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Abstract

In biometric score level fusion, the scores are of-
ten assumed to be independent to simplify the fusion
algorithm. In some cases, the ”average” perfor-
mance under this independence assumption is sur-
prisingly successful, even competing with a fusion
that incorporates dependence. We present two main
contributions in score level fusion: (i) proposing
a new method of measuring the performance of a
fusion strategy at fixed FAR via Jeffreys credible
interval analysis and (ii) subsequently providing a
method to improve the fusion strategy under the in-
dependence assumption by taking the dependence
into account via parametric copulas, which we call
fixed FAR fusion. Using synthetic data, we will show
that one should take the dependence into account
even for scores with a low dependence level. Fi-
nally, we test our method on some public databases
(FVC2002, NIST-face, and Face3D), compare it to
Gaussian mixture model and linear logistic methods,
which are also designed to handle dependence, and
notice its significance improvement with respect to
our evaluation method.

1. Introduction

In a score based biometric person verification sys-
tem, a threshold has to be set to decide whether
a matching score between two biometric samples
(query and template) is a genuine or an impostor
score. A genuine score leads to the conclusion that
the query and template originate from the same per-
son while an impostor score means that the query
and template stem from different people. We will
assume that the matching score is a similarity score.
Note that once the threshold is set, the system can
make two different errors: accept an impostor score
as genuine score and reject a genuine score. The
probability of accepting an impostor score is called
the False Acceptance Rate (FAR), while the proba-
bility of rejecting a genuine score is called the False

Rejection Rate (FRR). The complement of the FRR
is called the True Positive Rate (TPR), which is de-
fined as the probability of accepting a genuine score
as genuine score. Since every genuine score will
be either accepted or rejected by the system, we
have TPR = 1 − FRR. The most common method
to evaluate a biometric person verification system
is by plotting the relation between FAR and TPR,
which is known as Receiver Operating Characteris-
tics (ROC).

When there are two or more matchers, one has
to transform these multiple scores to a new score
(a scalar) as a fused score, which is called score
level fusion. There are three categories in score
level fusion. The most commonly used one is the
transformation-based one which is done by mapping
all components of the vector of matching scores to a
comparable domain and applying some simple rules
such as sum, mean, max, med, etc. [10]. However,
this approach relies heavily on the niceness of the
training set used for the transformation. For exam-
ple if one wants to normalize each component of the
vector of matching scores to the unit interval [0,1]
(which is called minmax normalization), then the
maximum and the minimum of all scores have to be
determined. Unfortunately, when the maximum and
minimum scores have to be estimated from the train-
ing set that has outlier(s), the estimation will be very
bad. The second approach is classifier-based fusion
which is done by stacking all components of the vec-
tor of matching scores and applying a classifier to
separate the genuine and impostor scores [11]. The
last approach is based on estimation of the densities
of the genuine and impostor scores [14]. According
to [17] this approach, which is also known as likeli-
hood ratio based, would be optimal if the underlying
densities were known. However, in practice, such
densities have to be estimated from data so that the
performance relies on how well the two densities are
estimated.

In this paper, we will focus on score level fu-
sion for dependent matchers. The likelihood ratio



based fusion automatically incorporates the depen-
dence between matchers. However, this approach
needs to estimate two density functions, which is
a challenging task. While the choice of an appro-
priate parametric model is sometimes difficult, non-
parametric estimators suffer from the difficulty that
they are sensitive to the choice of the bandwidth or
of other smoothing parameters. To simplify, many
researchers assume that all genuine and impostor
scores are independent so that the likelihood ratio
is only the product of the individual likelihood ra-
tios of the matchers (henceforth called PLR fusion);
see [13, 22, 23]. However, the independence as-
sumption is not realistic since the scores are obtained
from the same sample. A study of incorporating de-
pendence instead of using PLR fusion is presented
in [15] where the authors investigate the effect of
considering correlation and compare their method to
PLR fusion by computing the difference between the
areas their respective ROCs. However, in practice
the FAR has to be set in advance. For example, in a
security application, the FAR is set to be very small
and usually less than 0.1% or even 0.01%. Since area
under ROC does not always reflect the performance
at small FAR, we will compare the performance be-
tween dependent and PLR fusion at specific FAR.

