cutoff distance of the potential and

by exploiting the analytical expressions for the diffusion-
limited rate, kD(σ) = 4πσ, and the escape probability,
P(∞|σ)= kD(σ)/(ka(σ) + kD(σ), we can, from one TIS/FFS
simulation of a dissociation reaction, not only obtain the intrin-
sic rate kd(σ), via Eq. (4), and the effective dissociation rate
koff, via Eq. (5), but also the intrinsic association rate ka(σ),
via Eq. (7), and the effective association rate kon, via Eq. (1).
Indeed, in all analyses performed below, we always put the
cross section beyond the cutoff of the potential (Fig. 2).

P(∞|σ) cannot be computed directly within a FFS/TIS
simulation because the last interface cannot be put at infinity
in practice. In the simulations, we thus put the last interface
at a finite distance rn, and compute P(rn|σ) instead. However,
we then need a correction because the particles can rebind;
in fact, even when rn is chosen to be large, we still need
this correction because the rebinding probability decays, as
we will see, very slowly only with rn, namely, as 1/rn. To
relate P(∞|σ) to P(rn|σ), we exploit that the effective rate con-
stants are independent of the choice of the dividing interface,
kon(σ) = kon(rn) so that

kD(σ)(1 − P(∞|σ)) = kD(rn)(1 − P(∞|rn)), (8)

where 1 − P(∞|σ) = ka(σ)/(ka(σ) + kD(σ)) is the splitting
probability for binding [c.f. Eq. (1)]. Factorizing P(∞|σ) as

P(∞|σ) = P(∞|rn)P(rn |σ) (9)

and simultaneously solving Eqs. (8) and (9) yield expres-
sions for P(∞|rn) and P(∞|σ). Substituting the expression of
P(∞|σ) in Eq. (7) gives

ka(σ) = kD(σ)
1 − P(rn |σ)

P(rn |σ)

(
1 −

kD(σ)
kD(rn)

)−1

. (10)

Thus for a rn-interface chosen at a finite distance, we need
to correct ka by dividing through a factor (1 − kD(σ)/kD(rn)).
The only unknown P(rn|σ) follows directly from the FFS/TIS

FIG. 2. The main interfaces used in the FFS/TIS simulation to calculate the
rate constants. Particles within the r0-interface are in a bound state and beyond
the rn-interface are in the unbound state. Theσ-interface which is in between
the r0 and rn interfaces is the cross section where the particles are at contact.
The conditional probabilities in the case of FFS/TIS are the probability of
going from one interface to the next, as opposed to going back to r0. R is the
inter-particle distance and U(R) is the interaction potential.
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simulation (Fig. 2). This procedure can also be used to cal-
culate the rate constants for particles interacting with
anisotropic potentials, provided the position of the interface
where these rates are measured is sufficiently far from con-
tact such that the orientational distributions on this interface
are isotropic.24 Consider an interface, σ′, which is sufficiently
far from contact such that the distribution of trajectories has
become uniform. The intrinsic rate for that surface is given by
Eq. (10),

ka(σ′) = kD(σ′)
1 − P(rn |σ

′)
P(rn |σ′)

(
1 −

kD(σ′)
kD(rn)

)−1

. (11)

Since we know that the effective association rate is
independent of the choice of the dividing surface, we can write

1
kon
=

1
ka(σ)

+
1

kD(σ)
=

1
ka(σ′)

+
1

kD(σ′)
, (12)

even if the distribution at σ is anisotropic. Inserting Eq. (11)
into Eq. (12) yields

ka(σ) =
(1 − P(rn |σ

′))kD(σ′)kD(σ)
P(rn |σ′)(kD(σ′) − kD(σ)Ω) + kD(σ) − kD(σ′)

,

(13)
where Ω = σ′/rn. This equation reduces to Eq. (10) when
σ = σ′. Using Eq. (13) in Eq. (12), we get

kon =
(1 − P(rn |σ

′)) kD(σ′)
1 −ΩP(rn |σ′)

. (14)

We showed in Ref. 24 that the value of kon as a function
of σ′ becomes constant beyond σ′ > 3σan for a non-specific
interaction strength εns = 10kBT and predicted that at this
interface the orientational distributions of the particles become
isotropic. We also showed in Ref. 24 that it is still possible to
extract a meaningful value for the intrinsic rate constant at
cross sections σ < σ′ by using Eq. (13).