This paper has two main contributions: proposing
an evaluation of biometric fusion at fixed FAR and
proposing a method to improve PLR fusion. In Sec-
tion 2, we present our method to evaluate biometric
fusion at fixed FAR. Instead of using parametric or
nonparametric models, we propose a semiparamet-
ric approach, which will be called fixed FAR fusion,
by modeling the marginal densities nonparametri-
cally and the dependence between them by para-
metric copulas as explained in Section 3. We will
see the gain of considering dependence using syn-
thetic data and subsequently compare our method to
GMM [14] and Logit [13] fusions, which are also
intended to deal with matcher dependence, on some
real databases (FVC2002, NIST-face, Face3D) in
Section 4. Although also vector machine (SVM) fu-
sion can handle dependence, we do not include it be-
cause it is a classifier tool so that we cannot set the
FAR value beforehand (the FAR value of SVM fu-
sion is automatically determined by the classifier).
Finally, our conclusions are presented in Section 5.

2. Performance of biometric fusion at
fixed FAR

Suppose we have dmatchers. In biometric fusion,
one has to find a function ψ : Rd → R, which will
be called a fusion. Let

W1, . . . ,Wngen
(2.1)

and
B1, . . . ,Bnimp

(2.2)

be i.i.d copies of the d-dimensional random variable
of genuine scores Sgen and impostor scores Simp,
respectively. In this section, we will present how to
measure the performance of a fusion at fixed FAR.

Let α be a fixed FAR. The exact TPR is

TPR = P (ψ(Sgen) ≥ τ) (2.3)

where the threshold τ is explicitly determined via re-
lation

P (ψ(Simp) ≥ τ) = α. (2.4)

This means that all fused scores greater than or equal
to τ will be recognized as genuine scores. In prac-
tice, we do not know the distribution functions of
Sgen and Simp. However, we can compute the em-
pirical value of TPR based on (2.1) and (2.2) by

T̂PR = F̂ψgen(τ̂). (2.5)

where

τ̂ = inf{x : F̂ψimp(x) ≥ 1− α}. (2.6)

Here, F̂ψgen and F̂ψimp are modified empirical distribu-
tion functions based on the two samples

ψ(W1), . . . , ψ(Wngen
)

and
ψ(B1), . . . , ψ(Bnimp

),

respectively. Our modified empirical distribution
function based on a sample X1, . . . , Xn is defined
by

F̂ (x) =
1

n+ 1

n∑
i=1

1{Xi≤x}, ∀x ∈ R. (2.7)

The T̂PR is only an estimated rate, which may
be viewed as the probability of a Bernoulli exper-
iment [20]. With ngen genuine scores T̂PR has a
binomial distribution with success probability TPR,
which may be approximated by Bin(ngen, T̂PR).
We employ Jeffreys method to construct a credible
interval (CI) from this. It is one of the more trusted
ways to obtain a CI here [2, 3]. In conclusion, for a
given significance level 0 < ε << 1, we will have
the 100(1− ε)% Jeffreys CI [L,U ] where

L = B(ε/2;β1, β2) (2.8)

and
U = B(1− ε/2;β1, β2) (2.9)



with

β1 = ngenT̂PR+
1

2
and β2 = ngen(1− T̂PR)+

1

2
.

Here, B(ε; p1, p2) denotes the ε quantile of a
Beta(p1, p2) distribution. This means that it is ap-
proximately 100(1 − ε)% certain that the true TPR
is in-between L and U .

3. Fixed FAR correction factor
According to the Neyman-Pearson lemma [17],

the optimal fusion is the likelihood-ratio-based
method, i.e., by taking ψ = LR where

LR(s) =
fgen(s)

fimp(s)
(3.1)

where fgen and fimp are the densities of genuine and
impostor scores, respectively, which are unknown in
practice. Therefore, we have to estimate the LR from
data.

3.1. Correction factor

A copula is a distribution function on the unit
cube [0, 1]d, d ≥ 2, of which the marginals are uni-
formly distributed. Susyanto et al. [21] use a specific
copula called Gaussian copula to handle dependence
between classifiers in biometric fusion. However,
since the Gaussian copula is appropriate for only a
limited number of biometric data sets, we will use
a family of well-known parametric copulas from the
collection of elliptic and Archimedean copulas.

For any continuous multivariate distribution func-
tion there exists a copula function [18].

Theorem 3.1 (Sklar (1959)). Let d ≥ 2, and sup-
pose H is a distribution function on Rd with one
dimensional continuous marginal distribution func-
tions F1, · · · , Fd. Then there is a unique copula
function C : [0, 1]d → [0, 1], so that

H(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) (3.2)

for every (x1, . . . , xd) ∈ Rd.

The joint density function can be computed by
taking the d-th derivative of (3.2):

h(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))

×
d∏
i=1

fi(xi) (3.3)

where c is the copula density and fi is the i-th
marginal density for every i = 1, · · · , d. Note that
according to (3.3), we can estimate separately the de-
pendence structure represented by the copula density

c and the individual densities fi in order to get the
joint density h. If Cα is determined by a finite di-
mensional Euclidean parameter α then it is called a
parametric copula. In this case, we can estimate the
dependence parameter α based on i.i.d. observations

X1, . . . ,Xn

with

Xi = (X1i, . . . , Xdi) ∀i = 1, . . . , n

by the pseudo-maximum likelihood estimator
(PMLE). Mathematically, the PMLE of α has to
maximize

1

n

n∑
i=1

log cα

(
F̂1(X1i), . . . , F̂d(Xdi)

)
(3.4)

where F̂j is the modified empirical distribution func-
tion as defined in (2.7) based on Xj1, . . . , Xjn for
1 ≤ j ≤ d and cα is the copula density.

Let Cgen and Cimp be the copula corresponding
to genuine and impostor scores with copula densi-
ties cgen and cimp, respectively. In view of (3.1) and
(3.3), the likelihood ratio at score s = (s1, · · · , sd)
can be written as

LR(s) = PLR(s)× CF(s)

where

PLR(s) =
d∏
i=1

LRi(si) (3.5)

is the product of the individual likelihood ratios and

CF(s) =
cgen(Fgen,1(s1), · · · , Fgen,d(sd))

cimp(Fimp,1(s1), · · · , Fimp,d(sd))
(3.6)

is the copula density ratio that will be called the
correction factor. Here, Fgen,i and Fimp,i denote
the distribution functions of genuine and impostor
scores, respectively.

Note that for every i-th component of score s =
(s1, · · · , sd), the posterior probability P (H1|si)
can be estimated optimally by the Pool-Adjacent-
Violators (PAV) algorithm as shown in [23] where
H1 correspond to a genuine user. Therefore, from
the Bayesian relation

P (H1|si)
P (H0|si)

=
P (si|H1)

P (si|H0)
× P (H1)

P (H0)

where H0 corresponds to an impostor user, we can
estimate LRi optimally by

L̂Ri =
P (H1|si)

1− P (H1|si)
× nimp

ngen
(3.7)

as used in [4] for calibrating scores in the field of
speaker recognition. Therefore, we only need to es-
timate the correction factor CF.



3.2. Fixed FAR fusion

Estimating CF can be done by estimating cgen
and cimp separately. Of course we will not estimate
these copula densities nonparametrically since it will
lead to the same problems as when estimating the
original density functions directly. We will approxi-
mate CF by the following parametric copulas: Gaus-
sian copula (GC), Student’s t (t), Frank (Fr), Clayton
(Cl), and Gumbel (Gu). We also include the inde-
pendence copula (ind) to guarantee that our fusion is
better than the PLR method. Readers interested in
copulas are referred to [9] for a more detailed expla-
nation. To have more dependence models and be-
cause the Clayton and Gumbel copulas are not sym-
metric, their flipped forms (flipped Clayton (fCl) and
flipped Gumbel (fGu)) will be included as well (if
U has copula C then 1 − U has copula flipped C).
Therefore, the copulas cgen and cimp are chosen from
the copula family

C = {ind,GC, t,Fr,Cl,Gu, fCl, fGu}.

Note that the best copula pair must have the best
performance among other pairs in the sense that
it has the highest TPR at fixed FAR. Applying a
goodness-of-fit test as provided in [7] will only give
the copula pair that is closest to the pair (cgen, cimp),
but whose ratio is not necessarily closest to the ra-
tio cgen/cimp. Therefore, we propose to choose the
best copula pair directly by maximizing the empiri-
cal TPR at the given FAR= α as explained in Section
2. Given a fixed FAR = α, a set C of nc candidate
copulas and a training set, our fixed FAR fusion is
very simple. The first step is computing PLR by the
PAV algorithm and multiplying it by each of all cop-
ula pairs ĉgen/ĉimp in which the dependence param-
eters have been estimated by the PMLEs as defined
in (3.4). Of the nc×nc resulting different combined
scores we choose the one that maximizes the TPR.