In this paper, we study how the interface at which the
distributions become isotropic changes as a function of the
strength of the non-specific attraction.

B. Particle models and interaction potentials

We employ two models of particles: (i) spherical particles
interacting via an isotropic interaction potential between their
centres of mass; (ii) spherical particles with an isotropic centre
of mass interaction, dressed with one or more sticky spots on
their surface called “patches,” which allow for highly direc-
tional, anisotropic interactions. In Subsections II B 1–II B 2,
we describe the isotropic and anisotropic potentials used to
calculate the rate constants.

1. Isotropic potential

For the isotropic interaction, we use the Lennard-Jones-
inspired potential from Ref. 26, which allows easy control of
the interaction range

Ui(R) =
4ε

α2
*.
,



(
R
σi

)2

− 1


−6

− α



(
R
σi

)2

− 1


−3
+/
-

, (15)

where R is the centre-of-mass distance between the particles.
This potential diverges asymptotically at R = σi, as opposed

to the 12-6 LJ potential, which asymptotically diverges at
R = 0. The strength of interaction is set by ε and the interaction
range by α. A larger value of α means a smaller interaction
range. Figure 3 shows the potential for three values of α = {50,
100, 1000} as a function of R, each plotted for two different
interaction ranges (ε = 5kBT and 10kBT ). In our simulations,
σi = 5 nm, roughly corresponding to a protein’s diameter.
For the sake of comparison, we also plot the standard 12-6
Lennard-Jones interaction, given by

ULJ(R) = 4ε

[(
σLJ

R

)12
−

(
σLJ

R

)6
]

. (16)

Note that this standard LJ potential is indeed much longer
ranged.

2. Anisotropic potential

Patchy particles [illustrated in Fig. 4(a)] can model pro-
teins in an (idealized) coarse-grained way, where the patches
represent the binding sites on the protein. Pairs of patchy par-
ticles, in our model, experience a strong attractive potential,
Us(r), over a narrow band of orientations [see Fig. 4(c)]. This
specific attraction depends on the distance, r, between the
patches, i.e., stronger attraction when the patches are closer.
When the patchy particles approach each other, they experi-
ence a repulsive potential, U rep(R), which is a function of the
center-of-mass distance, R. In addition, particles experience
a weak, isotropic, non-specific attraction, Uns(R). The total
patch potential reads

Uan(R, r) = Us(r) + Urep(R) + Uns(R), (17)

FIG. 3. The isotropic potential, U i [Eq. (15)], as a function of the inter-particle
distance R. The range and the interaction strength of the potential are set by
α and ε , respectively. A larger value of α results in a potential with a smaller
range. The isotropic is the potential plotted for three ranges (α = {1000, 100,
50}) each with two different attraction strengths (ε = 5kBT and 10kBT ). The
12-6 Lennard-Jones potentials have also been plotted for comparison. The
intrinsic and effective association and dissociation constants are evaluated for
these six cases.
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FIG. 4. (a) Particles interacting via the anisotropic potential have sticky spots on the surface called “patches.” These patches facilitate highly directional attractive
interactions, which provide an effective model for proteins with binding sites. Particles interact via a combination of a repulsive force based on the centre-of-mass
distance, R, between the particles and a strong attractive force based on the distance between patches, r. In addition to this, particles experience a centre-of-mass
distance based weak, non-specific, attractive force. This non-specific attraction facilitates a weakly bound state causing the particles not to immediately diffuse
away once they unbind from the patches. This increases the probability of rebinding of the particles. (b) The anisotropic potential [Eq. (18)] as a function of the
inter-particle distance for aligned (dashed line) and misaligned (solid line) patches. The anisotropic potential is plotted for ten different non-specific attraction
strengths (εns = 2kBT, 4kBT, 6kBT, 8kBT, 10kBT, 12kBT, 14kBT, 16kBT, 18kBT, 20kBT ). When the patches are aligned, the distance between the patches is r
= R � σan, and when misaligned r = R + σan, where σan is the length scale of the anisotropic potential and determines the particles’ diameter. (c) Left: Heat
map of the anisotropic potential as a function of distance R and the angle between the patch vector and the inter-particle vector, with θ1 = θ2 [angles as defined in
(a)]. Right: Heat map of the anisotropic potential as a function of θ1 and θ2, for a fixed R = 1.1σan. From these heat maps, it follows that the specific attraction
is strong only for a narrow range of orientations.