4. Experimental Results
To study the performance of our fixed FAR fu-

sion in improving the simple PLR method we ap-
ply it to synthetic and real databases, which are split
up into training and testing sets. Given a training
set, we will compute the product of the individual
likelihood ratios and select the best copula pair. The
corresponding testing set is used for evaluation only.
We compare our fixed FAR fusion to the linear Logit
fusion explained in [13] and the GMM fusion pro-
posed in [14] at FAR= 0.01% for all experiments.
The Jeffreys CIs of all fusions are computed at sig-
nificance level 0.01 and the improvement of fusion
ψ compared to PLR fusion in TPR at 0.01% FAR is
defined by [Lψ − U,Uψ − L] where [Lψ, Uψ] and

[L,U ] are the 99% Jeffreys CIs of fusion ψ and PLR
fusion, respectively, as explained in Section 2.

Given genuine and impostor scores

W1, . . . ,Wngen

and
B1, . . . ,Bnimp

in the training set, our procedure to choose the best
copula pair is simple. We randomize the genuine
(impostor) scores and take two disjoint subsets with
size

nb = min {10, 000; bngen/2c}

and
nw = min {10, 000; bnimp/2c}.

This re-sampling method is aimed at increasing the
computation speed because it will be repeated 100
times to see the consistency. Once the product of the
individual likelihood ratios is computed, it is mul-
tiplied by the 64 copula pair estimates ĉgen/ĉimp.
After all 64 combined scores are obtained using the
first subset, the empirical TPR at 0.01% FAR is then
computed. The final TPR for each copula pair is the
average over all 100 experiments. The best copula
pair is the pair having the highest average of the TPR
values. If there are several pairs having the same
averages, we choose the pair with the smallest vari-
ance. If there is still more than one pair having the
smallest means and variances then we choose one of
them at random.

4.1. Synthetic Data

To get synthetic data that behave like real data,
we take two algorithms presented in [20]. The first
algorithm measures the similarity of the left half of
the face between two images and the second one the
similarity of the right half. The density and distribu-
tion functions of the genuine and impostor scores for
each algorithm are estimated by a mixture of logcon-
cave densities [5]. We choose this estimation method
because it is more general than a Gaussian mixture
and more robust for handling skewness. To obtain
scores with explicit dependence that can be repre-
sented by a copula C, we generate random samples
of the copulaC and apply the inverse transform tech-
nique, using the estimates of the two marginal distri-
bution functions. In this way the generated scores
have as marginal distribution functions these esti-
mates of the distribution functions of data generated
by the two algorithms. Recall that if F is a contin-
uous distribution function then U is uniformly dis-
tributed if and only if F−1(U) has distribution func-
tion F .



In our experiment, we generate 10,000 genuine
and 1,000,000 impostor scores in the way as ex-
plained above. The dependence is made by putting 4
different copula pairs

{(GC,GC), (t, fCl), (fGu,GC), (Cl,Gu)}

completed with 9 dependence level pairs obtained
from the cross pairs

{low,moderate,high}.

In order to know the effect of dependence in biomet-
ric fusion, the low, moderate, and high dependence
levels are set to have correlation values 0.1, 0.5, and
0.9 for Gaussian and Student’s t copulas while for
other copulas we put parameters 1, 10, and 50. Stu-
dent’s t copula has 3 degrees of freedom for all ex-
periments.

By following our procedure, we get that the best
copula pair is the true one for every experiment.
Then, the fixed FAR fusion is compared to the PLR
fusion to see the gain of considering dependence in
biometric fusion. Figure 1 shows the improvement
by the fixed FAR fusion compared to the PLR fu-
sion. We can see that we really have to take the
dependence into account when the dependence be-
tween the impostor scores is higher than between the
genuine ones. Moreover, the dependence between
classifiers should be taken into account even for low
levels of dependence.