where Us(r), U rep(R), and Uns(R) have the form

Ui(x) =




ε i
*
,
1 − ai

(
x
σan

)2
+
-

if x < x?i ,

ε ibi

(
xc

i

σan
−

x
σan

)2

if x?i < x < xc
i ,

0 otherwise,

(18)

with i = {s, rep, ns}, respectively. The overall strength ε i, the
length scale σan = 5 nm, the stiffness ai, and the parameter x?i ,
when combined with ai determines the range of the potential,
are free parameters. Cutoffs xc

i and smoothing parameters bi

are fixed by requiring continuity and differentiability at x?i . In
this paper, we set the following parameters: ε s = 20kBT, as

= 20, and r∗att = 0.1σan, implying bs = 5 and rc
s = 0.5σan;

ε rep = 100kBT, arep = 1, and R∗rep = 0.85σan, implying brep

= 2.6036 and Rc
rep = 1.1764σan; and ans = 1 and R∗ns = 0.85σan,

implying bns = 2.6036 and Rc
ns = 1.1764σan. εns is varied from

2kBT to 20kBT with steps of 2kBT. Figure 4(b) shows the
total potential as a function of R, when the patches are aligned
(r = R � σan) and misaligned (r = R + σan). When the patches
are aligned, particles experience both specific and non-specific
attraction, creating a deeper potential well and a stronger bond.
When the patches are misaligned, Us = 0 and the particles only
experience the weak Uns which results in a shallow potential
well and a weaker bond. The non-specific attraction, however,

promotes realignment since the particles do not diffuse away
immediately.

C. Brownian dynamics of patchy particles

Propagation of the particle dynamics is done with Brown-
ian dynamics, where at each time step δt the particles position
and orientation are updated based on the instantaneous total
force and torque acting on the particle. This total force/torque
on the particle can be divided into three parts: F tot = Fv

+ Fp + Fr. Fv is the viscous drag force, arising from the
motion of the particle in a viscous solvent. Fp is the poten-
tial force due to interactions between the solute particles, as
specified above. Fr is the random force, which models the
interaction of the larger solute particles with smaller solvent
particles.

In case of anisotropic interactions, the total force and the
torque are calculated, where the orientation of the particles is
represented using quaternions. We use the Brownian dynam-
ics integrator derived in Ref. 34 to simulate the rotational
particle dynamics. Parameters important in this integrator are
the temperature T, the time step δt, and the translational and
rotational friction coefficients γ = kBT

Dtm
and Γ = kBT

DrM , respec-
tively, where Dr and Dt are the translational and rotational
diffusion coefficients, respectively, with kB Boltzmann’s con-
stant. The mass of the particle m and the mass moment of
inertia M are needed due to the formalism of the algorithm
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but drop out during the integration so that the dynamics will
not be dependent on inertia. For more details see Refs. 34
and 23–25.

D. Dissociation rates by forward flux sampling

As explained in Sec. II A, evaluation of the rate con-
stants requires simulation of the dissociation reaction. Since
dissociation is a rare event, brute force BD is very ineffi-
cient, and we have to use a rare event sampling technique
such as TIS31 or FFS. Here we use the “direct-FFS” variant33

to compute the rate constants. FFS is a simple, computa-
tionally efficient and inherently parallel algorithm to obtain
good statistics of rare-event kinetics. At heart, FFS uses a
series of interfaces between the bound and unbound states to
calculate the transition path ensemble and calculate the cor-
responding transition rate. Trajectories starting in the bound
state and reaching the unbound state are rare, but those start-
ing at an interface and reaching the next interface are more
common, if the interfaces are placed sufficiently close to each
other. The interfaces are defined by a suitable order parame-
ter λ: (λ0. . . λn�1). FFS assumes that all trajectories from the
bound to the unbound state should pass through all the inter-
faces in succession and that λi+1 > λi for all i. The order
parameters used to define the interfaces in FFS are given
below.

E. Simulation details

The system specific parameters of the simulation are as
follows: The time step δt = 0.1 ns for the anisotropic potential

and δt = 10 ns for the isotropic potential, the mass of the parti-
cle is m = 50 kDa, the mass moment of inertia is M = 8

15 mσ2
an,

the translational and rotational diffusion constants are Dt = 1
µm2/s and Dr = 1.6 × 107 rad2/s for all particles, the trans-
lational and rotational friction coefficients are γ = kBT

Dtm
and

Γ = kBT
DrM , respectively, where kB = 1.38 × 10−23 J K−1 is the

Boltzmann constant and T = 300 K is the temperature of the
system.

For the isotropic potential, the order parameters that define
interfaces in the FFS simulation are based on the distance R
between the centres-of-mass of the particles. The first inter-
face (r0-interface), which defines the bound state is at R
= 1.2σi. Successive interfaces are placed at R = 1.3, 1.4,
1.5, and 1.6σi. At 1.6σi, the isotropic potential is truncated
to zero, and this interface is the σ-interface. Beyond the
cutoff, there is only one interface at R = 2.0σi: this is the
rn-interface which is used to compute the escape probability
P(∞|σ).

In case of the anisotropic potential, the interfaces are
defined in terms of energy, Uan(R, r) until the cutoff of
the potential, beyond which they are based on the inter-
particle distance, R. The first interface (r0-interface) defin-
ing the bound state is placed at 18kBT. The successive
interfaces are located at 15, 10, and 5kBT. The σ-interface
at the cutoff of the potential is defined by zero energy
and R = 1.6σan. Beyond the cutoff of the potential, inter-
faces are placed at R = 1.7, 1.9, 2.1, 2.3, 2.5, 3.0, 3.5,
4.0, 4.5, 5.0, 5.5 and finally the rn-interface is placed at
R = 7σan.

FIG. 5. The intrinsic [(a) and (c)] and effective [(b) and (d)] rate constants and the equilibrium constants (e) as a function of the range of the isotropic potential
[see Eq. (15)], plotted for two different values the strength of the potential, ε = 5kBT, 10kBT. The range of the potential is set by the parameter α, where a larger
value of α results in a potential having a smaller range. The intrinsic rates are calculated at the σ-interface (R = 1.6σi), beyond which the value of the potential
is truncated to zero. The values of kd and koff increase with decreasing range and increasing strength of the potential. The values of ka and kon decrease with
decreasing range and increasing strength of the potential. In panel (e), the equilibrium constant is either calculated via Keq = ka/kd = kon/koff, where ka, kd , kon,
and koff are computed via the simulation technique presented in this paper, or analytically, by integrating the interaction potential, see Ref. 23.
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III. RESULTS

We calculated the rate constants by systematically varying
the strength and the range of interaction for the isotropic poten-
tial and the non-specific attraction strength for the anisotropic
potential. In the latter case of the anisotropic potential, we
also determine, as a function of the non-specific attraction
strength, the interface beyond which the expressions of these
rate constants are valid.

A. Rate constants for the isotropic potential

We calculate the intrinsic and effective, association and
dissociation rates as detailed in Sec. II A for different values
of the range (α) and the strength (ε) of the isotropic potential.
The r0, σ, and rn interfaces are at R = 1.2σi, R = 1.6σi, and R
= 2.0σi, respectively.

Figures 5(a) and 5(b) plot the dissociation rates kd and koff,
respectively, for two different values of interaction strength, ε ,
as a function of α, which sets the range of the potential (larger
α results in a potential with a smaller range). Both kd and
koff increase marginally with decreasing range but increase
significantly when the interaction strength is halved. Decreas-
ing range or the strength facilitates easier unbinding of the
particles and hence increases the dissociation rate constants.
Hence, the strength of the potential has a large influence on
the dissociation rates.