4.2. FVC2002-DB1 database

This data set [12] consists of 100 fingers with 8
impressions per finger. We will use the same experi-
mental set up as used in [15] by putting the first two
impressions as templates and the remaining ones as
queries. Two 600×100 scores matrices are obtained
by matching each query to both the templates using
a minutiae matcher [1]. The purpose of this exper-
iment is to see the improvement in using our fixed
FAR method for multi-instances scenarios. To have
a big enough testing set so that the CIs are not too
large, we did 1,000 experiments. In every experi-
ment, we randomized the 100 subjects, and took 70
subjects for training and the remaining 30 for test-
ing. Our fixed FAR and benchmark fusion methods
were trained on the first subset and evaluated on the
second subset. As a result, each fusion method has
180 genuine and 5,220 impostor scores for every ex-
periment. The average TPR is computed by pool-
ing all genuine scores from the 1,000 experiments in
one set and all impostor scores in the other set [6].
Therefore, we have 180,000 genuine and 5,220,000
impostor scores in total.

For every experiment, we train our fixed FAR fu-
sion method by following the procedure explained at

(L,L) (L,M) (L,H) (M,L) (M,M) (M,H) (H,L) (H,M) (H,H)
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Figure 1: Gain of considering dependence between
classifiers. The blue thick lines are the 99% Jeffreys
CI of fixed FAR fusion compared to PLR fusion. The
blue thick lines that do not intersect the red dashed
line, mean that the gain of considering dependence
is significant. On the x-axis the databases are indi-
cated in 9 groups of 4, each group having the same
dependence level pair for each of the 4 chosen copula
pairs. Database (L,L) has low and low dependence
levels for genuine and impostor scores, (L,M) low
and moderate, (L,H) low and high, etc.

the beginning of this section and the pair (ind,fCl) is
obtained as the best copula pair. The difference of
the area under ROC of our fixed FAR and the PLR
fusion is around 0.1%, which is relatively small. At
first sight it is consistent with the results in [15] ,
which claims that considering dependence will not
improve the PLR fusion significantly. However, if
we highlight the TPR at FAR= 0.01% (see Figure 2),
we can see that the improvement is significant. De-
tailed TPR values for our fixed FAR and benchmark
fusions are provided in Table 1. On this database, our
fixed FAR fusion is slightly better than the GMM fu-
sion and both of them improve the PLR fusion at sig-
nificance level 0.01. On the other hand, the Logit and
PLR fusions have almost the same performances.

4.3. NIST-face database

The NIST-face BSSR1 database is published by
the National Institute of Standards and Technol-
ogy [16]. The data contain similarity scores from
two face algorithms run on images from 3,000 sub-
jects with each subject having two probe images and
one gallery image. To evaluate the performance of
our benchmark fusion strategies, we randomize the
subjects and split the set into two disjoint sets with
size 1,500 each. Each fusion strategy is trained on
the first subset and evaluated on the second subset.
This procedure is repeated 10 times. Then, we col-
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Figure 2: Comparison between the PLR and
our fixed FAR fusion methods on FVC2002-DB1
database. The small box contains the highlighted
performance at around 0.01% FAR. The dashed lines
are the 99% Jeffrey CIs.

Table 1: PERFORMANCES AT 0.01% FAR ON
FVC2002-DB1.

Methods TPR 99% Jeffreys CI compared to PLR
in TPR at 0.01% FAR

BSM 77.5% N/A
PLR 81.8% N/A
Logit 81.9% [−0.4%, 0.6%]
GMM 83.6% [ 1.3%, 2.3%]
FFF 83.9% [ 1.7%, 2.6%]

BSM: Best Single Matcher, GMM: Gaussian Mixture
Model, Logit: Logistic Regression, PLR: Product of Like-
lihood Ratios, FFF: our fixed FAR fusion. The bold num-
ber is the best one and the underlined number is the worst
one.

lect all genuine scores from all 10 experiments in one
set and all impostor scores in another set resulting in
30,000 genuine and 44,970,000 impostor scores.

Figure 3 shows that the ROC of our fixed FAR fu-
sion method almost coincides with the ROC of the
PLR fusion. Although our fixed FAR fusion has the
highest TPR, we should not conclude that it is the
best one because all 99% Jeffreys CIs are overlap-
ping (see Table 2). This means that on this database,
the simple PLR fusion method is comparable to other
fusion methods that take dependence into account.