Figures 5(c) and 5(d) show ka and kon, respectively,
as a function of α, for two different values of interaction
strength, ε . Here, ka decreases by roughly a factor of two with
decreasing range and only marginally when the interaction
strength is halved. The effective rate constant kon decreases
only marginally with decreasing range and decreases even
less when the interaction strength is halved. The range and
the strength of the potential thus have a very small influence
on the association rates.

Figure 5(e) shows the equilibrium constant computed
from Keq = ka/kd = kon/koff as a function of α, for two
different values of interaction strength, ε . For comparison,
we included the values obtained from the analytical expres-
sion Keq = K−1

D = 4π ∫
rp

0 r2e−βV (r)dr. The simulations agree
extremely well with the analytical expression.

B. Orientational distribution for the anisotropic
potential

First, we determine how far from the σ-interface the ori-
entational distributions of the particles become isotropic, as a
function of the non-specific attraction strength, εns. We deter-
mine this interface using two approaches: (i) Constructing
the orientational distributions of the particles and checking
at which interface these distributions become isotropic. (ii)
Identifying the interface at which the value of kon, calculated
from Eq. (14), converges to a constant value.24

The orientational distributions are constructed from an
extensive brute force BD simulation of two particles initially
in the bound state. As the simulation progresses, the particles
move away from each other. The position and orientation of
the particles are recorded each time they cross one of the FFS
interfaces at position r beyond the potential cutoff distance σ.
The orientation is monitored via two parameters: (1) the angle

θ between the inter-particle vectors at the initial bound state
and the particles’ current position and (2) the angle α between
the patch vectors of the two particles. These two angles are
illustrated at the top of Fig. 6. The remainder of Fig. 6 plots
the probability distributions for the angle θ (left column) and of
the angle α (right column) for five interfaces R = 1.7, 1.9, 2.1,
2.3σan. The interface where the angular distributions become

FIG. 6. The distributions of angles θ (left) andα (right) at different interfaces.
θ is the angle between the initial (bound state) centre-of-mass vector and the
centre-of-mass vector when the particle reaches the interface. α is the angle
between the patch vector of the particle at the initial bound state and the patch
vector when the particle reaches the interface. These angles are illustrated in
the cartoon at the top of the figure. We see that the distribution of α becomes
isotropic faster than the distribution of θ for any given εns.
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isotropic is indicated in grey; a distribution is considered to be
isotropic when it qualitatively matches with the isotropic dis-
tribution. The isotropic distribution is plotted in orange for the
sake of comparison. The peak in the θ distributions is shifted to
lower angles for relatively small values of non-specific attrac-
tion strength εns at interfaces near the bound state, due to a
strong correlation with the initial orientation. At interfaces
further away, due to diffusion and the truncation of the poten-
tial, particles are less correlated to the initial orientation and
position and are eventually isotropically distributed. However,
for larger values of the non-specific attraction strength, εns,
the distribution of θ becomes isotropic already at interfaces
close to the bound state. This loss of correlation is caused by
particles lingering longer in the non-specifically bound state
and not immediately diffusing away. The probability distribu-
tion of α in the right column of Fig. 6 becomes isotropic at
interfaces closer to the bound state when compared to the dis-
tribution of θ for the same non-specific attraction strength,
εns. We also observe that with increasing εns, the shift in
the interface where the orientational distributions α become
isotropic does not shift as drastically as for the distributions
of θ.