4.4. Face3D database

This database is used in [19, 20] for 3D face
recognition. It is quite realistic for biometric veri-
fication because both the training and the testing set
contain very different images (taken with different
cameras, backgrounds, poses, expressions, illumina-
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Figure 3: Comparison between the PLR and our
fixed FAR fusion methods on NIST-face database.
The small box contains the highlighted performance
at around 0.01% FAR. The dashed lines are the 99%
Jeffrey CIs.

Table 2: PERFORMANCES AT 0.01% FAR ON
NIST-FACE DATABASE.

Methods TPR 99% Jeffreys CI compared to PLR
in TPR at 0.01% FAR

BSM 71.2% N/A
PLR 76.9% N/A
Logit 76.1% [−2.0%, 0.5%]
GMM 76.8% [−1.4%, 1.1%]
FFF 77.4% [−0.8%, 1.7%]

BSM: Best Single Matcher, GMM: Gaussian Mixture
Model, Logit: Logistic Regression, PLR: Product of Like-
lihood Ratios, FFF: our fixed FAR fusion.

tions and time). In his papers, the author proposes
60 different classifiers by measuring the similarity of
different regions. In our experiment, we only take 5
regions out of these 60: similarity of the full face, the
left half, the right half, the bottom part, and the upper
part. The results of these 5 algorithms are rather cor-
related, of course. This choice is made to see the per-
formance of our benchmark methods in handling the
dependence between classifiers. By following our
procedure, we get as the best copula pair (ind,Fr).

Figure 4 shows clearly that considering depen-
dence can improve the performance significantly.
We can see that our fixed FAR fusion method is the
only fusion strategy that can handle the dependence
on this database as given in Table 3. While our fixed
FAR fusion performs very well in handling the de-
pendence, the GMM fusion is even worse than the
best single matcher. This happens because the esti-
mated number of components in the GMM is equal
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Figure 4: Comparison between the PLR and our
fixed FAR fusion methods on Face3D database. The
small box contains the highlighted performance at
around 0.01% FAR. The dashed lines are the 99%
Jeffrey CIs.

Table 3: PERFORMANCES AT 0.01% FAR ON
FACE3D DATABASE.

Methods TPR 99% Jeffreys CI compared to PLR
in TPR at 0.01% FAR

BSM 84.9% N/A
PLR 86.6% N/A
Logit 87.6% [ 0.1%, 1.7%]
GMM 81.2% [−6.3%, −4.5%]
FFF 88.4% [ 1.0%, 2.6%]

BSM: Best Single Matcher, GMM: Gaussian Mixture
Model, Logit: Logistic Regression, PLR: Product of Like-
lihood Ratios, FFF: our fixed FAR fusion. The bold num-
ber is the best one and the underlined number is the worst
one.

to the the maximum value (20) of it when being es-
timated by the minimum message length criterion as
proposed in [8]. It means that the number of com-
ponents may be more than 20. However, if we in-
crease the number of components then the estimator
becomes less reliable.

5. Conclusion

We have proposed and used an alternative method
for evaluating the performance of biometric fusion
methods at fixed FAR using Jeffreys credible inter-
vals. We have also proposed a fixed FAR fusion
method to improve via parametric copulas the PLR
fusion strategy. From a simulation study with syn-
thetic data, we have concluded that it is always use-
ful to take the dependence into account even for
low dependence levels. It has also been shown that

our fixed FAR fusion method is the best method on
real databases compared to the GMM and Logit fu-
sion methods, which are also designed to handle de-
pendence. Instead of providing a ”rule of thumb”
whether the dependence in biometric fusion has to
be taken into account or not, we propose to always
check whether our fixed FAR method improves on
the PLR fusion method by a simple test as fol-
lows: define relevant training and testing sets, fol-
low our procedure in choosing the best copula pair
on the training set, and finally check the signifi-
cance improvement using our evaluation method on
the testing set. We can see from the FVC2002-DB1
database that the existing rule of thumb concludes
the unimportance in considering dependence. How-
ever, when the FAR value is fixed (0.01%), we get
a significant improvement of around 82% to 84%
(around 2%). Although it is a relatively small im-
provement, our fixed FAR fusion method reduces the
number of people that have to be checked manually
from 18 to 16 for every 100 people. This means that
if the manual checking needs 10 minutes per person
then we save 20 minutes for every 100 people.
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