C. Rate constants for the anisotropic potential

Next, we study the behaviour of the rate constants by
increasing the non-specific attraction strength εns. We calcu-
late the rate constants as explained in Sec. II A. As discussed
above, it is important to determine the interface at which the
orientational distributions become isotropic so that the expres-
sions of the association rate constants are valid for anisotropic
potentials. This can either be done by plotting the orienta-
tional distributions (see Sec. III B and Fig. 6) or by calculating
kon(σ′) and determining the value of σ′ for which the effec-
tive association rate becomes independent of σ′ and reaches
a constant. To this end, we computed kon(σ′) as a function of
σ′ using Eq. (14), for ten different values of the non-specific
interaction strength εns, see Fig. 7(a). We observe that as εns

increases, the value of kon increases. We also notice that for
interfaces close to the bound state, Eq. (14) predicts incorrect
values for kon. However, as we move further away, the orienta-
tional distributions become isotropic and kon converges to the
correct value. To quantitatively determine the interface where
the value of kon converges to the correct value, we calculate
the relative error in kon. The relative error in kon is given by

FIG. 7. The rates of association and dissociation for the anisotropic interaction potential. (a) kon calculated from Eq. (14) as a function of the position of the
σ′-interface, plotted for ten different values of the non-specific attraction strength, εns. The value of kon increases with increasing εns. The plot shows kon
converging to the correct value as we move σ′ further from the bound state. This is because Eq. (14) is valid only if the orientational distributions are isotropic
in the interface where we measure kon (b) The relative error in evaluating kon as a function of σ′. At the interface where the value of kon becomes a constant, the

orientational distributions become isotropic. To determine this interface, we calculated the relative error kon(σ′)
kon(5.5σan) − 1. If this relative error is below 0.01%, we

conclude that kon has converged. The inset shows the same plot in a semi-log scale. The dashed line denotes 0.1% relative error. (c) The interface at which the
value of kon becomes a constant as a function of the non-specific attraction strength εns. The orientational distributions become isotropic at smaller distances for
higher εns because the particles spend more time near each other and have more time to decorrelate from the bound state configuration. (d) ka, kd, kon, and koff
as a function of the non-specific attraction strength. koff and kd decrease significantly with increasing εns. The kon and ka, on the other hand, increase initially
with increasing non-specific attraction strength but later levels off. The increase in the association rates for a potential with ten times stronger εns is one order of
magnitude.
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kon(σ′)
kon(5.5σan) −1, where kon(σ′) is the value of at a given interface
σ′ and kon(5.5σan) is the value at the interface at R = 5.5σan.
Figure 7(b) shows this relative error plotted as a function of
the σ′-interface for ten different values of εns. We assume that
if the relative error is smaller than 0.1%, the value of kon has
converged to the correct value and at this point, we predict that
the orientational distributions become isotropic. The interface
value where kon(σ′) converges is plotted as a function of εns in
Fig. 7(c). For a smaller value of εns, particles need to move fur-
ther away from the bound state for the value of kon to converge.
For a larger value of εns, kon converges at smaller distances
since the particles stay longer in the nonspecific state, before
diffusing away. We also predict that when kon converges, the
orientational distributions become isotropic. Indeed, the inter-
face where the distribution of θ becomes isotropic as shown
in Fig. 6 matches with the interface where the value of kon

converges as shown in Fig. 7(c).
Finally, Fig. 7(d) shows the behaviour of all the four

converged rate constants as a function of εns, evaluated at a
cross section σ = 1.6σan. The intrinsic rates ka were com-
puted using Eq. (13). The dissociation rate constants kd and
koff decrease with increasing εns. In contrast, ka and kon

increase initially with increasing εns because the non-specific
attraction promotes specific binding, as particles stay in each
others vicinity. The increase in the association rates is not dra-
matic with increasing non-specific attraction strength: about
an order of magnitude for a ten times increase in non-specific
attraction strength. This behavior was also found in Ref. 35.
Moreover, beyond a limiting value of εns, the association
rates reach a plateau. This is clearly caused by a flatten-
ing of the intrinsic association rate constant. This raises the
question, whether the intrinsic rate constant can ever become
very high, as is assumed in many diffusion influenced rate
theories.

IV. DISCUSSION AND CONCLUSIONS

In this work, we have evaluated intrinsic and effective rate
constants using the explicit microscopic expressions that we
presented in Ref. 24. Knowledge of these rates is important to
study the microscopic dynamics of reaction-diffusion systems.
Furthermore, to construct Markov state models of reaction-
diffusion systems, these rates are essential input parameters.
Here we studied these rates in the context of an isotropic and
an anisotropic potential. In the case of the isotropic potential,
we evaluated these rates as a function of the range and the
strength of the potential. We observed that the dissociation
rates increase slightly as the interaction range is decreased
yet increases drastically when the strength of the potential is
halved. On the other hand, the association rates decrease with
decreasing range. The change in the effective association rate
constants is not significant.

In case of the anisotropic potential, we studied the
behaviour of these rates as a function of the non-specific
isotropic attraction. In addition to the bound and unbound
states, this non-specific attraction facilitates a third non-
specifically bound state in which the particles are attracted
to each other, but not strongly bound to a particular patch.
This increases the possibility of the particles to realign and

bind at a specific patch, before diffusing away. The expression
for the rates that we derived holds only if the orientational
distributions of the particles are isotropic at the cross section
where the rates are measured. We determined this interface
directly from two angular distributions of the particles and by
calculating the effective association rate as a function of the
interface and identifying where this rate constant is converged.
The interfaces obtained from both methods agree with each
other. Knowledge of the location of this interface becomes
important when we use the computed intrinsic rates to con-
struct a Markov state model and combine them with the meso-
scopic Green’s function reaction dynamics method within a
multi-scale scheme.23,25

The simulations also reveal that the dissociation rate
decreases drastically when the non-specific isotropic attraction
strength is increased (see Fig. 7). This is because non-specific
binding increases the likelihood that particles that have just dis-
sociated rebind instead of diffusing away. The association rate
increases with the non-specific isotropic attraction strength.
Non-specific binding keeps the particles that have diffused
toward one another in close proximity, giving them time to
align their patches and bind specifically. This effect is akin to
the antenna effect in the binding of transcription factors to their
specific sites on the DNA:36 non-specific binding increases
the effective cross section for the binding of proteins to their
specific site. Our simulations also show that the effect of non-
specific binding on the association rate is much weaker than
that on the dissociation rate: while the effective and intrinsic
dissociation rates decrease by more than two orders of magni-
tude when the non-specific interaction strength εns is increased
from 2kBT to 10kBT, the effective association rate increases by
less than an order of magnitude.35 Moreover, while the effec-
tive dissociation rate continues to decrease as εns is increased,
the effective association rate saturates. This is because the
overall association rate becomes increasingly limited by diffu-
sion. Indeed, the intrinsic association rate continues to increase
with εns, although a close inspection of Fig. 7 shows that this
rise levels off too—also the intrinsic association ultimately
becomes limited by diffusion.

Many reactions are believed to be diffusion limited. This
means that the intrinsic rate ka is much higher than the
diffusion-limited arrival rate kD. Yet, how much larger the
intrinsic rate can be, has, to our knowledge, not been system-
atically addressed before. Addressing this question, it should
first be realized that the values of both ka and kD depend on
the choice of the cross section σ: the larger σ, the larger the
diffusion-limited arrival rate kD and the lower the intrinsic
rate ka. However, a natural choice for σ is the distance as
given by the effective physical size of the particles. After all,
the intrinsic rate is typically interpreted as the rate at which
the particles react given that they are in contact. Moreover,
a small cross section also facilitates the modelling of many-
body reaction-diffusion systems—the larger the cross section,
the more often three-body (and higher) interactions have to
be taken into account. Yet, at the microscopic scale, there is
no unique definition for what the effective physical size is:
one choice is the distance where the particles start to repel
each other; another is the range of the interaction potential.
However, choosing the first option would violate the basic
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assumption made in Eq. (1), namely, that the cross section
has to be chosen beyond the potential cutoff. Fortunately, for
proteins interacting via isotropic potentials, the range of the
potential is typically short and hence the ambiguity in the def-
inition is not critical. The natural choice for σ is therefore
the range of the interaction potential or more specifically its
cutoff. This also means that the intrinsic association rate ka

cannot be made arbitrarily large but has an upper limit. This
maximally achievable value of ka will also depend on the shape
of the isotropic potential. For instance, replacing the potential
with a square well potential, of the same depth, while keep-
ing the equilibrium constant Keq fixed, moves the potential
cutoff to lower values, with a corresponding higher ka. For
the isotropic Lennard Jones-based systems considered in this
work, the intrinsic rate ka, computed for a cross sectionσ given
by the cutoff of the potential, is about a factor 1-10 higher than
the diffusion-limited rate kD. Thus, while these systems are in
the diffusion-limited regime, they are still influenced by the
intrinsic association rate ka.

For particles interacting via anisotropic potentials, the
interaction range is short for a given orientation of the particles.
However, the distance beyond which the orientational distri-
bution of the dissociating particles has become isotropic is
much longer (see Fig. 6). It then follows from detailed balance
that also the distribution of associating particles (more specif-
ically, the distribution of trajectories that start in the unbound
state and end in the bound state) become isotropic only beyond
this distance. In this regime, one can truly speak of one well-
defined intrinsic rate ka(σ), one diffusion-limited arrival rate
kD(σ), and one cross section σ, independent of the orienta-
tion of the particles. However, as our earlier work24 and that
of Northrup et al.2,29 show, it is still possible to talk about
intrinsic association rate constants for cross section values
that are smaller than the distance where the orientational dis-
tribution of association and dissociation trajectories becomes
isotropic. These intrinsic rate constants should then be viewed
as an average over all orientational dependent intrinsic rates.
Indeed, as long as σ is chosen beyond the cutoff of the poten-
tial, our approach, via Eq. (13), does also make it possible
to obtain ka and kD in this regime where the distribution of
association/dissociation trajectories has not become isotropic
yet.

Since the ratio ka/kD increases with decreasing σ, to
address the maximal value of ka/kD, we thus compute ka and
kD for the smallest possible choice ofσ, which is again the cut-
off of the potential. This ratio ka/kD depends on the strength of
the non-specific attraction, see Fig. 7. When the non-specific
attraction is weak, ka ≈ 0.7kD, which means that association
is reaction limited. This is because of the strong anisotropy
of the interaction potential: the particles can only bind when
their patches are properly aligned with each other, limiting
the binding probability (of course, this reaction itself is also a
diffusion process). Yet, the figure also shows that when εns is
increased, the intrinsic association rate increases. But it does
not increase indefinitely. Instead ka levels off, at a value that
is on the order of 10 kD [see Fig. 7(d)]. With ka ≈ 10kD, the
effective association rate is dominated by the diffusion-limited
arrival rate yet still influenced by the intrinsic association
rate.

It would also be of interest to study the effect of the shape
of the potential on the values of the rates constant. For exam-
ple, it would be of interest to compare the rates computed here
for the modified LJ potential to those of a square-well poten-
tial. This comparison would then have to be performed on the
footing of equal well-depth and equal range of the potential
since this guarantees that the phase behaviour and the equi-
librium constants are very similar. We leave this for future
work.

Finally, we touch upon some apparent similarities and
differences between our work and the Marcus theory for
electron transfer.37,38 Also in the Marcus theory, there is a
diffusion-limited rate constant describing the rate of diffusion
of the reactants until contact, and a intrinsic rate constant that
describes the reaction.38 However, the main difference with
our approach is that in the Marcus theory the intrinsic rate
constant describes the chemical electron transfer reaction rate,
while in our description, the intrinsic rate constant ka refers
to the association given that the particles are at contact. Con-
comitantly, in the Marcus theory, the diffusion-limited rate
constant describes the rate of diffusion into the potential well,
while in our description, it describes the rate of diffusion up to
the range of the potential. In the Marcus theory, the intrinsic
rate constant can thus be higher because the chemical reac-
tion rate can be much higher than the rate of diffusing into the
potential well starting from the potential-cut-off; moreover, in
that theory the diffusion-limited rate constant is lower because
it describes the rate of diffusion into the potential well rather
than merely to the edge of the well, as in our theory. The dif-
ference with the Marcus theory is thus mainly due to different
definitions of the respective quantities. It would be interest-
ing to see whether one could use the electron transfer reaction
rate constant from the Marcus theory in combination with an
intrinsic association rate constant and a diffusion-limited rate
constant as defined here, to describe the kinetics of the entire
process.
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